PosterPDF Available

Influencia del lince (Lynx pardinus) en los patrones de actividad circadiana del zorro (Vulpes vulpes)

Authors:
  • Instituto de Biología de la Conservación - IBiCo
  • IBiCo - Instituto de Biología de la Conservación, Madrid, España

Abstract

Las relaciones temporales entre el zorro y el lince han sido escasamente estudiadas.En este estudio analizamos la posible segregación temporal entre ambas especies de carnívoros como posible mecanismo de coexistencia.Para ello se establecieron dos parcelas de muestreo en la nueva área de reintroducción de lince ibérico de Sierra Morena Oriental. Una de las parcelas (Lince) albergaba los territorios de dos linces establecidos en la finca desde su liberación el año previo.En la otra parcela (No lince), la presencia de lince fueanecdótica durante el transcurso del estudio.Se estimaron los patrones de actividad diaria de conejo yzorro mediante ajustes no paramétricos de funciones de densidad de Kernell, se analizaron diferencias en estas distribuciones entre zonas para cada especie mediante el test Mardia-Watson-Wheeler y se estableció la sincronicidad entre los ciclos de actividad zorro-conejo para cada parcela mediante una correlación de Pearson. La selección del zorro por cada periodo del día se evaluó mediante el Índice de Selección de Jacob (JSI), estimando los intervalos de confianza mediante bootstrap.No se encontraron diferencias significativas entre parcela Lince Vs No lince para los ritmos de actividad del conejo (W:2.79, p=0.41), mientras que los resultados fueron marginalmente significativos en el caso del zorro (W:4.55, p=0.10). La actividad del zorro fue más nocturna (JSI:0.85 IC:0.72 a 0.95) y evitó con mayor intensidad las horas del día (JSI:-0.95 IC:-1 a -0.85) en la parcela Lince que en la No lince (noche (JSI:0.66 IC:0.50 a 0.79; Día JSI:-0.78 IC:0.72-0.95). la sincronicidad zorro-conejo en la parcela lince fue significativamente negativa (-0.27 p<0.001), mientras que no existió sincronicidad en la parcela no lince. Estos resultados confirman la existencia de cambios en los ciclos de actividad del zorro como mecanismo de coexistencia con una especie de carnívoro dominante como el Lince Ibérico. Estos cambios provocan, a su vez que el zorro des-sincronice su actividad con la del conejo, una de sus presas principales.
rgl p%
!"#$%
&'"
(")"'**
Influencia*del*lince*ibérico*(Lynx%pardinus)*
en*la*actividad*circadiana*del*zorro*(Vulpes vulpes)
Antón*Álvarez*Bermúdez1,*Germán*Garrote*Alonso1,*Ramón*Perez de*Ayala2
1.-
Instituto*de*Biología*de*la*Conservación*(IBiCo)*-
C/Nebli,*nº*13,*28230,*Madrid
2.-
WWF
-C/*Gran Vía de*San*Francisco,*nº*8,*28005,*Madrid
INTRODUCCIÓN
Actividad%circadiana
Preferencia%temporal
Relación%circadiana%
depredador-presa
Mardia-Watson-Wheeler
+,-./0/012,31-45360/312512/6,31780749/0531
Estimación%de%los%patrones%de%actividad%circadiana
:;436531<,1./0/-=6087,31251>4<78,<53125125<382/21251?50<59
RESULTADOS
Agradecimientos
@36428, 05/98A/2, 5< 59 -/07, 259 .0,B576,
C+,-.565<78/ 8<650!53.57D>87/ B 7,5E8365<78/ 5<605 59
98<75 8F=087, GLynx pardinusH B ,60,3 7/0<DI,0,3J 7,<
59 /.,B, 25 9/ Fundación Barcelona Zoo B59
Ayuntamiento de Barcelona#
::9>,<3, K,05<, L5M/) 6=7<87, 25 7/-., 25 NNO#
** -4B 38M<8>87/68I, *38M<8>87/68I, P-/0M8</9-5<65 38M<8>87/68I,
O8<7/1Q5R/9/;,)1$$%"1S/#15<1T8500/1K,05</1U085<6/9
CS%=%0,30
G")$'!")V'H
CS%=%0,45
G")WV!")&&H
:6/025750:-/<5750
No%Lince
Lince
No%Lince Lince
No%Lince%%%%%%%%%%%Lince
Índice%de%Selección%de%Jacobs
'
MATERIALES YTODOS
Q05>505<78/12591A,00,1.,017/2/1.508,2,128/08,
Coeficiente%solapamiento
X5.0535<6/78Y<125917,5>8785<6512513,9/./-85<6,17807/28/<,
Z,0/
Z,0/
[5<382/21251/768I82/2 [5<382/21251/768I82/2
@9 A,00, reduce el solapamiento
circadiano GWH B 35 .0,2475 4</
sincronización negativa GVH 7,< 59
7,<5;, 25F82, /9/ 8<>945<78/ 259
98<75 8F=087,#
Análisis%estadístico
Lince%VS%%%%%%%%%No%lince
Influencia%del%lince%ibérico
Preferencia%temporal
N\14)55
p= 0)10P
[8>505<78/315<19/1/768I82/217807/28/</125917,<5;,1B1
591A,00,125F82,1/19/18<>945<78/1259198<7518F=087,
N\12)79
p= 0)41
@< 59 /;4365 25 9/ /768I82/2 7807/28/</ 259
A,00, 7,-, -57/<83-, 25 7,5E8365<78/
7,< 59 98<75 8F=087, ,F65<5-,3 I/9,053
-/0M8</9-5<65 38M<8>87/68I,3 G'H#
@9 A,00, aumenta su actividad nocturna B
reduce su actividad diurna 25F82, /9/
8<>945<78/ 259 98<75 8F=087, G$H#
'!
"!
")&!
!")&!
!'!
No%Lince Lince
Grado%de%sincronización
Ø]-.,06/<78/ 25 9/ 28-5<38Y< 65-.,0/9 circadiana 5< 59 536428, 25 9/ relación entre el zorro yel lince ibérico.
Ø^/ .9/368782/2 259 A,00, 95 .50-865 05/98A/0 4< trade-off 5<605_
ØT/683>/750 343 05`4508-85<6,3 Fa387,3 G>4<2/-5<6/9-5<65 59 /7753, /9 7,<5;,H#
Ø+,365 25 4</ .,38F95 -45065 .05-/640/ 25F82/ /9 5<745<60, 7,< 4< 98<75 8F=087,#
Lince%ibérico
+,-.5682,0134.508,0b%c
+,<60,9/2,01</640/9125111111111111111111111111
25.052/2,053
Zorro
Especie%subordinadab%c #
%"!ddebfc Conejo%%%gd"e
:96,13,9/./-85<6,160Y>87,1
Q08<78./91modulador 2519,31./60,<531251
/768I82/217807/28/</1251/-F/3153.57853bh)dc
K/B,01plasticidad #
5<19,31patrones .
de%actividad%circadiana%%%%%%%.
2519,31-53,7/0<DI,0,318F=087,3b&c .
ØDos especies competidoras 35M05M/< /9, 9/0M, 25 /9M4</ 28-5<38Y< 25 34 <87S, 57,9YM87,
G53./78/9) 60Y>87/) Btemporalb'cH./0/ .,250 7,5E83680b$)Wc#
Ø^/3 interacciones intragremiales asimétricas G7,< 4< 7,-.5682,0 34.508,0 B,60, 8<>508,0H
3,< >05745<653 5<605 carnívorosbVc#
Ø^/ especie subordinada G7,-.5682,0 8<>508,0H /;436/ 34 7,-.,06/-85<6, ./0/ -8<8-8A/0 9,3
5<745<60,3 /<6/M,<836/3 7,< 34 7,-.5682,0 34.508,0#
Ø^,3 mesocarnívoros /-5<42, 35M05M/< 5< 343 patrones de actividad circadianob&c#
'h1536/78,<531251>,6,!60/-.5,1GK/B,ij498,H
7,9,7/2/31/91./3,15<17/-8<,31,1I5052/31B138<1/60/B5<65
Lince ($Vh1<,7S53!60/-./H
[,3198<75318F=087,31058<60,24782,315<1$"'%
No%Lince%($W% <,7S53!60/-./H
Q0535<78/125198<751/<572Y687/
SaF86/6
]:X17,<5;,
Área%de%estudio
CONCLUSIONES
biologiadelaconservacion.org
1. T7S,5<50)1k#1N#1X53,4075 Q/06868,<8<M 8<1@7,9,M87/9 +,--4<86853#1Science 185, $fiWd1G'dfVH#
2. Z/028<)1l#1kS5 +,-.56868I5 @E79438,< Q08<78.95#1Science 131, '$d$i'$df1G'd%"H#
3. TA/FY)1Q#1m1K53A=</)1l#1^8-868<M 38-89/086B 05I838652#1Oikos 112, %'$i%'d1G$""%H#
4. Q/9,-/053)1O#1m1+/0,)1k#1K#1]<6503.578>87 ?8998<M /-,<M K/--/98/< +/0<8I,053#1The American6Naturalist 153,
Vd$i&"h1G'dddH#
5. K,<6500,3,)1Q#)1:9I53)1Q#1+#1m1O50050/3)1Q#1Q9/368786B 8<17807/28/< /768I86B ./6650<3 ,>1-53,7/0<8I,053 8<1T,46Sn53650<
@40,.5_18-.987/68,<3 >,0 3.57853 7,5E8365<75#1Behavioral Ecology and6Sociobiology 68, 'V"Wi'V'f1G$"'VH#
6.%Q/9,-/053)1O#)1O50050/3)1Q#)1O5208/<8)1j#1K#1m1[598F53)1K#1T./68/9 X59/68,<3S8.3 o56n55< ]F508/< ^B<E1/<21U6S50
+/0<8I,053 8<1/< :05/ ,>1T,46S!N53650<1T./8<#1The Journal of6Applied Ecology 33, &1G'dd%H#
7.%O50</<25A!25!T8-,<)1j#1et6al. +/<1n8253.05/2 M5<50/9836 .052/6,03 />>576 p5B36,<5 .05Bq1:17/3513642B n86S 0521>,E53
/<21@40,.5/< 0/FF863 8<16S580 </68I5 0/<M5#1Population Ecology 57, &d'i&dd1G$"'&H#
8. [D/A!X48A)1O#)1+/0,)1j#)1[598F53!K/65,3)1K#)1:00,B,)1o#1m1O50050/3)1Q#1[08I5031,>10521>,E G1Vulpes vulpes H12/89B /768I86B_1.05B
/I/89/F8986B)1S4-/<1283640F/<75 ,0 S/F86/6 360476405q1Journal of6Zoology 298, '$hi'Wh1G$"'%H#
9. r50M/)1j#1et6al. U<6,M5<B ,>12/89B /768I86B /<217807/28/< 0SB6S- 8<16S5 ]F508/< 9B<E G^B<E1./028<43H#1Applied Animal6
Behaviour Science 169, %$i%h1G$"'&H#
10. O05B)1T#)1O83S50)1j#1k#)1o406,<)1:#1+#1m1L,9.5)1j#1Q#1]<I5368M/68<M /<8-/91/768I86B ./6650<3 /<2165-.,0/91<87S51./06868,<8<M
438<M 7/-50/!60/. 2/6/_17S/995<M53 /<21,..,064<86853#1Remote Sensing in6Ecology and6Conservation G$"'fH#1
11.%K,<6500,3,)1Q#)1:9I53)1Q#1+#1m1O50050/3)1Q#1+/67S1K51]> r,4 +/<_1[859 :768I86B Q/6650<3 ,>1K/--/98/< Q05B /<21Q052/6,03#1
Ethology 119, '"VVi'"&%1G$"'WH#
¿La%presencia%del%lince%ibérico%afecta%a%los%patrones%de%actividad%circadiana%del%zorro?
¿La%relación%circadiana%del%zorro%con%el%conejo%es%alterada%por%la%presencia%del%lince%ibérico?
$ W V
Relación%circadiana%depredador-presa
'
Índice%de%Selección%de%Jacobs
Q05>505<78/1.,017/2/1.508,2,125912D/b&c
$
Coeficiente%de%solapamiento
Q05>505<78/1.,017/2/1.508,2,125912D/
W
Grado%de%sincronización
@368-/2,1-528/<6517,0059/78,<531251Q5/03,<
V
b''c
b'"c
/<6,</9I/05AF7sM-/89#7,-
rgl p%
"#"'
&'" ")&f
Bibliografía
[D/ t,7S5
Article
Full-text available
The Neotropical otter (Lontra longicaudis), classified as Near Threatened, has the widest distribution of all South American species of the genus Lontra. Historically, this otter has always been considered to be a diurnal species despite the fact that only one study has ever investigated its activity cycles. Therefore, knowledge of the activity patterns of the Neotropical otter is still at best anecdotal. In this study, we describe the activity patterns of this otter in an area on the river Orinoco frequented by humans using records obtained by remote camera trapping. Our results seem to indicate that the Neotropical otter in our study area is mostly active at night and at dawn, which indicates that this species' activity cycles are more flexible than once thought. Citation: Garrote, G, Alvarez, A, Asensio, V, Castañeda, B, Marín, B, Bonilla, P and Trujillo, F (2020). Activity Patterns of the Neotropical Otter (Lontra longicaudis) in the River Orinoco (Colombia). IUCN Otter Spec. Group Bull. 37 (3): 158-162
Article
Full-text available
Widespread generalist predators may affect declining keystone prey populations. However, this phenomenon is not well understood. In this paper, we assessed whether the abundance and population growth of European rabbits Oryctolagus cuniculus, a keystone prey species in Mediterranean Iberia, was related to the abundance and diet of red foxes, Vulpes vulpes, a widespread generalist predator. In a locality in central Spain, where rabbit population abundance declined, we estimated rabbit abundance during almost 3 years and determined fox abundance and diet during two concurrent years. We calculated a fox predation index (percentage of consumed rabbit biomass × fox abundance) to assess the importance of rabbits to foxes. We employed a multi–model approach to explain rabbit abundance and population growth. Foxes consumed between 60 and 99 % rabbit biomass in their diets, and this was independent of rabbit abundance. Periods of higher fox predation index coincided with lower rabbit density and vice versa. Two models best explained rabbit abundance and four rabbit population growth. They included the fox predation index and its interaction with rabbit abundance during the previous month. Altogether, fox predation, intraspecific density dependence, and their interaction partly explained rabbit population dynamics. We conclude that in order to propel the recovery of the rabbit in Iberia, it is essential to better understand the role of these factors in driving the abundance of the species.
Article
Full-text available
Limiting similarity theory predicts that competing species must segregate along one or more dimensions of their ecological niche in order to coexist. In predator communities, interspecific interactions are influenced by a diversity of factors; therefore, the behavioural patterns of composing species will differ due to locally adapted interactions. We deployed 32–41 camera-traps in five study areas across the Iberian Peninsula to investigate the temporal relations between mesocarnivores in SW Europe. The selection for a period of the diel cycle and plasticity in activity patterns was evaluated using the Jacobs Selection Index (JSI) and the coefficient of activity overlap (∆1). Furthermore, we investigated whether temporal shifts can facilitate coexistence by reducing activity overlap. Seven species of mesocarnivores were detected and were assigned into one of three behaviourally distinct groups: diurnal (JSIday ≥ 0.8), strictly nocturnal (JSInight ≥ 0.8) or facultative nocturnal species (0.4 ≥ JSInight > 0.8). Most species exhibited substantial flexibility, which allowed them to locally adapt their foraging strategies (intraspecific ∆1 = 0.70–0.77). Mean Δ1 from all interspecific pairwise comparisons was negatively correlated with the number of carnivore species with ≥10 detections (r −0.76, p = 0.02). Our results suggest that temporal segregation is likely to play an important role in facilitating mesocarnivore coexistence, especially with increasing community complexity, where most species’ activity peaks were asynchronous. These results contribute to understanding the dynamics and behavioural strategies of coexisting mesocarnivores, crucial for forecasting the possible outcomes of conservation or management actions.
Article
Daily activity patterns in mammals depend on food availability, reproductive stage, habitat selection, intraspecific interactions and predation risk, among other factors. Some mammals exhibit behavioral plasticity in activity patterns, which allows them to adapt to environmental changes. A good example of this can be found in the red fox Vulpes vulpes. This species is adapted to living in highly humanized environments, where it is often culled because it may affect human interests (e.g. through the consumption of game species or livestock). We assessed the potential main drivers of the daily activity patterns of the red fox in 12 Iberian Mediterranean areas through the use of camera traps. Among drivers, we considered main prey availability (European wild rabbits Oryctolagus cuniculus), degree of human disturbance (e.g. distance to human settlements, and intensity of predator control) and habitat structure. Our results revealed a predominantly crepuscular and nocturnal activity of foxes with local variations. Although overall fox activity increased with rabbit availability, the temporal overlap with prey activity was on average low, because foxes increased activity when rabbits decreased theirs (twilight-night). Red fox activity rhythms seemed to be determined by human presence where human disturbance is high. In addition, diurnal activity decreased in areas with higher levels of human disturbance (closer to human settlements and high predator control intensity) and increased in dense habitats. Our study shows that daily activity patterns of highly adaptable species are determined by several interacting drivers, resulting in complex behavioral patterns. This suggests that further ecological studies should consider different factors simultaneously for a better understanding of daily activity patterns of wildlife in different landscapes.
Article
Interspecific killing among mammalian carnivores is common in nature and accounts for up to 68% of known mortalities in some species. Interactions may be symmetrical (both species kill each other) or asymmetrical (one species kills the other), and in some interactions adults of one species kill young but not adults of the other. There is a positive significant relationship between the body masses of solitary killer species and body masses of their victim species, and grouping species kill larger victims than solitary species. Interactions and consumption of the victim appear more common when food is scarce or disputed. In response to killers, victim species may alter their use of space, activity patterns, and form groups. Consequences of interspecific killing include population reduction or even extinction, and reduction and enhancement of prey populations, and may therefore have important implications for conservation and management of carnivores and their prey.
Article
1. Spatial relationships between Iberian lynx and other carnivores were studied by radio-tracking and/or track censusing in two adjacent areas of Donana (south-western Spain). 2. Both radio-tracking and track censusing showed that lynx were restricted to an undisturbed area of Pistacia lentiscus shrubs called Matasgordas. Minimum and maximum lynx density in Matasgordas were estimated as 0 . 55 and 0 . 75 ind. km(-2). 3. Egyptian mongoose tracks were mainly detected outside Matasgordas (83% of tracks), European badger tracks were detected most often inside Matasgordas (76% of tracks), and red fox tracks were frequently detected both outside (54%) and inside (46%) Matasgordas. Surveys of tracks and faeces undertaken in other 14 areas where P. lentiscus shrubs also dominated corroborated the census data obtained inside and outside Matasgordas. 4. Trapping and radio-tracking of mongooses and common genets indicated that both species avoided use of Matasgordas. They were almost exclusively trapped (24 out of 25 mongooses and all of 11 genets) and mainly radio-located (94 . 5% and 95 . 4% of times, for mongooses and genets, respectively) in the areas of P. lentiscus shrubs situated outside Matasgordas. Their densities were estimated as 0 . 2 and 0 . 03 ind. km(-2) inside, and as 2 . 0 and 0 . 7 ind. km(-2) outside Matasgordas for mongooses and genets, respectively. 5. Lynx may kill mongooses, genets, and foxes; thus, the avoidance of Matasgordas by smaller carnivores (mongooses and genets) could be related to the risk of lynx predation. It is suggested that the decline of the lynx in the Donana area may have caused the increase in the population size of smaller, previously rarer carnivores. 6. The true relationship between lynx and foxes remains unclear, and badgers were apparently indifferent to lynx presence or absence.
Article
We reinvestigate the validity of the limiting similarity principle via numerical simulations of the Lotka–Volterra model. A Gaussian competition kernel is employed to describe decreasing competition with increasing difference in a one-dimensional phenotype variable. The simulations are initiated by a large number of species, evenly distributed along the phenotype axis. Exceptionally, the Gaussian carrying capacity supports coexistence of all species, initially present. In case of any other, distinctly different, carrying capacity functions, competition resulted in extinction of all, but a few species. A comprehensive study of classes of fractal-like carrying capacity functions with different fractal exponents was carried out. The average phenotype differences between surviving species were found to be roughly equal to the competition width. We conclude that, despite the existence of exceptional cases, the classical picture of limiting similarity and niche segregation is a good rule of thumb for practical purposes.
Article
An idea that took a century to be born has implications in ecology, economics, and genetics.
Article
To understand resource partitioning, essentially a community phenomenon, we require a holistic theory that draws upon models at the individual and population level. Yet some investigators are still content mainly to document differences between species, a procedure of only limited interest. Therefore, it may be useful to conclude with a list of questions appropriate for studies of resource partitioning, questions this article has related to the theory in a preliminary way. 1) What is the mechanism of competition? What is the relative importance of predation? Are differences likely to be caused by pressures toward reproductive isolation? 2) Are niches (utilizations) regularly spaced along a single dimension? 3) How many dimensions are important, and is there a tendency for more dimensions to be added as species number increases? 4) Is dimensional separation complementary? 5) Which dimensions are utilized, how do they rank in importance, and why? How do particular dimensions change in rank as species number increases? 6) What is the relation of dimensional separation to difference in phenotypic indicators? To what extent does the functional relation of phenotype to resource characteristics constrain partitioning? 7) What is the distance between mean position of niches, what is the niche standard deviation, and what is the ratio of the two? What is the niche shape?