Content uploaded by René Dion
Author content
All content in this area was uploaded by René Dion on Jan 09, 2018
Content may be subject to copyright.
J Appl Ichthyol. 2017;1–21. wileyonlinelibrary.com/journal/jai
|
1
© 2017 Blackwell Verlag GmbH
Received:8May2017
|
Accepted:5July2017
DOI:10.1111/jai.13566
STURGEON PAPER
If you build it, will they come? Spawning habitat remediation
for sturgeon
S. O. McAdam1 | J. A. Crossman2 | C. Williamson3 | I. St-Onge4 | R. Dion5 |
B. A. Manny6 | J. Gessner7
1BritishColumbiaMinistryof
Environment,UniversityofBritishColumbia,
Vancouver,BC,Canada
2EnvironmentalRiskManagement,BCHydro,
Castlegar,BC,Canada
3FreshwaterFisheriesSocietyofBritish
Columbia,Vanderhoof,BC,Canada
4Conseillèreenvironnement,Hydro-Québec
Équipement,Montréal,QC,Canada
5Conseillerenvironnement,Hydro-Québec
Production,Montréal,QC,Canada
6USGeologicalSurvey,GreatLakesScience
Center,AnnArbor,MI,USA
7Leibniz-InstituteforFreshwaterEcologyand
InlandFisheries,Berlin,Germany
Correspondence
StevenO.McAdam,BritishColumbia
MinistryofEnvironment,UniversityofBritish
Columbia,Vancouver,BC,Canada.
Email:Steve.McAdam@gov.bc.ca
Summary
Habitatlossisawidelyrecognizedcontributortoglobaldeclinesinsturgeonpopula-
tionsyethabitatremediationhasbeenlimitedforthishighlyendangeredgroupoffish.
Insupportoffuturesturgeonrestorationefforts,thisreviewexamineshabitatreme-
diationneedsanduncertainties.Considerationofthebio-spatialscaleofremediation
identifiedneedsrangingfromlocaltothewholeriverscale.Additionally,thecontext
ofremediationrangesfromreintroducingsturgeontohabitatswheretheyhavebeen
extirpatedtoconservationofcurrentlyfunctionalhabitat.Whilemultipleremediation
scalesandcontextsarediscussed,thefocusonspawningandearlyrearinghabitatand
associatedbiological and physical monitoringreflects the range ofcurrent projects
andtheimportanceofearlyrearinghabitats.Fourcasestudiesarepresentedthatex-
aminefourdistinctremediationcontexts(mitigation,rejuvenation,re-creation,repa-
triation)andthreebio-spatialscales(wholeriver,spawningreach,spawninglocation)
under which remediation has been attempted. Evaluation of existing remediation
worksindicatesthatmanyshowlimitedlong-termsuccess,whichismostoftenare-
sponsetosubstrateinfillinginremediatedhabitats.Materialpresentedinthisreview
willhelpalignsturgeon research and monitoring approachesinsupportofeffective
remediation.Thelimitednumberofremediationprojectsto-dateatteststotheimpor-
tanceof learningfromexistingprojectsandcross-speciescomparisons,tomaximize
theeffectivenessoffuturerestorationefforts.
1 | INTRODUCTION
Overfishingandhabitatlossarethepredominantcausesofsturgeon
declinesworldwide(Rosenthal,Pourkazemi,& Bruch,2006).Within
thebroadcategoryofhabitatloss,awidearrayofanthropogenichab-
itatimpacts have beenidentified,includingriverregulationfor navi-
gation,floodprevention,and power generation,aswellaspollution
from industrial activities (e.g., Gessner &Jarić, 2014; Luk’yanenko
etal., 1999; Secor etal., 2002). River regulation has particularly
strongeffectsonsturgeonin response to impacts including habitat
fragmentation(Jageretal.,2001),blockedmigration,andbothdirect
(e.g.,dailyandseasonalflowmodification)andindirect(e.g.,tempera-
ture, nutrient levels, hydraulicconditions, substrate) effects of flow
regulation(Petts,1984;Pettsetal.,1989;WardandStanford,1989).
Vulnerabilityofthisancientgroupoffishestoriverregulationisfur-
therincreasedbytheirrestrictiontolargeriversinthenorthernhemi-
sphere,most of whichareregulatedor highlymodified(Dynesius&
Nilsson,1994).
Human disruption of natural hydro-geomorphological processes
thatcreate andmaintainriverinehabitats aswellas outrighthabitat
destruction,hasprogressedtothepointthatremediationisessential
tosustain habitat conditions for natural reproductionofmanystur-
geon. Despite widespread loss and alteration of sturgeon habitats
worldwide,habitatrestorationforthishighlyendangeredgroupoffish
hasbeen limited.Todate,threekeyfactors mayunderlie thelimited
remediationandsuccess.First,theultimatecausesofriverinehabitat
alterationsthataffectsturgeon(i.e.,constructionofshippingchannels
orlargedams)areoftenconsideredirreversibleimpacts(Ligonetal.,
2
|
MCADAM et Al.
1995; Petts etal., 1989). Second, biological uncertainty continues
to limit the identification of effective remediation measures. Third,
monitoringofpastremediationworksidentifiestheneed forgreater
consideration of geomorphologicaleffects, to ensure the continued
effectivenessoftheremediation(Kinzel,Nelson,Kennedy,&Bennion,
2016;Loganetal.,2011;McDonaldetal.,2010).Thedireconserva-
tionstatusofmanysturgeon(Pikitch,Doukakis,Lauck,Chakrabarty,&
Erickson,2005)emphasizestheneedfortimelyaction.Afewnotable
examplesprovideconfidencethatphysicalhabitatremediationcanbe
successful(e.g.,Dumontetal.,2011),as doessubstantialexperience
withotherfishspecies(e.g.,salmonids;Wheatonetal.,2004).
Understandingcurrenthabitatlimitationsisanimportantrequire-
mentforeffectivehabitat remediation (Rosenfeld & Hatfield, 2006)
and,formost sturgeon, detailedknowledgeoftheir habitat require-
mentslimitsremediation.Generalhabitatusehasbeendescribedfor
manyspecies(Bemis&Kynard,1997;Fox,Hightower,&Parauka,2002;
Hildebrandetal.,2016),however,fewstudieshavespecificallyiden-
tifiedlimitinghabitats(e.g.,McAdam, 2015). Restorationneeds may
varydependingonthecausesofpopulationdeclines.Insome cases,
remediationmayberequiredthroughoutmodifiedrivercorridors.In
othercases site-specificremediationmay besufficient,forexample,
theremediationofspawningandearlyrearinghabitats.Whileabroad
spectrum of remediation needs is discussed (including fish passage
andflow restoration),ourfocusonspawning andearlyrearing habi-
tatreflectsthefocusofcurrentremediationprojects.Ourfocusalso
reflectstheimportanceofearlylifehistorysurvivaltorecruitmentand
theidentifiedlinksbetweenrecruitmentfailureandimpactstospawn-
ing and early rearing habitat(Gessner, Kamerichs, Kloas, & Wuertz,
2009; Hastings etal., 2013; McAdam, 2015; McAdam etal., 2005;
Paragamianetal.,2009).
Conservation fish culture has also been employed to mitigate
immediateextirpationrisksformany populations, and if carried out
withnecessaryprecautioncanprovideinterimcompensationforlow
recruitment (Chebanov, Karnaukhov, Galich, & Chmir,2002; Ireland
etal., 2002; Secor etal., 2002). Genetic considerations associated
with conservation fish culture include the importance of maintain-
ing genetic diversity through practices such as factorial breeding
and equalizing releases among families and years (Boscari, Pujolar,
Dupanloup, Corradin, & Congiu, 2014; Ireland etal., 2002). Dueto
thehighfecundityofsturgeon,failuretoplanandmonitorthegenetic
consequencesofstockingcreatesthepotentialfornegativeeffectson
geneticdiversity.Approachessuchasthecaptureandrearingofwild
progeny(e.g.,feedinglarvae)canhavesignificantbenefitsforgenetic
diversityof releasedfish(Schreierand May, 2012).Additionally,the
potentialforphenotypiceffectsofcaptiverearingshould beconsid-
ered,whichisreflectedinrecentresearchsuchaslife-skillstrainingin
lakesturgeon(Sloychuketal.,2016)andthecarryovereffectsofearly
rearing habitats (Boucher, McAdam, & Shrimpton, 2014; Johnsson,
Brockmark,&Näslund,2014).Despitetheimportanceofconservation
fishculturewithinrecoveryprograms,thisisnotspecificallyaddressed
inthisreviewbecauseofa)thefocusofthereviewisonhabitatreme-
diation,andb)theprincipleofnaturalreproductionmustbetheulti-
mategoalofrecoveryefforts.
Ourinvestigationofsturgeon restorationneeds to identifiedthe
importance of contextual (Text Box 1) and bio-spatial factors that
influencethescaleofremediation(TextBox2).Forexample,repatria-
tiontoformerlyoccupiedrivers,potentiallyincludingtheneedforfish
passage(e.g.,Europeansturgeon(Acipenser sturio)andBalticsturgeon
(Acipenser oxyrinchus))presentsubstantiallygreaterchallengesdueto
theirneedforde novohabitatcreation,plustheneedtoaddressmul-
tiplespatial scalesandlifestages.Formostspecies,the presenceof
continuedbiologicaluncertainty means thata“builditandtheywill
come”approachentailssubstantialrisk.Thelargescale of potential
recoveryprojectsalsomeansthateconomicrisksmaybesubstantial.
Our consideration of multiple species emphasizesthe potential for
knowledgetransferamong species(to-dateoftenlimited) tosupport
moretimelyandeffectiverecoveryprogramsforsturgeon.
1.1 | Spawning habitat remediation
Ouridentificationoffour remediationcontextsandthreebio-spatial
scales (Text Boxes 1 and 2) provides a structured way to examine
remediation needs and their expected complexities (Table1). The
needto address remediationatthewatershed scaleisafunction of
thelargeriver habitats occupiedbysturgeon,and the long distance
migrationsofsomespecies.Theemphasisofcurrentremediationon
spawningandearlyrearinghabitatlikely reflectsan insufficientcon-
siderationofsturgeonmigratoryneedswhendamswereconstructed.
Inmanycases,largerscaleremediationmayberequired;ourfocuson
currentspawningandearlyrearingprojectsshouldnotbeinterpreted
asimplyingalesserimportanceoflargerscalerestoration.Ourdiscus-
sionof thebiologicalrequirements areassociatedwith theneedsof
sturgeonrestorationprogressfromlargertosmallspatialscales.
Manysturgeonundergolarge-scalemigrations(e.g.,1,000kmfor
Chinesesturgeon,Acipenser sinensis(Weietal.,1997),andthelossin
connectivityisawidelyrecognizedimpactofriverregulation.Thehigh
energeticcostoflong-distanceupstreammigrationsimpliesthepres-
enceofsubstantialbiologicalbenefits.Somespeciesandpopulations
are still able to undertake long distance migrations(Bruch, Haxton,
Koenigs,Welsh,&Kerr,2016;DFO,2014;Duongetal.,2011;Phelps
etal.,2016),andmaintainingthecurrentlevelsofriverineconnectiv-
itycanbecriticalforthosepopulations.Whilespawningdownstream
Uncertainty Repatriation Re- creation Remediation Mitigation
Recolonization XX
Habitatuse XX XX
Habitatsuitability XX XX XX X
TABLE1 Categoriesofuncertainty
associatedwithdifferentcontextsfor
sturgeonspawninghabitatremediation
(X=indicatesuncertainty,XX=indicates
highuncertainty)
|
3
MCADAM et Al.
of migratory barriers is widely observed, such locations might not
provide the biological benefits associated with upstream spawning
locations(seebelow).Forexample,lostmigratoryaccessconcentrates
spawningintailraceareasofhydroelectricfacilities,whichcancontain
eitherunsuitablehabitats(Cooke& Leach,2004;Terraquatic,2011)
oramuchreducedarea of potential spawning habitat (Chebanov&
Savelyeva, 1999; Khodorevskaya etal., 2009; Zhang etal., 2013).
Maintaining the existing connectivity is thus preferred (see Rupert
Rivercasestudy)intheabsenceofunderstandinghowtofullymitigate
thebenefitsaccruedbymigrating(seeBrownetal.,2013).
Fishpassageoffersapotentialmeanstorestoreconnectivity;how-
ever,fishpassagefacilitiesaremostoftendesignedforotherspecies
(e.g.,salmonids)andshowalimitedeffectivenessforsturgeon.Useof
fishpassagefacilitiesbysturgeonhasbeennotedatfishladders(Parsley
etal.,2007;Bruch,2008;Thiemetal.,2011,2016),boatlocks(Cooke,
Leach, Isely,Van Winkle, &Anders, 2002) and fish lifts (Ducheney,
Murray, Waldrip, & Tomichek, 2006; Warren and Beckman, 1993),
althoughstudiestypicallyreportlowlevelsofpassage.Recentlabora-
torystudieshaveaddressedspecificrequirementsofsturgeonforfish
passage(Cocherelletal.,2011;Kynardetal.,2011a;McDougalletal.,
Box 1
Mitigation: Functional populations are present and the goal is to increase or maintain the availability and quality of sturgeon habitat.
Mitigationimpliesconfidenceintheefficacyofspawninghabitatremediation,butmaybechallengingforspecieswithpersistentbiological
uncertainty.
Rejuvenation:Remediationisrequiredtoimprovethequalityofdegradedhabitatsthatcontinuetobeusedbyspawningwildadults.For
example,recentevidence(McAdametal.2005, Paragamianetal. 2009,McAdam2015)supportstheneedforsubstrateremediationat
spawningsitestoaddressongoingrecruitmentfailuresofwhitesturgeon.Evenwhencontemporaryspawninglocationsareknown,ensur-
ingthesuccess of large scale remediation projectsrequiresdetailedinformationregardingspawning site selection and the biophysical
propertiesthatsupportrecruitment.
Re-creation:Extensivehabitatmodificationanddestructioninsomeriversleadstotheneedtocreatenewspawningsites.Althoughadults
arestillpresentin suchcases, complexityiselevatedbecausesuitablespawninglocations andsubstratesmaybeunknownorassumed.
Habitatre-creationrequiresknowledgeaboutalllifestagesofsturgeontoensure effectiveimplementation andtodiminishuncertainty
regardingtherecolonizationanduseofnewlyconstructedhabitat.
Repatriation:Returningsturgeontoriversfrom whichthey havebeenextirpated(e.g.,Europeansturgeon)representsthemostcomplex
formofremediationandfacessubstantialuncertainty.Evaluationofthehabitatcapacityofrecipientrivers(GessnerandBartel2000,Arndt
etal.2006)ischallengingintheabsenceofsturgeon,particularlywhenhabitatmodificationshavebeenextensive.Forspeciesforwhich
remediationworkisjustbeginning,substantialgainsmaybeachievedbycrossspeciescomparisons.
Box 2
Whole river scale:Longdistancemigrationsarepartofthelifehistoryofmanysturgeons,andthenegativeeffectsofriverimpoundmenton
migrationarewidelyrecognized(Auer1996a,Weietal.1997,Khodorevskayaetal.2009).Largescalecontinuityofriverinehabitatisalso
asuggestedrequirementforlarvaldriftofpallidsturgeon(Braatenetal.2012)andChinesesturgeon(Zhuangetal.2002).Riversalsointe-
gratemultiplewatershed scale processes creating thepotentialneedforuplandhabitat restoration to diminish theirsecondarydown-
streameffects(e.g.,runoffandsedimentbudgeteffectsofdeforestation).
Reach scale:Withinaselectedriverreach,spawninghabitatselectionispredominantlyinfluencedbyhydraulicconditions,withspawning
generallyoccurringinhighervelocityareas(e.g. >1m/sec;ParsleyandBeckman1994,Ban,Du,Liu,&Ling,2011,Bennionand Manny
2014).Detailedevaluationofhydraulicconditions(Zhangetal.2009,Duetal.2011,Muirhead2014)alsosuggeststheimportanceofele-
mentssuchasturbulence,heterogeneousconditionsandlargeroughnesselements.Constantflowmayalsobeimportant,asflowfluctua-
tions(i.e.,peaking)downstreamofdamscannegativelyaffectspawning(Auer1996b).Repeatedspatialpatternsofspawninghabitatuse
inlakesturgeon(Duongetal.2011)alsosuggestthepresenceofadditional(undefined)preferencesatthesub-reachscale.
Spawning sites:Linksbetweenrecruitmentfailureandalteredsubstrateconditionsatspawningsitesdemonstratethecriticalimportanceof
benthicsubstratestotheproperfunctioningofSERhabitat(McAdametal.2005,Paragamianetal.2009,Hastingsetal.2013).Negative
effectsof degradedsubstrateshavebeen identifiedforeggs (Kocketal.2006,Forsythe etal.2013)and yolksaclarvae(Gadomskiand
Parsley2005b,Gessneretal.2009,McAdam2011,Boucheretal.2014).Impactsuponfeedinglarvae(e.g.diminishedfoodsupply)arealso
possible(Howell andMclellan2011).Whilemultipleattributesofspawning habitathavebeen described(e.g.,depth, temperature)sub-
strateistheattributecommonlyaddressedbyremediation.
4
|
MCADAM et Al.
2014),and the larger size ofsturgeonand their benthic orientation
present important design requirements (Jager etal., 2016; McElroy
etal.,2012;Thiemetal.,2011).Downstreampassagealsopresentsa
criticalchallenge,sincemortalityassociatedwithdownstreampassage
maydiminishthebenefitsofrestoringupstreampassage.Downstream
passagesurvivalratesvary,dependingbothonthepassageroute(e.g.,
turbines,spillway)and the size of the fish (Kynard& Horgan, 2001;
McDougall etal., 2014). Thelarge size of adult sturgeon can mean
thatthetrashrackspreventdownstreammovementviaturbines,and
as a result the fish of intermediatesize may be most vulnerable to
mortalityduringturbinepassage(Jageretal.,2016).Whiletherearea
fewnotableexamplesofsuccessfulupstreamordownstreampassage
(e.g.,Parsleyetal.,2007;Thiemetal.,2011),currentfindingsgenerally
indicatetheneedforfurtherresearchtoidentifymethodsforeffective
passageforsturgeon(seeCookeetal.,2002;Jageretal.,2016).
Identificationofanextensivedriftduringtheyolk-saclarvalstageof
somesturgeon(Braatenetal.,2012;Zhuang,Kynard,Zhang,Zhang,&
Cao,2002)suggeststhatcontiguoussectionsofun-impoundedriverine
habitatare requiredto supportpopulationviability.The identification
ofbothdriftandhidingbehaviourbyyolk-saclarvaehascriticalimpli-
cationsforthespatialscaleofhabitatremediationforthislifestage,and
thereforerepresentsacritical information requirementto plan reme-
diation.Whileinferringnaturalbehavioursfromresponses in altered
environmentsand laboratorystudies requires caution (Gessneretal.,
2009;McAdam2011),arecentstudyofpallidsturgeon(Scaphyrhinchus
albus)providesclearevidenceofearlydriftrequirementsforthatspe-
cies(DeLonayetal.,2015).Forspeciesthatrequirelongdistancelarval
drift, mortality associated with movements into inhospitable reser-
voir environmentsmay lead to recruitment failure (Guyetal., 2015).
Restoration of contiguous riverine habitats represents a substantial
andchallengingundertakingthatmayrequiredamremoval.Ongoing
researchforpallidsturgeonrecoveryprovidesthemostextensiveeval-
uation of the need forlarval drift and potential remediation actions
(Erwin&Jacobson,2015;Jacobsonetal.,2016),however,remediation
actionstoextendlarvaldriftdistanceshavenotyetbeenimplemented.
Flow restorationrepresents another remediation approach based
ontheassociationbetweensturgeonpopulationdeclinesandriverflow
regulation (Gessner& Bartel, 2000; Gessner, Spratte, & Kirschbaum,
2011;Luk’yanenkoetal.,1999;Pettsetal.,1989).Thepositivecorrela-
tionbetweenfreshetflowsandrecruitmentforsomespecies(Dumont
etal.,2011; Kohlhorst,Botsford,Brennan,&Cailliet,1991;Niloetal.,
1997) suggest the importance of the magnitude of freshet flows.
Unfortunately,thelarge-scaleanthropogenicchangesthataffectriver
flow(dams,floodplain abstraction,inland navigation)make full resto-
rationchallenging andpossiblyunfeasible.Intheabsenceof full-scale
restorationoffreshet flows, partial remediationrequires a mechanis-
tic understanding of howflow affects fish abundance. Without such
knowledge it becomes uncertain whether partial solutions (e.g., the
timingbutnotthe full magnitude ofhistoricalfreshetflows)willpro-
videthedesiredoutcomes(Wohletal., 2015). Beneficial effects ofa
conservationbaseflowintheRupertRiver(seecasestudies)providea
recentexampleofpositiveoutcomesofflowmitigationforanewproj-
ect.Potentialbenefitsofflowrestorationforwhitesturgeon(Acipenser
transmontanus)recruitmenthavealsobeensuggested(UCWSRI,2013).
However, experimental flow restoration in the Kootenai River pro-
vidednodetectablerecruitmentresponse(Paragamian,2012).Limited
recruitmentresponsestonaturallyhighflowsinothercases(McAdam,
2015;McAdametal.,2005)suggestthatflowalonemaybeinsufficient
torestorerecruitment.Understandingtherelationshipbetweenriver
flow,sturgeonhabitatandpopulationresponsesisthereforeparamount
tothedesignandimplementationofeffectiveflowremediation.
Damoperationsalsoaffectreachscalehabitatconditions,withthe
potentialforbothpositiveandnegativeeffects.Shorttermflowfluc-
tuations(e.g.,inresponsetoshorttermchangesinelectricitydemand)
havebeenassociatedwithdiminisheduse byspawning adults(Auer,
1996a), egg stranding (Gessner etal., 2011; DFO [Fisheries and
Oceans Canada], 2014), and maystimulate larval drift (Crossman &
Hildebrand,2014).Whiletherestorationofminimumflowsistypically
consideredoneofthefirststepsinaflowrestorationprogram(Auer,
1996b),site-specifichydraulicmodelsmayberequiredtodemonstrate
beneficial effects (Hildebrand etal., 2014). For remediation works
immediatelydownstreamofdams,releasesmightalsobeadjustedto
ensuretheprovisionofsuitablehabitatsconditions(i.e.,maximizethe
areaofspawningandearlyrearinghabitat).
Theneedforreachscalerestorationreflectstheeffectsofhydraulic
conditionsonspawninghabitatselectionandreachscalefluvialgeomor-
phology.Alteredhydraulicconditionsin spawning habitats (Muirhead,
2014;Paragamianetal.,2001;Zhangetal.,2009)shouldbeaddressed
duringplanningstagesofremediationworkstoensuretheutilizationand
maintenanceofremediatedareas(seecasestudies).Thedynamicnature
ofriverchannels(Church,1995)emphasizesthatlong-termpersistence
ofremediationworkswillrequiredetailedanalysisofreachscalefluvial
geomorphologyin order to incorporate long-term channel changes at
theprojectdesignstage.Theseconsiderationsmaybemostimportant
forremediationinnon-tailracelocationswheretheremaybe agreater
riskofunderutilizationifrestoredhabitatsarelocatedinunsuitableareas
(e.g.,Vlasenko,1974).Itisalsoimportanttoconsiderthatmanipulation
ofhydraulicconditionsinspawningreachesmayprovideanopportunity
toconcentratespawningindesiredareas,ortoavoidothers;however,
suchapplicationswill requireanimprovedunderstandingofspawning
habitatselection.Theneedforreachscaleconsiderationsisrecognized
insomerecoveryprograms(KTOI[KootenaiTribeofIdaho],2009;DFO,
2014).Whilewefoundnocurrentexamplesofcompletedworksatthis
scale,reachscalerestorationeffortsforwhitesturgeonareunderwayon
theKootenaiRiver(KTOI,2016).
Selecting the location for site-specific remediation of spawning
and early rearing habitat is a fundamental decisionwith potentially
highuncertainty.Insomecases,consistentspawningatawell-defined
spawningsiteclearlyidentifies potential remediation sites, although
spawning can persist in degraded spawning habitat (e.g., McAdam
etal.,2005).However,spawningsitesmaynotbeknowninallcases,
whichcreatesthepotentialthatremediatedhabitatsmightnotbefully
utilized.Forrepatriationandrecreationcontexts, although historical
sites might be known or inferred,current suitability may be limited
by subsequent habitat alterations (Arndt, Gessner, & Bartel, 2006).
Selectingremediation sitesmustalsoconsider potentialimplications
|
5
MCADAM et Al.
ofspawningfidelitytospecificreaches(Folz&Meyers,1985;McAdam
etal.,2005) or sites within a reach (e.g., Forsythe,Crossman,Bello,
Baker,&Scribner,2012).Failuretofullyunderstandfactorsinfluencing
thespawninghabitatselection(e.g.,hydraulicconditions)mayleadto
limiteduseofremediatedhabitats,particularlyifthenumberofreme-
diationsitesislimited. Incases suchastheWolfRiverwhererip-rap
placementcreatedmultiple remediated sites,lakesturgeonselected
thenewly placedrip-rapwhenolder siteshadbecome coveredwith
silt,debrisoralgae(Folz&Meyers,1985).Whilethe constructionof
multiplesites mayallowhabitatselectionbyspawningsturgeonand
may support stronger recruitment responses, the potential impacts
ofdispersingspawnersshouldbe considered(e.g.,ifthe numbersof
spawningadultsislow,asinsomeendangeredpopulations).
Most successful examples of spawning and early rearing habitat
remediationaddresstheuseofdamtailracesbylakesturgeon(Table2).
Such locations increase the potential for success because the stur-
geon undertaking upstream spawning migrations are concentrated
at the barrier createdby the dam. Spawning locations are also fairly
consistentduetothepredictablehydraulicconditionsintailraceareas,
andfine sedimentinputsarelimiteddue tothepresenceofupstream
reservoirs. However, the area of available spawning habitat may be
substantially reduced relative to the extent of inaccessible upstream
habitat (Raspopov etal., 1994; Ruban and Khodorevskaya, 2011).
Remediation at non-tailrace locations often shows limited long-term
success due to factors such as inconsistent use by spawning adults
(Khoroshko&Vlasenko,1970),orthedepositionoffinesubstrateslead-
ingto decreasedeggoryolk-saclarvaesurvival (Table2,casestudies;
Veshchevetal.,2011).Greaterattentiontoreachscalehydrauliccondi-
tionsandtheireffectsonspawninglocationandsubstratewillhopefully
leadtoimprovedsuccessforremediationinnon-tailracehabitats.
Substrateaugmentation is the most common method forremedi-
ating sturgeon spawning and early rearinghabitat. Early remediation
workwasbasedonthereplicationofsubstratesfoundatnaturalspawn-
ingsitesas well asbeingthefortuitousresponse to riprapplacedto
improvebank stability (Folz&Meyers,1985). More recently,support
forsubstraterestorationhasbeenbasedonlinksbetweenrecruitment
failureandthedepositionoffinesubstrates(McAdam2015;McAdam
etal., 2005; McDonald etal., 2010). Interstitial habitats providedby
gravel/cobblesubstrates are important for the retentionand survival
oftheeggandlarvalstages(Crossman&Hildebrand, 2014;Forsythe,
Scribner,Crossman,Ragavendran,&Baker,2013;Johnsonetal.,2006b;
McAdam 2011). The recent identification of strong egg adhesion to
multiplesubstrates(ParsleyandKofoot,2013)suggeststhatsubstrate
type has a limited effect on egg retention. However, Johnson etal.
(2006b)and Forsytheetal. (2013)foundthat thepositionof adhered
eggsisimportantandthatinterstitialeggsshoweddecreasedpredation
mortalityrelativetoexposedeggs. Similarfindingsalsoapply toyolk-
saclarvae(Gessneretal.,2009;Hastingsetal.,2013,McAdam,2011)
for which substrateswith suitable interstitial habitats increase larval
retention(Crossman&Hildebrand,2014)anddecreasebothpredation
andnon-predationmortality(Boucheretal.,2014;Gadomski&Parsley,
2005a; McAdam, 2011). Recentidentification of strong physiological
benefits of enriched substrates (Baker, McAdam, Boucher,Huynh, &
Brauner,2014;Boucheretal.,2014;Gessneretal.,2009)providesfur-
therevidencefortheimportanceofinterstitialrearingofyolk-saclarvae.
Thesizeandarrangementofplacedsturgeonspawningsubstrates
representsacriticaldesigndecision;placedsubstratestypicallyinclude
largediametermaterialstolimitdownstreamdisplacementandsmaller
substratesthatprovidesuitably-sizedhidinghabitat.Previousspawn-
inghabitatrestorationprojectshaveused10-50cmbrokenlimestone
orgranite(Bruch&Binkowski,2002;Rosemanetal., 2011a,2011b),
5-15cmroundedigneouscobble(Mannyetal.,2005)and1-5cmcoal
cinders(Nicholsetal.,2003,Thomas&Haas,2004).Morerecentproj-
ectshaveusedamixtureofsubstratessizes(seecasestudies).Useof
substratesthataretoo large in diameter can limit the suitabilityfor
hidingbyyolk-saclarvae,leadingtodownstreamdisplacementoflar-
vae(McAdam,2011;Terraquatic(TerraquaticResourceManagement),
2011).Zhangetal.(2009)suggestedthata‘poolandriffle’structure
was beneficial and enhances interstitial waterflow, although under
somecircumstancesbottom reliefmaycontributetosedimentdepo-
sitionandinfillingofinterstitialspaces.Thetotalareaofremediation
sites also represents a critical design decision, due to the potential
foreggovercrowding(Dumontetal.,2011;KhoroshkoandVlasenko,
1970). Additionally, in larger rivers, the location of sites belowthe
photiczonemaylimitthenegativeeffectsofaquaticplants(Gendron,
Lafrance,&LaHaye,2002;Johnsonetal.,2006b).
The long-term effectiveness of remediated habitats is also a crit-
icalconsideration.Infillingofplacedsubstratesis the most commonly
observed limitation; however, growth of periphyton (Johnson etal.,
2006b)candiminishlong-termeffectiveness.Forexample,halfofthe18
examplespresentedinTable2arenegativelyaffectedbysedimentinfill-
ing.Addressingthischallengewillrequiregreaterinputfromthefieldof
fluvialgeomorphology.Sedimenttransportmodelsthatpredictfinesed-
imentmovementsatremediationsites canbeusedtoguide theplace-
ment,compositionandconfigurationofhabitatremediationareas(Kinzel
etal.,2016).Additionally,somerecentprojects(e.g.,St.LouisRiver;see
Aadland,2010;RupertRiver:seecasestudies)havegivenmoreattention
togeomorphologicaleffects.Insomecasesthecurrentflowregimesmay
notbecompetenttoprovidethecleaningrequiredmaintainthequality
ofremediated habitat area (e.g.,intheNechakoRiver; see Hildebrand
etal.,2016),leadingtotheneedforeither(i)repeatedphysicalcleaning
or(ii)large-scale engineering to re-sizetheriverchannel for the regu-
latedflowregime.Thelatteroptionentailssubstantialcostandbiological
uncertaintyandwouldrequireextensivesite-specificinformation.
Locatingrestoredhabitatsinexistingorconstructedsidechannels
maycircumventsomeofthechallengesassociatedwithmainstemloca-
tions,duetothepotentialfornaturalorartificiallydiminishedbedload,
butmayincreaselimitationswithregardtospawningsiteselection.In
theextreme,useofoff-channelhabitatsmightentailphysicallymov-
ingspawnerstoenclosedoff-channelraceways,whichmightfunction
similartosalmonidspawning channels.Whileearlyexperienceswith
thisapproachshowedlimitedsuccess(seeChebanov&Galich,2011),
positive results were achieved with shortnose sturgeon (Acipenser
brevirostrum)(Kynardetal.,2011b).Factorssuch asfishsizeandthe
associatedsizeofspawningchannelsaswellascaptivitystress(Genz
etal., 2014) may be important limitations ofthis approach. Further
6
|
MCADAM et Al.
researchregardingspawningsiteselectionwouldbehighlybeneficial
forevaluatingoff-channelremediationoptions.
1.2 | Monitoring requirements
Monitoringtheeffectivenessofhabitatremediationprojectshelpsto
ensure that desired biological and physical responses are achieved,
and provides the basis for improved design of future projects. The
duration of monitoring programs should reflect the time scale of
expectedbiological(e.g.,juvenileproduction,adultreturns)andgeo-
morphological(e.g.,channelmovement,substrateinfilling)responses.
Ideally,biological monitoring shoulddemonstratethathabitat reme-
diationissupportingalltargetedlifestagesofsturgeon.Weelaborate
onthesesubjectsinfurtherdetailbelow.
1.2.1 | Biological Response
Use by spawning adult sturgeon
Useofrestoredspawninghabitatprovidesastraightforwardmetricof
remediationeffectiveness, with indicatorsofspawning rangingfrom
thepresence,density,anddepositionalpatternofeggs,tothenumber
ofspawnersandtheirsex ratios. For example, recent genetic stud-
iesprovideameanstoestimatethenumberofspawningadultsfrom
collectedwildprogeny(Jay etal., 2014; Manny etal., 2015). Direct
adultcounts(seeRupertRivercasestudy)andDIDSONacousticcam-
era(Bray, Crossman,Martel,& Johnson,2011)havealsobeusedto
detect spawning adults. Evaluation of changes in spawning habitat
useovertime should alsobeconsideredin combination with physi-
calmonitoring discussedbelow.For there-creationand repatriation
TABLE2 Detailsofspawninghabitatrestorationprojectsundertakenforsturgeon(LS=lakesturgeon(Acipenser fulvescens),WS=white
sturgeon,SVS=Sevryuga(Acipenser stellatus),RS=Russiansturgeon(Acipenser gueldenstaedtii))
River Species Area (m^2) Velocity (m/sec) Depth (m) Material
Substrate
depth (m)
Below dam (BD)/mid
reach (MR) Spawning (Y/N) Year built Comments References
DetroitandSt.Clair(see
Table4)
LS 39,000 0.5-0.7 5-10 Various(seeTable4;casestudy) 0.6 MR N(BelleIsle),Y(othersites,
someintermittent)
2004,2008,
2012-16
(Mannyetal.,2005),(Rosemanetal.,
2011b),(ThomasandHaas,2004)
Eastmain LS Na Na Na Na Na BD Na Na Compensationfor890m2habitat
impact
(EnvironnementIllimitéInc.,2009)
Kuban(upper) SVS 1.9ha 0.76-0.84 4-6 5-8cm,coarsesand,quarrystone 0.30 BD(80m) Y 1966 (Khoroshko&Vlasenko,1970)
Kuban(lower) SVS 1.6ha 0.88-0.94 4-5 Gravel,coarsesand,quarrystone Na BD(900m) Y-siltedafter3years 1966 (Vlasenko,1974),(Chebanov,Galich,
&Ananyev,2008),(Kerretal.,2010)
Ottawa LS Na Na Na 15-25cmrock Na BD TBD 2010/2012 RonThreader(pers.comm.)
DesPrairies LS 5,000and
8,000
1.0 1.5-3.0 20-30cm(areaencircledwith30-50cm
rockwithrowsof1mrock)
0.3 BD Y(alsoincreasedeggto
feedinglarvaesurvival)
1985,1996 13 m2/femalepreferred,sitesloped
soeffectiveatvariableflows
(Dumontetal.,2011),(LaHayeetal.,
1992)
Ouareau LS 3050 0.8-1.2(m/sec) 0.5-1.5 Sedimentaryblastrockandriverrock
(20-200mm)
0.30(min) MR(2.5km
down-stream)
N–atrestoredlocation,Y
–atnearbynaturalsite
2007,2008 Landslideaffectedqualityofnatural
spawningsite
(LaHayeandFortin,1990),(MRNF-
CARA,2011)
UpperBlackRiver LS 4locations Na Na Riprap Na BD(<2km) Na 1972 Sedimentationdecreased
effectiveness
(SmithandBaker,2005)
Saint-Maurice LS 2100 Na Na Largeboulderwith3-40cmmaterial
downstream
Na BD Y 1999 Multiplesmallsites (Faucher,1999),(Faucher&Abbott,
2001),(GDGConseilInc.,2001)
St.Lawrence
(Odensberg)
LS 36×36 Na 4.3 4-7cm 0.3 MR Y(initially) 1993 Effectivenessdecreased–siltation,
periphyton,zebramussels
(Johnsonetal.,2006b)
St.Lawrence(Iroquois) LS 2@929m20.6-0.7 10-12 5-10cm,largebouldersd/s 0.30 Aboveandbelow Y 2007 (McGrath,2009)
St.Lawrence
(Beauharnois)
LS 3000 0.46-0.98(also
intermittentlow
flowevents)
2.0-4.5 17-65mmand65mm-255mm,with1mx
5mblocksspacedat8m
0.30(min.) BD N 1998 Ineffectiveduetosiltation,
vegetation,unsuitableflow
(Gendronetal.,2002)
St.Louis LS Na Na Na 10-25cm(24%)
30-90cm(21%)
90-150cm(54%)
Na BD Yspawning,assessment
limitedtodate
2009 Steppedboulderclusters (Aadland,2010),Aadland,pers.
comm.
Volga RS ~11,000 0.5-1.0 3-4 5-10cm MR Rarely 1966 Sitetoofardownstreamofdam (Khoroshko&Vlasenko,1970)
Wolf/Fox LS >50sites Upto5m/sec Na 10-50cm Na MR Y Siltationatsomesites (Folz&Meyers,1985),(Bruch&
Binkowski,2002)
Columbia WS 1,000 Upto3m/sec Variable 2.5-30cm
(seecasestudy)
0.60 BD Unconfirmed 2011 Sitedegradedafter1year (Crossman&Hildebrand,2014)
Nechako WS 4,600 Upto2m/sec 1-3 25%2-4cm
35%4-15cm
40%15-20cm
0.30 MR Y2011 Smallrecruitmentresponse,sand
depositionat1of2sites
Author’spersonaldata,(nhc,2013b)
Rupert LS 2,060 0.2-1.8 0.6-2.1 4-40cm
(seecasestudy)
Na MR Y2010 (EnvironnementIllimitéInc.,2013)
|
7
MCADAM et Al.
contexts,thepresenceofspawningsturgeononnewlycreatedhabitat
isaspecialcaseofadultdetectionthatmayrequiresturgeontostray
fromestablishedspawningareas.Thepotentialthatlowstrayingrates
delay the re-establishment of spawning runs emphasizes the long-
termnatureofthismetric.Cross-speciescomparisonsandlong-term
researchincontrolled settings will alsoprovideimportantreference
studiesofbiologicalresponsestoconstructionofsturgeonspawning
habitat(e.g.,Forsytheetal.,2012;Pledgeretal.,2013).
Early life stage survival and production of feeding larvae
Monitoringshouldideallydemonstratesurvivalthroughtheegg,yolk-
sac,andfeedinglarvalstages,althoughthisisrarelydone.Quantifying
stage-based survivalmaynot bepossible,however, systematicmoni-
toringusingstandard techniques such as eggmats,benthicsampling
and drift nets, can be used to estimate egg deposition (Caroffino,
Sutton, Elliott, & Donofrio, 2010; Roseman etal., 2011a), egg loss
(Johnsonetal.,2006b),yolk-saclarvaesurvival(Johnsonetal.,2006b;
McAdam 2012) and larval dispersal (Crossman & Hildebrand, 2014;
Dumontetal.,2011;Rosemanetal.,2011a).Developmentalstagingof
eggsorlarvaeallowstheback-calculationofspawningtime(Jayetal.,
2014).Ontogeneticdriftpatterns(McAdam,2011)andlarvalquality
indicators(Bakeretal.,2014)alsoofferpotentialbiologicalindicators.
Forexample,driftbynewly-hatchedlarvaemaybeindicativeoflimited
larvalhidinginresponsetoremediation(e.g.,Crossman&Hildebrand,
2014; Khoroshko and Vlasenko, 1970; Raspopov etal., 1994).
Ultimately,consistentmonitoring of early life stages followingreme-
diationofspawninghabitat(possiblyusingmultiplemethods)isoneof
themostimportantfactorsindeterminingremediationeffectiveness.
TABLE2 Detailsofspawninghabitatrestorationprojectsundertakenforsturgeon(LS=lakesturgeon(Acipenser fulvescens),WS=white
sturgeon,SVS=Sevryuga(Acipenser stellatus),RS=Russiansturgeon(Acipenser gueldenstaedtii))
River Species Area (m^2) Velocity (m/sec) Depth (m) Material
Substrate
depth (m)
Below dam (BD)/mid
reach (MR) Spawning (Y/N) Year built Comments References
DetroitandSt.Clair(see
Table4)
LS 39,000 0.5-0.7 5-10 Various(seeTable4;casestudy) 0.6 MR N(BelleIsle),Y(othersites,
someintermittent)
2004,2008,
2012-16
(Mannyetal.,2005),(Rosemanetal.,
2011b),(ThomasandHaas,2004)
Eastmain LS Na Na Na Na Na BD Na Na Compensationfor890m2habitat
impact
(EnvironnementIllimitéInc.,2009)
Kuban(upper) SVS 1.9ha 0.76-0.84 4-6 5-8cm,coarsesand,quarrystone 0.30 BD(80m) Y 1966 (Khoroshko&Vlasenko,1970)
Kuban(lower) SVS 1.6ha 0.88-0.94 4-5 Gravel,coarsesand,quarrystone Na BD(900m) Y-siltedafter3years 1966 (Vlasenko,1974),(Chebanov,Galich,
&Ananyev,2008),(Kerretal.,2010)
Ottawa LS Na Na Na 15-25cmrock Na BD TBD 2010/2012 RonThreader(pers.comm.)
DesPrairies LS 5,000and
8,000
1.0 1.5-3.0 20-30cm(areaencircledwith30-50cm
rockwithrowsof1mrock)
0.3 BD Y(alsoincreasedeggto
feedinglarvaesurvival)
1985,1996 13 m2/femalepreferred,sitesloped
soeffectiveatvariableflows
(Dumontetal.,2011),(LaHayeetal.,
1992)
Ouareau LS 3050 0.8-1.2(m/sec) 0.5-1.5 Sedimentaryblastrockandriverrock
(20-200mm)
0.30(min) MR(2.5km
down-stream)
N–atrestoredlocation,Y
–atnearbynaturalsite
2007,2008 Landslideaffectedqualityofnatural
spawningsite
(LaHayeandFortin,1990),(MRNF-
CARA,2011)
UpperBlackRiver LS 4locations Na Na Riprap Na BD(<2km) Na 1972 Sedimentationdecreased
effectiveness
(SmithandBaker,2005)
Saint-Maurice LS 2100 Na Na Largeboulderwith3-40cmmaterial
downstream
Na BD Y 1999 Multiplesmallsites (Faucher,1999),(Faucher&Abbott,
2001),(GDGConseilInc.,2001)
St.Lawrence
(Odensberg)
LS 36×36 Na 4.3 4-7cm 0.3 MR Y(initially) 1993 Effectivenessdecreased–siltation,
periphyton,zebramussels
(Johnsonetal.,2006b)
St.Lawrence(Iroquois) LS 2@929m20.6-0.7 10-12 5-10cm,largebouldersd/s 0.30 Aboveandbelow Y 2007 (McGrath,2009)
St.Lawrence
(Beauharnois)
LS 3000 0.46-0.98(also
intermittentlow
flowevents)
2.0-4.5 17-65mmand65mm-255mm,with1mx
5mblocksspacedat8m
0.30(min.) BD N 1998 Ineffectiveduetosiltation,
vegetation,unsuitableflow
(Gendronetal.,2002)
St.Louis LS Na Na Na 10-25cm(24%)
30-90cm(21%)
90-150cm(54%)
Na BD Yspawning,assessment
limitedtodate
2009 Steppedboulderclusters (Aadland,2010),Aadland,pers.
comm.
Volga RS ~11,000 0.5-1.0 3-4 5-10cm MR Rarely 1966 Sitetoofardownstreamofdam (Khoroshko&Vlasenko,1970)
Wolf/Fox LS >50sites Upto5m/sec Na 10-50cm Na MR Y Siltationatsomesites (Folz&Meyers,1985),(Bruch&
Binkowski,2002)
Columbia WS 1,000 Upto3m/sec Variable 2.5-30cm
(seecasestudy)
0.60 BD Unconfirmed 2011 Sitedegradedafter1year (Crossman&Hildebrand,2014)
Nechako WS 4,600 Upto2m/sec 1-3 25%2-4cm
35%4-15cm
40%15-20cm
0.30 MR Y2011 Smallrecruitmentresponse,sand
depositionat1of2sites
Author’spersonaldata,(nhc,2013b)
Rupert LS 2,060 0.2-1.8 0.6-2.1 4-40cm
(seecasestudy)
Na MR Y2010 (EnvironnementIllimitéInc.,2013)
8
|
MCADAM et Al.
Juvenile recruitment
Monitoringrecruitmentprovidestheultimatemeasureofremediation
success(seeDumontetal.,2011)andcanbeachievedthroughannual
juvenilemonitoring.Gillnetshavetypicallybeenusedforthisapplica-
tion,althoughthe delayed vulnerabilitytogillnetcapture leads toa
muti-year lag in recruitment detection (Howell and Mclellan, 2011).
Trawlnetshavebeenalsobeenusedtodetectearlyjuveniles(Parsley
andBeckman,1994;Wanneretal.,2007),althoughtheabilitytouse
trawlnetsmaybelimitedinmanyapplications (Steffensen,Wilhelm,
Haas,&Adams,2015).
Use by non- target species
Whilethemaintargetof habitatremediationissturgeon,theeffects
(positiveornegative)onotherspeciesalsowarrantconsideration.For
example,substrateremediationmayalsobenefitfreshwatermussels
(HaagandWilliams,2014), macro invertebrates (McManamay etal.,
2013; Merz and Chan, 2005), salmonids (Jensen etal., 2009) and
otherlithophilic spawning fish (e.g., Jennings etal., 2010; Romanov
etal., 2012). The potential for responses by non-target species to
overwhelmresponsesfromtargetspecies(Pineetal.,2009)mustbe
seriouslyconsidered,and supports the need for broadermonitoring
programs. Sturgeon recovery, and particularly repatriation in highly
alteredhabitats(e.g.,Europeansturgeon;Arndtetal.,2006),isoften
includedwithinabroader suiteofecosystemremediationobjectives
(e.g.,KTOI,2009;Hondorpetal.,2014).Whilelinkingsturgeonreme-
diationtobroaderhabitatremediation can yield important benefits,
broadening recovery goals may also increase the probability of not
achievingsturgeonrestorationgoals.
1.2.2 | Physical Response
Channel structure
River channel responses to flow regulation occur over decades or
centuries (Church, 1995). Understanding long-term fluvial and geo-
morphologicalprocessesshouldbeconsideredduringprojectdesign.
Consideration of the dynamic nature of river channels is important
to ensure that remediation works are effective despite long-term
changesintheriverchannelstructure.
Hydraulic conditions
The importance of hydraulic conditions to spawning habitat selec-
tion(Du etal.,2011;Zhangetal.,2009) underscorestheneedforpre
and post-project monitoring to ensure that hydraulic conditions are
maintained or enhanced. Detailed modelling (Hildebrand etal., 2014;
McDougalletal.,2013;nhc,2008)anddirectmeasurement(e.g.,using
ADCP; Elliott, Jacobson, & DeLonay, 2004; Johnson etal., 2006a,
2006b)haveboth been used to understand hydraulicresponses.This
aspectofphysicalmonitoringisimportanttoimproveourunderstand-
ingofspawninghabitatselectionatboththeprojectdesignandmoni-
toringstages.
Substrate condition
Infillingofrestoredspawningsubstrateswithfinesedimentsisakey
concernforbothshort and long-termeffectiveness.Monitoringthe
effectsofsubstrate(e.g.,silt,sandorgravel)accumulationonremedi-
atedspawninghabitat,andinotherareas(e.g.,downstreamstretches,
bank development, impacts on navigation), is a critical monitoring
requirement.Monitoring techniques used to evaluate restored sub-
stratequalityhaveincluded videoand diverobservationsofsurficial
characteristics(Dumontetal.,2011;Rosemanetal.,2011b;Vaccaro
etal., 2016) and freeze-core sampling of riverbed materials (nhc,
2013a). Ideally, assessments should develop a broad understanding
of riverine sediment dynamics prior to remediation (e.g., sediment
budget,spatialandtemporaldepositionpatterns).
1.3 | Case studies
Sturgeonhabitat remediation studiesarenotwidely reported inthe
scientific literature; four case studies are therefore presented to
provideexamples acrosstherangeofremediation contextsandbio-
spatialscales.Theseprojectsareatvariousstagesofimplementation,
andidentifyingboth successes and limitationsshouldbenefitfuture
projects.
1.3.1 | Lake sturgeon- Rupert River
(context = mitigation, bio- spatial scale = whole
river and spawning site)
Thiscaserepresentsplannedmitigationforlakesturgeonaffectedby
newly-constructeddiversionprojectsontheRupertRiver(constructed
inconjunctionwithtwopowerhouseprojects,theEastmain-1-Aand
Sarcelle powerhouses that are part of the La Grande Hydroelectric
Complex).Changestolakesturgeonhabitatasa resultof thesepro-
jectsinclude:reducedflowinthelowerRupertRiverdownstreamof
thepartialdiversion;the creationof twodiversionbaysupstreamof
thediversionpoint (flooding ofuplandareas);and increased flowin
thediversionzoneuptotheLaGrandeRiverwatershed.
Impacts to lake sturgeon spawning habitat were addressed
throughpre-projectevaluationsofspawninghabitatrequirementsand
TABLE3 Utilizationbysturgeonoftheman-madespawning
groundatsiteKP290,RupertRiver,2011to2014
2011 2012 2014
Spawningperiod
start
30 May 25May 3June
Spawningperiod
end
6June 8June 9June
Temperature(°C): 8.9to11.2 10.7to14.6 10.2to12.3
Samplingeffort
(numberofegg
traps):
37 42 38
Eggscaptured: 6346 2366 2998
Spawners
observed
(maximum/day):
220 270 145
|
9
MCADAM et Al.
baselinehabitatconditions,followedbythecompletionofmitigation
andenhancementmeasuresandassociatedeffectivenessmonitoring.
Inparticular,the mitigationandenhancementmeasures included an
in-stream flow regime,weirsand spurto maintainwaterlevels,and
theconstructionoffishpassagechannelsandspawninggrounds(com-
pleteprojectdescriptioninHydro-QuébecProduction,2004).
The in-stream flow regime for the Rupert Riverdownstream of
thediversionweirensuresthatflowsaresufficienttoallowlakestur-
geon to move between availablehabitats and provides appropriate
hydraulicconditionsatspawningsites.A2,060m2spawningground
wasconstructedin2010,downstreamofthediversionweiratsiteKP
290(riverkm290)ofthe RupertRiver(Figure1).Basedona review
of 41 studies throughout the range of lake sturgeon (including six
studiesfromtheprojectarea;EnvironnementIllimitéInc.etal.,2009,
2013a,b),thefinaldesigncriteriaforthesitewere:
• Location:adjacenttothethalweg,ideallyatthefootofamajorset
ofrapids
• Optimumvelocity:0.2to1.0m/s(range0.1to1.6m/s)
• Optimumdepth:0.5to1.0m(range0.2to4.0m)
• Spawningsubstrate:heterogeneousmixof0%-10%largeboulders
(250-400mm),20%-70%boulders (150-250mm), 25%-60% cob-
bles(80-150mm),and0%-20%pebbles(40-80mm)
The constructed spawning ground was a shoal composed of
two plateaus (6m×86m – W x L), connected bya gentle 12m
longslope (8%gradient).Aboutfortyrockislets,eachmadeupof
threeorfourlargeboulderswereplacedindifferentspotsoverthe
spawning ground to provide shelter from the current. Modelled
hydraulic conditions at the spawning ground showedthat under
expectedspringflowconditions(i.e.,theprescribedin-streamflow)
TABLE4 Characteristicsoflakesturgeon(Acipenser fulvescens)spawningsitesintheunobstructedSt.ClairandDetroitrivers(siteslisted
fromupstreamtodownstream)
Site Area (ha)
Depth
(m) Substrate Flow (m/s) Egg densitya
Duration of
use (years)
Number of
spawners
PortHuron 69.0 20-22 Cobble,gravel 2.0 Unknown 100 Thousands
HartsLight 1.54 10-12 Brokenlimestone 0.8 100s 2
Pt.AuChenes 0.61 10-12 Brokenlimestone 0.6 100s 2
MiddleChannel 0.3 7-10 Brokenlimestone 0.5 35 450
Mazlinkas 0.1 7-10 Coalcinders 0.6 50-1700 100 Hundreds
BelleIsle 0.11expandedto
1.6
5-7 Limestone,cobble
stone,coalcinders
0.7 0 0 2
ZugIsland 0.1 9-10 Coalcinders 0.6 21 1 35
FightingIsland 0.3,expandedto
0.72
5-9 Brokenlimestone,
cobble
0.7 0-330 6 35
GrassyIsle 1.62 8-10 Brokenlimestone 0.7 100s 1
aeggs/m2oneggmats.
FIGURE1 Aerialviewoflakesturgeon,
Acipenser fulvescens,developedspawning
groundatsiteKP290ofRupertRiver
10
|
MCADAM et Al.
thewatershouldbe0.6to2.1mdeepandwithvelocitiesbetween
0.2and1.8m/s.
Monitoringfrom2011to2014confirmedthatthespringflowpro-
videsexcellenthydraulicconditionsinthespawningground.Hydraulic
conditionsweremeasuredin2011and2012,whenmeanflowvaried
between479and500m3/s,meandepthwasconstantat1.3m, and
meanvelocityremainedbetween0.66and0.76m/sec.Thesecondi-
tionsallmetthedesigncriteria,andtheirconsistencyreflectstheprox-
imityofmonitoringlocationstotheupstreamflowreleasestructure.
Additionally,the spawning groundhasmaintainedaconsistently
high level of physical integrity in terms of substrate cleanliness,
developedareaandstabilitysince itsconstructionin 2010 (Table3).
Utilization of the spawning ground was demonstrated by observa-
tionofadults(aerialcounts)duringthespawningperiod(dailycounts
rangedfrom7 to 220 in 2011, 2 to270in2012,and35to145in
2014).Eggmatsamplingalsoconfirmedtheuseofthesite–especially
thedownstreamportion(Table2).Theareausedbyspawningadults
correspondedtoroughly65% (1,339m2)ofthedevelopedsite area.
Annualvariation intheamountof spawning habitatusedwas antic-
ipated,becausethesitewasdesignedtoprovidesuitablespawning
habitatatarangeofflowratesandwaterlevels.
The effectiveness of the constructed spawning habitat for egg
survivalwas evaluated through drift net capture oflarvae(methods
basedonVerdonetal.,2013).Comparisonsoflarvalcapturesatfour
sites (three downstream and one upstream control) were variable,
however,theoveralltrendsuggestedthatcatcheswereeitherstable
or increased,when comparing pre- and post-project larval captures
(Figure2).Post-projectlarvalcaptureshowedastatisticallysignificant
increaseimmediately belowtheconstructed spawning site (riverkm
287-Studentt-test=3.45,p=.02).
Futuremonitoringtodemonstratejuvenilerecruitmentisplanned,
althoughcurrentlythecollectiveresultsbasedonadult,eggandlarval
monitoringalldemonstratethat thein-streamflowregimeand man-
made spawning grounds at site KP 290 have effectively preserved
available lake sturgeon spawning habitat. Stable flow for 45days
during the spring period may be particularly important due to an
expectedincreaseineggsurvivalrelativetonaturalconditions,when
eggmortalitymayoccurasaresultofdecreasedwaterlevels.
1.3.2 | White Sturgeon- Columbia and Nechako rivers
(context = rejuvenation, bio- spatial scale = spawning
reach, spawning site)
WhitesturgeonpopulationsintheupperColumbiaandtheNechako
rivers are legally listed as endangered, yet persistent recruitment
failure was not recognized for more than 20years in either case
(DFO,2014;Hildebrandetal.,2016).Riverregulationandindustrial
usehaveled to altered flow regimesandhabitatdegradationover
several decades, thus targeted restoration is required to prevent
extirpation.Spawninghas been identified annuallyinbothpopula-
tions over the past decade, although at differing spatial scales. In
the Upper Columbia River, spawning occurs at multiple locations
(HowellandMcLellan,2007;Golder,2008;Terraquatic(Terraquatic
ResourceManagement),2011;AMEC,2014;BCHydro,2015).Most
spawning sites occur within a 75km stretch of river, with several
immediatelydownstreamofhydroelectric facilities.IntheNechako
watershed, only one spawning site has been identified in a 4km
stretch of river (~140km downstream of Kenney Dam), where
decreased riverbed slope led to the historical presence of gravel
bars(nowlargelywithvegetationundertheregulatedflowregime).
Spawning has been detected throughout the reach, with activity
concentratedinfourareasthatshowlocallyelevatedwatervelocity
(McAdametal.,2005;Triton,2009).Althoughthehistoricalspawn-
ing locations are unknown, hydraulic modelling (nhc (Northwest
HydraulicsConsultants),2008)suggeststhat sturgeon spawned at
asinglesiteattheupstreamendofthepresentspawningreach.For
boththeColumbiaRiverandNechakoriverstheannualpresenceof
wildspawners, coupled withtheabilityto implement experimental
FIGURE2 Estimateddriftinglarvae
abundanceatRupertRiversitesKP
212,276,287(downstream)and361
(upstream)inspring2007to2012and
2014(pre-project=2007to2009,post-
project=2010to2014)
|
11
MCADAM et Al.
releasesofearlylifestages(e.g., eggsand larvae),makethesesites
idealsettingstotestthefeasibilityofspawninghabitatremediation
anddeterminetheefficacyofdifferenthabitatremediationoptions.
Retrospectiveevaluationslinking recruitmentfailuretosubstrate
changesinwhitesturgeonspawninghabitat(McAdam,2015;McAdam
etal., 2005) provide a strong foundation for pursuing substrate
FIGURE3 MapofRevelstokeReachof
UpperColumbiaRivershowinglocationof
whitesturgeon,Acipenser transmontanus,
spawningandearlyrearinghabitat
restorationin2012.Sitedimensionsfor
controlandmodifiedsitesare10m×100
m.FigurereproducedfromCrossmanand
Hildebrand(2014)
FIGURE4 Numberoflarvalwhite
sturgeonA. transmontanuscollected
downstreamofcontrolandmodifiedsites
(histogram)andhourlymeandischarge
foreachtimeinterval(points,line).Figure
reproducedfromCrossmanandHildebrand
(2014)
12
|
MCADAM et Al.
restorationasameansofpopulationrecoveryinbothrivers.Although
bottomvelocitiesatknownspawninglocationsarewithinthesuitable
range (>1.0m/s; Parsley etal., 1993), substrate surveys at several
spawningareasshowthathighqualityhabitatislimitedtoasmallpro-
portionofsurveyedsites(e.g.,3%-12%intheUpperColumbiaRiver;
nhc, 2012; Golder, 2013). Field studies in both rivers also demon-
stratethatlarvalcatchisdominatedbyyoungyolk-saclarvae(Golder,
2009;Terraquatic(TerraquaticResourceManagement),2011)atmost
spawningsites,whichisalsoindicativeofadiminishedqualityoflarval
hidinghabitat.Accordingly,habitat requirements of earlylife stages
(particularlyyolk-saclarvae)areusedastheprimarybasisfordesigning
spawninghabitatremediationworksthat areacriticalcomponentof
thefederalrecoverystrategyforbothpopulations(DFO,2014).
Experimentalspawninghabitatremediationhasbeentestedatone
siteintheUpperColumbiaRiver(Figure3).Remediationfocusedona
smallareaofknowneggdeposition(1km2)andthespawningsubstrate
wasmodifiedwithacombinationoflargerbouldersand coursegravel
(90% > 200-300mm diameter, 10% > 25-80mm diameter), both of
whichwereangularinshapetoprovidemoreinterstitialspacewhenset-
tled.Thespawninghabitatwaslocatedbelowtheminimumwaterlevel
to avoid dewatering eggs orlarvae (Golder, 2011). The effectiveness
oftherestoredhabitatwastested bystockingyolk-sac larvae(~1day
posthatch)overbothmodifiedandcontrolsites(inclusionofacontrol
siteis notable, assuitablecontrolsareoftenlimited forsuchstudies).
Monitoring demonstrated that larvae released over substrates with
increasedinterstitialspaceshowedagreatertendencytohide,remained
inthesubstrateregardlessoftheflowconditions,anddisperseddown-
streamvolitionally(Crossman&Hildebrand,2014)(Figure4).Although
habitatconditionswereimproved,themodifiedspawninghabitatdete-
rioratedrapidlywithintwoyears(J.Crossman,BCHydro,unpublished
data).Thehighlyvariableflowregimeinthestudyarearesultedinthe
downstream displacement of restored substrate, demonstrating the
importanceofathoroughevaluationofsite-specifichydraulicsonsub-
strateretentionandmaintenancepriortoconstruction.
Experimental spawning habitat restoration in the Nechako River
consisted of placing 2,100m3 of clean substrate on the riverbedat
twosites(Figure5)priortothe2011spawningseason.Themixture
oflargeandsmallmaterials(seeTable2)wasdesignedtoachieveboth
physicalstabilityandabiologicalfunction(i.e.,interstitialhabitatsuit-
ableforyolk-sac larvae). While larval captures werelimited in 2011,
thedetectionofwildoriginrecruitsfromthe2011year-class (n=24;
fivetimes higherthanotheryear-classesidentifiedin the2013-2016
juvenilesampling)providesevidenceofapositiveresponsetosubstrate
remediation (S. McAdam, unpublished data).The limited recruitment
responsemightbedue totherapid decreasein thehabitatqualityof
enhancedsubstratescausedbyaninflux ofsand overthemajorityof
onegravelbed (lower pad-nhc(NorthwestHydraulics Consultants),
2012).Hydraulicconditions appear to be limiting or delaying further
infillingandmonitoringhasconfirmedthemaintenanceofbiologically-
functional substrate conditions at the upper pad in both 2012 and
2013 (Northwest Hydraulics Consultants, 2013b, nhc (Northwest
HydraulicsConsultants,2013a).Physicalsubstratecleaningwasinves-
tigatedin2016as arapid,althoughtemporary,remediationmeasure.
Whilesubstratecleaningwaseffective,itis tooearlytoevaluatebio-
logicalresponses(nhc,2016).
Experimental approaches in both riversdemonstrate the poten-
tialefficacyofsubstrateremediation.Furtherresearchregardingthe
geomorphology,substrate conditions,andhydraulicproperties ofall
spawningsitesisrequiredtodesignremediationprojectsthatmaintain
theireffectivenessoverthelongterm.
1.3.3 | Lake Sturgeon – Detroit and St. Clair rivers
(context = re- creation, spatial scale = multiple
spawning sites)
The Detroit and St. Clair rivers comprise an unobstructed, 160-
km channel between two very large lakes (Figure6) that has been
highly altered and degraded by urban development (Edsall, Manny,
&Raphael,1988;Manny etal., 1988). Since 1900, the construction
ofmorethan145kmofshippingchannelsledtotheremovalofmore
than 46 million cubic meters of rock-rubble from the Detroit River
(Bennion&Manny,2011)andsimilaramountsfromtheSt.ClairRiver.
Theextentofthehistoricalhabitatdestruction,includingelimination
ofsturgeonspawninghabitat,createduniquechallengesleadingtothe
needtore-createhistoricalhabitats(Mannyetal.,2005).Remediation
ofspawninghabitatfornative fishes,includinglakesturgeon,isnow
aninternationalgoalintheserivers.
By 1925, habitat alteration and over-harvest reduced lake stur-
geoninbothriverstolessthan1%oftheirformerabundance(Caswell,
Peterson,Manny,&Kennedy,2004;MannyandMohr,2011).Recent
estimatesindicatethat45,500lakesturgeonsoccupythesetworivers,
comparedto anestimatedhistorical populationof100,000 (Thomas
FIGURE5 Aerialphotoshowingwhite
sturgeon,A. transmontanus,spawningreach
ofNechakoRiverlocatednearDistrictof
Vanderhoof.Substrateremediationwas
conductedatupper(upstream)andlower
(downstreamnearbridge)padsin2011
500 m
N
Lower Pad
Upper Pad
Flow
|
13
MCADAM et Al.
andHaas, 2002).Historicalreportsandinterviewswithretiredcom-
mercial fishermen (Goodyear, Edsall, Dempsey, Moss, & Polanski,
1982)identifiedninepossiblehistorical lakesturgeonspawningsites
intheDetroitRiver.
The largest and highest quality lake sturgeon spawning site is
locatedat theheadoftheStClairRiver,nearPortHuron,Michigan.
Thisareaischaracterizedbyfastflowandroundedcobbleandcoarse
gravelsubstrates,andwastoodeeptobeaffectedbyshippingchannel
construction(Boase&Hill,2002).Spawningisalsoregularlydetected
attwoadditionalareaswherecoalcinderswerehistoricallydumped;
MazlinkasreefintheSt.ClairRiver(Nicholsetal.,2003)andZugIsland
intheDetroitRiver(Caswelletal.,2004).Itisunclearwhetherthese
twositeswereusedbyspawning lakesturgeonpriortothe coalcin-
derdumping,orwhethertheadditionofthecoalcinderscreatednew
spawningsites.
Following an adaptive strategy, six spawning reefs have been
constructedintheSt.Clair–Detroitriverssince2004(Mannyetal.,
2015;Vaccaroetal.,2016).Forallreefconstructionprojects,theuse
ofgravellessthan5cmindiameterwasavoidedduringreefconstruc-
tion,owingtoitspotentialusebyspawningsealamprey(Petromyzon
marinus) (Wigley, 1959) that are controlled throughout the Great
Lakes.In the DetroitRiverat BelleIsle,an 0.11ha reefwascreated
in2004(DetroitRiver-totalreef size0.11ha;Manny,2006a).This
previouslyunusedsitewaschosenbecauseofitslocationin therel-
ativelyunpollutedheadwatersoftheDetroitRiverandthepresence
ofsuitablewatervelocity[e.g.,0.37-0.80m/sbasedonLaHayeetal.,
(1992)].Siteselectionwasbasedonahydrodynamicgeospatialmodel
usedtolocatedeep,fast-flowingareas(Bennion&Manny,2014).The
selection of substrates was based on the previous identification of
largebrokenlimestone(Bruch& Binkowski,2002),rounded igneous
rock(Mannyetal.,2005),and coalcinders (Thomasand Haas,1999,
2002)assuitablesubstrates(seeTables2and4).
In2008,asecondspawningreefwasconstructedatNortheast
Fighting Island (Detroit River), which was reputedly a historical
spawning ground (Goodyearetal., 1982). Substrates used at this
sitewereamixtureof10-50cmbrokenlimestone,5-10cmbroken
limestone, and 10-20cm rounded igneous rock. The initial 0.3ha
spawningreefwasexpandedin2013toatotalof0.72ha.Thisloca-
tionwas selectedbasedonthe presenceofhighwatervelocity(>
0.5m/s),year-roundaccessibilitybyadultsturgeon,atemperature
of11-16°Cduringthespawningperiod(Bruch&Binkowski,2002),
and a waterdepth of 9-12m (Roseman etal., 2011b).In 2012, a
thirdreefcomplex was constructed in the Middle Channel ofthe
lower St. Clair River, using 10-20cm broken limestone and 10-
15cmrounded,igneousstone.AMiddleChannelreefwasalsocon-
structedacrosstheentirechannel.TworeefswereplacedintheSt.
ClairRiverduring2014atHartsLight(1.54ha)inthemainchannel,
andatPt.AuChenes(0.61ha)intheuppernorthchanneloftheriver
(Figure6).Thesereefswereconstructedofonelargesectionof10-
20cmfracturedlimestoneorientedparalleltothecurrent,alongthe
edgeoftheriverchannelontheMichiganshore.In2015,1.62haof
spawningreefwasplacedinthemainchanneloftheDetroitRiverat
GrassyIsland,usingsimilarstoneandfollowingthesameorientation
atHartsandPt.AuChenesintheStClairRiver.Lastly,intheautumn
of2016,the2004BelleIslereefwasexpandedto0.5haofcontig-
uous10-20cmlimestone,andtwoadditionalreefs(0.4and0.7ha)
wereplacedupstreamofBelleIsleintheDetroitRiver(Figure6).
Assessmentswith various gear types indicate that all sturgeon
age classes are present in the Detroit and St. Clair rivers (Boase
etal.,2014), however,spawning habitat utilizationisnotuniform.
Spawningbylake sturgeon has been confirmedatfiveofsix con-
structedspawningsites(notthe2004BelleIsle;Table4).Additionally,
eggs and larvae werenot collected in all years that sampling was
conducted (Roseman etal., 2011b; Thomas and Haas, 2004). For
FIGURE6 Mapofunobstructed
Huron-Eriecorridor(St.ClairRiver/LakeSt.
Clair/DetroitRiver)showinglocationsof
ninenaturally-occurring,orrestored,lake
sturgeon,A. fulvescens,spawningsites
14
|
MCADAM et Al.
example,sturgeoneggs werecollectedonly once (in 2001)atZug
Island (Caswell etal., 2004) until samplingwas discontinued after
2008(duetorepeatedgearloss).Sturgeoneggsandlarvaewerecol-
lectedatFightingIslandin2009,2011,2012,2014,2015,and2016
butnotin2010or2013.Nosturgeoneggsorlarvaehavebeencol-
lectedattheBelleIslereefsinceitwasconstructedin2004,despite
repeated annual samplings from 2004 to 2014 (Hondorp etal.,
2014,Manny2006b).Eggswerecollectedonallotherconstructed
reefsforatleasttwoyearsfollowingconstruction.Theseresultssug-
gestlimitedorintermittentusebyspawningsturgeonofconstructed
spawning habitat. Captures oflake sturgeon yolk-sac stage larvae
(Bouckaert,Auer,Roseman,& Boase,2014)alsosuggest that sub-
stratesatsomesitesintheDetroitRivermaynotberetainingearly
larvalstageslongenoughforexogenousfeedingto begin,possibly
duetoexcessivelylargeinterstitialspaces(seeHastingsetal.,2013;
McAdam,2011).
Thephysicalconditions ofconstructedspawning reefs intheSt.
ClairandDetroitrivers(Table4)havebeenassessedusingdiversand
underwatercameras(Manny,2006b;Rosemanetal., 2011b).Within
twoyearspostconstruction,morethanhalfoftheareaofthespawn-
ing reefs at Fighting Island and the entirety of the Middle Channel
reefhavefilledinwithsandandsilt,resultinginembeddedspawning
substrates.Althoughsomeinfillingwasexpected,factorsaffectingthe
magnitudeand location ofinfilling arepoorlyunderstood. Beginning
in 2014, an AcousticDoppler Current Profiler,side-scan sonar, and
sedimenttransport modelshavebeenemployedtoassesscandidate
reefsitespriortoconstruction andavoiddepositionalareas(Fischer,
Bennion,Roseman,&Manny,2015;Kinzeletal.,2016;Vaccaroetal.,
2016). These technologies arealso used to monitor reef conditions
and performance following construction.Continued monitoring and
assessmentisconsideredcriticaltounderstandinglong-termchanges
tophysicalsubstrateconditions.
Theneed fora longterm,comprehensive,monitoring programis
oneof thekeylessonslearnedfromvariouslakesturgeonspawning
habitatremediationprojectsintheDetroitandSt.Clairrivers(Manny
etal.,2015;Vaccaroetal.,2016).Thisneedisbasedonthepotential
forlongerterm,physical changesinthe restoredsturgeonspawning
habitat, and the attendant biological effects.The optimum number,
location,andsizeofrestoredsturgeonspawningsitesarealsoimport-
antconsiderations, particularlywhenpresent and historicalusepro-
videslimitedguidance(Mannyetal.,2015).
1.3.4 | Baltic Sturgeon – Odra River
(context = repatriation; bio- spatial scale = whole river)
Remediationof theBalticsturgeon intheOdraRiverrepresents the
mostcomplicatedremediationcontext,sinceitrequirestherepatria-
tiontohabitatsfromwhichsturgeonhavebeenextirpated.Extensive
habitatchangesinrecipientwatersheds also create numerous chal-
lenges for identifying, and restoring suitable habitats. For example,
proposedspawninghabitatremediationsitesmustbeselectedonthe
basisofexpected,ratherthanconfirmed,spawninghabitats(Gessner,
Arndt,Tiedemann,Bartel,&Kirschbaum,2006).
ReleasesofA. oxyrinchusbeganin2006,and1750000individuals
of all age classes (feedinglarvae to subadults of 1.5m length) have
beenreleasedasof2016.However,basedonmaturationratesofcap-
tivebroodstockandsurvivalrateestimatesfromearlyreleases(Jaric
and Gessner, 2013; McManamay, Orth, & Dolloff, 2013) returning
spawnersarenotexpectedtobeobservedpriorto2020.Verification
of spawning habitat use will therefore not be possible prior to this
date.Despitethislimitation,conceptualplanstoimprovetheavailabil-
ityofadult spawningandstaginghabitatandthequalityofearlylife
phasehabitatsare being developedonthebasisofa ProjectGroup
under the Helsinki Commissionfor the Baltic range states (Gessner
etal.,2011).
In the absence of spawning adults, prospective spawning sites
wereidentified byevaluatinghabitatsinthevicinity ofapparent his-
toric spawning reaches identified from historical catches (Grabda,
1968;Przybyl,1976).Habitatsuitabilityin thevicinityofthese areas
wasevaluatedusingwell-establishedcharacteristicsofspawningsites
(e.g.,depth,velocity,andsubstrate).Substratequalitywasdetermined
bymappinglongitudinalsectionsoftheriverwithtransectsat select
locationstodeterminethedimensions ofsubstrateaggregations,and
by underwatervideo image analysis (Arndt, Gessner, & Raymakers,
2002).
Fourpotentialspawningsitesgreaterthan1000m2were identi-
fiedin the Odra catchment.All sites werein the vicinityofhistoric
aggregationareas, mainly areaswitherosionanddepositionofsub-
strateinareasofpostglacialmorainedeposits.Anthropogenichabitat
alterationsthroughdamming,riverchannel modifications[e.g.,chan-
nel straightening to increase water conveyance and surface water
removal,incombinationwithgroynefields tostabilizethe riverbed,
ledtothelossofapproximately70%ofthehistoricalhabitat(Grabda,
1968)]. Modelling of habitat availability, assuming 25,000eggs/m2
andthat10%ofhistoricalhabitatsremainsuitable,suggestsapresent
eggproductioncapacityof14millioneggs.However,themobilityof
riversubstrates(mostlycomprisingfineand smallgravel0.1–6mm
grainsize)meansthatpotentiallysuitablesubstratesmayshowlimited
functionalityfortheearly rearingofeggsandyolk-saclarvaedue to
fillingwithfinesubstrate(Arndtetal.,2006).
Themainobstaclesforeffectiveremediationofhabitatstillpersist
(i.e.,navigation andfloodcontrol)andlimittheoptions forimprove-
mentstobankerosion,depthheterogeneityandsedimentdeposition.
Currently the increased bank stability resulting from groynes and
riprap leads to increased in-channel erosion and increased bedload
transport.Thishasdecreasedriverbedelevationtothe extentthatit
isbelowthealluvialdepositionlayersforgravelandrock,whichlim-
itsthe capacityforthe naturalregenerationofspawningsites. River
channelization also prevents the establishment ofa stable riverbed
that provides sufficient habitat forbottom fauna, including juvenile
sturgeonduringdownstreammigrations.Thisleadstoextremelyhigh
migration speeds in sections of the riverwith the highest bedload
transport(Fredrich,Kapusta,Ebert,Duda,&Gessner,2008).
Difficultieswithremediationofmainstemsitessuggesttheneedto
consideralternatives,includingremediationofspawningsitesinmajor
tributariesoftheOdraRiver(e.g., Warta,Notec,Prosna, and Drawa
|
15
MCADAM et Al.
rivers)andpossiblythedevelopmentofsmallerscalemainstemreme-
diationareasthatallowlimitedreproductionatanysinglesite.Ifsmaller
habitatpatchesareusedtheywillneedtobealignedwithrivercurrents
andbesufficientlylong(andstable)toallowdriftingyolk-saclarvaeto
findsheltersuccessfully.Approximationsbaseduponbehaviourexper-
iments(Gessneretal.,2009)suggesttheneedfor30mofcontinuous
habitat,assumingamoderatedriftdurationof15secat0.8m/sec.In
caseoflongerdrifts,multiplesiteswouldclearlybebeneficial,which
isinlinewiththecurrenttargetsthatsuggestlowlandriversshouldbe
comprisedofroughlyabout10%ofcoarse sediment (i.e.,graveland
cobble)by area(Dahmetal., 2014). Thehabitatavailabilityforfeed-
inglarvaeislargelyunknown;thepresenceoffeedinglarvaefollowing
releasehasnotbeensuccessfullyproven.However,the presence of
multipleremediationsitesmayprovide habitat that supports rearing
by feeding larvae.It is hypothesized that groyne fields also provide
productivehabitatwithsuitablesubstrateforfeedinglarvae,although
verificationofutilizationiscurrentlylacking.
Theneedto restore alllifestagesof sturgeonintheOdraRiver
(andotherareasoftheirhistoricalrangeinEurope)createssubstantial
challengesduetotheneedtorestoreallelementsofsuitablehabitat
fordifferentlifephases(i.e.,reachselection,localscalehydraulicand
substrateconditions).Monitoring of the initial repatriationsintothe
OdraRiverprovidecriticalguidanceforsubsequentefforts.Asnoted
above,successfulspawningofrestockedfish willonlybe detectable
after 2020. However, monitoring of particular life stages (e.g., lar-
val out-planting experiments and lab-based research) may provide
interim indications of habitat improvements. Conducting additional
trialsin differentriversorriversectionswouldprovidetheopportu-
nitytocompareresponsestodifferenthabitatremediationstructures
designedforvariouslifestageswhiledevelopingsolutionsthatdonot
interferewithnavigationtargets.
2 | CONCLUSIONS
Ourreview ofsturgeonhabitat remediationidentifiedthatmultiple
contextsandbio-spatialscalesmustbeconsideredforeffectivestur-
geonhabitatremediation.Thedireglobalconservationstatusofstur-
geonclearlyindicatespastfailurestorecognizeandlimittheimpacts
ofanthropogenicchangestoriverine habitats that affect sturgeon.
Whileour review identifiedpositiveprogressin the remediationof
spawning and early rearing habitats, most sturgeon habitat reme-
diationisstillnotabletoaddressconservationconcernseffectively.
Current projects addressing lake sturgeon, Acipenser fulvescens,
appeartoshowthemostpromise.Furtherappliedresearchisneeded
toidentify remediationmeasuresthat provideconsistentlong-term
effectiveness.Untilsuchmeasuresareidentified,westresstheneed
tomaintainconnectivityandtheabilityforlong-distancemigration,as
wellasthehabitatmosaicrequiredforsuccessfulrecruitment.Most
remediationprojectstodatehave beenconductedatthesub-reach
scaleand havefocussedonsubstrate remediationtoimprove early
life stage rearing in spawning habitats. The mixed success of past
projectssuggeststhat a ‘build it and they will come’ approach has
notbeen sufficiently successful. We have identified threeareasin
particularwhereinvestigationwillbenefitfuturerestorationefforts:
1) Mechanisticinsightinto factors affecting spawningsiteselection,
including hydraulic conditions and fine-scale habitat specificity
(see Duong etal., 2011).
2) Utilizationofhydro-geomorphologicalprocess(e.g.,reachscale)to
identifyameanstolimit the incursion of fine substrates into re-
storedspawninghabitatsandtocleansubstratesatspawningsites.
Utilizingariver’sownpowerismoredesirablethanrepeatedphysi-
calcleaning(Johnsonetal.,2006b).
3) Therole of habitat effects during earlylife history (e.g., survival,
larvaldrift,firstfeeding)andearlyjuvenilephases.Amorenuanced
understanding of habitat mediated effects would address such
questionsas:(i)domultiplefactorsaffectlarvaldriftdecisions(e.g.,
ontogeny,foodavailability,thepresenceofpredators,thecharac-
teristicsofinterstitialhabitat);and(ii)whataretheshortandlong
term consequences of phenotypic responses to early life stage
habitatconditions(Boucheretal.,2014;Duetal.,2014;Johnsson
etal.,2014;Johnssonetal.,2014).
Bothgeomorphologicalandbiologicalstudieswillnecessarilyrequire
acombinationoflaboratory,modelled,andfieldstudies.Boththeurgent
needforremediationandeconomiccostsoflarge-scaleremediationem-
phasizethevalueofinformationexchangeamongrecoveryprogramsfor
varioussturgeonspecies.
ACKNOWLEDGEMENTS
Thisworkoriginatedfromaworkshopheldduringthe7thInternational
SturgeonSymposium(Nanaimo,BC),andwethank theorganizersof
thateventforprovidingtheopportunitytocollaborateinsupportof
sturgeonconservation.Theauthorswouldliketo thankEdRoseman
forhiscontributionsandthetwoanonymous reviewerswhosecom-
mentsimprovedthemanuscript.
REFERENCES
Aadland,L.P.(2010).Reconnecting Rivers: Natural Channel Design In Dam
Removals And Fish Passage(p. 28). FergusFalls,MN,USA:Minnesota
DepartmentofNaturalResources.
AMEC2014:MiddleColumbiaRiverWhiteSturgeonSpawningMonitoring
(CLBMON-23a).Year7 Data Report.Reportpreparedfor BC Hydro.
21pp.+app.
Arndt,G.M.,Gessner,J.,&Bartel,R.(2006).Characteristicsandavailability
ofspawninghabitatforBalticsturgeonintheOdraRiveranditstribu-
taries.Journal of Applied Ichthyology,22,172–181.
Arndt,G.M.,Gessner,J.,&Raymakers,C.(2002).Trendsinfarming,tradeand
occurrenceofnativeandexoticsturgeonsinnaturalhabitatsinCentral
andWesternEurope.Journal of Applied Ichthyology,18,444–448.
Auer,N.A.(1996a).Importanceofhabitatandmigrationtosturgeonswith
emphasis on lake sturgeon. Canadian Journal of Fisheries and Aquatic
Science,53,152–160.
Auer,N. A. (1996b). Response of spawning lakesturgeons to change in
hydroelectricfacility operation. Transactions of the American Fisheries
Society,125,66–77.
16
|
MCADAM et Al.
Baker, D., McAdam, D., Boucher, M., Huynh, K., & Brauner, C. (2014).
Swimmingperformance and larvalqualityare alteredbyrearingsub-
strateat earlylifephasesin white sturgeon,Acipenser transmontanus
(Richardson,1836).Journal of Applied Ichthyology,30,1461–1472.
Ban,X., Du,Y.,Liu,H.Z., &Ling,F.(2011).Applying instreamflowincre-
mentalmethodforthe spawning habitat protectionofChinese stur-
geon(Acipenser sinensis).River Resources and Application,27,87–98.
BC Hydro, 2015: Lower Columbia Adult White Sturgeon Monitoring
Program(CLBMON-28).Years5and6DataReport.83pp.
Bemis, W. E., & Kynard, B. (1997). Sturgeon Rivers:An introduction to
acipenseriformbiogeographyandlifehistory.Environmental Biology of
Fishes,48,167–183.
Bennion,D.H.,&Manny,B.A.,(2011).ConstructionofShippingChannels
in the Detroit River: History and Environmental Consequences. US
GeologicalSurveyReportNo.2011-5122,14pp.
Bennion,D. H.,&Manny,B. A.(2014).Amodel tolocatepotential areas
forlakesturgeonspawninghabitatconstructionintheSt.Clair–Detroit
RiverSystem.Journal of Great Lakes Research,40,43–51.
Boase,J.,&Hill,T.,(2002).FinalReportforLakeSturgeonSpawninginthe
St.ClairRiverNearPortHuron,Michigan.ReportPreparedforU.S.Fish
andWildlifeService,27pp.
Boase, J. C., Manny, B. A., Donald, K. A., Kennedy, G. W., Diana,J. S.,
Thomas,M.V.,&Chiotti,J.A.(2014).Habitatusedbyjuvenilelakestur-
geon(Acipenser fulvescens)in theNorth ChanneloftheSt.ClairRiver
(Michigan,USA).Journal of Great Lakes Research,40,81–88.
Boscari,E.,Pujolar,J.M.,Dupanloup,I.,Corradin,R.,& Congiu,L. (2014).
Captivebreeding programsbased on familygroups in polyploidstur-
geons.PLoS ONE,9,e110951.
Boucher,M.A.,McAdam, S.O.,& Shrimpton,J.M. (2014).Theeffect of
temperatureandsubstrateonthegrowth,developmentandsurvivalof
larvalwhitesturgeon.Aquaculture,430,139–148.
Bouckaert,E.K.,Auer,N.A., Roseman,E.F.,&Boase,J.(2014).Verifying
successofartificialspawningreefsintheSt.Clair–DetroitRiverSystem
for lake sturgeon (Acipenser fulvescens Rafinesque, 1817). Journal of
Applied Ichthyology,30,1393–1401.
Braaten,P.J.,Fuller,D.B.,Lott,R. D.,Ruggles,M. P.,Brandt,T.F.,Legare,
R.G.,& Holm,R.J. (2012).Anexperimental test andmodelsof drift
anddispersal processes ofpallid sturgeon (Scaphirhynchus albus)free
embryos in the Missouri River. Environmental Biology of Fishes, 93,
377–392.
Brown,J.J.,Limburg,K.E.,Waldman,J.R.,Stephenson,K., Glenn, E. P.,
Juanes,F.,&Jordaan,A.(2013).FishandhydropowerontheUSAtlantic
coast:Failedfisheriespoliciesfromhalf-waytechnologies.Conservation
Letters,6,280–286.
Bruch, R. M. 2008. Lake Sturgeon Passage Through the Eureka Dam
Fishway, Upper Fox River, Wisconsin, USA. pages 88–94 In H.
Rosenthal,P.Bronzi,H.Spezia&C.Poggioli(Eds.)Fish Passage: Tools for
Overcoming Barriers for Large Migratory Fish.SpecialPublicationofthe
WorldSturgeonConservationSocietyNo.2.
Bruch, R., & Binkowski, F. (2002). Spawning behavior of lake sturgeon
(Acipenser fulvescens).Journal of Applied Ichthyology,18,570–579.
Bruch,R.,Haxton,T.,Koenigs,R.,Welsh,A.,&Kerr,S.(2016).StatusofLake
Sturgeon (Acipenserfulvescens Rafinesque 1817) in North America.
Journal of Applied Ichthyology,32,162–190.
Caroffino, D. C., Sutton, T. M., Elliott, R. F., & Donofrio, M. C. (2010).
Earlylifestagemortality ratesoflakesturgeon inthePeshtigoRiver,
Wisconsin.North American Journal of Aquaculture,30,295–304.
Caswell,N., Peterson,D.,Manny,B., &Kennedy,G.(2004). Spawning by
lake sturgeon (Acipenser fulvescens) in the Detroit River. Journal of
Applied Ichthyology,20,1–6.
Chebanov, M. S., & Galich, E.V. 2011. Sturgeon hatchery manual. FAO
Fisheries and Aquaculture Technical Paper 558,338pp.
Chebanov, M., Galich, E. V., & Ananyev, D. (2008). Strategy for
ConservationofSturgeonUndertheConditions oftheKuban River
FlowRegulation.Pages70-82. InH.Rosenthal,P.Bronzi,M.Spezia
& C. Poggioli (Eds.). Fish Passage: A Tool for Overcoming Barriers for
Large Migratory Species. Special Publication of the World Sturgeon
ConservationSocietyNo.2.
Chebanov,M.,Karnaukhov,G.,Galich,E.,&Chmir,Y.N.(2002).Hatchery
stockenhancementandconservationofsturgeon,withanemphasison
theAzovSeapopulations.Journal of Applied Ichthyology,18,463–469.
Chebanov,M.,&Savelyeva,E.(1999).Newstrategiesforbroodstockman-
agementofsturgeonintheSeaofAzovbasinin responsetochanges
inpatternsofspawningmigration.Journal of Applied Ichthyology,15,
183–190.
Church, M. (1995). Geomorphic response to riverflow regulation: Case
studiesandtime-scales. Regulated Rivers: Research & Management,11,
3–22.
Cocherell, D., Kawabata, A., Kratville, D., Cocherell, S., Kaufman, R.,
Anderson,E.,…Padilla,R.(2011).Passageperformanceand physio-
logicalstressresponseofadultwhitesturgeonascendingalaboratory
fishway.Journal of Applied Ichthyology,27,327–334.
Cooke,D.W.,&Leach,S.D.(2004).Implicationsofamigrationimpediment
on shortnose sturgeon spawning. North American Journal of Fisheries
Management,24,1460–1468.
Cooke,D.W.,Leach,S.D.,Isely,J.J.,VanWinkle,W.,&Anders,P.(2002).
Behavior and lack of upstream passage of shortnose sturgeon at a
hydroelectricfacility and navigation lock complex. American Fisheries
Society Symposium,28,101–110.
Crossman, J.,& Hildebrand, L. (2014). Evaluation of spawning substrate
enhancementforwhitesturgeoninaregulatedriver:Effectsonlarval
retentionanddispersal.River Resouces and Applications,30,1–10.
Crossman,J.A.,Martel,G., Bray,K., & Johnson,P.N.(2011). The useof
Dual-frequency IDentification SONar (DIDSON) to document white
sturgeon activity in the Columbia River, Canada. Journal of Applied
Ichthyology,27:53–57.
Dahm,V.,Kupilas,B.,Rolauffs,P.,Herring,D.,Haase,D.,&Kappes, H, …
Wagner,F.(2014).Strategies for the Optmimization of River-Rehabilitation
Measures and the Monitoring of Their Performance (OT: Strategien zur
Optimierung von Fließgewässer- Renaturierungsmaßnahmen und Ihrer
Erfolgskontrolle.)FederalAgencyforEnvironment(Umweltbundesamt)
Texte432/2014,174pp.
DeLonay,A.J.,Chonjacki,K.A.,Fualkner,J.D.A., Candrl,J. S.,& Combs,
D. K. (Oct. 2015). 2015: Comparative Studies of the Initiation of Drift
Behaviour by Three Sturgeon Species in an Experimental Stream (Abstract)
(pp. 19–22). WI: Paper presented at North American Sturgeon and
PaddlefishSymposium.Oshkosh.
DFO (Fisheries and Oceans Canada)2014. Recovery Strategyfor White
Sturgeon(Acipenser Transmontanus)inCanada[Final].252pp.Available
at http://www.registrelep-sararegistry.gc.ca/document/default_e.
cfm?documentID=1774(accessedon17Dec2016).
Du,H.,Wei,Q.W.,Xie,X.,Shi,L.L.,Wu,J.M.,Qiao,X.M.,&Liu,Z.(2014).
Improvingswimmingcapacityofjuvenile Dabry’ssturgeon,(Acipenser
dabryanusDuméril,1869)incurrent-enrichedculturetanks.Journal of
Applied Ichthyology,30,1445–1450.
Du,H.,Wei,Q.W.,Zhang,H.,Liu,Z.,Wang,C.,&Li,Y.(2011).Bottomsub-
strateattributes relativetobedformmorphology ofspawningsiteof
ChinesesturgeonAcipenser sinensisbelowtheGezhoubadam.Journal
of Applied Ichthyology,27,257–262.
Ducheney,P.,Murray,R.,Waldrip,J.,&Tomichek,C.(2006).FishPassageat
HadleyFalls:Past,Present,andFuture.Hydrovision2006Conference
Proceedings. Available at www.kleinschmidtgroup.com/index.php/
download_files/975/167(accessedon15Jan2017).15pp.
Dumont,P.,D’Amours,J.,Thibodeau, S., Dubuc, N.,Verdon,R.,Garceau,
S.,…Fortin,R.(2011).Effectsofthedevelopmentofanewlycreated
spawning ground in the Des PrairiesRiver (Quebec, Canada) on the
reproductivesuccessoflakesturgeon(Acipenser fulvescens).Journal of
Applied Ichthyology,27,394–404.
Duong,T.Y.,Scribner, K.T.,Crossman,J.A.,Forsythe, P.S.,Baker,E.A.,&
Magnan, P. (2011). Environmental and maternal effectson embryonic
|
17
MCADAM et Al.
andlarvaldevelopmentaltimeuntildispersaloflakesturgeon(Acipenser
fulvescens).Canadian Journal of Fisheries and Aquatic Science,68,643–654.
Dynesius, M., & Nilsson, C. (1994). Regulation of River Systems in the
NorthernThirdoftheWorld.Science,266,753–762.
Edsall,T.A.,Manny,B.A.,&Raphael,C.N.(1988).TheSt.ClairRiverand
Lake St. Clair,Michigan: An Ecological Profile. US Fish and Wildlife
ServiceBiologicalReportNo.BR-85(7.3).
Elliott, C. M., Jacobson,R. B., & DeLonay,A. J. (2004). Physical Aquatic
Habitat Assessment, Fort Randall Segment of the Missouri River,
NebraskaandSouthDakota.ReportNo.2004-1060,34pp.+app.
EnvironnementIllimitéInc.(2009).Eastmain-1-AandSarcellePowerPlants
andRupertDiversion-SturgeonSpawningSiteatKP290oftheRupert
River-Reduced-FlowArea–SignificanceStatement.(OT:Centralesde
L’Eastmain-1-AetdelaSarcelleetDérivationRupert–Aménagement
D’uneFrayèreàSturgeonJauneauPK290delaRivièreRupert–Zone
àDébitRéduit– Énoncé D’envergure).Report preparedbyLa Haye,
M;GuayG.;GendronM.forthe James Bay EnergySociety(Société
d’ÉnergiedelaBaieJames).17pp.+12app.
Environnement Illimité Inc. (2013a). Eastmain-1-A and Sarcelle Power
Plants and Rupert Diversion - Operational Phase Environmental
Monitoring-MonitoringtheIntegrityanduseofDevelopedSpawning
Sites for Lake Sturgeon - 2012 Work. Preliminary Report. (OT:
Centralesde L’Eastmain-1-Aet de la SarcelleetDérivationRupert –
SuiviEnvironnementalenPhaseExploitation–SuivideL’intégritéetde
L’utilisationdesFrayèresAménagéesPourL’esturgeonJaune–Travaux
2012.RapportPréliminaire).ReportpreparedbyGuayG.andGendron
MforHydro-QuébecProduction.64pp.+66app.
Environnement Illimité Inc. Burton, F., St-Onge, I., La Haye, M., Guay,
G., Gendron, M., …Tremblay,G. (2013b). Eastmain-1-A and Sarcelle
Powerhouses and Rupert Diversion — Summary of Knowledge
AcquiredonLakeSturgeon.ReportPreparedforSociétéD’énergiede
laBaieJames.194pp.+app.
Erwin,S.O.,&Jacobson,R.B.(2015).InfluenceofChannelMorphologyand
FlowRegimeon LarvalDrift ofPallid SturgeonintheLowerMissouri
River. River Resouces and Applications,31,538–551.
Faucher,R.(1999).La Gabelle RehabilitationProject- Developmentofa
Spawning Ground forLake Sturgeon. (OT:Projet de Réfection de la
CentraleLa Gabelle–AménagementD’uneFrayèrePour L’esturgeon
Jaune). Report prepared for Hydro Québec by GDG Consiel Inc
Montréal,Québec.10p.+app.
Faucher,R.,&Abbott,M.(2001).RestorationofHabitatSuitableforLake
Sturgeon Reproduction in the Saint-Francois River - Dummondville
Area-WorkReport,1999-2001.(OT:Restaurationd`HabitatsPropices
alaReproductiondeL’esturgeonJauneDanslaRivièreSaint-Francois
– Secteur de Dummondville – Bilan deTravaux,1999-2001. Report
preparedforQuebecWildlifeandParksSociety.10pp.+App.
Fischer,J.L.,Bennion,D.,Roseman,E.F.,&Manny,B.A.(2015).Validation
ofaspatialmodelusedtolocatefishspawningreefconstructionsites
intheSt.Clair–Detroit Riversystem.Journal of Great Lakes Research,
41,1178–1184.
Folz,D.,&Meyers,L.(1985). Management of the Lake Sturgeon, Acipenser
Fulvescens, Population in the Lake Winnebago System, Wisconsin.pages
135–146.InF.P.Binkowski& S. I. Doroshov(Eds.).North American
SturgeonsDr.W.JunkPublishers.Dordrecht,TheNetherlands.
Forsythe,P.S.,Crossman,J. A., Bello, N. M., Baker,E.A.,&Scribner,K.
T.(2012).Individual-basedanalysesrevealhighrepeatabilityintiming
and location of reproduction in lake sturgeon (Acipenser fulvescens).
Canadian Journal of Fisheries and Aquatic Science,69,60–72.
Forsythe,P.S.,Scribner,K.T.,Crossman,J.A.,Ragavendran,A.,&Baker,
E.A. (2013).Experimentalassessmentof themagnitudeand sources
of lakesturgeon egg mortality. Transactions of the American Fisheries
Society,142,1005–1011.
Fox,D.A.,Hightower,J.E.,&Parauka,F.M.(2002).Estuarineandnearshore
marinehabitat use byGulf sturgeonfromthe ChoctawhatcheeRiver
system,Florida.American Fisheries Society Symposium,28,111–126.
Fredrich,F.,Kapusta,A.,Ebert,M.,Duda,A.,&Gessner,J.(2008).Migratory
behaviorofyoungsturgeon,Acipenser oxyrinchusMitchill,intheOder
Riverdrainage. Preliminary results of a radio telemetric studyin the
Drawa River. Poland. Archives of Polish Fisheries,16,105–117.
Gadomski,D.M.,& Parsley,M.J.(2005a).Effectsofturbidity,lightlevel,
andcoveron predation of white sturgeonlarvaebyprickly sculpins.
Transactions of the American Fisheries Society,134,369–374.
Gadomski,D.M.,&Parsley,M.J.(2005b).Laboratorystudiesonthevul-
nerabilityofyoungwhitesturgeontopredation.North American Journal
of Fisheries Management,25,667–674.
GDGConseilInc. (2001). UseofLake Sturgeonby a newSpawningArea
Downstream of the La Gabelle Hydro-Electric Plant - Spring 2000
MonitoringandEnvironmentalMonitoringProgram.(OT:Utilisationpar
L’esturgeonJauneD’unNouveauSecteurdeFraieAmenageenAvalde
laCentraledeLaGabelle–Printemps2000.ProgrammedeSurveillance
etdeSuiviEnvironnemental).ReportforHydro-Québec.75pp.
Gendron,M.,Lafrance,P.,&LaHaye,M. (2002).AssessmentofSpawning
Activityon theman-MadeSpawningGround Downstream Fromthe
BeauharnoisPowerDam.ReportproducedforEnvironnementIllimité
andHydroQuebec.38pp.+app.
Genz,J., McDougall, C., Burnett, D.,Arcinas, L., Khetoo, S., & Anderson,
W. (2014). Induced spawning of wild-caught adult lake sturgeon:
Assessment of hormonal and stress responses, gamete quality, and
survival.Journal of Applied Ichthyology,30,1565–1577.
Gessner,J.,Arndt,G.M.,Tiedemann,R.,Bartel,R.,&Kirschbaum,F.(2006).
RemediationmeasuresfortheBalticsturgeon:Statusreviewandper-
spectives.Journal of Applied Ichthyology,22,23–31.
Gessner,J., & Bartel, R. (2000). Sturgeonspawninggroundsin the Odra
River tributaries: A first assessment. Boletin- Instituto Español de
Oceanografia,16,127–138.
Gessner, J., & Jarić, I. (2014). A life-stage population model of the
Europeansturgeon (Acipensersturio L., 1758)intheElbe River.Part
II: Assessment of the historic population decline. Journal of Applied
Ichthyology,30,267–271.
Gessner,J.,Kamerichs,C.M.,Kloas,W.,&Wuertz,S.(2009). Behavioural
and physiological responses in earlylife phases of Atlantic sturgeon
(Acipenser oxyrinchus Mitchill 1815) towards different substrates.
Journal of Applied Ichthyology,25,83–90.
Gessner,J.,Spratte,S.,&Kirschbaum,F.(2011).Historic Overview on the
Status of the European Sturgeon (Acipenser Sturio) and its Fishery in the
North Sea and its Tributaries With a Focus on German Waters.pages
195–219. In P. Williot, E. Rochard, N. Dessee-Berset,J. Gessner
&F.Kirschbaum (Eds.).Biologyand Conservation oftheEuropean
SturgeonAcipensersturioL.1758Springer-Verlag.Berlin,Germany.
668pp.
Golder (Golder Associates Ltd.) 2008. Middle Columbia River White
SturgeonSpawn MonitoringStudy: 2007 InvestigationsData Report.
ReportpreparedforBCHydro,Revelstoke,B.C.GolderReportNo.07-
1480-0053F:12p.+plates+2app.
Golder(GolderAssociatesLtd.)2009.UpperColumbiaRiverJuvenileWhite
SturgeonMonitoring:Phase5Investigations,November2006.Report
preparedforBCHydro,Revelstoke,B.C.GolderReportNo.06-1480-
049F:66p.+6app.
Golder (Golder Associates Ltd.) 2011. Middle Columbia River White
SturgeonSpawnMonitoring:2010Investigations.Reportpreparedfor
BCHydro,Castlegar,B.C.GolderReportNo.10-1492-0061F:17p.+
1app.
Golder(GolderAssociatesLtd.).2013.EvaluationofSubstrateintheWhite
SturgeonSpawningAreaBelowArrowLakesGeneratingStation(ALH).
Report prepared for Columbia Power Corporation and BC Hydro,
Castlegar,BC.GolderReportNo.13-1492-0021F:22pp+2app.
Goodyear,C.D.,Edsall,T.A.,Dempsey,D.M.,Moss,G.D.,&Polanski,P.E.
(1982).AtlasoftheSpawningandNurseryAreasofGreatLakesFishes.
Vol. 9: Lake Erie. FWS/OBS-82/52. US Fish and Wildlife Service,
Washington,DC,USA.
18
|
MCADAM et Al.
Grabda,E. (1968).Sturgeon,afishon theverge ofextinction. Orch. Przy,
33,177–191.
Guy,C. S., Treanor,H.B.,Kappenman,K.M.,Scholl,E. A., Ilgen,J.E.,&
Webb,M.A.(2015).Broadeningtheregulated-rivermanagementpara-
digm:Acasestudyoftheforgottendeadzonehinderingpallidsturgeon
recovery. Fisheries,40,6–14.
Haag,W.R.,&Williams,J.D.(2014).Biodiversityonthebrink:Anassess-
mentof conservationstrategies forNorthAmericanfreshwatermus-
sels.Hydrobiology,735,45–60.
Hastings,R.P.,Bauman,J.M., Baker,E.A.,&Scribner,K.T.(2013).Post-
hatch dispersal of lake sturgeon (Acipenser fulvescens, Rafinesque,
1817) yolk-sac larvae in relation to substrate in an artificial stream.
Journal of Applied Ichthyology,29,1208–1213.
Hildebrand,L.,Drauch-Schreier,A.,Lepla,K., McAdam,S.O.,McLellan,J.,
Parsley,M.,…Young,S.P.(2016).StatusofWhiteSturgeon(Acipenser
transmontanusRichardson,1863)throughoutthespeciesrange,threats
tosurvival,andprognosisforthefuture.Journal of Applied Ichthyology,
32(S1),261–312.
Hildebrand, L., Lin, A., Hildebrand,M. A., & Fissel, D. (2014). Effects of
Flow Changes on White Sturgeon Spawning, Incubation, and Early
Rearing Habitats in the Middle Columbia River (CLBMON-20 and
CLBMON-54). Report preparedfor BC Hydro, Castlegar,BC. 64 pp.
+3app.
Hondorp,D.W.,Roseman,E.F.,&Manny,B.A.(2014).Anecologicalbasis
forfuture fish habitat restorationeffortsinthe Huron-Erie Corridor.
Journal of Great Lakes Research,40,23–30.
Howell,M. D.,& McLellan,J.G.(2007).LakeRoosevelt White Sturgeon
Recovery Project Annual Progress Report, April 2005 – December
2006.Unpubli.reportbyWashingtonDepartmentofFishandWildlife.
105pp.
Howell, M. D., & Mclellan, J. G. (2011). Lake Roosevelt White Sturgeon
Recovery Project Annual Progress Report: April 2007 – March 2008 (p.
115). Portland, OR: Unpubl. annual progress report for Bonneville
PowerAdministration.
Hydro-QuébecProduction. 2004. Eastmain-1-APowerhouseand Rupert
Diversion.EnvironmentalImpactStatement.
Ireland, S. C., Anders, P. J., & Siple, J. T. (2002). Conservation aquacul-
ture: An adaptiveapproach to prevent extinction of an endangered
whitesturgeonpopulation.American Fisheries Society Symposium.,28,
211–222.
Jacobson,R. B., Annis,M.L.,Colvin, M. E.,James,D. A.,Welker,T.L.,&
Parsley, M. J. (2016). Missouri River Scaphirhynchus Albus (Pallid
Sturgeon) EffectsAnalysis—Integrative Report 2016. US Geological
Surveyreportno.2328-0328.154pp.
Jager,H.I., Chandler,J.A.,Lepla,K.B., &vanWinkle,W.(2001).Atheo-
reticalstudy ofriverfragmentationbydams and itseffectson white
sturgeonpopulations.Environmental Biology of Fishes,60,347–361.
Jager,H.I.,Parsley,M.J., Cech,J.J.Jr,McLaughlin,R. L.,Forsythe,P.S.,
Elliott,R. F.,&Pracheil,B. M.(2016).Reconnectingfragmentedstur-
geonpopulationsinNorthAmericanrivers.Fisheries,41,140–148.
Jaric,I.,&Gessner,J.(2013).Alife-stagepopulationmodeloftheEuropean
sturgeon (Acipenser sturio) in the Elbe River. Part I: General model
outline and potential applications. Journal of Applied Ichthyology, 29,
483–493.
Jay,K.,Crossman,J.A.,&Scribner,K.T.(2014).EstimatesofEffectiveNumber
of Breeding Adults and Reproductive Success for White Sturgeon.
Transactions of the American Fisheries Society,143,1204–1216.
Jennings,C. A., Dilts,E.W.,Shelton,J.L., & Peterson,R.C.(2010). Fine
sedimentaffectsonsurvivaltoemergenceofrobustredhorse.Env. Biol.
Fish.,87,43–53.
Jensen,D.W.,Steel,E.A.,Fullerton,A.H.,&Pess,G.R.(2009).Impactof
finesedimentonegg-to-frysurvivalofPacificsalmon:Ameta-analysis
ofpublishedstudies.Reviews in Fisheries Science,17,348–359.
Johnson, H., Jacobson, R., & DeLonay, A. (2006a). Hydroecological
Modeling of the Lower Missouri River Pages 1-8 in Proceedings of
theThirdFederalInteragencyHydrologicModelingConference,Reno,
Nevada,April2-6.
Johnson,J., LaPan, S.,Klindt,R.,&Schiavone,A. (2006b).Lakesturgeon
spawning on artificial habitat in the St Lawrence River. Journal of
Applied Ichthyology,22,465–470.
Johnsson,J.,Brockmark,S.,&Näslund,J.(2014).Environmentaleffectson
behaviouraldevelopmentconsequences for fitness ofcaptive-reared
fishesinthewild.Journal of Fish Biology,85,1946–1971.
Jonsson,B.,&Jonsson,N.(2014).Earlyenvironmentinfluenceslaterper-
formanceinfishes.Journal of Fish Biology,85,151–188.
Kerr,S.J.,Davison,M.J.,&Funnell,E.(2010).AReviewofLakeSturgeon
HabitatRequirementsandStrategiestoProtectandEnhanceSturgeon
Habitat.58+app.
Khodorevskaya,R.,Ruban,G., Pavlov,D.,&Ruban, G.(2009).Behaviour,
Migrations,Distribution,andStocksofSturgeonsintheVolga-Caspian
Basin.WorldSturgeonConservationSociety.Specialpublicationno.3.,
233pp.
Khoroshko,P.,&Vlasenko,A. (1970).Artificialspawninggrounds ofstur-
geon.Journal of Ichthyology,10,286–292.
Kinzel, P., Nelson, J., Kennedy, G., & Bennion, D. (2016). Use of Repeat
Surveys and Flow and Sediment Transport Modeling to Support Fish
Spawning Reef Placement in the Detroit River, MI.p2047–2054in(Eds.).
RiverFlow2016CRCPress.BocaRaton,FL,USA.
Kock,T.J.,Congleton,J.L.,&Anders,P.J.(2006).Effectsofsedimentcover
onsurvivalanddevelopmentofwhitesturgeonembryos.N. Am. J. Fish.
Sci.,26,134–141.
Kohlhorst, D. W., Botsford, L. W., Brennan, J. S., & Cailliet, G. M. (1991).
AspectsoftheStructureandDynamicsofanExploitedCentralCalifornia
Population of White Sturgeon (Acipenser Transmontanus). In: Actes du
Premier Colloque International sur L’esturgeon. Bordeaux,3-6October1989.
P.Williot(Ed.).Cemagref,GroupementdeBordeaux,Frane,pp.277–293.
KTOI(KootenaiTribeof Idaho),(2009).Kootenai River Habitat Restoration
Project Master Plan: A Conceptual Feasibility Analysis and Design
Framework(p.386).KootenaiTribeofIdaho:BonnersFerry,ID.
KTOI (Kootenai Tribe of Idaho). (2016). Lower Meander Project Draft
Preliminary Design Report(p. 59). Report by RiverDesignGroup:Inc.
andGenumEnvironmentalConsulting,Inc.forKootenaiTribeofIdaho.
Kynard,B.,&Horgan,M.(2001).Guidanceofyearlingshortnoseandpallid
sturgeonusing verticalbarrack andlouverarrays.N. Am. J. Fish. Sci.,
21,561–570.
Kynard,B.,Pugh,D.,& Parker,T.(2011a). Passageandbehaviour ofcul-
tured LakeSturgeon in a prototype side-baffle fish ladder: I. Ladder
hydraulicsandfishascent.Journal of Applied Ichthyology,27,77–88.
Kynard, B., Pugh, D., Parker, T., & Kieffer, M. (2011b). Using a semi-
naturalstreamtoproduceyoungsturgeonsforconservationstocking:
Maintainingnatural selectionduringspawningand rearing.Journal of
Applied Ichthyology,27,420–424.
LaHaye,M., Branchaud,A.,Gendron,M., Verdon,R., & Fortin,R.(1992).
Reproduction, early lifehistory, and characteristics of the spawning
grounds of the lake sturgeon (Acipenser fulvescens) in Des Prairies
andL’Assomption rivers, near Montreal,Quebec.Canadian Journal of
Zoology,70,1681–1689.
LaHaye,M., & Fortin,R. (1990). IndecesofHabitat Spawning andYoung
of the Year Juvenile Habitat Quality for Lake Sturgeon (Acipenser
Fulvescens)intheMontrealArea.(OT:IndicesdeQualitédeL’habitat
deFraieet de L’habitatdesJeunesde L’annéede L’EstuugeonJaune
(AcipenserFulvescens)Dansla RégiondeMontréal).Reportprepared
for Hydro-Quebec, Environment Canada and The Québec Wildlife
Foundation..81pp.+88app.
Ligon,F.K.,Dietrich,W.E.,&Trush,W.J.(1995).Downstreamecological
effectsofdams.BioScience,45,183–192.
Logan,B.,McDonald,R., Nelson,J.,Kinzel,P.,&Barton,G.(2011).Useof
MultidimensionalModelingtoEvaluateaChannelRestorationDesign
fortheKootenaiRiver,Idaho.US GeologicalSurveyreportno.2328-
0328.30pp.+app.
|
19
MCADAM et Al.
Luk’yanenko,V. I., Vasil’ev, A. S., Luk’yanenko, V. V., & Khabarov, M. V.
(1999).OntheincreasingthreatofexterminationoftheuniqueCaspian
sturgeonpopulationsandtheurgentmeasuresrequiredtosavethem.
Journal of Applied Ichthyology.,15,99–102.
Manny,B.2006a.BelleIsle/DetroitRiverSturgeonHabitatRemeditation,
Monitoring and Education Project. Research completion report to
MichiganSeaGrantProgram.34pp.+app.
Manny, B. 2006b. Monitoring Element of the Belle Isle/Detroit River
Sturgeon Habitat Restoration, Monitoring, and Education Project.
Research Completion Report to Michigan Sea Grant Program.
UniversityofMichigan.AnnArbor,MI, USA.34pp. + tables,figures,
andappendices.
Manny,B.A.,Edsall,T.A.,&Jaworski,E.1988.TheDetroitRiver,Michigan:
AnEcologicalProfile,USFishandWildlife Service BiologicalReport.
85.86pp.
Manny, B., & Mohr, L. (2011). Rehabilitation of Lake Sturgeon in the
GreatLakes–MakingProgress.pages35InW.Taylor,N.Leonard&A.
Lynch(Eds.).Great Lakes Fisheries, Policy, and Management, a Binational
Perspective.MichiganStateUniversityPress,EastLansing,MI.
Manny,B.,Read,J.,Denison,D.,Reider,R.,Kennedy,G.,Caswell,N.,…McClain,
J. (2005). Creation of LakeSturgeon Spawning Habitat in the Detroit
River.pages98–100.InR.Eedy,J.Hartig,C.Bristol,M.Coulter,T.Mabee
&J.Ciborowski(Eds.).State of the Strait: Monitoring for Sound Management.
GreatLakesInstituteforEnvironmentalResearch,OccasionalPublication
No.4UniversityofWindsor.Windsor,ON,Canada.
Manny,B.A.,Roseman,E.F.,Kennedy,G.,Boase,J.C.,Craig,J.M.,Bennion,
D.H.,…Drouin,R.(2015).Ascientificbasisforrestoringfishspawning
habitatintheSt.ClairandDetroitRiversoftheLaurentianGreatLakes.
Restoration Ecology,23,149–156.
Marranca,J.M.,Welsh,A.B.,&Roseman,E.(2015).Geneticeffectsofhab-
itatrestoration intheLaurentianGreatLakes:Anassessmentof lake
sturgeonoriginandgeneticdiversity.Restoration Ecology,23,455–464.
McAdam,S. O.(2011).Effectsofsubstratecondition on habitatuseand
survival by white sturgeon(Acipenser transmontanus) larvae and po-
tential implications forrecruitment. Canadian Journal of Fisheries and
Aquatic Science,68,812–822.
McAdam, D. S. O. 2012. Diagnosing White Sturgeon (Acipenser
Transmontanus)RecruitmentFailureandthe Importance of Substrate
ConditiontoYolksacLarvaeSurvival.Ph.D.Thesis.UniversityofBritish
Columbia.175pp.
McAdam, D. S. O. (2015). Retrospective weight-of-evidence analysis
identifiessubstratechangeastheapparentcauseofrecruitmentfail-
ureintheupperColumbiaRiverwhitesturgeon(Acipenser transmon-
tanus).Canadian Journal of Fisheries and Aquatic Science,68,812–822.
McAdam,S.O.,Walters,C.J.,&Nistor,C.(2005).Linkagesbetweenwhite
sturgeonrecruitmentandalteredbedsubstratesintheNechakoRiver,
Canada.Transactions of the American Fisheries Society,134,1448–1456.
McDonald, R., Nelson,J., Paragamian, V.,& Barton, G. (2010). Modeling
theeffectofflowandsedimenttransportonwhitesturgeonspawning
habitatin the KootenaiRiver,Idaho. Journal of Hydraulic Engineering,
136,1077–1092.
McDougall,C.,Anderson,W.,&Peake,S.(2014).Downstreampassageof
lakesturgeonthroughahydroelectricgeneratingstation:Routedeter-
mination,survival,andfine-scalemovements.N. Am. J. Fish. Sci., 34,
546–558.
McDougall,C.,Hrenchuk,C.,Anderson,W.,&Peake,S.(2013).TheRapid
UpstreamMigrationofPre-SpawnLakeSturgeonfollowingTrap-and-
TransportoveraHydroelectricGenerating Station.N. Am. J. Fish. Sci.,
33,1236–1242.
McElroy,B.,DeLonay,A.,&Jacobson,R.(2012).Optimumswimmingpath-
waysoffishspawningmigrationsinrivers.Ecology,93,29–34.
McGrath,K.2009.DevelopmentofLakeSturgeonSpawningBedsonthe
St.Lawrence RiverNearWaddington,NewYork.Presentationatthe
52ndAnnualConferenceonGreatLakesResearch.May18–22,2009.
Toledo,Ohio.
McManamay,R.A.,Orth,D.J.,&Dolloff,C.A.(2013).Macroinvertebrate
communityresponsesto gravel addition in a southeastern regulated
river. Southeastern Naturalist,12,599–618.
Meadows,D.,&Coll,H.(2013).Status Review Report of Five Foreign Sturgeon
(p.78).OfficeofProtectedResources:ReportpreparedfortheNational
MarineFisheriesService.
Merz, J. E., & Chan, L. K. O.(2005). Effects of gravel augmentation on
macroinvertebrate assemblages in a regulated California river. River
Resources and Applications,21,61–74.
MRNF-CARA.2011.RestorationoftheLakeSturgeonSpawningGroundsofthe
OuareauRiver:SummaryofBiologicalMonitoring2011(OT:Restauration
desFrayèresD’esturgeonJaunedelaRivièreOuareau:SommaireduSuivi
Biologique2011).ReportforHydro-Québec.7pp+1app.
Muirhead,J. W.(2014). High-Resolution SpatialandTemporalSensitivity
ofRiverHydrodynamics:Implications forWalleye(Sander Vitreus)and
LakeSturgeon(Acipenser Fulvescens)SpawningHabitatuse ina Large
RegulatedRiver.M.ASc.Thesis.UniveristyofWaterloo.143pp.
Nichols,S.J., Kennedy,G., Crawford,E.,Allen, J., French,J., Black,G.,…
Thomas,M.(2003).Assessmentoflakesturgeon(Acipenser fulvescens)
spawningeffortsinthelowerSt.ClairRiver,Michigan.Journal of Great
Lakes Research,29,383–391.
Nilo,P.,Dumont,P.,& Fortin,R.(1997).Climatic and hydrologicaldeter-
minants of year-class strength of St. Lawrence River lake sturgeon
(Acipenser fulvescens).Canadian Journal of Fisheries and Aquatic Science,
54,774–780.
nhc (Northwest Hydraulics Consultants), (2008). Nechako River
Hydrodynamic Model Upgrade(p. 39). MinistryofEnviroment:Report
forB.C.
nhc (Northwest Hydraulics Consultants), (2012). Nechako Sturgeon
Spawning Gravel - September 2011 Substrate Assessment(p.60).Ministry
ofForests,LandsandRenewableResources:ReportpreparedforB.C.
nhc (Northwest Hydraulics Consultants), (2013a). Nechako River 2013
Sediment Transport Investigations(p.48).MinistryofForests,Landsand
RenewableResources:ReportpreparedforB.C.
nhc (Northwest Hydraulics Consultants), (2013b). Nechako Sturgeon
Spawning Gravel September, 2012 Substrate Assessment(p.88).Ministry
ofForests,LandsandRenewableResources:Unpublisehedreportpre-
paredforB.C.
nhc(NorthwestHydraulicsConsultants),(2016).2016 Spawning Substrate
Restoration on the Nechako River at Vanderhoof (p. 35). Ministry of
Forests,LandsandRenewableResources:BC.Unpublishedreportpre-
paredforB.C.
Paragamian,V.(2012).KootenaiRiverwhitesturgeon:Synthesisoftwode-
cadesofresearch.Endangered Species Research,17,157–167.
Paragamian,V.L., Kruse, G., &Wakkinen,V.(2001).Spawninghabitat of
KootenaiRiverwhitesturgeon,post-LibbyDam.N. Am. J. Fish. Sci.,21,
22–33.
Paragamian,V.L.,McDonald,R.,Nelson,G.J.,&Barton,G.(2009).Kootenai
Rivervelocities,depth,andwhitesturgeonspawningsiteselection-a
mysteryunraveled?Journal of Applied Ichthyology,25,640–646.
Parsley,M.J.,&Beckman,L.G.(1994).Whitesturgeonspawningandrear-
inghabitatinthelowerColumbiaRiver.N. Am. J. Fish. Sci.,14,812–827.
Parsley,M.J.,Beckman,L.G.,&McCabe,G.TJr.(1993).Spawningandrear-
inghabitatusebywhitesturgeonsintheColumbiaRiverdownstream
fromMcNaryDam.Transactions of the American Fisheries Society.,122,
217–227.
Parsley,M.,&Kofoot,E.2013.EffectsofIncubationSubstratesonHatch
Timing and Success of White Sturgeon (Acipenser Transmontanus)
Embryos. US Geological Survey Scientific Investigations Report vol.
5180,16pp.
Parsley,M.,Wright,C.,VanDerLeeuw,B.,Kofoot,E.,Peery,C.,&Moser,M.
(2007).Whitesturgeon(Acipenser transmontanus)passageattheDalles
dam,ColumbiaRiver.USA. J. Appl. Ichthyol.,23,627–635.
Petts,G.E.(1984).Impounded Rivers: Perspectives for Ecological Management.
Chichester,U.K.:JohnWiley.
20
|
MCADAM et Al.
Petts, G. E., Imhof, J., Manny, B., Maher, J., & Weisberg, S. (1989).
Managementoffishpopulationsinlargerivers:Areviewoftoolsand
approaches.International Large Rivers Symposium,1989,578–588.
Phelps, Q., Tripp, S., Hamel, M., Koch, J., Heist, E., Garvey,J., … Webb,
M. (2016). Status of knowledge of the Shovelnose Sturgeon
(Scaphirhynchus platorynchus, Rafinesque, 1820). Journal of Applied
Ichthyology,32,249–260.
Pikitch, E. K., Doukakis, P., Lauck, L., Chakrabarty, P., & Erickson, D. L.
(2005). Status, trends and management of sturgeon and paddlefish
fisheries.Fish and Fisheries,6,233–265.
Pine, W. E. III, Martell, S. J., Walters, C. J., & Kitchell, J. F. (2009).
Counterintuitiveresponsesoffishpopulationstomanagementactions:
Somecommoncausesandimplicationsforpredictionsbasedon eco-
systemmodeling.Fisheries,34,165–180.
Pledger, S., Baker, E., & Scribner, K. (2013). BreedingReturn Times and
AbundanceinCapture-RecaptureModels.Biometrics,69,991–1001.
Przybyl,A. (1976). Theoccurrenceof the sturgeonAcipenser sturioin the
catchmentareaoftheWartaRiver.Chronmy Przyrode Ojczysta,32,5–12.
Raspopov, V., Novikova, A., Zhuravleva, O., Lepilina, I., & Egorova, A.
(1994).EffectivenessofnaturalreproductionoftheRussianSturgeon,
Acipenser gueldenstaedti, during regulation of the Volga. Journal of
Ichthyology/Voprosy Ikhtiologii,34,348–352.
Romanov, A. M., Hardy, J., Zeug, S. C., & Cardinale, B. J. (2012).
Abundance,sizestructure,andgrowthratesofSacramentopikemin-
now (Ptychocheilus grandis) following a large-scale stream channel
restorationinCalifornia.Journal of Freshwater Ecology,27,495–505.
Roseman,E.,Boase,J.,Kennedy,G.,Craig,J.,&Soper,K.(2011a).Adaption
of egg and larvaesampling techniques for lake sturgeon and broad-
castspawningfishesinadeepriver.Journal of Applied Ichthyology,27,
89–92.
Roseman,E.,Manny,B.,Boase,J.,Child,M.,Kennedy,G.,Craig,J.,…Drouin,
R.(2011b).LakeSturgeonresponsetoaspawningreefconstructedin
theDetroitRiver.Journal of Applied Ichthyology,27,66–76.
Rosenfeld,J.S.,&Hatfield,T.(2006).Informationneedsforassessingcrit-
icalhabitatoffreshwaterfish.Canadian Journal of Fisheries and Aquatic
Science,63,683–698.
Rosenthal,H., Pourkazemi, M.,&Bruch,R.(2006). The 5th International
Symposiumonsturgeons:Aconferencewithmajor emphasison con-
servation, environmentalmitigation and sustainable use of the stur-
geonresources.Journal of Applied Ichthyology,22,1–4.
Ruban,G.,&Khodorevskaya,R. (2011). Caspian Sea sturgeon fishery: A
historicoverview.Journal of Applied Ichthyology,27,199–208.
Schreier,A.,&May,B.(2012).ComparisonoftwoConservationAquaculture
Techniques for Capturing Upper ColumbiaWhite Sturgeon Genetic
Diversity–FinalReport.Unpubl.reporttotheSpokaneTribeofIndians,
Wellpinit,WA,USA.
Secor,D.H.,Anders, P.J.,VanWinkle,W.,&Dixon,D.A.(2002).Canwe
studysturgeonstoextinction?Whatwedoanddon’tknowaboutthe
conservationofNorthAmericansturgeons.American Fisheries Society
Symposium,28,3–10.
Sloychuk,J.R.,Chivers,D.P.,&Ferrari,M.C.(2016).Juvenilelakesturgeon
go to school: Life-skills training for hatchery fish. Transactions of the
American Fisheries Society,145,287–294.
Smith,K.M.,&Baker,E.A.(2005). Characteristicsofspawninglakestur-
geon in the Upper Black River, Michigan. North American Journal of
Fisheries Management,25,301–307.
Steffensen, K. D., Wilhelm, J. J., Haas, J. D., & Adams, J. D. (2015).
ConditionalCaptureProbabilityofPallidSturgeoninBenthicTrawls.N.
Am. J. Fish. Sci.,35,626–631.
Terraquatic (Terraquatic Resource Management), (2011). Arrow Lakes
Generating Station White Sturgeon Spawn Monitoring Program(p. 19).
Castlegar,BC:ReportforColumbiaPowerCorporation.
Thiem, J.,Binder, T.,Dawson, J., Dumont, P.,Hatin, D., Katopodis, C., …
Cooke,S.(2011).Behaviourandpassagesuccessofupriver-migrating
lake sturgeon Acipenser fulvescens in avertical slot fishway on the
Richelieu River, Quebec, Canada. Endangered Species Research, 15,
1–11.
Thiem,J.D.,Dawson,J.W.,Hatin,D.,Danylchuk,A.J.,Dumont,P.,Gleiss,
A.C.,…Cooke,S.J.(2016).Swimmingactivityandenergeticcostsof
adult lake sturgeon during fishway passage. Journal of Experimental
Biology,219,2534–2544.
Thomas,M.V.,&Haas,R.C.(1999).Captureof lake sturgeonwithset-
linesintheSt.ClairRiver,Michigan.North American Journal of Fisheries
Management,19,610–612.
Thomas,M. V.,&Haas,R. C.(2002).Abundance, agestructure,and spa-
tial distribution of lakesturgeon, Acipenser fulvescens, in the St Clair
System.Journal of Applied Ichthyology,18,495–501.
Thomas, M. V., & Haas, R. 2004. Abundance,age Structure, and Spatial
Distribution of Lake Sturgeon (Acipenser Fulvescens) in the St Clair
System. Michigan Department of Natural Resources, Lake St Clair
FisheriesResearchStation,HarrisonTownship,MI.FisheriesResearch
ReportNo.2076.
Triton(TritonEnvironmentalConsultants),(2009).Nechako White Sturgeon
Monitoring 2009(p.75).PrinceGeorge,BC: Report prepared forBC
MinistryofEnvironment.
UCWSRI(UpperColumbiaRiverWhiteSturgeonRecoveryInitiative).2013.
UpperColumbiaWhiteSturgeonRecoveryPlan–2012Revision.129
+121app.
Vaccaro, L., Bennion, D., Boase, J.,Bohling, M., Chiotti, J., & Craig, J, …
Thomas, M. (2016). Science in Action: Lessons Learned From Fish
Spawning Habitat Restoration in the St. Clair and Detroit River.
UniverstityofMichigan,PublicationNo.MICHU-16-501.
Verdon,R.,Guay,J.C.,LaHaye,M.,Simoneau,M.,Côté-Bherer,A.,Ouellet,
N.,&Gendron,M.(2013).Assessmentofspatio-temporalvariationin
larvalabundanceoflakesturgeon(Acipenserfulvescens)intheRupert
River(Quebec,Canada),usingdriftnets.Journal of Applied Ichthyology,
29,15–25.
Veshchev,P.,Vlasenko, S., &Debol’skii,V(2011).Geophysicalstudies of
sturgeonspawninggroundsintheLowerVolgaandrecommendations
fortheirremediation.Water Resources,38,543–548.
Vlasenko, A. (1974). Problems about artifical spawning grounds of the
KubanRiversturgeons.(OT:Kvoprosuobiskusstvennykhnerestilish-
chakhosetrovykhrybr.Kubani).Trudy VNIRO,102,3–30.
Wanner,G.,Shuman,D.,Brown,M., &Willis, D.(2007). Aninitial assess-
mentofsamplingproceduresforjuvenilepallidsturgeonintheMissouri
RiverdownstreamofFortRandall Dam,SouthDakotaandNebraska.
Journal of Applied Ichthyology,23,529–538.
Ward,J.,&Stanford,J.(1989).Riverineecosystems:Theinfluenceofman
oncatchmentdynamicsandfish ecology.Canadian Special Publication
of Fisheries and Aquatic Sciences,106,56–64.
Warren,J. J., & Beckman, L. G. (1993). Fishway use by White Sturgeon
to Bypass Mainstem Columbia River Dams in Status and Habitat
Requirements of the White Sturgeon Populations in the Columbia River
Downstream From McNary Dam(R. C. Beamesderfer & A.A.Nigro,
eds.).119pp.
Wei,Q.,Ke,F.e.,Zhang,J.,Zhuang,P.,Luo,J.,Zhou,R.,&Yang,W.(1997).
Biology, fisheries, and conservation of sturgeons and paddlefish in
China.Environmental Biology of Fishes,48,241–255.
Wheaton,J.M.,Pasternack,G.B.,&Merz,J.E.(2004).Spawninghabitatre-
habilitation-I. Conceptualapproachandmethods.International Journal
of River Basin Management,2,3–20.
Wigley,R.L. (1959).Life History of the sea Lamprey of Cayuga Lake(p.61).
NewYork:USGovernmentPrintingOffice,Washington,DC,USA.
Wohl,E.,Bledsoe,B.P.,Jacobson,R.B.,Poff,N.L.,Rathburn,S.L.,Walters,
D.M., & Wilcox,A. C. (2015).The natural sedimentregimein rivers:
Broadeningthefoundationforecosystemmanagement.BioScience,65,
358–371.
Zhang,H.,Wei,Q.W.,&Du,H.(2009).Abedformmorphologyhypothesis
forspawningareasofChinesesturgeon.Environmental Biology of Fishes,
84,199–208.
|
21
MCADAM et Al.
Zhang,H.,Yang,D.G.,Wei,Q.W.,Du, H.,&Wang,C.Y.(2013).Spatial
distribution and spawning stock estimates for adult Chinese stur-
geon (Acipenser sinensis Gray, 1835) around the only remaining
spawningground duringthetrial operationofthe newlyconstructed
Three Gorges Projectin the YangtzeRiver, China. Journal of Applied
Ichthyology,29,1436–1440.
Zhuang, P., Kynard, B., Zhang, L. Z., Zhang, T., & Cao, W. X. (2002).
Ontogenetic behavior and migration of Chinese sturgeon, Acipenser
sinensis. Environmental Biology of Fishes,65,83–97.
How to cite this article:McAdamSO,CrossmanJA,
WilliamsonC,etal.Ifyoubuildit,willtheycome?Spawning
habitatremediationforsturgeon.J Appl Ichthyol. 2017;00:
1–21. https://doi.org/10.1111/jai.13566