ArticlePDF Available

Virobiome Derived Peptide T: Anti-Inflammatory Peptides for Treating Neuro-Aids and Neurodegenerative Diseases

Abstract

The identification of biologically significant, receptor-targeting epitopes from the “virobiome”, the diverse population of viruses which engage the host immune system, especially those determinants which may control host immunity or be viral entry receptor binding sites, is an important goal for the development of anti-viral drugs, vaccines, and immunomodifying therapies. We (1) and others (2) have observed that numerous viruses, including members of the herpesvirus, poxvirus, and lentivirus families encode peptides that block innate immunity, presumably to help them overcome immune surveillance. A virus, especially a lentivirus, which is well adapted to exist in a nuanced balance within the complete, natural, and physiological host immune system, would be able, over millions of iterations (viral replication cycles), to perfect an escape from immune surveillance by modulating the entire innate immune network. Identifying those innate immune modifying peptide epitopes provides a rational basis for drug development. Contrast this to a typical “pharma” screening approach, that a priori seeks to identify a “pure” or specific receptor target, to then be tested in artificial systems, yielding few hits, which typically are of low potency. These types of screens are most suited for detecting either agonist or antagonist activity. However, a more desirable pharmacologic feature, which the virobiome might provide, is partial or mixed agonist/antagonist activity, as this is most suited to provide a balanced modulation of immunity, and avoids substantial suppression of what are certainly useful host immune function(s).
Journal of Microbiology & Experimentation
Virobiome Derived Peptide T: Anti-Inflammatory
Peptides for Treating Neuro-Aids and Neurodegenerative
Diseases
Submit Manuscript | http://medcraveonline.com
Volume 5 Issue 2 - 2017
Creative Biopeptides, USA
*Corresponding author: Michael Ruff, Creative Biopeptides,
Rockville, MD, USA, Tel: 240-893-7400;
Email:
Received: April 26, 2017 | Published: June 21, 2017
Mini Review
J Microbiol Exp 2017, 5(2): 00143
Abstract
        

          
     

         
          

           


         
          
      
     
            
         
    
        
          
            
         
         

       
(AD), to name a few examples.
Keywords:     

Abbreviations: DAPTA: D-Ala1-Peptide T-Amide; VIP:

     
      
     
     

Introduction



        
        

    

      

isolate, later shown to have an R5/X4 (dual-tropic) receptor
        

time of this work (circa 1985). The predominant antiviral effect


   
   
   
         
  

     



           

 2/4
Copyright:
©2017 Ruff
Citation:
10.15406/jmen.2017.05.00143


Benefits in neuroinflammation and neurodegeneration
        

     
        
protective effects of DAPTA were also shown in animals treated



       
  

         

 
can treat.


       
        
     
      
         
         
      

      




Clinical trial results in neuro-aids
       
trials for neuro-AIDS endpoints in 1986. Improvements in MRI
       
  

         
        
         
     
      

    
        
         
reported for patients whose CD4 cell numbers were above 200

      
       
         
   
with improved performance while deterioration was more
        
         
data were reported and showed that DAPTA reduced the viral load

is remarkable as the patients were not enrolled based on viral

    


          
   

       



  


(op.cit., above).
Orally active peptides
      


 





  


   
      

we further showed that DAPTA and RAP-103 blocked both CCR2


      

      
  
 
potential for clinical use in neuropathic and other pain conditions.
       
      
neurons and spare dendritic arbor, it is a prime candidate for
  
       
          
citations of this review.
Conclusion

       


 3/4
Copyright:
©2017 Ruff
Citation:
10.15406/jmen.2017.05.00143

       

        
 
     
    
    
         
       

Virobiome-derived peptides like DAPTA, have been shown in
         
     
       

      

      
 



Acknowledgement
        
late Dr. Candace Pert, co-creator of Peptide T, DAPTA, and the
oral peptides here described, champion of safe and effective
   
on the topics here discussed.
Conict of Interest
The author is an inventor of the subject peptides.
References
1.             
  
        
   
83(23): 9254-9258.
2.         

3. 
   
  

4. Sacerdote P, Ruff MR, Pert CB (1987) Vasoactive intestinal peptide
        

5.   
        


6. 
     
Clin Immunol 93(2): 124-131.
7. 

receptor-5 (CCR5). Antiviral Res 52(1): 63-75.
8.          

(DAPTA). Antiviral Res 67(2): 83-92.
9.            
       

10. 

  
642.
11.           
        
   
Res 15(4): 361-369.
12. Pollicita M, Ruff MR, Pert CB, Polianova MT, Schols D, et al. (2007)
     
and inhibition of CCR5-mediated apoptosis in neuronal cells. Antivir
Chem Chemother 18(5): 285-295.
13. 
 
150-160.
14. 
VIP and D-ala-peptide T-amide release chemokines which prevent

15.           
   
behavioral development in rat neonates. Brain Res 603(2): 222-233.
16.      
        
657.
17. 


18.     
       
915.
19. 

398.
20.           
      
        
   
134(2): 671-676.
21.        
chemotactic activities of peptide-T: a possible mechanism of actions
for its therapeutic effects on psoriasis. Int J Immunopharmacol
20(11): 661-667.
22.       

Immunopharmacol 21(9): 609-615.
23. 


 4/4
Copyright:
©2017 Ruff
Citation:
10.15406/jmen.2017.05.00143
24.         

10(8): 919-920.
25.   
       
831-837.
26. 
        

27. 
         
       

28.           
    
participates in the induction of neuropathic pain after peripheral

29. 
responses of C-C chemokine receptor 5 knockout mice to chemical or

30.    


31.       


32.   
         

33.             
        
Pattern in Two Children with AIDS. Peptides 23(12): 2279-2281.
34.          
(1992) Peptide T in the treatment of severe psoriasis. Acta Derm
Venereol 72(1): 68-69.
35.           

J Am Acad Dermatol 25(4): 658-664.
36. 

37. 
        
227.
38.           
(1991) Results of extended peptide T administration in AIDS and

39.            


40. 
     
   


41. 
        

42. 

Med 37(7): 1177-1180.
43.       
         
Pharmaceutics 77(1): 65-70.
... RAP-103 (all-D-TTNYT) is a short peptide and orally stabilized analog of D-Ala-peptide T-amide (DAPTA), a HIV gp120-derived CCR5 entry inhibitor (Polianova et al., 2005;Ruff et al., 2003). RAP-103 inhibits CCR5-mediated apoptosis in neuronal cells (Pollicita et al., 2007;Bachis et al., 2009) and monocyte migration and to attenuate neuroinflammation (Rosi et al., 2005;Ruff, 2017), even being beneficial in HIV patients Villemagne et al., 1996). Since it also inhibits both CCR2 (half maximal inhibitory concentration [IC 50 ] 4.2 pM) and CCR5 (IC 50 0.18 pM) in monocyte chemotaxis (Padi et al., 2012), it was reported that oral administration of RAP-103 (0.05e1 mg/kg) for 7 days fully prevented mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats (Padi et al., 2012). ...
... Understanding the molecular and cellular mechanism(s) of how RAP-103 inhibits neuropathic pain via multi-chemokine receptor routes will help establish broad clinical use of this drug in neuropathic pain treatment. The potent anti-inflammatory effects of RAP-103, coupled with cognitive improvements of DAPTA reported in clinical trials, suggest further uses in neurodegenerative diseases, including Alzheimer's and traumatic brain injury (Ruff, 2017). ...
Article
Chemokine signalling is important in neuropathic pain, with microglial cells expressing chemokine (C-C motif) receptor CCR2, CCR5 and CCR8, all playing key roles. In the previous report (Padi et al., 2012), oral administration of a short peptide, RAP-103, for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rodents. As for the mechanism of the inhibiting effect of RAP-103, it was speculated to be due to dual blockade of CCR2 and CCR5. We report here that RAP-103 exhibits stronger antagonism for CCR8 (half maximal inhibitory concentration [IC50] 7.7 fM) compared to CCR5 (IC50 < 100 pM) in chemotaxis using primary cultured mouse microglia. In addition, RAP-103 at a concentration of 0.1 pM completely inhibits membrane ruffling and phagocytosis induced by chemokine (C-C motif) ligand 1 (CCL1), an agonist for CCR8. It has been shown that CCL1/CCR8 signaling is important in tactile allodynia induced by nerve ligation. Therefore, CCR8, among other chemokine receptors such as CCR2/CCR5, could be the most potent target for RAP-103. Inhibitory effects of RAP-103 on plural chemokine receptors may play important roles for broad clinical use in neuropathic pain treatment.
... Figure 7 shows numbers of TRs per protein in viruses and their host organisms. Since human proteins and their "virobiome" [60] are intensively studied, we also compared the TR content in human proteins to human viral proteins ( Figure 7D). While there seems to be no clear association, there is a tendency in viruses to have a slightly smaller percentage of sequences with at least one TR when compared to their host. ...
Article
Full-text available
Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence.
Article
Full-text available
Cancer-induced bone pain (CIBP) is a challenging medical problem that considerably influences cancer patients' quality of life. Currently, few treatments have been developed to conquer CIBP because of a poor understanding of the potential mechanisms. Our previous work has proved that spinal RANTES (a major ligand for CCR5) was involved in the maintenance of CIBP. In this study, we attempted to investigate whether spinal CCR5 and its downstream PKCγ pathway is involved in the maintenance of CIBP. Inoculation of Walker 256 cells into the tibia could induce a marked mechanical allodynia with concomitant upregulation of spinal CCR5 and p-PKCγ expression from day 6 to day 15 after inoculation. Spinal CCR5 was prominently expressed in microglia, and mechanical allodynia was attenuated by intrathecal injection of DAPTA (a specific antagonist of CCR5) with downregulation of spinal CCR5 and p-PKCγ expression levels at day 15 in inoculated rats. Pre-intrathecal injection of RANTES could reverse the anti-allodynia effects of DAPTA. Intrathecal administration of GF109203X (an inhibitor of PKC) could alleviate mechanical allodynia as well as decrease of spinal p-PKCγ expression level, but no influence on spinal CCR5 level. Our findings suggest that CCR5/PKCγ signaling pathway in microglia may contribute to the maintenance of CIBP in rats.
Article
Objective: CC-chemokine receptor 5 (CCR5) plays a pivotal role in reperfusion after stroke. This study assessed and confirmed the effects of CCR5 in experimental stroke via regulation of ROCK/P-MLC pathway. Methods: Male Sprague Dawley (SD) rats were randomly divided into sham group, ischaemia-reperfusion group (I/R group) and DAPTA group (I/R + CCR5 antagonist group). The rats of the I/R group were subjected to transient middle cerebral artery occlusion (tMCAO) for 2 hours, followed by 24 hours of reperfusion. Animals were measured for neurologic deficit, cerebral infarct volume, TUNEL and hematoxylin-eosin (HE) staining. The protein expressions of ROCK2 and P-MLC2(Ser19) were determined by western blot. Results: Pre-treatment with DAPTA displayed significantly improved neurological functional outcome and reduced cerebral lesion compared with the I/R group animals (p < 0.05); HE staining showed that the I/R group had severe neuronal damage in the ischaemia core and penumbral; Compared with the I/R group, ROCK2 and P-MLC2(Ser19) protein expression in the DAPTA group was reduced (p < 0.05). Conclusions: The data demonstrate that CCR5 is correlated with up-regulation of the expression of ROCK2 and P-MLC2(Ser19) in the ischaemia cortex. Treated with CCR5 antagonist protects the brain against focal cerebral ischaemia-reperfusion injury in rats.
Article
Peptide T, an octapeptide sequence found in the external evelope protein (gp 120) of the ARV isolate of human immunodeficiency virus (HIV), was investigated for its action in preventing neuronal death observed in mouse hippocampal cultures treated with purified gp 120. Cell counts of neuronspecific enolase-identified neurons revealed that peptide T application completely and potently antagonized gp 120-induced death. Analogs of the core pentapeptide sequence of pepptide T, TTNYT, found in the second variable region of all gp 120 isolates sequenced to date, were also tested and found to be similarly active. Investigations of structure activity relationships of related peptides suggested that the second and fourth positions in the core pentapeptide sequence were critical for biological activity in the neuronal survival assay. Antiserum against the peptide T sequence found in the the ARV isolate was found to prevent neuronal cell death in cultures treated with purified gp 120 from the IIIB isolate of HIV. These data indicate that the peptide T sequence is effective in preventing neuronal cell death associated with the envelope protein and provide a rationale for peptide T to be evaluated as a potential therapeutic agent for the neuropsychiatric and neurological sequelae of acquired immune deficiency syndrome.
Article
Chemokines are small chemotactic cytokines that elicit many physiological and pathological effects through binding to their corresponding receptors. Recent studies have suggested that C-C chemokine receptor (CCR) 5 interacts with μ-opioid receptor and modifies a nociceptive reaction. We examined effects of CCR5 deficiency on pain responses by employing CCR5 knockout (KO) mice. We found that pain responses of CCR5 KO mice to chemical or inflammation stimuli were milder than those of CCR5 wild type (WT) mice. However, there was no remarkable change in thermal nociception. To prove the involvement of CCR5 deletion in lowered nociception, we examined pain reactions with CCR5 WT mice following treatment of a CCR5 antagonist (D-Ala(1)-peptide T-NH(2,) DAPTA). Chemical or inflammatory pain behavior was significantly relieved by intracerebroventricular infusion of the inhibitor. When we assessed expression level of μ-opioid receptor (MOR) in the periaqueductal gray where the receptors are critical for analgesic effects, immunoreactivity of MOR was significantly higher in CCR5 KO mice than WT mice without change in phosphorylation level of the receptor. Reduced nociceptive responses in CCR5 KO mice were moderated by administration of naloxone and d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), MOR antagonists. Our data indicate that CCR5 deficiency is related to up-regulation of MOR without an increase in the receptor desensitization which might result in increased analgesic effects against chemical or inflammatory stimuli. Alternatively, higher amount of opioid ligands in CCR5 mice might be linked to these results. Therefore, CCR5 appears to be a therapeutic target for treatment of pain related diseases such as inflammatory hyperalgesia.
Article
[d-Ala1]-Peptide T amide is an octapeptide presently undergoing clinical evaluation as a potential agent for the treatment of AIDS. As a part of studies aiming at obtaining an oral delivery form of the peptide, its stability towards α-chymotrypsin was examined. The peptide was found to be rapidly degraded by this pancreatic enzyme, the degradation being due to cleavage of the Tyr-ThrNH2 bond. At pH 7.4 and 37°C the peptide showed a Km value of 1.3 × 104 M, a kcat value of 560 min−1 and a specificity constant (kcat/Km) of 4.3 × 106 M−1 min−1. At physiological concentrations of α-chymotrypsin and at pH 6.0–7.4 the half-life of degradation of the peptide was calculated to be less than 5 s. It is thus concluded that a means to protect [d-Ala1]-Peptide T amide against cleavage by α-chymotrypsin is an absolute requirement for the development of an orally absorbable product. The peptide proved highly stable toward aminopeptidase as well as in human plasma.
Article
Neuropathic pain is caused by neural damage or dysfunction and neuropathic pain-related symptoms are resistant to conventional analgesics. Neuroinflammation due to the cytokine-chemokine network may play a pivotal role in neuropathic pain. We demonstrate that macrophage inflammatory protein-1β (MIP-1β) participates in neuropathic pain. Mice received partial sciatic nerve ligation (PSL), and tactile allodynia and thermal hyperalgesia were assessed by von Frey test and Hargreaves test, respectively. Agents were administered into the region surrounding the sciatic nerve (SCN). Using reverse transcription polymerase chain reaction, the mRNA expressions of MIP-1β and its receptor (CC-chemokine receptor 5; CCR5) in the injured SCN were up-regulated after PSL. MIP-1β immunoreactivity was localized in macrophages and Schwann cells and increased in the injured SCN on day 1. PSL-induced tactile allodynia on days 4 to 7 was prevented by the administration of MIP-1β neutralizing antibody (anti-MIP-1β; on days 0, 3 and 6). PSL-induced up-regulations of inflammatory cytokine-chemokine mRNAs in the injured SCN were suppressed with anti-MIP-1β treatment on day 7. Administration of CCR5 antagonist, D-ala-peptide T-amide (on days 0, 3 and 6) prevented tactile allodynia and thermal hyperalgesia on days 4 to 14. Single administration of recombinant mouse MIP-1β (rmMIP-1β) elicited tactile allodynia. Moreover, rmMIP-1β increased the mRNA expression of inflammatory mediators in the SCN on day 1 after administration. These results suggest that MIP-1β is a novel key mediator, and the peripheral MIP-1β-CCR5 axis contributes to neuropathic pain. Therefore, investigation of this cascade might be a validated approach for the elucidation of neuropathic pain mechanisms.
Article
Peptide T is an octapeptide from the V2 region of HIV-1 gp120. It has been shown to resolve psoriatic lesions — an inflammatory skin disease. The mechanisms of anti-inflammatory actions of peptide T are not well understood. Th1 cytokines such as IL-2, and IFN-γ are upregulated in psoriasis. These cytokines play a key role in the inflammatory and proliferative processes of psoriasis. The effects of peptide T on Th1 and Th2 cytokines were studied in order to elucidate the mechanisms of antiinflammatory actions of peptide T. It was observed that peptide T at 10−8 M induces IL-10 production by the human Th2 cell line and PBMC (P<0.05, ANOVA). Also peptide T at 10−9 M concentration significantly inhibited IFN-γ production by PBMC (P<0.001, ANOVA). Anti IL-10 antibody inhibited the anti-IFN-γ effect of peptide T (P<0.05, t-test). Our study shows that peptide T induces IL-10 production and inhibits IFN-γ production. IL-10 is a potent anti-inflammatory cytokine. It inhibits IL-2 and IFN- γ production from the T cells and downregulates the expression of TNF-α in the antigen presenting cells. Recently, IL-10 has been shown to resolve psoriatic lesions. The effects of peptide T on IL-10 and IFN-γ production provides a plausible explanation for its clinical efficacy in psoriasis.
Article
The octapeptide Ala-Ser-Thr-Thr-Thr-Asn-Tyr-Thr (peptide T) and two structural analogs are potent agonists of human monocyte chemotaxis, evincing identical rank potency orders as was previously shown for their inhibition of human immunodeficiency virus (HIV) envelope binding and T cell infectivity. Chemotactic activity could be inhibited by anti-CD4 monoclonal antibodies (Mabs), but not other mononuclear cell Mabs. The core peptide required for chemotactic activity is a pentapeptide related to the sequence Thr-Thr-Asn-Tyr-Thr. Homologous pentapeptides, identified by computer search, were detected in several other non-HIV-related viruses as well as the neuropeptide vasoactive intestinal polypeptide (VIP). The CD4 molecule, therefore, appears to be a recognition molecule for a small signal peptide ligand whose active sequence is a homolog of peptide T [4–8] and which may be the neuropeptide VIP.
Article
Peptide T is an octapeptide (ASTTTNYT) from the V2 region of gp120 of HIV. D-[Ala]-Ser-Thr-Thr-Thr-Asn-Tyr-Thr-amide (DAPTA) is one of its analogue. DAPTA has been shown to resolve the psoriatic lesions. The mechanisms of action of peptide T for its therapeutic effect is not clearly understood. Lymphomononuclear cells play an important roles in inflammatory disease processes. Intraepidermal collection of lymphocytes is a unique feature of the inflammatory processes of psoriasis. It is believed that chemokine such as RANTES (C—C class) plays an important role for intraepidermal localization of the inflammatory infiltrates in psoriasis. In order to study the mechanisms, we have analyzed the effects of DAPTA on monocyte and lymphocyte chemotaxis. Chemotaxis of cells was measured by using Boyden chamber. DAPTA inhibited significantly the monocyte and lymphocyte chemotactic activity of RANTES ( p < 0.005, <0.001). Antichemotactic activities of peptide T analogue could be a possible explanation for its therapeutic efficacy in psoriasis.
Article
We previously reported that certain short gp120 V2 region peptides homologous to vasaoactive intestinal peptide (VIP), such as “peptide T,” were potent inhibitors of gp120 binding, infectivity, and neurotoxicity. The present study shows that synthetic V2-region-derived peptides have potent intrinsic chemotaxis agonist activity for human monocytes and also act as antagonists of high-affinity (0.1 pM) gp120-mediated monocyte chemotaxis. Selectivity is shown in that peptide T is more potent at suppressing M-tropic than T-tropic gp120 chemotaxis. Peptide T was also able to suppress monocyte chemotaxis to MIP-1β, a chemokine with selectivity for CCR5 chemokine receptors, while chemotaxis of the more promiscuous ligand RANTES was not inhibited, nor was chemotaxis mediated by SDF-1α. In order to determine if peptide T mediated its gp120 antagonistic effects via modulation of CCR5 receptors, RANTES chemotaxis was studied using a CCR5 receptor-transfected HOS cell line. In this case, RANTES chemotaxis was potently inhibited by V2-region-derived short peptides. Peptide T also partially suppressed 125I-MIP1-β binding to human monocytes, suggesting action at a subset of MIP1-β receptors. The V2 region of gp120 thus contains a potent receptor binding domain and synthetic peptides derived from this region modulate CCR5 chemokine receptor chemotactic signaling caused by either gp120 or chemokine ligands. The results have therapeutic implications and may explain recent clinical improvements, in that HIV/gp120 actions at CCR5 receptors, such as occur in the brain or early infection, would be susceptible to peptide T inhibition.