Article

Estimation of Kharif Rice Yield in Khordha District under Future Climate Using DSSAT Model

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The experimental field's soil was a clayey loam group known locally as "Dorsa", having a relatively coarser texture. The soil had a neutral response, with medium potassium and nitrogen content and low phosphorous (Mohanty et al., 2017). ...
Article
Full-text available
Water and carbon footprint assessment can be a good indicator of sustainable agricultural production. The present research quantifies the potential impact of near-future (2026–2050) climate change on water footprint (WF) and carbon footprint (CF) of farm-level kharif rice production of three locally grown varieties (Khandagiri, Lalat, and Swarna) in Odisha, India, under the two RCP scenarios of 4.5 and 8.5. The crop yield, water resources utilization, and greenhouse gas (GHG) emissions were estimated using the calibrated and validated DSSAT crop simulation model. The precipitation and temperature estimates from three regional climate models (RCM), namely HadGEM3-RA, RegCM4, and YSU-RSM were downscaled using the quantile mapping method. The results revealed a considerably high increase in the total WF of the Khandagiri, Lalat, and Swarna rice varieties elevating up to 101.9%, 80.7%, and 71.8% respectively during the mid-century for RCP 4.5 scenario, and 67.3%, 66.6%, and 67.2% respectively for RCP 8.5 scenario relative to the baseline WF. Moreover, compared to the green WF, the blue WF was projected to increase significantly (~ 250–450%) in the future time scales. This could be attributed to increasing minimum temperature (~ 1.7 °C) and maximum temperature (~ 1.5 °C) and reduced precipitation during the rice-growing periods. Rice yield was projected to continually decline in the future period (2050) with respect to the baseline (1980–2015) by 18.8% and 20% under RCP 4.5 and 8.5 scenarios respectively. The maximum CF of Swarna, Lalat, and Khandagiri rice were estimated to be 3.2, 2.8, and 1.3 t CO2eq/t respectively under RCP 4.5 and 2.7, 2.4, and 1.3 t CO2eq/t respectively under RCP 8.5 scenario. Fertilizer application (40%) followed by irrigation-energy use (30%) and farmyard manure incorporation (26%) were the three major contributors to the CF of rice production. Subsequently, management of N-fertilizer dose was identified as the major mitigation hotspot, simultaneously reducing carbon footprint and grey water footprint in the crop production process.
ResearchGate has not been able to resolve any references for this publication.