Technical Note on Using the Movement Velocity to Estimate the Relative Load in Resistance Exercises – Response

To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
The aim of this study was to investigate the ability of isoinertial assessment to monitor training effects. Both parametric and curve analysis of the results were used to underline the specificity of maximal strength and maximal velocity resistance training methods. Twenty-four untrained subjects were randomly assigned into three groups: a maximal strength-training group (heavy loads: 80% to 98% of the one repetition maximum [1-RM]), a maximal velocity-training group (light loads: 25% to 50% of 1-RM) and a control group. All the subjects were tested in bench press exercises before and after the 6-week training period. An isoinertial dynamometer was used to assess velocity and power at four increasing loads: 35%, 50%, 70% and 95% of the 1-RM load. Post-test protocol also included a trial at 105% of the 1-RM load. Isoinertial assessment demonstrated for both training groups significant gains at each load. Some specific adaptations appeared: strength training presented a greater increase for average power (+49%, P<0.001) and average velocity (+48%, P<0.001) at 95% of 1-RM, while velocity training emerged as a more effective way to improve performance at 35% and 50% of 1-RM (+11 to 22%) in comparison with strength training (+7 to 12%). The analysis of power and velocity curves specified that strength training enhanced performance earlier in the movement, while velocity training extended the propulsive action at the end of movement. The original combination of parametric and curve isoinertial assessment appears to be a relevant method for monitoring specific training effects. The complementarity of both strength and velocity training programmes underlined in this study could lead to practical applications in profiling training programmes.
The use of bar velocity to estimate relative load in the back squat exercise was examined. Eighty strength-trained men performed a progressive loading test to determine their one-repetition maximum (1RM) and load-velocity relationship. Mean (MV), mean propulsive (MPV) and peak (PV) velocity measures of the concentric phase were analyzed. Both MV and MPV showed a very close relationship to %1RM (R2 = 0.96), whereas a weaker association (R2 = 0.79) and larger SEE (0.14 vs. 0.06 m•s-1) was found for PV. Prediction equations to estimate load from velocity were obtained. When dividing the sample into three groups of different relative strength (1RM/body mass), no differences were found between groups for the MPV attained against each %1RM. MV attained with the 1RM was 0.32 ± 0.03 m•s-1. The propulsive phase accounted for 82% of concentric duration at 40% 1RM, and progressively increased until reaching 100% at 1RM. Provided that repetitions are performed at maximal intended velocity, a good estimation of load (%1RM) can be obtained from mean velocity as soon as the first repetition is completed. This finding provides an alternative to the often demanding, time-consuming and interfering 1RM or nRM tests and allows to implement a velocity-based resistance training approach.
This study examined the possibility of using movement velocity and the perceived exertion as indicators of relative load in the bench press exercise. Three hundred eight young, healthy, resistance trained athletes (242 male and 66 female) performed a progressive strength test up to the one-repetition maximum for the individual determination of the full load-velocity and load-exertion relationships. Longitudinal regression models were used to predict the relative load from the average velocity and the OMNI-RES 0-10 scale, considering sets as the time-related variable. Load associated with the average velocity and the OMNI-RES 0-10 scale value expressed after performing a set of 1-3 repetitions were used to construct two adjusted predictive equations: Relative load = 107.75 - 62.97 x average velocity; and Relative load = 29.03 + 7.26 x OMNI-RES 0-10 scale value. The two models were capable of estimating the relative load with an accuracy of 84% and 93% respectively. These findings confirm the ability of the two calculated regression models, using load-velocity and load-exertion from the OMNI-RES 0-10 scale, to accurately predict strength performance in bench press.
This study compared the velocity- and power-load relationships of the antagonistic upper-body exercises of prone bench pull (PBP) and bench press (BP). 75 resistance-trained athletes performed a progressive loading test in each exercise up to the one-repetition maximum (1RM) in random order. Velocity and power output across the 30-100% 1RM were significantly higher for PBP, whereas 1RM strength was greater for BP. A very close relationship was observed between relative load and mean propulsive velocity for both BP (R2=0.97) and PBP (R2=0.94) which enables us to estimate %1RM from velocity using the obtained prediction equations. Important differences in the load that maximizes power output (Pmax) and the power profiles of both exercises were found according to the outcome variable used: mean (MP), peak (PP) or mean propulsive power (MPP). When MP was considered, the Pmax load was higher (56% BP, 70% PBP) than when PP (37% BP, 41% PBP) or MPP (37% BP, 46% PBP) were used. For each variable there was a broad range of loads at which power output was not significantly different. The differing velocity- and power-load relationships between PBP and BP seem attributable to the distinct muscle architecture and moment arm levers involved in these exercises.
This study analyzed the contribution of the propulsive and braking phases among different percentages of the one-repetition maximum (1RM) in the concentric bench press exercise. One hundred strength-trained men performed a test with increasing loads up to the 1RM for the individual determination of the load-power relationship. The relative load that maximized the mechanical power output (P(max)) was determined using three different parameters: mean concentric power (MP), mean power of the propulsive phase (MPP) and peak power (PP). The load at which the braking phase no longer existed was 76.1+/-7.4% 1RM. P(max) was dependent on the parameter used: MP (54.2%), MPP (36.5%) or PP (37.4%). No significant differences were found for loads between 40-65% 1RM (MP) or 20-55% 1RM (MPP and PP), nor between P(max) (% 1RM) when using MPP or PP. P(max) was independent of relative strength, although certain tendency towards slightly lower loads was detected for the strongest subjects. These results highlight the importance of considering the contribution of the propulsive and braking phases in isoinertial strength and power assessments. Referring the mean mechanical values to the propulsive phase avoids underestimating an individual's true neuromuscular potential when lifting light and medium loads.
This study examined the possibility of using movement velocity as an indicator of relative load in the bench press (BP) exercise. One hundred and twenty strength-trained males performed a test (T1) with increasing loads for the individual determination of the one-repetition maximum (1RM) and full load-velocity profile. Fifty-six subjects performed the test on a second occasion (T2) following 6 weeks of training. A very close relationship between mean propulsive velocity (MPV) and load (%1RM) was observed (R (2)=0.98). Mean velocity attained with 1RM was 0.16+/-0.04 m x s(-1) and was found to influence the MPV attained with each %1RM. Despite a mean increase of 9.3% in 1RM from T1 to T2, MPV for each %1RM remained stable. Stability in the load-velocity relationship was also confirmed regardless of individual relative strength. These results confirm an inextricable relationship between relative load and MPV in the BP that makes it possible to: 1) evaluate maximal strength without the need to perform a 1RM test, or test of maximum number of repetitions to failure (XRM); 2) determine the %1RM that is being used as soon as the first repetition with any given load is performed; 3) prescribe and monitor training load according to velocity, instead of percentages of 1RM or XRM.
  • L Sánchez-Medina
Sánchez-Medina L et al. Technical Note on Using the … Sports Medicine International Open 2018; 2: E17-E19