BookPDF Available

The Practice of Biophilic Design

Authors:

Figures

No caption available
… 
No caption available
… 
No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
The Pr acTice of BioPhilic Design
Stephen R. Kellert, Elizabeth F. Calabrese
“The relationship between humankind and nature can be one
of respect and love rather than domination…The outcome...can be
rich, satisfying, and lastingly successful, but only if both partners
are modied by their association so as to become better adapted
to each other...With our knowledge and sense of responsibility…
we can create new environments that are ecologically sound,
aesthetically satisfying, economically rewarding”
René Dubos, The Wooing of the Earth
COVER PICTURE: The facades of these two adjacent buildings in Paris, France, illustrate the direct and
indirect application of biophilic design, one through the use of vegetation, while the other through
shapes and forms characteristic of the natural environment and the use of natural materials.
In memory of Stephen Kellertmy dear friend,
colleague and co-author. The world is a better
place because of you, your passion,
your dedication and love of life.
1943 - 2016
The Practice of Biophilic Design
Table of Contents
I. What is Biophilia and Biophilic Design ..................................................................... 3
II. The Principles and Benets of Biophilic Design ....................................................... 6
III. The Application of Biophilic Design .......................................................................... 9
Direct Experience of Nature .................................................................................... 12
Indirect Experience of Nature ................................................................................. 15
Experience of Space and Place ................................................................................ 19
IV. The Ecological and Ethical Imperative .................................................................... 21
References ...................................................................................................................... 23
About the Authors .......................................................................................................... 25
Reference:
Kellert, S. and Calabrese, E. 2015. The Practice of Biophilic Design. www.biophilic-design.com
Copyright and Commercial Use
This article is available to the general public without fee or control over its access. Anyone may read this article
or use it for their own personal or academic purposes. No commercial use of any kind is permitted unless specic
permission is granted in writing in advance. The copyright of this article is by www.biophilic-design.com.
The copyright of images is by cited photographers.
The Pr ac Tice of BioPhilic Design
Stephen R. Kellert, Elizabeth F. Calabrese
3
The Practice of Biophilic Design
I.
What is Biophilia and Biophilic Design?
Biophilia is the inherent human inclination to aliate with nature that even in the modern world
continues to be critical to people’s physical and mental health and wellbeing (Wilson 1986, Kellert
and Wilson 1993, Kellert 1997, 2012). The idea of biophilia originates in an understanding of human
evolution, where for more than 99% of our species history we biologically developed in adaptive response to
natural not articial or human created forces. Most of what we regard as normal today is of relatively recent
origin—raising food on a large-scale just in the last 12,000 years; the invention of the city, 6000 years old; the
mass production of goods and services, beginning 400 years ago; and electronic technology, only since the
19th century. The human body, mind, and senses evolved in a bio-centric not human engineered
or invented world.
Our species’ inherent inclination to respond to
natural forces and stimuli is illustrated by the
results of a classic Swedish study conducted by the
psychologist Arne Öhman (1986). In this research,
the subjects were subliminally exposed to pictures
of snakes, spiders, frayed electric wires, and hand-
guns. Almost all the study participants aversively
responded to the subconsciously revealed images
of snakes and spiders, yet remained largely indif-
ferent to the handguns and exposed electric wires.
The results of this research both illustrate and
suggest caution regarding the signicance of our
inherent inclinations to respond to nature in the
People possess an inherent inclination to fear
snakes, even today the most common phobia
found among humans.
Homo sapiens
began to evolve
Homo sapiens migrated
out of Africa
Oldest known
cave paintings
Invention of the city
Mass production of
goods and services
Electronic
technology
200,000 yrs ago
125,000 60,000 yrs ago
40,000 yrs ago
6,000 yrs ago
400 yrs ago
200 yrs ago
Humans began
raising food on a
large scale
12,000 yrs ago
4
modern world. The ndings reveal the continuing
inuence of our evolved responses to nature, but
also indicate that some of these reactions may have
become “vestigial” – once adaptive in the distant
human past, but largely irrelevant in today’s built
and increasingly urban world, and likely to atrophy
over time.
Despite this possibility, a growing body of scientic
study increasingly reveals that most of our inher-
ent tendencies to aliate with nature continue to
exercise signicant eects on people’s physical and
mental health, performance, and wellbeing. While
the data is limited and the research often method-
ologically weak, the breadth of the ndings across
a wide range of sectors – work, education, health,
recreation, housing, community – support the con-
tention that contact with nature still has a profound
impact on human tness and quality of life (Kellert
2012, Browning et al 2014). For example, in the
healthcare eld, a wide range of studies have re-
ported exposure to nature can reduce stress, lower
blood pressure, provide pain relief, improve illness
recovery, accelerate healing, enhance sta morale
and performance, and lead to fewer conicts be-
tween patients and sta (Annerstedt and Währborg
2011, Beck and Katcher 1986, Bowler et al 2010,
Cama 2009, Friedmann 1983, Frumkin 2001,
2008, Katcher 1993, Kellert and Heerwagen 2007,
Kuo 2010, Louv 2012, Marcus and Sachs 2014,
Taylor 2001, Townsend and Weerasuriya 2010,
Ulrich 1993, 2008, Wells and Rollings 2012).
The benets of contact with nature often depend
on repeated experience. People may possess an
inherent inclination to aliate with nature, but
like much of what makes us human, this biological
tendency needs to be nurtured and developed to
become functional (Wilson 1986, Kellert 2012).
People’s reliance on learning and experience is
what has allowed our species to reach beyond our
biology to become inventive and distinctive as in-
dividuals and societies. This capacity to learn and
choose a particular course of action is, however,
a two-edged sword. It can spur benecial and cre-
ative choices, but it can also lead to self-destructive
behaviors. In the case of biophilia, we can either
choose to engage our inherent tendencies to aliate
with nature, or to separate from and impoverish our
connections to the natural world. Unfortunately,
modern society has erected many obstacles to the
benecial experience of nature. Most problematic
Research has indicated a view of nature can enhance
recovery from illness and surgery, and reduce the need
for potent pain medication.
Many hospital rooms are dominated by technology and
devoid of any connection to nature.
5
is an increasing disconnect from the natural world,
often viewed as merely a resource to be exploited
or a nice but not necessary recreational amenity.
This increasing separation from nature is reected
in modern agriculture, manufacturing, education,
healthcare, urban development, and architecture.
One of the most signicant impediments to the
positive experience of nature today is the pre-
vailing paradigm of design and development of
the modern built environment. This is especially
problematic, because while humans may have
evolved in the natural world, the “natural habitat”
of contemporary people has largely become the
indoor built environment where we now spend
90% of our time. The need for benecial contact
with nature continues to be critical to people’s
health and tness, but its satisfactory occurrence
in today’s built environment has become highly
challenging. The dominant approach to modern
building and landscape design largely treats nature
as either an obstacle to overcome or a trivial and
irrelevant consideration. The result has been an
increasing disconnect between people and nature
in the built environment reected in inadequate
contact with natural light, ventilation, materials,
vegetation, views, natural shapes and forms, and in
general benecial contact with the natural world.
Much of the built environment today is so sensory
deprived, it is sometimes reminiscent of the barren
cages of the old-fashioned zoo, now ironically
banned as “inhumane” (Heerwagen in Kellert
and Finnegan, 2011).
Offices with natural light, materials, and vegetation
have been found to increase productivity, improve
morale, and reduce absenteeism.
The majority of offices in the United States are
windowless and often sensory-deprived settings.
The Practice of Biophilic Design
6
The challenge of biophilic design is to address these deciencies of contemporary building
and landscape practice by establishing a new framework for the satisfying experience of nature
in the built environment (Kellert et al 2008, Kellert 2005, Kellert and Finnegan 2011, Browning
et al 2014). Biophilic design seeks to create good habitat for people as a biological organism in the modern
built environment that advances people’s health, tness and wellbeing.
The successful application of biophilic design necessitates consistently adhering to certain basic prin-
ciples. These principles represent fundamental conditions for the eective practice of biophilic design.
They include:
1. Biophilic design requires repeated and sustained engagement with nature.
2. Biophilic design focuses on human adaptations to the natural world that over evolution-
ary time have advanced people’s health, tness and wellbeing.
II.
The Principles and Benefits of Biophilic Design
7
The Practice of Biophilic Design
II.
The Principles and Benefits of Biophilic Design 3. Biophilic design encourages an emotional attachment to particular settings and places.
4. Biophilic design promotes positive interactions between people and nature that encourage an
expanded sense of relationship and responsibility for the human and natural communities.
5. Biophilic design encourages mutual reinforcing, interconnected, and integrated architectural
solutions.
8
Biophilic design further seeks to sustain the productivity, functioning and resilience of natural systems over
time. Alteration of natural systems inevitably occur as a result of major building construction and develop-
ment. Moreover, all biological organisms transform the natural environment in the process of inhabiting it.
The question is not whether ecological change occurs, but rather will the net result over time be a more
productive and resilient natural environment as measured by such indicators as levels of biological diversity,
biomass, nutrient cycling, hydrologic regulation, decomposition, pollination, and other essential ecosystem ser-
vices. The application of biophilic design can alter the environmental conditions of a building or landscape in
the short term, but over the long run, it should support an ecologically robust and sustainable natural community.
The successful application of biophilic design should also result in a wide spectrum of physical, mental and
behavioral benets. Physical outcomes include enhanced physical tness, lower blood pressure, increased
comfort and satisfaction, fewer illness symptoms, and improved health. Mental benets range from increased
satisfaction and motivation, less stress and anxiety, to improved problem solving and creativity. Positive behav-
ioral change includes better coping and mastery skills, enhanced attention and concentration, improved social
interaction, and less hostility and aggression.
The integration of the biophilic elements of water, vegetation, organic shapes and forms, information
richness, prospect and refuge, the patina of time, and organized complexity all contribute to this scene’s
powerful sense of place.
The Practice of Biophilic Design
9
The practice of biophilic design involves
the application of varying design strate-
gies, what we refer to as experiences and
attributes. The choice of which design applications
to employ inevitably varies depending on a
project’s circumstances and constraints including
particular building and landscape uses, project
size, varying economic, logistical and regulatory
factors, as well as cultural and ecological condi-
tions. As emphasized, the eective practice of
biophilic design requires adhering to the previ-
ously noted principles. Most important, biophilic
design should never occur in piecemeal or discon-
nected fashion, but rather in a manner whereby
the diverse applications mutually reinforce and
complement one another, resulting in an overall
integrated ecological whole.
Three kinds of experience of nature represent the
basic categories of our biophilic design framework.
These include the direct experience of nature,
the indirect experience of nature, and the experi-
ence of space and place. The direct experience
of nature refers to actual contact with environ-
mental features in the built environment including
natural light, air, plants, animals, water, landscapes,
and others that will be described. The indirect
experience of nature refers to contact with the
representation or image of nature, the transfor-
mation of nature from its original condition, or
exposure to particular patterns and processes
characteristic of the natural world. These include
pictures and artwork, natural materials such as
wood furnishings and woolen fabrics, ornamenta-
tion inspired by shapes and forms occurring in
nature, or environmental processes that have been
important in human evolution such as aging and
the passage of time, information richness, natural
geometries, and others. Finally, the experience of
space and place refers to spatial features char-
acteristic of the natural environment that have
advanced human health and wellbeing. Examples
include prospect and refuge, organized complexity,
mobility and way nding, and more. Within these
three categories of experience, 24 attributes of bio-
philic design have been identied. A simple listing
of these biophilic design experiences and attributes
is noted on the following page, although each attri-
bute is described in the pages that follow:
III.
The Application of Biophilic Design
10
Light
Air
Water
Plants
Animals
Weather
Natural landscapes
and ecosystems
Fire
Images of nature
Natural materials
Natural colors
Simulating natural
light and air
Naturalistic shapes
and forms
Evoking nature
Information richness
Age, change, and
the patina of time
Natural geometries
Biomimicry
Prospect and refuge
Organized complexity
Integration of parts
to wholes
Transitional spaces
• Mobility and waynding
Cultural and ecological
attachment to place
Experiences and Attributes of Biophilic Design
Direct Experience
of Nature
Indirect Experience
of Nature
Experience of
Space and Place
The Practice of Biophilic Design
11
All these biophilic design qualities are experienced
through a variety of human senses including
sight, sound, touch, smell, taste, and movement.
The visual sense is by far the dominant way people
perceive and respond to the natural world. When
we see plants, animals, water, landscapes, and other
natural features, a variety of physical, emotional
and cognitive responses are triggered. People
also react to indirect visual contact with nature,
especially the sight of striking pictures, natural
materials, organic shapes and forms, and more.
Aesthetically attractive nature particularly arouses
our interest, curiosity, imagination, and creativity.
By contrast, when we lack visual contact with the
natural world, such as a windowless and featureless
space, we frequently experience boredom, fatigue,
and in extreme cases physical and psychological
abnormality. Despite our human tendency to favor
the visual sense, other sensory responses to nature
are of great signicance to us, particularly touch,
sound, smell, taste, time, and motion. Hearing
water, touching plants, smelling owers, sensing the
movement of the air often moves us both emotion-
ally and intellectually. Multisensory encounters
with nature in the built environment can greatly
contribute to comfort, satisfaction, enjoyment, and
cognitive performance, and when feasible, should
be encouraged.
What follows are brief descriptions of each of the
biophilic design attributes.
12
Attributes of Biophilic Design
LIGHT. The experience of natural light is fundamental
to human health and wellbeing, enabling an orientation to
the day, night and seasons in response to the sun’s location
and cycles. An awareness of natural light can also facilitate
movement and waynding, and contribute to comfort and
satisfaction. Beyond simple exposure, natural light can as-
sume aesthetically appealing shapes and forms through the
creative interplay of light and shadow, diuse and variable
light, and the integration of light with spatial properties.
Natural light can be brought deep into interior spaces by
such means as glass walls and clerestories, the use of reect-
ing colors and materials, and other design strategies. The
experience of light in motion can be achieved through the
contrast of lighter and darker areas and changes of daylight
over time.
AIR. Natural ventilation is important to human comfort
and productivity. The experience of natural ventilation in
the built environment can be enhanced by variations in air-
ow, temperature, humidity, and barometric pressure. These
conditions can be achieved through access to the outside by
such simple means as operable windows, or by more com-
plex technological and engineering strategies.
WATER. Water is essential to life and its positive experi-
ence in the built environment can relieve stress, promote
satisfaction, and enhance health and performance. The
attraction to water can be especially pronounced when as-
sociated with the multiple senses of sight, sound, touch, taste,
and movement. Varying design strategies can satisfy the
desire for contact with water including views of prominent
water bodies, fountains, aquaria, constructed wetlands, and
others. Water in the built environment is often most pleas-
ing when perceived as clean, in motion, and experienced
through multiple senses (although at muted sound levels).
I. Direct Experience of Nature
The Practice of Biophilic Design
13
PLANTS. Vegetation, especially owering plants, is one
of the most successful strategies for bringing the direct
experience of nature into the built environment. The
presence of plants can reduce stress, contribute to physical
health, improve comfort, and enhance performance and
productivity. The application of single or isolated plants,
however, rarely exerts much benecial eect. Vegetation in
buildings and constructed landscapes should be abundant,
ecologically connected, and tending to focus on local rather
than exotic and invasive species.
ANIMALS. The presence of nonhuman animal life has
been an integral part of people’s experience throughout
human history. Still, its occurrence in the built environment
can be challenging and occasionally contentious. Positive
contact with animal life can be achieved through such
design strategies as feeders, green roofs, gardens, aquaria,
aviaries, and the creative use of modern technologies such
as web cameras, video, binoculars, and spotting scopes.
Isolated and infrequent contact with animal life tends to
exert little impact. When feasible, contact with animal life
should include a diversity of species, and emphasize local
rather than non-native species.
WEATHER. An awareness and response to weather
has been an essential feature of people’s experience of
nature throughout history, and critical to human tness and
survival. The perception of and contact with weather in the
built environment can be both satisfying and stimulating.
This may occur through direct exposure to outside condi-
tions, as well as by simulating weather-like qualities through
manipulating airow, temperature, barometric pressure,
and humidity. Design strategies include views to the outside,
operable windows, porches, decks, balconies, colonnades,
pavilions, gardens, and more.
14
NATURAL LANDSCAPES AND ECOSYSTEMS.
Natural landscapes and ecosystems consist of intercon-
nected plants, animals, water, soils, rocks, and geological
forms. People tend to prefer landscapes with spreading
trees, an open understory, the presence of water, forested
edges, and other features characteristic of a savannah-type
setting important in human evolution. Still, even ordinary
natural scenery is preferred by most people over articial
and human-dominated landscapes. The experience of self-
sustaining ecosystems can be especially satisfying. Functional
ecosystems are typically rich in biological diversity and
support an array of ecological services such as hydrologic
regulation, nutrient cycling, pollination, decomposition, and
more. Self-sustaining ecosystems in the built environment
can be achieved through such design strategies as constructed
wetlands, forest glades and grasslands; green roofs; simu-
lated aquatic environments; and other means. Contact with
natural systems can be fostered by views, observational
platforms, direct interaction, and even active participation.
FIRE. One of humanity’s greatest achievements has been
the control of re that allowed the harnessing of energy
beyond animal life, and facilitated the transformation of
objects from one state to another. The experience of re
can be both a source of comfort and anxiety. The satisfying
presence of re in the built environment may be achieved
through the construction of replaces and hearths, but also
simulated by the creative use of light, color, movement, and
materials of varying heat conductance.
The Practice of Biophilic Design
15
IMAGES OF NATURE. The image and representa-
tion of nature in the built environment—plants, animals,
landscapes, water, geological features—can be both emo-
tionally and intellectually satisfying. These images can
occur through the use of photographs, paintings, sculpture,
murals, video, computer simulations, and other representa-
tional means. Single or isolated images of nature typically
exert little impact. Representational expressions of nature
should be repeated, thematic, and abundant.
NATURAL MATERIALS. Natural materials can be
especially stimulating, reecting the dynamic properties
of organic matter in adaptive response to the stresses and
challenges of survival over time. The transformation of
materials from nature frequently elicits positive visual and
tactile responses, which few articial materials can dupli-
cate. Prominent natural building and decorative materials
include wood, stone, wool, cotton, and leather, used in a
wide array of products, furnishings, fabrics, and other
interior and exterior designs.
NATURAL COLORS. Humans evolved as a daytime
animal, and color has long served as an important means
for locating food, water, and other resources, as well as
facilitating movement and waynding. The eective use of
color in the built environment can be challenging, given the
modern ability to generate articial, especially bright colors.
The eective biophilic application of color should generally
favor muted “earth” tones characteristic of soil, rock, and
plants. The use of bright colors should be cautiously ap-
plied, and emphasize such appealing environmental forms
as owers, sunsets and sunups, rainbows, and certain plants
and animals. The occurrence of highly articial, contrast-
ing, and “vibrating” colors should be avoided.
II. Indirect Experience of Nature
16
SIMULATING NATURAL LIGHT AND AIR.
Indoor lighting and processed air have been made possible
by advances in building technology and construction. The
trade-o has often been the occurrence of static conditions
that can be physically and psychologically debilitating.
Articial light can be designed to mimic the spectral and
dynamic qualities of natural light. Processed air can also
simulate qualities of natural ventilation through variations
in airow, temperature, humidity and barometric pressure.
NATURALISTIC SHAPES AND FORMS.
The experience of shapes and forms characteristic of the
natural world can be especially appealing. These natural-
istic forms can be extraordinarily diverse from the leaf-like
patterns found on columns, the shapes of plants on building
facades, to animal facsimiles woven into fabrics and cover-
ings. The occurrence of naturalistic shapes and forms can
transform a static space into one that possesses the dynamic
and ambient qualities of a living system.
EVOKING NATURE. The satisfying experience of
nature can also be revealed through imaginative and
fantastic depictions. These representations may not literally
occur in nature, but still draw from design principles promi-
nently encountered in the natural world. For example, the
“wings” of the Sydney Opera House suggest the qualities
of a bird; Notre Dame’s stained glass windows, a rose-like
ower; while, the skyline of some cities mimic the vertical
heterogeneity of a forest. None of these designs actually
occurs in nature, but they all draw from design principles
and characteristics of the natural world.
The Practice of Biophilic Design
17
INFORMATION RICHNESS. The diversity and vari-
ability of the natural world is so pronounced, it has been
described as the most information-rich environment people
will ever encounter. Whether natural or built, people tend
to respond positively to information-rich and diverse envi-
ronments that present a wealth of options and opportunities,
so long as the complexity is experienced in a coherent and
legible way.
AGE, CHANGE, AND THE PATINA OF TIME.
Nature is always changing and in ux, life especially
reecting the dynamic forces of growth and aging. People
respond positively to these dynamic forces and the associ-
ated patina of time, revealing nature’s capacity to respond
adaptively to ever changing conditions. These dynamic
tendencies are often most satisfying when balanced by the
complementary qualities of unity and stability. Change
and a patina of time can be achieved through such design
strategies as naturally aging materials, weathering, a sense
of the passage of time, and in other ways.
18
NATURAL GEOMETRIES. Natural geometries
refer to mathematical properties commonly encountered
in nature. These include hierarchically organized scales,
sinuous rather than rigid articial geometries, self-repeating
but varying patterns, and more. For example, fractals are
a geometric form often encountered in the natural world,
where a basic shape occurs in repeated but varied and
predictable ways that contribute both variety and similarity
to a setting. Other prominent natural geometries include
hierarchically ordered scales such as the “Golden Ratio”
and “Fibonacci Sequence.”
BIOMIMICRY. Biomimicry refers to forms and
functions found in nature, especially among other species,
whose properties have been adopted or suggest solutions
to human needs and problems. Examples include the bio-
climatic controls of termite mounds, the structural strength
of spider webs, the heat-trapping ability of certain animal
hairs. Technologically capturing these characteristics of
nonhuman nature can result in direct utilitarian benets,
as well as provoke human admiration for the ingenuity of
other life and the creativity of the natural world.
The Practice of Biophilic Design
19
PROSPECT AND REFUGE. Humans evolved
in adaptive response to the complementary benets
of prospect and refuge. Prospect refers to long views of
surrounding settings that allow people to perceive both
opportunities and dangers, while refuge provides sites of
safety and security. These complementary conditions can
be both functional and satisfying in the built environment.
This biophilic outcome can be achieved through such
design strategies as vistas to the outside, visual connections
between interior spaces, and the occurrence of secure and
sheltered settings.
ORGANIZED COMPLEXITY. People covet
complexity in both natural and human settings, which
signify places rich in options and opportunities. Yet, exces-
sive complexity is often confusing and chaotic. The most
satisfying settings tend to possess qualities of complexity,
but experienced in an orderly and organized way. Complex
spaces tend to be variable and diverse, while organized
ones possess attributes of connection and coherence.
INTEGRATION OF PARTS TO WHOLES.
People covet settings where disparate parts comprise an
integrated whole. This feeling of an emergent whole can
often be achieved through the sequential and successional
linking of spaces, as well as by clear and discernible bound-
aries. This satisfying integration of space can be enhanced
by a central focal point that occurs either functionally
or thematically.
III. Experience of Space and Place
20
TRANSITIONAL SPACES. Successfully navigating
an environment often depends on clearly understood con-
nections between spaces facilitated by clear and discernible
transitions. Prominent transitional spaces include hallways,
thresholds, doorways, gateways, and areas that link the
indoors and outdoors especially porches, patios, courtyards,
colonnades, and more.
MOBILITY AND WAYFINDING. People’s comfort
and wellbeing often relies on freely moving between diverse
and often complicated spaces. Clearly understood pathways
and points of entry and egress are especially critical to fos-
tering mobility and feelings of security, while the absence
of these features often breeds confusion and anxiety.
CULTURAL AND ECOLOGICAL ATTACH-
MENT TO PLACE. Humans evolved as a territorial
creature, because it promoted the control of resources,
enhanced safety and security, and facilitated movement
and mobility. An anity for familiar places reects this
territorial inclination that can be enhanced by both cultural
and ecological means. Culturally relevant designs promote
a connection to place and the sense that a setting has a
distinct human identity. Ecological connections to place
can similarly foster an emotional attachment to an area,
particularly an awareness of local landscapes, indigenous
ora and fauna, and characteristic meteorological condi-
tions. Cultural and ecological attachments to place often
motivate people to conserve and sustain both natural and
human built environments.
The Practice of Biophilic Design
21
Biophilic design is about creating good
habitat for people as a biological organism
in the built environment. Like all species,
humans evolved in adaptive response to natural
rather than articial forces, and these adaptations
became embedded in our species biology over evo-
lutionary time. Biophilic design seeks to satisfy these
inherent adaptations to nature in the modern built
environment and, in doing so, enhance people’s
physical and mental health and tness.
Good habitat means ecologically sound and
productive environments where people function to
their optimal potential. Ecosystems are comprised
of webs of mutually reinforcing and complementary
relationships where the resulting whole is greater
than the sum of its parts. As with all organisms,
eective human functioning depends on ecologically
connected rather than disaggregated environments.
Successful biophilic design should encourage
connections that contribute to an overall coherent
whole. The risk of specifying specic strategies
of biophilic design is the potential to encourage
their separate and piecemeal application. Biophilic
design should instead promote ecologically inter-
related design solutions at multiple scales from
distinct interior spaces, the building as a whole,
the surrounding landscape, to the urban and
bio-regional scale.
Biophilic design is more than just a technical
tool. The framework advanced here is certainly
intended to be a practical methodology for the
more eective design of the built environment.
Its successful application will ultimately depend,
however, on adopting a new consciousness toward
nature as much as implementing a new design
technique. Biophilia and biophilic design neces-
sitate recognizing how much human physical and
mental wellbeing continues to rely on the quality
of our relationships to the world beyond ourselves
of which we remain a part. As the landscape
architect, Ian McHarg, remarked:
“The problem of man and nature is not
one of providing a decorative background
for the human play, or even ameliorating
the grim city: it is the necessity of sustaining
nature as a source of life, milieu, teacher,
sanctum, challenge and, most of all,
of rediscovering nature’s corollary
of the unknown in the self,
the source of meaning.”
IV.
The Ecological and Ethical Imperative
22
Practical issues are clearly important in eectively
adopting and applying biophilic design. But, nature
oers us far more than just physical and material
sustenance, contributing as well to our capacities
for emotional and intellectual growth and wellbe-
ing, and even attaining a just and satisfying exis-
tence. Biophilia and biophilic design are about our
values and ethical responsibility for the care and
sustainability of the natural world. A commitment
to maintain and even enrich our relationship to
nature necessitates a greatly expanded understand-
ing of human self-interest that includes material
benets, but also a host of emotional, intellectual,
and even spiritual rewards as well.
The modern age has precipitated a sustainabil-
ity crisis reected in enormous loss of biological
diversity, natural resource depletion, environmen-
tal pollution, and atmospheric degradation. The
conventional design of the built environment has
greatly contributed to this crisis. The remedial
response to this challenge has emphasized reducing
our environmental impacts through energy and
resource eciency, the use of less polluting materi-
als, recycling, and other important strategies. Yet,
this low environmental impact approach, while
essential, by itself, is insucient for achieving true
and lasting sustainability. Conserving and main-
taining our buildings and landscapes also requires
an attachment to and aection for these creations
that originates in the realization of their contribu-
tion to our physical and mental health and wellbe-
ing through an array of benecial connections to
nature. This sense of positive relationship to nature
ultimately motivates us to become good stewards
and sustain these places over time.
This is the promise of biophilia and biophilic
design. The distortion of our values of nature in
the modern age has precipitated widespread envi-
ronmental degradation and a growing alienation
from the natural world. Sustainability will remain
an elusive goal until a fundamental shift occurs
in our values and ethical relations to the natural
world. The successful application of biophilic
design will depend on recognizing how much
nature remains the basis for a healthy, productive,
and meaningful human existence. As the writer,
Henry Beston, eloquently concluded:
“Nature is a part of our humanity, and
without some awareness and experience of
that divine mystery man ceases to be man.
When the Pleiades and the wind in the grass
are no longer a part of the human spirit, a
part of very esh and bone, man becomes, as
it were, a cosmic outlaw, having neither the
completeness and integrity of the animal nor
the birthright of a true humanity.”
The Practice of Biophilic Design
23
References
Annerstedt, M and P. Währborg. 2011. Nature-assisted therapy: systematic review of controlled and observational
studies. Scand. J. Public Health:1-18.
Beston, H. 1971. The Outermost House. New York: Ballantine.
Bowler, D.E., Buyung-Ali, L.M, Knight, T.M., Pulin, A.S. 2010. A systematic review of evidence for the added
benets to health of exposures to natural environments. BMC Public Health 10.
Browning, W.D., Ryan, C., Kallianpurkar, N., Laburto, L., Watson, S., Knop, T. 2012. The Economics of Biophilia,
Why Designing with Nature in Mind Makes Financial Sense. New York: Terrapin Bright Green.
Browning, W.D., Ryan, C., Clancy, J. 2014. 14 Patterns of Biophilic Design, Improving Health & Well-Being in the
Built Environment. New York: Terrapin Bright Green.
Cama, R. 2009. Evidence-based Healthcare Design. Hoboken, NJ: John Wiley.
Friedmann, E. 1983. Animal-human bond: health and wellness. In A. Katcher and A. Beck, eds., New Perspectives
on Our Lives with Companion Animals. Philadelphia: University of Pennsylvania Press.
Frumkin, H. 2001. Beyond toxicity: human health and the natural environment. American Journal of Preventive
Medicine 20.
Frumkin, H. 2008. Nature contact and human health: building the evidence base. In, Kellert et al, Biophilic Design.
Heerwagen, J. 2011. As quoted in the video, Kellert, S. and B. Finnegan, Biophilic Design: the Architecture of Life.
www.bullfroglms.com.
Kellert, S. 2012. Birthright: People and Nature in the Modern World. New Haven: Yale University Press.
Kellert, S. 2005. Building for Life: Understanding and Designing the Human-Nature Connection. Washington, DC: Island Press.
Kellert, S. 1997. Kinship to Mastery: Biophilia in Human Evolution and Development. Washington, DC:
Island Press.
Kellert, S, J. Heerwagen, M. Mador, eds. 2008. Biophilic Design: the Theory, Science, and Practice of Bringing
Buildings to Life. Hoboken, NJ: John Wiley.
Kellert, S. and E.O. Wilson, eds. 1993. The Biophilia Hypothesis. Washington, DC: Island Press.
Kellert, S. and B. Finnegan. 2011. Biophilic Design: the Architecture of Life. A 60 minute video. www.bullfroglms.com
Kellert, S. and J. Heerwagen. 2007. Nature and healing: the science, theory, and promise of biophilic design. In
Guenther, R. and G. Vittori, eds. Sustainable Healthcare Architecture. Hoboken, NJ: John Wiley.
Kuo, F. 2010. Parks and other green environments: essential components of a health human habitat. Washington,
DC: National Recreation and Parks Association.
Louv, R. 2012. The Nature Principle: Reconnecting with Life in a Virtual Age. Chapel Hill: Algonquin Press.
Marcus, C.M. and N.A. Sachs. 2014. Therapeutic Landscapes: an Evidence-based Approach to Designing Healing
Gardens and Restorative Outdoor Spaces. Hoboken, NJ: John Wiley.
McHarg, I. 1969. Design with Nature. Hoboken, NJ: John Wiley.
24
Öhman, A, 1986. Face the beast and fear the face: animal and social fears as prototypes for evolutionary analyses of
emotion. Psychophysiology 23.
Taylor, A. 2001. Coping with ADD: the surprising connection to green places. Environment and Behavior 33.
Townsend, M and R. Weerasuriya. Beyond blue to green: the benets of contact with nature for mental health and
wellbeing. www. Beyondblue.org.au.
Ulrich, R. 2008. Biophilic theory and research for healthcare design. In Kellert et al, Biophilic Design.
Ulrich, R. 1993. Biophilia, biophobia, and natural landscapes. In Kellert and Wilson, Biophilia Hypothesis.
Wells, N. and K. Rollings. 2012. The natural environment: inuences on human health and function. In Clayton, S.,
ed. The Oxford Handbook of Environmental and Conservation Psychology. London: Oxford University Press.
Wilson, E.O. 1986. Biophilia: the Human Bond with Other Species. Cambridge: Harvard University Press.
Credits
Photos
Cover: S.R.Kellert
Interior: 3b-Keith Pomakis, 4a-Shutterstock, 4b-UCSF Hospital, 5a-Michael Louis, 5b-Gittle Price, 6a-Khoo Teck
Puat Hospital, 6b-Peter Otis, 7a-S.R.Kellert, 7b-http://www.freepik.es/fotos-vectores-gratis/buscando, 7c-Whit
and Andrea Slemmons, 8a-copyright Lois Mauro, 9a-Richard Davies, 10a-Studio Dekorasyon, 10b-S.R.Kellert,
10c-Behnisch Architects; photo Anton Grassl/Esto, 11a- copyright Lois Mauro, 12a-Behnisch Architects; photo
Anton Grassl/Esto, 12b-Shepley Bulnch Richardson Abbott Architects; photo Anton Grassl/Esto, 12c-Unknown,
13a-Unknown, 13b-S.R.Kellert, 13c-Yan Lim propertyguru.com, 14a-copyright Lois Mauro, 14b-Unknown, 15a-
http://commons.wikimedia.org/wiki/ File:Poppy_Field_in_Argenteuil,_Claude_Monet.jpg, 15b-Richard Davies,
15c-BODY Philippe/age fotostock, 16a-Michelle Litvin, 16b-Kent Bloomer, 16c-http://en.wikipedia.org/wiki/
User_talk:Adam.J.W.C./ Previous_discussions#/media/File:Sydneyoperahouse.jpg, 17a-http://commons.wikimedia.
org/wiki/ File:Beijing_national_stadium.jpg Peter23, 17b-Stephen Buchan, 18a-Stan Shebs, 18b-Glen Espinosa,
19a-Pintrest, 19b-Matt John, CTA Architects Engineers (www.CTAgroup.com), 20a-Serge Esteve, 20b-Julienne Schaer,
20c-http://commons.wikimedia.org/wiki/File:Tigernest_(Taktsang)- Kloster_in_Bhutan.jpg, 21a-Linh Nguyen
Design and layout
Tanya Napier (hummingbeardesign.com)
Acknowledgements
This paper very much beneted from insights and understandings derived from recent work with Judith
Heerwagen, colleagues at SERA Architects, Google, and Terrapin Bright Green, particularly Bill Browning,
Mary Davidge, Anne Less, Matt Piccone, Anthony Ravitz, Catie Ryan, and Kate Turpin.
To download this document go to www.biophilic-design.com
The Practice of Biophilic Design
25
About the Authors
Dr. Stephen R. Kellert (1943 - 2016) was a Professor Emeritus at Yale University.
He was also a member of the Board of Directors of Bio-Logical Capital, a rm
that invests in sustainable land uses on large landscapes. His work focuses on
understanding the connection between nature and humanity with a particular
interest in the human need for nature, and sustainable design and development.
His awards include the George B. Hartzog Award for Environmental Conservation,
the American Publishers Best Book of Year Award in Architecture and Urban
Planning for Biophilic Design, the National Conservation Achievement Award
from the National Wildlife Federation, and others. He is also listed in “American
Environmental Leaders: From Colonial Times to the Present.” Dr. Kellert served on committees of the
National Academy of Sciences, as a board of director of many organizations, and authored more than 150
publications, including 11 books.
Elizabeth Freeman Calabrese, AIA, LEED AP, has been in the design industry
for 30 years. She is principal of Calabrese Architects, Inc. located in Burlington,
Vermont, with national and international projects to her credit. Elizabeth is a
leading educator in the growing eld of biophilic design and believes that ecology
and biophilia belong at the foundation and core of professional design programs.
As a consultant, she encourages a holistic, integrated, “eco-system” approach when
incorporating biophilia into projects, including those seeking Living Building
Challenge and WELL Building certications. Liz@CalabreseArchitects.com
Biophilic Design: the
Architecture of Life
with Bill Finnegan
A 60-minute
documentary
video (www.bull-
froglms.com)
Biophilic Design: The
Theory, Science, and
Practice of Bringing
Buildings to Life
(John Wiley, 2008)
Building for Life:
Designing and
Understanding the
Human-Nature
Connection (Island
Press, 2005)
The Biophilia
Hypothesis (Island
Press, 1993)
Birthright: People
and Nature in the
Modern World
(Yale University
Press, 2012)
... Since the health influences of biophilia are supported by robust empirical evidence [11,[14][15][16][17][18][19][20], researchers have started to explore how to employ biophilia principles in design practice [6,[21][22][23]. Stephen Kellert (1943Kellert ( -2016 first coined the term for design activity that aimed to "rebuild a positive relationship between the natural environment and human in the modern built environment" as "biophilic design" [24][25][26][27]. The innovative approach revealed that biophilia research started to transfer from basic research to practical design application and affected sustainable design strategies. ...
... The innovative approach revealed that biophilia research started to transfer from basic research to practical design application and affected sustainable design strategies. Some scholars summarized and classified the natural design features into biophilic design frameworks to guide design activities [25,[28][29][30][31][32]. ...
... As a reference to design practices, the validation of design frameworks must be a propriately checked by users. Based on existing biophilic frameworks, two representati frameworks are employed as the references to biophilic design [55]: the 24 Biophilic D sign Attributes [25,28] and the 14 Patterns of Biophilic Design [29]. In Kellert's book ophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life [28], the 24 ophilic design attributes are listed and classified into three types of experience of natu including "direct experience of nature", "indirect experience of nature", and "experien of place and space" (Column A in Figure 1). ...
Article
There is mounting evidence suggesting that workplace design directly connects with workers’ health and wellbeing. Additionally, the personal status of the mind can affect subjective attitudes and feelings towards the environment. In this study, the impacts of biophilic design attributes in offices on workers’ health and wellbeing are examined. A new post-occupancy evaluation(POE) questionnaire is developed for evaluating the biophilic design for workplace health and wellbeing. A questionnaire and field observations of two green building offices in Singapore and Shenzhen, China, are performed. The main obtained results are: (i) the questionnaire results show that the workers have a moderately high evaluation of the biophilic attributes in the workplace for improving health and wellbeing; (ii) there are significant differences between the self-reported health and nature relatedness of various ages and genders. Furthermore, the present study provides designers with new weighted biophilic design guidelines, specifically for workplace design practices.
... During the pandemic, we were forced to embrace changes in our daily routines, in the way we live [5]." Over the last decades, and even more during the pandemic we are going through, many studies have emerged regarding the value of the human-nature connection [1,[6][7][8], where "Their newcomers seek lower prices, less traffic and stress, fewer pandemic-related restrictions, and proximity to nature [5]". ...
... However, the relationship between the application of biophilic design in architectural and urban projects and its impact on people's health and well-being has been widely studied by researchers, theoreticians, and scientists [1][2][3][4][6][7][8]. Moreover, "despite this possibility, a growing body of scientific study increasingly reveals that most of our inherent tendencies to affiliate with nature continue to exercise significant effects on people's physical and mental health, performance, and wellbeing" [8]. ...
... However, the relationship between the application of biophilic design in architectural and urban projects and its impact on people's health and well-being has been widely studied by researchers, theoreticians, and scientists [1][2][3][4][6][7][8]. Moreover, "despite this possibility, a growing body of scientific study increasingly reveals that most of our inherent tendencies to affiliate with nature continue to exercise significant effects on people's physical and mental health, performance, and wellbeing" [8]. These findings have demonstrated the power of nature to influence our mental and emotional conditions. ...
Article
Full-text available
This study aims to identify and compare the objectives and elements of three emerging concepts, Health, Sustainability, and Resilience (HSR), which are proposed in this paper working together to provide a better response to the post-pandemic challenges that cities face today. This paper argues that it is possible to create sustainable, healthy, and resilient environments by reconnecting with nature through biophilic design (BD) by answering the following questions (1) What would be the common variables and elements when seeking to create a sustainable, healthy, and resilient environment and (2) How can those resultant elements be linked to biophilic design patterns to achieve solutions focused on improving people’s health and well-being by reconnecting with nature? Consequently, this paper tries to integrate biophilic design with the healthy, sustainable, and resilient environments while comparing the variables and indicators of each concept to demonstrate that there is a common connection between them. As a result, 19 overlapping concepts are identified through the content analysis method, namely: safety, crime, risk, adaptability, environment, green, land, water, pollution, food, affordability, housing, education, transportation, planning economics, policy, community, and management. Finally, it is shown that 16 of the 19 concepts are closely related to biophilic design. In conclusion, through biophilic design, it is possible to solve the problems represented in the HSR model. For those that are not contemplated by any of the patterns, it provides an opportunity for further research.
... Since the health influences of biophilia are supported by robust empirical evidence [11,[14][15][16][17][18][19][20], researchers have started to explore how to employ biophilia principles in design practice [6,[21][22][23]. Stephen Kellert (1943Kellert ( -2016 first coined the term for design activity that aimed to "rebuild a positive relationship between the natural environment and human in the modern built environment" as "biophilic design" [24][25][26][27]. The innovative approach revealed that biophilia research started to transfer from basic research to practical design application and affected sustainable design strategies. ...
... The innovative approach revealed that biophilia research started to transfer from basic research to practical design application and affected sustainable design strategies. Some scholars summarized and classified the natural design features into biophilic design frameworks to guide design activities [25,[28][29][30][31][32]. ...
... As a reference to design practices, the validation of design frameworks must be a propriately checked by users. Based on existing biophilic frameworks, two representati frameworks are employed as the references to biophilic design [55]: the 24 Biophilic D sign Attributes [25,28] and the 14 Patterns of Biophilic Design [29]. In Kellert's book ophilic Design: The Theory, Science, and Practice of Bringing Buildings to Life [28], the 24 ophilic design attributes are listed and classified into three types of experience of natu including "direct experience of nature", "indirect experience of nature", and "experien of place and space" (Column A in Figure 1). ...
Article
Full-text available
There is mounting evidence suggesting that workplace design directly connects with workers’ health and wellbeing. Additionally, the personal status of the mind can affect subjective attitudes and feelings towards the environment. In this study, the impacts of biophilic design attributes in offices on workers’ health and wellbeing are examined. A new post-occupancy evaluation (POE) questionnaire is developed for evaluating the biophilic design for workplace health and wellbeing. A questionnaire and field observations of two green building offices in Singapore and Shenzhen, China, are performed. The main obtained results are: (i) the questionnaire results show that the workers have a moderately high evaluation of the biophilic attributes in the workplace for improving health and wellbeing; (ii) there are significant differences between the self-reported health and nature relatedness of various ages and genders. Furthermore, the present study provides designers with new weighted biophilic design guidelines, specifically for workplace design practices.
... The biophilic principle may be a critical consideration for achieving sustainable heritage management. Biophilia is a biological and an innate tendency to be close to natural and cultural elements related to human evolution processes, such as food, safety, and security [13][14][15]. Biophilic elements satisfy the needs of health and well-being and promote emotional connection to induce a place's cultural identity [3,14,16]. Biophilic considerations may satisfy participants' needs and induce cultural identity in heritage tourism to preserve heritage. ...
... Biophilia is a biological and an innate tendency to be close to natural and cultural elements related to human evolution processes, such as food, safety, and security [13][14][15]. Biophilic elements satisfy the needs of health and well-being and promote emotional connection to induce a place's cultural identity [3,14,16]. Biophilic considerations may satisfy participants' needs and induce cultural identity in heritage tourism to preserve heritage. Biophilia may play a vital role as a background in heritage tourism. ...
... Biophilia may play a vital role as a background in heritage tourism. However, past references of biophilia have focused on natural elements [13,14]. Few references have connected the relationship between heritage and biophilia. ...
Article
Full-text available
Heritage managers often reuse heritage sites to attract tourists and conserve the sites. Not all adaptive heritage reuses achieve sustainable development. Biophilia is an innate, biological tendency to be close to natural and cultural elements, which may be a critical motivation for achieving sustainable heritage management. Past studies used qualitative and quantitative methods to extract participants' pull and push motivations toward heritage tourism and captured the six motivations of the biophilia framework that should be confirmed: heritage architecture; art activity; wide nature; regional attraction; recreational benefits; and long-term values. The purpose of this study was to conduct a confirmatory factor analysis to test the biophilia framework for understanding biophilic heritage tourism. A questionnaire with 18 items of heritage tourism motivation was used to explore the purpose of this study. A total of 193 valid questionnaires were obtained. Confirmatory factor analysis was used to examine the six motivations of the biophilia framework. The results indicated that heritage tourism motivation consisted of a second-order six-factor structure with high validity and reliability. These six dimensions reflected the biophilic requirements and provided a biophilic planning principle to achieve sustainable heritage management to satisfy the needs of the participants.
... The biophilia hypothesis posits that connection with nature is beneficial to all humans, through a dominant genetic/evolutionary basis (Wilson, 1986). Furthermore, the emerging discipline of biophilic design (Kellert et al., 2007;Kellert and Calabrese, 2015) attempts to promote a human connection to anthropogenic environments through the addition of elements of nature (Kellert et al., 2007). ...
... Biophilic design theory was proposed in its current form by Kellert et al. (2007) and further developed by many, including Browning et al. (2014), Kellert and Calabrese (2015), Salingaros (2015), Downton et al. (2017). It is recognized that many of the ideas present in biophilic design theory were pre-existing, including psychological concepts such as restorative environments (Ulrich, 1981;Kaplan and Kaplan, 1989), prospect/refuge theory (Appleton, 1975), and concepts from landscape architecture such as the "six sublimities" of traditional East Asian Garden design (Suthasupa, 2012). ...
Article
Full-text available
The biophilia hypothesis posits an innate biological and genetic connection between human and nature, including an emotional dimension to this connection. Biophilic design builds on this hypothesis in an attempt to design human-nature connections into the built environment. This article builds on this theoretical framework through a meta-analysis of experimental studies on the emotional impacts of human exposure to natural and urban environments. A total of 49 studies were identified, with a combined sample size of 3,201 participants. The primary findings indicated that exposure to natural environments had a medium to large effect on both increasing positive affect and decreasing negative affect. This finding supported the anticipated emotional dimension of the biophilia hypothesis and lends credibility to biophilic design theory. Evidence was revealed in support of the affective/arousal response model. Immersion in environments indicated a larger effect size than laboratory simulation of environments. Methodological recommendations for future experimental research were few, however the Positive and Negative Affect Schedule (PANAS) outcome measure was recommended as a measure of both positive and negative affect for further studies. A combination measurement of stress related outcome variables was proposed to further explore the affective/arousal response model and its potential relationship to the biophilia hypothesis. The meta-analysis provides evidence for fundamental theories regarding human-nature connection, while revealing gaps in current knowledge.
... Kellert offers a classification of biophilic design as comprising of two dimensions (i.e., organic or naturalistic), six elements (e.g., environmental features, natural shapes, natural processes, etc.), and 70 attributes. This matrix of dimensions, elements, and attributes illustrates the practical application of biophilic design in the built environment to enhance human functioning by offering the means for human connections with nature (Kellert et al., 2008;Kellert and Calabrese, 2015). ...
... Kellert's (2005) biophilic design principles include three strategies for connectedness: direct contact with nature, indirect/symbolic contact with nature, and experiences of space and place-that relate humans and the built environment or landscape within a specific cultural context, and can activate people's biophilia. A framework of six biophilic design elements (environmental features; natural shape and forms; natural patterns and processes; light and space; place-based relationships and evolved human-nature relationships) are embedded in more than 70 biophilic design attributes (Kellert, 2012) and have been further revised and simplified (see Kellert and Calabrese, 2015). This framework is supported by study findings in different disciplines , but so far has not been related comprehensively to campus settings. ...
Article
Full-text available
University Campuses remain important settings for nurturing and supporting student health and quality of life (QoL). Research shows the health benefits of nature experiences may be facilitated by campus spaces and activities that afford connectedness. Connectedness to nature, others, and self may allow students to cope with mental fatigue, stress, and a constant need for restoration. Despite recent encouraging trends, we still lack an integrative conceptual framework to describe the mechanisms involved in achieving connectedness for making recommendations for campus design. In this conceptual review, we examine students’ connectedness in campus settings in relation to biophilic elements and attributes. We aim to understand how both direct and indirect pursuits in nature and also place-based experiences on campus foster connectedness and consequently impact students’ health and QoL. Our analysis shows that connectedness seen through the lens of Kellert’s biophilic design principles and aided by Alexander’s pattern language provides a relational and long-term perspective on recommending strategies for connecting students to nature, to others, and to themselves in campus settings.
... BD principles are based on the use of natural elements and processes within the built environment, elevating a sensory connection to nature. The BD frameworks proposed by Kellert [12], Browning et al. [13], and Kellert and Calabrese [14] are the ones widely used in design [15]. However, these frameworks are focused on health and wellbeing associated with human performance, while less emphasis is given to addressing building performance. ...
... Sustainability 2022,14, 3776 ...
Article
Full-text available
The existing building stock is recognised as a major contributor to total energy consumption and related carbon emissions around the globe. There is increased attention on the retrofit of existing building stock, especially residential buildings, as a way of curbing energy consumption and carbon emissions. Within this context, human nature connectedness (HNC) has the potential of further amplifying the benefits of sustainable buildings both from an energy conservation practice and tangible improvements to users’ satisfaction, health, and wellbeing. This study attempts to show a case study of the potential of using HNC through the adoption of biophilic design principles to improve a residential building performance. A terrace house located in Sydney, NSW, was used as a case study and proposed retrofit scenarios were simulated with DesignBuilder® and Rhinoceros/Grasshopper with a view of improved daylighting, thermal comfort, and energy consumption. The building performance is improved in terms of daylighting, thermal comfort, and reduced energy consumption, additionally enhancing HNC.
Article
Full-text available
Motives: As the number of research studies of people in urban areas grows in terms of the criteria impacting the health and effectiveness of individuals, the detrimental effects caused by living apart from natural elements become more visible. There is inadequate data for a program that integrates both biophilic design and smart cities tactics. Smart city concerned about energy and resource utilization and utilize digital technologies to adjust resource consumption. It seldom discusses environmental sustainability. However, the biophilic design seeks to provide people with better life quality through a functional interconnection with nature. Digital expertise may prompt biophilic retorts via simulated methods. Aim: The study reconnoiters the significance of the biophilic ideologies to the city’s development. It integrates biophilic urban design in Neom city to overcome gaps in ecosystems’ health associated with traditional urban design. Result: The study proposes integrating biophilic elements at small and large scales. It explains each element within proposed projects and examples of Neom city’s design schemes to incubate these elements.
Article
The concept of Life-Friendly Design or Biophilic Design with its widespread use is not actually a new concept as a design approach. All of the innate tendencies of man based on instincts to be with nature, to connect with nature and to be in nature are defined within the concept of Biophilia. The concept of Biophilia is the designing of the built environment that we live in with a connection to nature with an innovative perspective. Landscape design, with its broadest definition, is the practice of designing open and enclosed spaces in different contexts and sizes, including all aspects of art, environment, architecture, technology, sociology, and design. With regard to the interior architecture practice of the 21st century, it is observed that architects have embraced the biophilic design approach more than ever in the design of interior spaces and that design approaches that are oriented towards nature, mixed with nature and/or influenced by nature are becoming stronger day by day, especially in public spaces where stress levels are high. The main focus of this study is to evaluate the interdisciplinary possibilities in the design of more comfortable and healthy living spaces by integrating the built environment and nature with the interaction of Landscape Architecture and Interior Architecture areas within the scope of biophilic design. In this context, the current situation is evaluated by comparing the curricula structures of the programs under different names and under different academic structures that provide education in both fields in our country. When the curriculum structures of “Landscape Architecture”, "Urban Design and Landscape Architecture”, “Interior Architecture”, and “Interior Architecture and Environmental Design” programs which are taught under various faculties are examined, it is observed that very few programs offer interdisciplinary courses although they are sometimes within the same faculty. In the context of life-friendly design, it is emphasized that the dialogue between the two disciplines should be strengthened and this should start with education first.
Article
Full-text available
The architectural design of learning spaces in higher education has undergone profound changes with the new educational perspectives that break with traditional pedagogical practice supported by control, hierarchy, and information dissemination. Educational institutions are gradually seeking disruptive models that enhance new learning experiences. This article presents references of innovative projects of learning and interaction spaces, that have been added to the principles of Neuroeducation and Neuroarchitecture for the development of architectural strategies for a new classroom proposal for the Bahia State University. As a result, the project brings preliminary studies to the Learning Environment Model for Higher Education (LEMHE). A flexible model, divided into three learning areas: flexible zone (active); introspection zone, and relaxing zone. This zoning aims to provide diverse experiences of pedagogical practices, added to respect the physiological needs of its users to enhance well-being and learning in higher education.
Article
Full-text available
Attention Restoration Theory suggests that contact with nature supports attentional functioning, and a number of studies have found contact with everyday nature to be related to attention in adults. Is contact with everyday nature also related to the attentional functioning of children? This question was addressed through a study focusing on children with Attention Deficit Disorder (ADD). This study examined the relationship between children’s nature exposure through leisure activities and their attentional functioning using both within and between-subjects comparisons. Parents were surveyed regarding their child’s attentional functioning after activities in several settings. Results indicate that children function better than usual after activities in green settings and that the “greener” a child’s play area, the less severe his or her attention deficit symptoms. Thus, contact with nature may support attentional functioning in a population of children who desperately need attentional support.
Article
Animals have direct positive and negative impact on some physical aspects of health. Animals contribute to basic human health needs by providing food and clothing, and by assisting people in their daily lives by acting as beasts of burden, working, and assistance animals. Animals also are used as human surrogates in the development of medical procedures and products, and as sources for medical and health care products. In contrast to the ways animals directly impact physical health, animals also have well-documented detrimental health effects including transmitting infectious diseases, causing allergies, and inflicting injuries such as bites and scratches. This chapter addresses the evidence for the positive impact of animals on human health. Evidence for long-term health benefits will be discussed first. Once long-term benefits for cardiovascular health were established, experimental and quasi-experimental studies were conducted to elucidate possible mechanisms for the long-term benefits already found and to extend the scope of the investigation to other types of health benefits. The evidence for short-term benefits of health from studies conducted using three categories of human-animal interaction is presented. This is followed by a summary of the research findings and a discussion of their implications for future research and for animal-assisted therapy.
Technical Report
This report, commissioned by Beyond Blue, provides a review of existing Australian and international literature on the links between mental health and wellbeing and contact with nature, especially through green spaces.
Book
Human health and well-being are inextricably linked to nature; our connection to the natural world is part of our biological inheritance. In this engaging book, a pioneer in the field of biophilia-the study of human beings' inherent affinity for nature-sets forth the first full account of nature's powerful influence on the quality of our lives. Stephen Kellert asserts that our capacities to think, feel, communicate, create, and find meaning in life all depend upon our relationship to nature. And yet our increasing disconnection and alienation from the natural world reflect how seriously we have undervalued its important role in our lives. Weaving scientific findings together with personal experiences and perspectives, Kellert explores how our humanity in the most fundamental sense-including our physical health, and capacities for affection, aversion, intellect, control, aesthetics, exploitation, spirituality, and communication are deeply contingent on the quality of our connections to the natural world. Because of this dependency, the human species has developed over the course of its evolution an inherent need to affiliate with nature. But, like much of what it means to be human, this inborn tendency must be learned to become fully functional. In other words, it is a birthright that must be earned. He discusses how we can restore this balance to nature by means of changes in how we raise children, educate ourselves, use land and resources, develop building and community design, practice our ethics, and conduct our everyday lives. Kellert's moving book provides exactly what is needed now: a fresh understanding of how much our essential humanity relies on being a part of the natural world.