ArticleLiterature Review

Proteoglycans remodeling in cancer: Underlying molecular mechanisms

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Expectedly, many types of tumor tissues demonstrate increase in sGAG content and altered sulfation pattern 12 . Although deregulation of sGAG biosynthesis and post-translational modification have been shown to correlate with poor prognosis, the effect of increase in sGAGs on tumor growth and invasion has been controversial [12][13][14][15] . Studies have reported both tumor promoting and inhibiting effects of sGAG supplementation [13][14][15][16][17][18] . ...
... Although deregulation of sGAG biosynthesis and post-translational modification have been shown to correlate with poor prognosis, the effect of increase in sGAGs on tumor growth and invasion has been controversial [12][13][14][15] . Studies have reported both tumor promoting and inhibiting effects of sGAG supplementation [13][14][15][16][17][18] . The use of sGAGs has even been proposed as a therapeutic approach in cancer 19 . ...
... sGAGs regulate RTK signaling which in turn activates signaling routes that promote EMT, tumor cell motility and metastasis [11][12][13][14] . Therefore, we explored the EMT process that might induce an invasive phenotype in sulfated hydrogels. ...
Preprint
Full-text available
Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, we demonstrate that PGs are heavily expressed in lung adenocarcinoma patients in correlation with invasive phenotype and poor prognosis. We developed a bioengineered human lung tumor model which recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density and porosity. Our model reveals that increased sulfation stimulates extensive proliferation, epithelial-mesenchymal transition and stemness in cancer cells. We identified the FAK-PI3K-mTOR signaling axis as a mediator of sulfation-induced molecular changes in cells upon activation of a distinct set of RTKs within tumor-mimetic hydrogels. We demonstrate that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG-rich patient tumors through employing integrative omics and network modeling approaches.
... In the present study, one validated miRNAs, hsa-miR-200c-3p, was involved in prion diseases pathway, according to its target genes. Hsa-miR-200c-3p is involved in regulating cellular transformation, such as epithelial-mesenchymal transition (EMT), metastasis, cell proliferation and differentiation, inflammation, angiogenesis, cellular transformation, apoptosis, chemoresistance and tissue turnover (21)(22)(23)(24)(25). Proteoglycans (PGs) are extracellular matrix components and play a key role in cell signaling and structural organization, which controls normal and pathological processes (26). Altered expression and structural variable caused by different types of covalently linked glycosaminoglycan chains PGs accumulate in remodeled tumor stroma in malignancy (26)(27)(28). ...
... Hsa-miR-200c-3p is involved in regulating cellular transformation, such as epithelial-mesenchymal transition (EMT), metastasis, cell proliferation and differentiation, inflammation, angiogenesis, cellular transformation, apoptosis, chemoresistance and tissue turnover (21)(22)(23)(24)(25). Proteoglycans (PGs) are extracellular matrix components and play a key role in cell signaling and structural organization, which controls normal and pathological processes (26). Altered expression and structural variable caused by different types of covalently linked glycosaminoglycan chains PGs accumulate in remodeled tumor stroma in malignancy (26)(27)(28). They affect tumor growth via formation of a permissive provisional matrix that regulates tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling (26). ...
... Altered expression and structural variable caused by different types of covalently linked glycosaminoglycan chains PGs accumulate in remodeled tumor stroma in malignancy (26)(27)(28). They affect tumor growth via formation of a permissive provisional matrix that regulates tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling (26). Studies indicate a role of PGs in OC. ...
Article
Full-text available
Epithelial ovarian cancer (EOC) is the type of OC with the highest mortality rate. Due to the asymptomatic nature of the disease and few available diagnostic tests, it is mostly diagnosed at the advanced stage. Therefore, the present study aimed to discover predictive and/or early diagnostic novel circulating microRNAs (miRNAs or miRs) for EOC. Firstly, microarray analysis of miRNA expression levels was performed on 32 samples of female individuals: Eight plasma samples from patients with pathologically confirmed EOC (mean age, 45 (30-54) years), eight plasma samples from matched healthy individuals (HIs) (mean age, 44 (30-65) years), eight EOC tissue samples (mean age, 45 (30-54) years) and eight benign ovarian (mean age, 35 (17-70) years) neoplastic tissue samples A total of 31 significantly dysregulated miRNAs in serum and three miRNAs in tissue were identified by microarray. The results were validated using reverse transcription-quantitative PCR on samples from 10 patients with pathologically confirmed EOC (mean age, 47(30-54) years), 10 matched His (mean age, 40(26-65) years], 10 EOC tissue samples (mean age, 47(30-54) years) and 10 benign ovarian neoplastic tissue samples (mean age, 40(17-70) years). The 'Kyoto Encyclopedia of Genes and Genomes' (KEGG) database was used for target gene and pathway analysis. A total of three miRNAs from EOC serum (hsa-miR-1909-5p, hsa-miR-885-5p and hsa-let-7d-3p) and one microRNA from tissue samples (hsa-miR-200c-3p) were validated as significant to distinguish patients with EOC from HIs. KEGG pathway enrichment analysis showed seven significant pathways, which included 'prion diseases', 'proteoglycans in cancer', 'oxytocin signaling pathway', 'hippo signaling pathway', 'adrenergic signaling in cardiomyocytes', 'oocyte meiosis' and 'thyroid hormone signaling pathway', in which the validated miRNAs served a role. This supports the hypothesis that four validated miRNAs, have the potential to be a biomarker of EOC diagnosis and target for treatment.
... As a result, a variety of PG editing can be achieved, with diverse interaction motifs and roles in the orchestration of cell signaling and phenotype [5,6]. Several members of the PG family have been shown to be deregulated during tumorigenesis and cell differentiation, leading to changes in epithelial-to-mesenchymal transition (EMT) (Figure 1) [5,7]. EMT is a cellular process during which epithelial cells repress their epithelial characteristics and acquire mesenchymal phenotypes and behavior [8,9]. ...
... PGs are classified into four categories by taking into consideration their localization, the extracellular, pericellular, cell surface, and intracellular states, and further subdivided based on their structural and functional characteristics [7,34,35]. ...
... The four isoforms of VCAN, V0, V1, V2, and V3 are located in the blood vessels, heart, breast, and brain tissues in diverse proportions, while brevican and neurocan are mainly expressed in the central nervous system. VCAN is a multifunctional molecule that affects cell adhesion, proliferation, and migration via binding to CD44, integrin-β1, and toll-like receptors (TLRs) as well as activating epidermal growth factor receptor (EGFR) signaling pathway by direct binding through its EGF-like domain present at the C-terminus globular domain [7,34,35]. ...
Article
Full-text available
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
... Both GPCs and SDCs are major representants of the group of cell surface PGs. Betaglycan (BGCAN, alias TGFBR3, transforming growth factor beta receptor 3) that contains HS/CS is yet another member of this group [55]. Selected examples of PGs containing chains of HS (HS-PGs) are discussed below in the context of NB research. ...
... Thus, Kurosawa and co-authors reported that GPC2 binds to a heparin-binding protein, midkine, to regulate the adhesion and neurite outgrowth of N2a NB cells [57]. Roles of GPCs in cancer are investigated [55,58]. Notably, a loss-of-function mutation of the gene encoding glypican-3 (GPC3) is linked to Simpson-Golabi-Behmel syndrome, an overgrowth syndrome linked to the X chromosome, accompanied by an increased incidence of embryonal tumors such as hepatoblastoma, NB, gonadoblastoma, Wilms tumor, and hepatocellular carcinoma [59]. ...
... Post-translational modifications add to the structural diversity of PGs and can modulate their functions [35,55]. Knelson et al. reported that high expression levels of mRNA of sulfotransferases, i.e., heparan sulfate 2-O-sulfotransferase 1 (HS2ST1), heparan sulfate 6-O-sulfotransferase 2 (HS6ST2), heparan sulfate 6-O-sulfotransferase 3 (HS6ST3), and N-deacetylase and N-sulfotransferase 2 (NDST2), were correlated with a good prognosis in NB. ...
Article
Full-text available
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
... The perlecan/HSPG2 gene encodes the perlecan/HSPG2 protein, which is among the major components of the BM. Increased perlecan/HSPG2 expression has been observed in many different tumors, including PC [reviewed in (Theocharis and Karamanos, 2019)]. However, the perlecan/HSPG2 in a dense ECM in different tumors in vivo is accumulated not only by tumor cells but also by various stromal cells and immune cells (Elgundi et al., 2020). ...
... Datta et al. (Datta et al., 2006) demonstrated that perlecan/ HSPG2, a candidate gene for the CAPB locus with familial risk of brain and PC, is a component of Sonic Hedgehog (SHH) signaling, and its expression in PC tissues correlates with a high Gleason score and rapid cell proliferation. Perlecan/HSPG2 gene over-expression promotes tumor cell growth, chemoresistance, migration, and invasion in vivo and in vitro (Theocharis and Karamanos, 2019). The targeted reduction of perlecan/HSPG2 in the bone-targeted PC line C4-2B xenografts (Wu et al., 1994) growing in mice reduced tumor growth and vascularization (Savorè et al., 2005). ...
Article
Full-text available
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
... Tumor stroma is mainly composed of extracellular components such as PGs, fibronectins, collagens, hyaluronan, and glycoproteins. They also contain various growth factors, chemokines and cytokines which interact with the components of the extracellular matrix (ECM) [2,9]. Proteoglycans are actively involved in cellular interactions and cell signaling during cancer development and progression. ...
... Role of PGs namely, Versican, Decorin, Syndecan-1, Syndecan-4, Glypican-1, etc. are well documented in cancer biology theo [9,29]. ...
Article
Purpose: Proteoglycans (PGs) are negatively charged macromolecules containing a core protein and single or several glycosaminoglycan chains attached by covalent bond. They are distributed in all tissues, including extracellular matrix (ECM), cell surface, and basement membrane. They are involved in major pathways and cell signalling cascades which modulate several vital physiological functions of the body. They have also emerged as a target molecule for cancer treatment and as possible biomarkers for early cancer detection. Among cancers, breast cancer is a highly invasive and heterogenous type and has become the major cause of mortality especially among women. So, this review revisits the studies on PGs characterization in breast cancer using LC-MS/MS-based proteomics approach, which will be further helpful for identification of potential PGs-based biomarkers or therapeutic targets. Experimental design: There is a lack of comprehensive knowledge on the use of LC-MS/MS-based proteomics approaches to identify and characterize PGs in breast cancer. Results: LC-MS/MS assisted PGs characterization in breast cancer revealed the vital PGs in breast cancer invasion and progression. In addition, comprehensive profiling and characterization of PGs in breast cancer are efficiently carried out by this approach. Conclusions: Proteomics techniques including LC-MS/MS-based identification of proteoglycans is effectively carried out in breast cancer research. Identification of expression at different stages of breast cancer is a major challenge, and LC-MS/MS-based profiling of PGs can boost novel strategies to treat breast cancer, which involve targeting PGs, and also aid early diagnosis using PGs as biomarkers.
... Moreover, proteolytic fragments of proteoglycan protein cores affect tumor angiogenesis [11][12][13][14] by interacting with and suppressing the action of vascular receptors [15][16][17]. Because of their critical roles in regulating cellular behavior and interactions across ECM molecules and cells, proteoglycans have been described as master regulators of cancer progression, invasion, and metastatic spreading [18]. Changes in the expression levels of some proteoglycans are associated with clinical outcomes of various cancers. ...
Article
Full-text available
Solid tumors present a formidable challenge in oncology, necessitating innovative approaches to improve therapeutic outcomes. Proteoglycans, multifaceted molecules within the tumor microenvironment, have garnered attention due to their diverse roles in cancer progression. Their unique ability to interact with specific membrane receptors, growth factors, and cytokines provides a promising avenue for the development of recombinant proteoglycan‐based therapies that could enhance the precision and efficacy of cancer treatment. In this study, we performed a comprehensive analysis of the proteoglycan gene landscape in human breast carcinomas. Leveraging the available wealth of genomic and clinical data regarding gene expression in breast carcinoma and using a machine learning model, we identified a unique gene expression signature composed of five proteoglycans differentially modulated in the tumor tissue: Syndecan‐1 and asporin (upregulated) and decorin, PRELP and podocan (downregulated). Additional query of the breast carcinoma data revealed that serglycin, previously shown to be increased in breast carcinoma patients and mouse models and to correlate with a poor prognosis, was indeed decreased in the vast majority of breast cancer patients and its levels inversely correlated with tumor progression and invasion. This proteoglycan gene signature could provide novel diagnostic capabilities in breast cancer biology and highlights the need for further utilization of publicly available datasets for the clinical validation of preclinical experimental results.
... [67,71] Any disruption to this intricate equilibrium has the potential to result in either adaptive or pathological processes. [70,100,101] Following implantation in the aortic position, the pulmonary autograft exhibits adaptive remodeling as a result of its viability, thereby mimicking the intricate anatomy and functionality of the native aortic root. The process can be facilitated by systemic pressure or specific biochemical reactions. ...
Preprint
Full-text available
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date, due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrix could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sino-tubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
... HA is suspected to regulate the tumor microenvironment by interacting with specific receptors and transducing intracellular signals that promote the malignant phenotype. Consequently, high levels of HA have been identified in various cancers (such as breast, prostate, lung, and ovarian cancers) [10,11]. Additionally, several clinical studies have shown that HA promotes invasion, motility, and epithelial-to-mesenchymal transition in breast cancer cells by triggering various signaling pathways and upregulating the expression of collagen-degrading enzymes [12,13]. ...
Article
Full-text available
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a valuable therapeutic alternative for patients with peritoneal metastases. PIPAC uses a hyaluronic acid-based gel to reduce surgically induced adhesions. The aim of this study was to evaluate the effects of the hyaluronic acid-based gel on tumor dissemination. First, we explored whether the survival of CT26 luciferase-expressing murine colonic tumor cells was correlated with the dose of HyaRegen® Gel, and we determined the half-maximal inhibitory concentration (the IC50) of the gel. Next, we performed an in vitro study of cell survival rates after gel application on day 0 (D0) and day 1 (D1). Finally, we intraperitoneally administered the gel to mice with immunocompetent BALB/c colonic peritoneal metastases (on D0, D5, D10, D14, and D18). Tumor growth was regularly monitored using a bioluminescence assay (on D11, D17, and D21). After all mice had been sacrificed on D21, the body weights and the volumes of intraperitoneal ascites were measured; the Peritoneal Carcinosis Index (PCI) and Ki-antigen 67 scores were calculated. The IC50 value was 70 μL of gel in a total volume of 100 μL. The cell survival rates on D4 were identical in the control group and the two groups that had been treated with gel on D0 and D1. The bioluminescence levels over time were similar in the gel and control groups. The PCI scores were 35.5 ± 2.89 for the control group and 36 ± 2.45 for the gel group (p = 0.8005). The mean Ki-67 index percentages were 37.28 ±1 1.75 for the control group and 34.03 ± 8.62 for the gel group (p = 0.1971). This in vitro and in vivo study using a mouse model of immunocompetent metastatic peritoneal cancer did not reveal any pro- or anti-tumoral effect of HyaRegen® Gel. These findings indicate that the gel can be used to treat PIPACs with minimal apprehension.
... However, elevated levels of HA are found in many cancer types including, lung, www.nature.com/scientificreports/ breast, prostate and ovary [34][35][36] . These elevated HA levels are implicated in causing metastasis and poor prognosis for patients with cancer. ...
Article
Full-text available
Cancer remains a formidable global health challenge, with metastasis being a key contributor to its lethality. Abundant high molecular mass hyaluronic acid, a major non-protein component of extracellular matrix, protects naked mole rats from cancer and reduces cancer incidence in mice. Hyaluronidase plays a critical role in degrading hyaluronic acid and is frequently overexpressed in metastatic cancer. Here we investigated the potential of targeting hyaluronidases to reduce metastasis. A high throughput screen identified delphinidin, a natural plant compound found in fruits and vegetables, as a potent hyaluronidase inhibitor. Delphinidin-mediated inhibition of hyaluronidase activity led to an increase in high molecular weight hyaluronic acid in cell culture and in mouse tissues, and reduced migration and invasion behavior of breast, prostate, and melanoma cancer cells. Moreover, delphinidin treatment suppressed melanoma metastasis in mice. Our study provides a proof of principle that inhibition of hyaluronidase activity suppresses cancer cell migration, invasion and metastasis. Furthermore, we identified a natural compound delphinidin as a potential anticancer therapeutic. Thus, we have identified a path for clinical translation of the cancer resistance mechanism identified in the naked mole rat.
... In this study, the investigation into the biological roles of the DE-miRNAs modulated by solasonine revealed that the target genes of these down-regulated DE-miRNAs are significantly involved in critical cellular pathways, including those associated with the proteoglycans in cancer, and the TGF-β, MAPK, and PI3K-Akt signaling pathways. Intracellular proteoglycans are highly expressed in breast, lung, prostate, colon, and hepatocellular carcinoma, and contribute to the aggressiveness and metastasis of tumors (34). The TGF-β, MAPK, and PI3K/Akt signaling pathways are well known and have served as therapeutic targets in cancer treatments (35,36). ...
Article
Background: Solasonine has been demonstrated to exert an inhibitory effect on bladder cancer (BC), but the potential mechanisms remain unclear. Therefore, the aim of this study is to explore the association between microRNAs (miRNAs)-mediated regulation and the anti-tumor activities of solasonine in BC. Methods: MiRNA sequencing was performed to identify the differentially expressed microRNAs (DE-miRNAs) associated with solasonine in BC cells. Functional enrichment analyses of the DE-miRNAs activated and inhibited by solasonine were then conducted. The DE-miRNAs with prognostic value for BC and those differentially expressed in the BC samples were subsequently identified as the hub DE-miRNAs. After identifying the messenger RNAs (mRNAs) that were targeted by the hub DE-miRNAs and those differentially expressed in the BC samples, a protein-protein interaction analysis was performed to identify the core downstream genes, which were then used to construct a solasonine-miRNA-mRNA regulatory network. Results: A total of 27 activated and 19 inhibited solasonine-mediated DE-miRNAs were identified that were found to be associated with several tumor-related biological functions and pathways. After integrating the results of the survival analysis and expression assessment, the following nine hub DE-miRNAs were identified: hsa-miR-127-3p, hsa-miR-450b-5p, hsa-miR-99a-5p, hsa-miR-197-3p, hsa-miR-423-3p, hsa-miR-4326, hsa-miR-625-3p, hsa-miR-625-5p, and hsa-miR-92a-3p. The DE-mRNAs targeted by the hub DE-miRNAs were predicted, and 30 core downstream genes were used to construct the solasonine-miRNA-mRNA regulatory network. miR-450b-5p was shown to be associated with the most mRNAs in this network, which suggests that it plays a crucial role in the solasonine-mediated anti-BC effect. Conclusions: A regulatory network, including solasonine, miRNAs, and mRNAs related to BC, was constructed. This network provides extensive insights into the molecular regulatory mechanisms that underlie the anti-cancer efficacy of solasonine in BC.
... During tumorigenesis the crosstalk between tumor and stromal cells drives the remodeling of ECM creating a favorable microenvironment for tumor cell growth and spread [12][13][14]. Modified tumor ECM interacts through multiple receptors, including CD44, on the cell surface of both tumor and stromal cells permitting intracellular signals that regulate cell responses and phenotype [15][16][17]. Our previous studies have demonstrated that accumulation of ECM proteoglycan versican is associated with the metastatic potential of TGCTs [18], whereas stromal staining in seminomas and reduced levels of cell surface proteoglycan syndecan-4 in tumor cells in NSGCTs are indicators of increased aggressiveness [19]. ...
Article
Full-text available
Background Testicular germ cell tumors (TGCTs) exhibit diverse biological and pathological features and are divided in two main types, seminomas and nonseminomatous germ cell tumors (NSGCTs). CD44 is a cell surface receptor, which is highly expressed in malignancies and is implicated in tumorigenesis affecting cell-matrix interactions and cell signaling. Methods and results Here, we examined the expression of CD44 in tumor cell lines and in patients’ material. We found that CD44 is over-expressed in TGCTs compared to normal tissues. Immunohistochemical staining in 71 tissue specimens demonstrated increased expression of CD44 in some patients, whereas CD44 was absent in normal tissue. In seminomas, a high percentage of tumor and stromal cells showed cytoplasmic and/or cell surface staining for CD44 as well as increased staining for CD44 in the tumor stroma was found in some cases. The increased expression of CD44 either in tumor cells or in stromal components was associated with tumor size, nodal metastasis, vascular/lymphatic invasion, and disease stage only in seminomas. The increased stromal expression of CD44 in TGCTs was positively associated with angiogenesis. Conclusions CD44 may exhibit diverse biological functions in seminomas and NSGCTs. The expression of CD44 in tumor cells as well as in tumor stroma fosters an aggressive phenotype in seminomas and should be considered in disease treatment.
... The HPV16 E6-induced downregulation of NHERF1 has been reported to promote cytoskeleton assembly and cell invasion, thereby contributing to CC development [30]. Moreover, the 'Rap1 signaling pathway' [31] and 'Proteoglycans in cancer' [32] are associated with invasion and metastasis. These findings confirm the crucial role of miR-484 in the onset and advancement of CC by participating in various oncogenic pathways. ...
Article
Full-text available
Background: MiR-484, implicated in various carcinomas, holds promise as a prognostic marker, yet its relevance to cervical cancer (CC) remains unclear. Our prior study demonstrated the Polyalthia longifolia downregulation of miR-484, inhibiting HeLa cells. This study investigates miR-484’s potential as a biomarker and therapeutic target in CC through integrated bioinformatics and an in vitro analysis. Methods: MiR-484 levels were analyzed across cancers, including CC, from The Cancer Genome Atlas. The limma R package identified differentially expressed genes (DEGs) between high- and low-miR-484 CC cohorts. We assessed biological functions, tumor microenvironment (TME), immunotherapy, stemness, hypoxia, RNA methylation, and chemosensitivity differences. Prognostic genes relevant to miR-484 were identified through Cox regression and Kaplan–Meier analyses, and a prognostic model was captured via multivariate Cox regression. Single-cell RNA sequencing determined cell populations related to prognostic genes. qRT-PCR validated key genes, and the miR-484 effect on CC proliferation was assessed via an MTT assay. Results: MiR-484 was upregulated in most tumors, including CC, with DEGs enriched in skin development, PI3K signaling, and immune processes. High miR-484 expression correlated with specific immune cell infiltration, hypoxia, and drug sensitivity. Prognostic genes identified were predominantly epidermal and stratified patients with CC into risk groups, with the low-risk group showing enhanced survival and immunotherapeutic responses. qRT-PCR confirmed FGFR3 upregulation in CC cells, and an miR-484 mimic reversed the P. longifolia inhibitory effect on HeLa proliferation. Conclusion: MiR-484 plays a crucial role in the CC progression and prognosis, suggesting its potential as a biomarker for targeted therapy.
... The extracellular matrix (ECM) plays multifaceted roles in physiological contexts and in diseases and can constantly be adapted to create a provisional matrix for tumor initiation and progression in the tumor microenvironment [5][6][7][8]. Proteoglycans (PGs), which are crucial components of the ECM, are implicated in tumorigenesis [9,10] and could serve as tumor therapeutic targets with potential application in GBM [11]. Serglycin (SRGN) is a pro-tumorigenic PG expressed and secreted by a variety of aggressive tumor cells, including GBM [12,13], breast [14][15][16], multiple myeloma [17,18] and nasopharyngeal cancer cells [19]. ...
Article
Full-text available
Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFβRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFβ signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFβRI associated with lower responsiveness to the manipulation of TGFβ/TGFβRI pathway and the regulation of pro-tumorigenic properties. Active TGFβRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1β, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.
... Consequently, high levels of HA have been identified in various cancers (such as breast, prostate, lung, and ovarian cancers) (9,10). Additionally, several clinical studies have shown that HA promotes invasion, motility, and epithelial-to-mesenchymal transition in breast cancer cells by triggering various signaling pathways and upregulating the expression of collagen-degrading enzymes (11,12). There is increasing evidence of a relationship between tumor expression of HA and poor outcomes among patients with ovarian, gastric, and breast carcinomas (13,14). ...
Preprint
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a valuable therapeutic alternative for patients with peritoneal metastases. PIPAC uses a hyaluronic acid-based gel to reduce surgically induced adhesions. The aim of this study was to evaluate the effects of the hyaluronic acid-based gel on tumor dissemination. First, we explored whether the survival of CT26 luciferase-expressing murine colonic tumor cells was correlated with the dose of HyaRegen® Gel, and we determined the half-maximal inhibitory concentration (the IC50) of the gel. Next, we performed an in vitro study of cell survival rates after gel application on day 0 (D0) and day 1 (D1). Finally, we intraperitoneally administered the gel to mice with immunocompetent BALB/c colonic peritoneal metastases (on D0, D5, D10, D14, and D18). Tumor growth was regularly monitored using a bioluminescence assay (on D11, D17, and D21). After all mice had been sacrificed on D21, the body weights and the volumes of intraperitoneal ascites were measured; the Peritoneal Carcinosis Index (PCI) and Ki-antigen 67 scores were calculated. The IC50 value was 70 µL of gel in a total volume of 100 µL. The cell survival rates on D4 were identical in the control group and the two groups that had been treated with gel on D0 and D1. The bioluminescence levels over time were similar in the gel and control groups. The PCI scores were 35.5 ± 2.89 for the control group and 36 ± 2.45 for the gel group (p = 0.8005). The mean Ki-67 index percentages were 37.28 ±1 1.75 for the control group and 34.03 ± 8.62 for the gel group (p = 0.1971). This in vitro and in vivo study using a mouse model of immunocompetent metastatic peritoneal cancer did not reveal any pro-or anti-tumoral effect of HyaRegen® Gel. These findings indicate that the gel can be used to treat PIPACs with minimal apprehension.
... HPSE is currently the only known endogenous β-glucuronidase that cleaves HS chains. Various studies have suggested that HPSE plays a crucial role in ECM remodeling via its enzymatic function [49][50][51]. These findings support the notion that HPSE plays a pivotal role in cancer progression and highlight its potential as a promising biomarker for cancer [52][53][54]. ...
Article
Full-text available
Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β-glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.
... Additionally, proteoglycans regulate the phenotype of tumor cells and angiogenesis in the tumor stroma. 134 Kanteti et al have further indicated that focal adhesion kinase plays a crucial role in determining the phenotype of tumor cells, including their survival, proliferation, migration, and invasion abilities. 135 The coagulation and complement systems are separate entities that play distinct pathophysiological roles, serving as innate defense mechanisms against external threats. ...
Article
Full-text available
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of −7.441 and −4.295 kcal/mol, correspondingly. Conclusion PLP2’s upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2’s role in glioma modulation. Our research hints at PLP2’s potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
... In the periphery, SRGN is mainly expressed in the storage granules and secretory vesicles of hematopoietic cells. It is involved in inflammation [18,19] and promotes angiogenesis in a variety of tumors [20]. In in vitro experiments, proinflammatory agents, lipopolysaccharide, and interleukin 1β (IL1β) increased the synthesis and secretion of SRGN, which is part of the inflammatory response activated by primary human endothelial cells and monocytes [19,21]. ...
Article
Full-text available
Alzheimer’s disease (AD) is the most prevalent form of dementia among elderly people worldwide. Cerebrospinal fluid (CSF) is the optimal fluid source for AD biomarkers, while serum biomarkers are much more achievable. To search for novel diagnostic AD biomarkers, we performed a quantitative proteomic analysis of CSF and serum samples from AD and normal cognitive controls (NC). CSF and serum proteomes were analyzed via data-independent acquisition quantitative mass spectrometry. Our bioinformatic analysis was based on Gene Ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. In comparison to the controls, 8 proteins were more abundant in AD CSF, and 60 were less abundant in AD CSF, whereas 55 proteins were more and 10 were less abundant in the serum samples. ATPase-associated activity for CSF and mitochondrial functions for CSF and serum were the most enriched GO terms of the DEPs. KEGG enrichment analysis showed that the most significant pathways for the differentially expressed proteins were the N-glycan biosynthesis pathways. The area under the curve (AUC) values for CSF sodium-/potassium-transporting ATPase subunit beta-1 (AT1B1), serglycin (SRGN), and thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3) were 0.867 (p = 0.004), 0.833 (p = 0.008), and 0.783 (p = 0.025), respectively. A panel of the above three CSF proteins accurately differentiated AD (AUC = 0.933, p = 0.001) from NC. The AUC values for serum probable phospholipid-transporting ATPase IM (AT8B4) and SRGN were moderate. The AUC of the CSF SRGN + serum SRGN was 0.842 (p = 0.007). These novel AD biomarker candidates are mainly associated with inflammation, ATPase activity, oxidative stress, and mitochondrial dysfunction. Further studies are needed to investigate the molecular mechanisms by which these potential biomarkers are involved in AD.
... Interestingly, GAGs have been reported to have increased abundance in tumor tissues (Theocharis and Karamanos, 2019;Wei et al., 2020). Additionally, the osmosensitive transcription factor NFAT5, which acts upstream of SGK-1, has previously been described to regulate GlcAT-1, a key enzyme for GAG biosynthesis (Hiyama et al., 2009). ...
Preprint
Full-text available
Adoptive T-cell therapy has become a powerful weapon for cancer treatment. The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is highly sensitive to the tumor microenvironment. It is therefore of considerable interest to bypass immunosuppressive signals in the tumor microenvironment and to identify factors that augment cytotoxic effector functions and ultimately tumor killing. Whether ionic signals serve as aberrant immune signals and influence the adaptive human antitumor immune response is still largely unexplored. We therefore investigated the effect of sodium on the phenotype, function and metabolic regulation of human CD8+ T cells using transcriptomic, metabolomic, high-dimensional flow cytometric and functional assays. We demonstrate a significant enrichment of sodium in solid tumors from patients with breast cancer, which leaves a transcriptomic imprint on intratumoral immune cells. Sodium chloride (NaCl) enhanced the activation state and effector functions of human CD8+ memory T cells. These functional alterations were associated with enhanced metabolic fitness, particularly increases in glycolysis, oxidative phosphorylation and overall nutrient uptake. These NaCl-induced effects translated into increased tumor cell killing in vitro and in a tumor mouse model in vivo. We therefore propose NaCl as a positive regulator of acute antitumor immunity that could be harnessed for ex vivo conditioning of adoptively transferred T cells, such as CAR T-cells.
... 47 Apart from collagen, several proteoglycans are upregulated in the TME, which provides the cancer cells with binding sites for the growth factors and cytokines to support the growth of cancer cells and induction of angiogenesis. 48 Stroma represents the surrounding tissue of the tumor, comprising fibroblasts and immune cells that are initially attracted to the tumor site. Subsequently, these cells are altered to tumor-promoting phenotypes by cytokines and signaling molecules secreted by cancer cells, which in turn helps in desmoplasia mediated by cancer-associated fibroblasts 49 (CAFs) and upregulated secretion of angiogenic factors by tumor-associated macrophages (TAMs). ...
Article
Full-text available
Three-dimensional (3D) bioprinting technologies involving photopolymerizable bioinks (PBs) have attracted enormous attention in recent times owing to their ability to recreate complex structures with high resolution, mechanical stability, and favorable printing conditions that are suited for encapsulating cells. 3D bioprinted tissue constructs involving PBs can offer better insights into the tumor microenvironment and offer platforms for drug screening to advance cancer research. These bioinks enable the incorporation of physiologically relevant cell densities, tissue-mimetic stiffness, and vascularized channels and biochemical gradients in the 3D tumor models, unlike conventional two-dimensional (2D) cultures or other 3D scaffold fabrication technologies. In this perspective, we present the emerging techniques of 3D bioprinting using PBs in the context of cancer research, with a specific focus on the efforts to recapitulate the complexity of the tumor microenvironment. We describe printing approaches and various PB formulations compatible with these techniques along with recent attempts to bioprint 3D tumor models for studying migration and metastasis, cell-cell interactions, cell-extracellular matrix interactions, and drug screening relevant to cancer. We discuss the limitations and identify unexplored opportunities in this field for clinical and commercial translation of these emerging technologies.
... GPC3 silencing mediated by siRNA resulted in a temporary inhibition of cell migration and invasion in HCC cells, while reducing proliferation and inducing apoptosis in CP-Hep cells [23]. It regulates the signaling pathway of various morphogens, including Wnts signaling [25,26], interaction with fibroblast growth factors (FGFs) [27]and Hedgehogs (Hhs) [28], bone morphogenic proteins (BMPs) [29], promotion of Epithelial-Mesenchymal Transition (EMT) [30][31][32]. Moreover, GPC3 also plays a pivotal role in IGF-signaling pathway that influences cell proliferation [33], modulates G1 cell cycle progression [34], initiates and maintains oncogenesis [35], prevents apoptosis [36]. ...
Article
Liver cancer is one of the highest causes of cancer-related deaths worldwide, and China accounts for more than half of the new cases and deaths. It’s highly malignant and progresses rapidly.
... β-catenin dysregulation results in cytoplasmic accumulation and eventual nuclear translocation which ultimately may lead to liver disease and cancer (34). In HCC, GPC3 promotes canonical Wnt signaling (1) via direct binding to Wnt3a and (2) indirectly via increased ligand binding to FZD receptor in HCC cell lines including Hep3B, ultimately leading to dysregulated cell proliferation (3,35,36). In HB, the most common pediatric liver malignancy, CTNNB1 is the most commonly mutated gene resulting in stabilized β-catenin (37,38). ...
Article
Full-text available
Glypican-3 (GPC3) is a cell-surface glycoprotein that is frequently overexpressed in hepatocellular carcinoma. GPC3 undergoes extensive post-translational modification including cleavage and glycosylation. This review focuses on the structure and function of GPC3 in liver cancer, highlighting the post-translation modification (PTM) of the tertiary and quaternary structures of GPC3 as a potential oncogenic regulatory mechanism. We propose that the function of GPC3 in normal development can vary with extensive PTM and that dysregulation of these processes leads to disease. Defining the regulatory impact of these modifications can provide a deeper understanding of the role of GPC3 in oncogenesis, epithelial-mesenchymal transition, and drug development. Through review of current literature, this paper provides a unique perspective on the role of GPC3 in liver cancer, focusing on potential regulatory mechanisms of post-translational modifications on GPC3 function at the molecular, cellular, and disease level.
... Association between the protein expression of THBS2 and VCAN and clinicopathologic parameters in 78 patients with gastric cancer.resistance, and tumor-stromal angiogenesis[25,26]. Previous relevant studies have shown that VCAN is highly expressed in various malignant tumors, such as kidney cancer[27] hepatocellular carcinoma ...
Article
Full-text available
Objective: Gastric cancer is the most common malignant tumor of the digestive system. The progression from gastritis to gastric cancer may be related to genetic factors, but the specific molecular mechanism remains unclear. Therefore, an in-depth study of the molecular mechanism of gastritis and gastric cancer is significant. Methods: We downloaded two gene profiles, GSE2669 and GSE116312, from the Gene Expression Omnibus (GEO) database. This study aims to apply bioinformatics technology to mine differentially expressed genes (DEGs), DEGs annotation, protein-protein interaction (PPI) network creation, and hub gene identification and expression between gastric cancer patients and gastritis patients. Overall survival analysis of hub genes, analysis by comparative toxicogenomics database for hub genes in gastric cancer, THBS2 and VCAN protein expression by immunohistochemistry for gastric cancer and gastritis as well as design of the biological process (BP) neural network was implemented. Results: The MSLN, SPP1, THBS2, SPARC, FN1, IGFBP7, VCAN were up-regulated in gastric carcinoma samples, while FGA was down-regulated. The protein expression of THBS2 and VCAN in gastric cancer was significantly higher than that in gastritis. VCAN protein expression was positively associated with tumor invasion (P = 0.011) and HER2 overexpression (P = 0.031). Strong correlation among THBS2, VCAN, and gastric cancer based on the BP neural network. Conclusion: THBS2 and VCAN may be potential targets for improving gastric cancer patients' diagnosis and clinical efficacy.
... The glycosaminoglycan chain of proteoglycan interacts with a variety of regulatory molecules such as growth factors and influences a variety of cellular processes associated with cancer development. There is evidence that the composition of proteoglycans changes with the development of liver cancer, and glycosaminoglycans are potential molecular targets for liver cancer [48,49]. According to the bioinformatics database, the TRP family has a significant impact on the function of proteoglycans in cancer. ...
Article
Full-text available
The liver is the main organ of metabolism in the human body, and it is easy to suffer from hepatitis, cirrhosis, liver cancer, and other diseases, the most serious of which is liver cancer. Worldwide, liver cancer is the most common and deadly malignant tumor, the third leading cause of cancer death in the world. Based on TCGA and ICGC databases, our research discovered the important role of TRPC1 in liver cancer through bioinformatics. The results showed that TRPC1 was over-expressed in hepatocellular carcinoma, and the higher the expression level of TRPC1, the worse the OS and the lower the survival rate. TRPC1 was a risk factor affecting the overall survival probability of hepatocellular carcinoma patients. By analyzing the function of the TRP family in liver cancer, TRPC1 might promote the occurrence of liver cancer by up-regulating common signal pathways in tumors such as tumor proliferation signature, and down-regulating important metabolic reactions such as retinol metabolism. In addition, TRPC1 could promote the development of liver cancer by up-regulating the expression of ABI2, MAPRE1, YEATS2, MTA3, TMEM237, MTMR2, CCDC6, AC069544.2, and NCBP2 genes. These results illustrate that TRPC1 is very valuable in the study of liver cancer.
... HA regulates the microenvironment of tumors, thus promoting their malignant phenotype. High levels of HA have been identified in breast, lung, ovarian, and prostate cancer, among others [20][21][22]. It has been experimentally demonstrated that other components of the HA signaling pathway, including hyaluronate synthases (HASs), hyaluronidase HYAL-1, and protein receptors, can also promote malignant behavior of tumor cells in vitro, in addition to tumor growth, metastatic capacity, and angiogenesis in animal models [23][24][25][26][27][28][29][30]. ...
Article
Full-text available
Hyaluronic acid (HA) is a significant glycosaminoglycan component of the extracellular matrix, playing an essential role in cell localization and proliferation. However, high levels of HA may also correlate with multidrug resistance of tumor cells, an increased tendency to metastasize, or cancer progression, and thus represent a very unfavorable prognosis for cancer patients. The purpose of this review article is to summarize the results of studies describing the relationship between HA, the main ligand of the CD44 receptor, or other components of the HA signaling pathway. In addition, we review the course of selected female malignancies, i.e., breast, cervical, endometrial, and ovarian cancer, with the main focus on the mechanisms oriented to CD44. We also analyze reports on the beneficial use of HA-containing preparations in adjuvant therapy among patients with these types of cancer. Data from the literature suggest that HA and its family members may be critical prognostic biomarkers of selected malignancies among women. Nevertheless, the results of the available studies are inconclusive, and the actual clinical significance of HA expression analysis is still quite enigmatic. In our opinion, the HA-CD44 signaling pathway should be an attractive target for future research related to targeted therapy in gynecological cancers.
... Loss of syndecan-1 expression in most epithelial tumors such as cervical, lung, head and neck, squamous cell, and esophageal cancers is associated with tumor progression and reduced patient survival (98)(99)(100)(101), suggestive of a tumor suppressive role for syndecan-1. In contrast, increased syndecan-1 expression in breast, pancreatic, ovarian, thyroid, and endometrial tumors is associated with tumor progression and poor prognosis (102). Importantly, both the core protein and the heparan sulfate chains of cell-surface or shed syndecans contribute to cancer progression (103)(104)(105). ...
Article
Full-text available
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix (ECM) also commonly occur in cancer. Cancer cells sense and respond to ECM stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer- associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
... Proteoglycans usually mediate intercellular (and also tumor cell) signal and control tumor cell properties, phenotype, and angiogenesis, and even tumor cell drug resistance. [32] We then searched the PUMED database and found that earlier studies have found a clear correlation between serum albumin levels and survival of patients with malignant tumors, who may experience poorer survival if their serum albumin water is low. [33] Protein anabolism regulated by MAPK/ERK signal pathway, chromatin silencing and fibrinolytic phylosomes is the core biological process of HGSOC, which is closely related to the long-term overall survival of OV. [34] Transcriptome sequencing showed that ECM-receptor expression was affected by Mex3a, and RNA immunoprecipitation (RIP) assays showed that Mex3a directly bound to LAMA2 mRNA, increasing LAMA2 mRNA instability and that low expression of LAMA2 mRNA inhibited lung adenocarcinoma metastasis. ...
Article
Full-text available
There is no evidence showing that the expression of procollagen C-endopeptidase enhancer (PCOLCE) is associated with human tumors, and pan-cancer analysis is not available. Based on public databases such as the cancer genome atlas, we investigated the potential role of PCOLCE expression in 33 different human tumors. PCOLCE expression in 11 tumors was significantly correlated with tumor prognosis and was a prognostic predictor for pancreatic adenocarcinoma, thymoma and CES. We also found that PCOLCE expression correlated with the immune microenvironment of tumors and the level of cancer-associated fibroblast infiltration. PCOLCE is a potential predictor of small molecule targeted drugs and immune checkpoint inhibitors. Finally, we found by enrichment analysis that PCOLCE localizes to extracellular structures and the extracellular matrix and exerts substantial effects on tumors through the PI3K-Akt and AGE-RAGE signaling pathways. We have a preliminary and relatively comprehensive understanding of the role of PCOLCE in various tumors.
... Furthermore, these complex protein-carbohydrate macromolecules play a very important role in the structure of the ECM of all body tissues [28] and largely determine their functional capabilities [29]. PGs are closely involved in the process of malignant transformation, whereby significant changes occur in their composition, content, and structure [30][31][32]. ...
Article
Full-text available
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
... Especially in malignant tumors, extensive remodeling of the tumor stroma is associated with marked alterations in proteoglycan expression and structural variability, which in turn affects tumor cell proliferation, migration and epithelial-to-mesenchymal transition [50]. These macromolecules mainly contribute to the formation of a temporary permissive matrix for tumor growth, influencing tissue organization, cell-cell and cell-matrix interactions and cell signaling, also regulating tumor stroma angiogenesis and the development of drug resistance [51]. ...
Article
Full-text available
MicroRNAs (miRNAs) can act as oncogenes or oncosuppressor genes, and their involve- ment in nearly all cancer-associated processes makes these small molecules promising diagnostic and prognostic biomarkers in cancer, as well as specific targets for cancer therapy. This study aimed to investigate the expression of 7 miRNAs (miR-18a, miR-18b, miR-22, miR-124, miR-145, miR-21, miR-146b) in formalin-fixed, paraffin-embedded canine mammary tumors (CMTs) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Twenty-six mammary samples were selected, including 22 CMTs (7 benign; 15 malignant) and 4 control samples (3 normal mammary gland and 1 case of lobular hyperplasia). Oncogenic miR-18a, miR-18b and miR-21 were significantly upregulated in malignant tumors compared with control tissues (p < 0.05). Conversely, oncosuppressor miR-146b was significantly downregulated in benign and malignant mammary tumors compared with control samples (p < 0.05) while, no group-related differences in the expression levels of miR-22, miR-124 and miR-145 were found (p > 0.05). Upregulated miRNAs found here, may regulate genes involved in receptor-mediated carcinogenesis and proteoglycan remodeling in cancer; while miRNA with reduced expression can regulate genes involved in Toll-like receptor and MAPK signaling pathways. According to the results obtained in the current study, the oncogenic and oncosuppressor miRNAs analyzed here are dysregulated in CMTs and the dysregulation of miRNA targets may lead to specific altered cellular processes and key pathways involved in carcinogenesis. Of note, since oncogenic miRNAs predicted to regulate neoplastic cell proliferation and hormonal activities, they may play an active role in neoplastic transformation and/or progression, having mechanistic and prognostic relevance in CMTs.
... Numerous signaling pathways are activated upon estrogens binding to their plasma membrane receptors (extra-nuclear signaling). For instance, E2-ERα has been implicated in activation of the IGF-1 receptor that possibly leads to activation of the MAPK signaling pathway Also, activation of ERα by estrogen activates the epidermal growth factor (EGF) receptor which depends on activation of Src kinase, G proteins and metalloproteinases that ultimately promote MAPK kinase (Barreto, Mcgovern and Garcia-segura, 2021; Fuentes and Silveyra, 2019; Karamanos, 2019 &Solar Fernandez et al., 2021). In addition, this protein kinase can phosphorylate target transcription factors, such as STATs, AP-1 or EIK-1, resulting in increased transcription activity. ...
Article
Full-text available
Estrogen hormone is one of the steroid hormones has a critical role in breast cancer etiology. It has been implicated in proliferation and differentiation of cells through its action promoting binding of its receptor to DNA, changing transcriptional expression of target genes. In addition to the classical DNA binding mechanism, estrogen can also regulate gene expression through a nongenomic mechanism associated with activation a variety of signal transduction pathways (e.g. PI3`K/AKT, ERK/MAPK, PLC/PKCs , p38/MAPK). Dysregulation of the balance between pro-apoptotic and anti-apoptotic members of the Bcl-2 family, would result in apoptosis inhibition and tumorigenesis. Also, poor responses towards hormonal therapy, radiotherapy, and chemotherapy and treatment resistance are likely caused by dysregulation of apoptosis. Importantly, E2 has been shown to prevent apoptosis, first through its action in activation of anti-apoptotic proteins like Bcl-xl and Bcl-2 in breast cells like MCF-7, T47D and ZR-75-1 or due to its metabolites independently of ER. Estrogen metabolism includes several very important pathways that can possibly induce de novo DNA mutation. These pathways include:2, &4-hydroxylation, 16 α hydroxylation and 4 hydroxyestradiol-quinone-adenine/guanine adduct depurination, which subsequently participate in DNA damage that can lead to breast cancer. Endocrine resistance is considered one of the most permanent problems that can reduce the benefits of breast cancer treatment. Alteration of microRNAs expression, polymorphisms occuring in tamoxifen metabolism, and using reduntant alternative signaling pathways, resulting in poor treatment responses of breast cancer patients and induction of endocrine resistance.Thus, most proposed therapeutic strategies will be based on a combination of drugs targeting various pathways alongside endocrine therapy that may improve the outcomes of endocrine responses in resistant breast cancer cells.
... Tumor and stromal cells -Shedding [254], increased angiogenesis [254,317], affect tumor growth [318] Syndecan-4 Normal Co-receptor for certain β1 integrins Stromal cells -Co-receptor for integrins binding fibronectin and collagen [241,319], cross-talks with integrins via intracellular signaling [242,320] ...
Chapter
Extensive evidence exists to functionally implicate stromal cancer-associated fibroblasts in tumor progression. Data from experimental cancer models has questioned the exclusive tumor-supportive function of the tumor stroma and suggested that the stroma might also act as a barrier to inhibit tumor metastasis. With consideration of this shift in dogma, we discuss the role of a specific part of the tumor stroma, the insoluble extracellular matrix (ECM), in tumor growth and spread. We summarize data from experimental tumor models on the role of fibrillar collagens, the fibronectin EDA splice form, proteoglycans and the matricellular proteins, periostin and tenascins, which are all major components of the tumor stroma. In addition to the composition of the ECM being able to regulate tumorigenesis via integrin-mediated signaling, recent data indicate that the stiffness of the ECM also significantly impacts tumor growth and progression. These two properties add to the complexity of tumor-stroma interactions and have significant implications for gene regulation, matrix remodeling, and tumor metastasis. The role of the tumor stroma is thus extremely complex and highlights the importance of relating findings to tumor-type-, tissue-, and stage-specific effects in addition to considering inter-tumor and intra-tumor heterogeneity. Further work is needed to determine the relative contribution of different ECM proteins to the tumor-supporting and tumor-inhibiting roles of the tumor stroma. Schematic illustration of the role of extracellular matrix in the tumor microenvironment. The schematic summarizes some of the effects seen for extracellular matrix (ECM) molecules in different forms of cancer. Cancer-associated fibroblasts (CAFs) play a major role in ECM synthesis and ECM reorganization
... It has been reported that chlorpyrifos could induce necroptosis in fish liver cells by regulating the ROS/PTEN/PI3K/AKT axis (Wang et al., 2020). Proteoglycans consist a large proportion of the extracellular matrix (ECM) (Theocharis and Karamanos, 2019), and dysregulation of ECM dynamics leads to the development of cancer (Walker et al., 2018). Cell adhesion contributed a lot to cancer metastasis (Khalili and Ahmad, 2015), and focal adhesion kinase (FAK) was recognized as an anti-cancer target (Dawson et al., 2021). ...
Article
Full-text available
Necroptosis, as a form of programmed cell death, is involved in many physiological and pathological processes. However, its role in cancer progression and therapeutic response remains controversial. Colon cancer is one of the leading causes of cancer death and patients’ response to immune checkpoint blockade vary to a large degree. In this study, we investigated necroptosis related genes (NRGs) alterations in colon cancer by bioinformatics analysis. Colon cancer patients were classified into two subtypes with distinct clinical and molecular features based on NRGs. After finding differentially expressed genes and lasso regression, a prognostic model based on four necroptosis signature genes was constructed. The necroptosis signature was also a good predictor in the field of chemotherapy and immunotherapy in colon cancer. Altogether, this study illustrates the relationship between necroptosis and colon cancer, and establishes a novel scoring method to predict prognosis and therapeutic response in colon cancer patients.
... [1,2] PGs are crucial for cellular function and recognition, [3][4][5] and are associated with various immunologic and neurologic diseases. [6][7][8][9][10][11][12][13][14] The general structure of PGs consists of a core trisaccharide that connects the protein to glycosaminoglycan (GAG) chains. The xylose on the reducing end of the proteoglycan core glycan is bound to the protein through a glycosidic linkage to serine. ...
Article
Full-text available
Short proteoglycan fragments are of great importance for biochemical research. The solid‐phase synthesis of such glycopeptides relies on excessive use of glycosylated amino acids, extended reaction times, and additional post‐assembly deprotection protocols. We employed high‐shear mixing for expedient and equimolar O‐glycopeptide assembly. We further developed a stirring‐based deprotection on the solid support, thus completing the synthesis of a glycopeptide library in a minimal amount of time and purification hurdles.
... Reproduced from (Theocharis et al., 2016). helical configuration and chelating capability (Garantziotis & Savani, 2019;Jenkins et al., 2018;Mende et al., 2016;Theocharis & Karamanos, 2019). Readers are referred to excellent reviews on the structure of different proteoglycans (Iozzo & Schaefer, 2015;Karamanos et al., 2018). ...
Article
Proteoglycans consist of core proteins and one or more covalently-linked glycosaminoglycan chains. They are structurally complex and heterogeneous. Proteoglycans bind to cell surface receptors, cytokines, growth factors and have strong affinity for collagen fibrils. Together with their complex spatial structures and different charge densities, proteoglycans are directly or indirectly involved in biomineralization. The present review focused on the potential mechanisms of proteoglycans-mediated biomineralization. Topics covered include the ability of proteoglycans to influence the proliferation and differentiation of odontoblasts and osteoblasts through complex signaling pathways, as well as regulate the aggregation of collagen fibrils and mineral deposition. The functions of proteoglycans in mineralization regulation and biomimetic properties render them important components in bone tissue engineering. Hence, the integrated impact of proteoglycans on bone formation was also succinctly deliberated. The potential of proteoglycans to function therapeutic targets for relieving the symptoms of ectopic mineralization and mineralization defects was also comprehensively addressed.
Article
Full-text available
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
Article
Full-text available
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Article
Full-text available
Heparan sulfate proteoglycans (HSPGs) regulate a wide range of biological activities in both physiological and pathological conditions. Altered expression or deregulated function of HSPGs and their heparan sulfate (HS) chains significantly contribute to carcinogenesis as well and crucially depends on the functioning of the complex system of HS biosynthetic/modifying enzymes termed as “GAGosome”. Here, we aimed at investigating the expression profile of the system in a cell culture model of stroma-epithelial crosstalk and searching for transcription factors potentially related to the regulation of expression of the genes involved. Coculture of BjTERT-fibroblasts with normal PNT2 human prostate epithelial cells resulted in significant downregulation (2-4-fold) of transcriptional activity of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) in both cell types, whereas coculture with prostate cancer cells (LNCaP, PC3, DU145) demonstrated no significant interchanges. Human Transcription Factor RT² Profiler PCR array and manual RT-PCR verification supposed FOS, MYC, E2F, SRF, NR3C1 as potential candidates for regulation and/or coordination of HS biosynthesis. Taken together, transcriptional activity of HS biosynthetic system in normal fibroblasts and prostate epithelial cells during their coculture might be controlled by their intercellular communication, reflecting of adaptation of these cells to each other. The regulation is attenuated or abrogated if normal fibroblasts interact with prostate cancer cells making the cancer cells independent of the limiting effects of fibroblasts, thus contributing to possibility of unlimited growth and progression. Overall, these data demonstrate an ability of cell-cell interactions to affect transcriptional activity of HS biosynthesis-involved genes.
Article
Full-text available
Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with the ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, it is demonstrated that PGs are heavily expressed in lung adenocarcinoma (LUAD) patients in correlation with invasive phenotype and poor prognosis. A bioengineered human lung tumor model that recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density, and porosity, is developed. This model reveals that increased sulfation stimulates extensive proliferation, epithelial‐mesenchymal transition (EMT), and stemness in cancer cells. The focal adhesion kinase (FAK)‐phosphatidylinositol 3‐kinase (PI3K) signaling axis is identified as a mediator of sulfation‐induced molecular changes in cells upon activation of a distinct set of RTKs within tumor‐mimetic hydrogels. The study shows that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG‐rich patient tumors by employing integrative omics and network modeling approaches.
Article
Full-text available
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers–predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Article
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, i.e., to facilitate functional and mechanistic studies. However, a number of studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Article
Full-text available
Bladder cancer (BC) is the 10th most common malignancy worldwide, with an estimated 573,000 new cases and 213,000 deaths in 2020. Available therapeutic approaches are still unable to reduce the incidence of BC metastasis and the high mortality rates of BC patients. Therefore, there is a need to deepen our understanding of the molecular mechanisms underlying BC progression to develop new diagnostic and therapeutic tools. One such mechanism is protein glycosylation. Numerous studies reported changes in glycan biosynthesis during neoplastic transformation, resulting in the appearance of the so-called tumor-associated carbohydrate antigens (TACAs) on the cell surface. TACAs affect a wide range of key biological processes, including tumor cell survival and proliferation, invasion and metastasis, induction of chronic inflammation, angiogenesis, immune evasion, and insensitivity to apoptosis. The purpose of this review is to summarize the current information on how altered glycosylation of bladder cancer cells promotes disease progression and to present the potential use of glycans for diagnostic and therapeutic purposes.
Article
Full-text available
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non–small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Article
Background Circular RNAs (circRNAs) are non-coding RNAs that have essential regulatory roles in the development of various tumors. This study explored whether circRNAs are involved in the progression of papillary thyroid carcinoma (PTC).Methods Differentially expressed circRNAs (DECs) in four pairs of PTC and matched normal thyroid tissues were screened using a circRNA microarray. The potential functions of dysregulated circRNAs were predicted by bioinformatic analyses. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to determine hsa_circ_0082003 expression in 80 pairs of PTC and matched normal thyroid tissues. Cell counting kit-8, colony formation, wound healing, and Transwell assays were performed to evaluate the biological functions of hsa_circ_0082003 in PTC cells. The role of hsa_circ_0082003 in PTC tumorigenesis in vivo was validated in nude mice.ResultsIn total, 3150 DECs (2317 upregulated and 833 downregulated) were identified. Pathway enrichment analyses indicated that the dysregulated circRNAs may play roles in PTC development. RT-qPCR validation demonstrated that hsa_circ_0082003 expression was significantly increased in PTC tissues and correlated with poor clinicopathological parameters. Receiver operating characteristic curve analysis showed that hsa_circ_0082003 had good performance for diagnosing PTC and judging whether it was accompanied by lymph node metastasis. Knockdown of hsa_circ_0082003 inhibited PTC cell proliferation, migration, and invasion. Tumor formation assays in vivo showed that downregulation of hsa_circ_0082003 significantly suppressed the growth of PTC.Conclusion Hsa_circ_0082003 may serve as a novel diagnostic biomarker and potential therapeutic target for PTC.
Article
Cancer immunoediting progresses through elimination, equilibrium and escape. Each of these phases is characterized by breaching, remodeling and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu towards anti-cancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Article
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Chapter
Cancer propagation and progression are associated with remarkable remodeling of the extracellular microenvironment with the formation of a permissive matrix for tumor growth, enriched in inflammatory mediators and matrix-degrading enzymes. Proteoglycans, which represent major structural and functional extracellular matrix components, play pivotal roles by affecting tissue organization, cell–matrix interactions, cell signaling, and, ultimately, cell behavior in physiological conditions as well as during cancer development and progression. In this respect, the proteolytic activity in tumor stroma liberates bioactive fragments, which can be detected in serum and may be useful as diagnostic and prognostic markers. Furthermore, since cell surface proteoglycans are specifically expressed by cancer cells, as in the case of glypican-3 in hepatocellular carcinoma, they can represent potential promising targets for immunotherapy. This chapter reviews and critically addresses the major clinical literature and provides an overview of the significance of circulating proteoglycans (PGs) and glycosaminoglycans (GAGs), especially their soluble forms originating from the cell surface heparan sulfate proteoglycans syndecans and glypicans, in both prognosis and diagnosis of various malignancies responsible for high mortality and disability, including hepatocellular carcinoma, multiple myeloma, breast cancer, and renal cell carcinoma.
Article
Full-text available
Background : As most colorectal cancers (CRC) develop from villous adenomas, studying alterations in gene expression profiles across the colorectal adenoma–dysplasia–carcinoma sequence may yield potential biomarkers of disease progression. Methods : Total RNA was extracted, amplified, and biotinylated from colonic biopsies of 15 patients with CRC, 15 with villous adenoma and 8 normal controls. Gene expression profiles were evaluated using HGU133Plus2.0 microarrays and disease progression associated data were validated with RT-PCR. The potential biomarkers were also tested at the protein level using tissue microarray samples of 103 independent and 16 overlapping patients. Results : 17 genes were validated to show sequentially altered expression at mRNA level through the normal–adenoma–dysplasia–carcinoma progression. Prostaglandin-D2 receptor (PTGDR) and amnionless homolog (AMN) genes revealed gradually decreasing expression while the rest of 15 genes including osteonectin, osteopontin, collagen IV–alpha 1, biglycan, matrix GLAprotein, and von Willebrand factor demonstrated progressively increasing expression. Similar trends of expression were confirmed at protein level for PTGDR, AMN, osteopontin and osteonectin. Conclusion : Downregulated AMN and PTGDR and upregulated osteopontin and osteonectin were found as potential biomarkers of colorectal carcinogenesis and disease progression to be utilized for prospective biopsy screening both at mRNA and protein levels. Gene alterations identified here may also add to our understanding of CRC progression.
Article
Full-text available
Glypican 5 (GPC5) belongs to the family of heparan sulfate proteoglycans (HSPGs). It was initially known as a regulatorof growth factors and morphogens. Recently, there have been reports on its correlation with the tumorigenic process in the development of some cancers. However, little is known about its precise role in prostate cancer (PCa). In the present study, we explored the expression pattern and biological functions of GPC5 in PCa cells. Our results showed that GPC5 was lowly expressed in PCa cell lines. Up-regulation of GPC5 significantly inhibited PCa cell proliferation and invasion in vitro as well as attenuated tumor growth in vivo. We also found that overexpression of GPC5 inhibited epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling activation, which was mediated by Sp1. Taken together, we suggested GPC5 as a tumor suppressor in PCa and provided promising therapeutic strategies for PCa.
Article
Full-text available
The heparan sulfate-degrading enzyme heparanase promotes the progression of many cancers by driving tumor cell proliferation, metastasis and angiogenesis. Heparanase accomplishes this via multiple mechanisms including its recently described effect on enhancing biogenesis of tumor exosomes. Because we recently discovered that heparanase expression is upregulated in myeloma cells that survive chemotherapy, we were prompted to investigate the impact of anti-myeloma drugs on exosome biogenesis. When myeloma cells were exposed to the commonly utilized anti-myeloma drugs bortezomib, carfilzomib or melphalan, exosome secretion by the cells was dramatically enhanced. These chemotherapy-induced exosomes (chemoexosomes) have a proteome profile distinct from cells not exposed to drug including a dramatic elevation in the level of heparanase present as exosome cargo. The chemoexosome heparanase was not found inside the chemoexosome, but was present on the exosome surface where it was capable of degrading heparan sulfate embedded within an extracellular matrix. When exposed to myeloma cells, chemoexosomes transferred their heparanase cargo to those cells, enhancing their heparan sulfate degrading activity and leading to activation of ERK signaling and an increase in shedding of the syndecan-1 proteoglycan. Exposure of chemoexosomes to macrophages enhanced their secretion of TNF-α, an important myeloma growth factor. Moreover, chemoexosomes stimulated macrophage migration and this effect was blocked by H1023, a monoclonal antibody that inhibits heparanase enzymatic activity. These data suggest that anti-myeloma therapy ignites a burst of exosomes having a high level of heparanase that remodels extracellular matrix and alters tumor and host cell behaviors that likely contribute to chemoresistance and eventual patient relapse. Summary: We find that anti-myeloma chemotherapy dramatically stimulates secretion of exosomes and alters exosome composition. Exosomes secreted during therapy contain high levels of heparanase on their surface that can degrade ECM and also can be transferred to both tumor and host cells, altering their behavior in ways that may enhance tumor survival and progression.
Article
Full-text available
The syndecan family of heparan sulfate proteoglycans contribute to cell adhesion and communication by serving as co-receptors for cell signaling and extracellular matrix molecules. Syndecan-2 is located at the cell surface, and we previously reported that it induces matrix metalloproteinase-7 (MMP-7) expression in colon cancer cells. However, the underlying regulatory mechanisms are unknown. Here, we report that over-expression of syndecan-2 in HT-29 colon cancer cells increases the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) in parallel with upregulated MMP-7 expression, but a syndecan-2 mutant lacking the cytoplasmic domain showed significant reductions in these effects. Consistent with this observation, FAK inhibition via FAK-related nonkinase expression or inhibition of ERK with the ERK1/2 inhibitor SCH772984 diminished the syndecan-2-mediated upregulation of MMP-7. Activation of protein kinase C (PKC) enhanced syndecan-2-mediated MMP-7 expression, whereas inhibition of PKC had the opposite effect. Of note, the exogenous expression of syndecan-2 triggered localization of PKCγ to the membrane. Expression of syndecan-2 harboring a phospho-mimetic (S198E) mutation of the variable region of the cytoplasmic domain enhanced MMP-7 expression and FAK phosphorylation. Finally, experimental supression of shedding of the syndecan-2 extracellular domain did not significantly affect the syndecan-2-mediated upregulation of MMP-7 in the early period after syndecan-2 over-expression. Taken together, these findings suggest that syndecan-2's cytoplasmic domain upregulates MMP-7 expression in colon cancer cells via PKCγ-mediated activation of FAK/ERK signaling.
Article
Full-text available
The widespread application of high-throughput sequencing methods is resulting in the identification of a rapidly growing number of novel gene fusions caused by tumour-specific chromosomal rearrangements, whose oncogenic potential remains unknown. Here we describe a strategy that builds upon recent advances in genome editing and combines ex vivo and in vivo chromosomal engineering to rapidly and effectively interrogate the oncogenic potential of genomic rearrangements identified in human brain cancers. We show that one such rearrangement, an microdeletion resulting in a fusion between Brevican (BCAN) and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1), is a potent oncogenic driver of high-grade gliomas and confers sensitivity to the experimental TRK inhibitor entrectinib. This work demonstrates that BCAN-NTRK1 is a bona fide human glioma driver and describes a general strategy to define the oncogenic potential of novel glioma-associated genomic rearrangements and to generate accurate preclinical models of this lethal human cancer.
Article
Full-text available
Patients with triple-negative breast cancers (TNBC) are at a high risk for a recurrent or metastatic disease, and the molecular mechanisms associated with this risk are unclear. Proteoglycan serglycin (SRGN) proteins are involved in tumor metastasis, but their role in TNBC has not yet been elucidated. This study investigates the SRGN gene expression and how it regulates TGFβ2 and the downstream signaling of TGFβ2 in TNBC cells and tissues. Our results show that SRGN mRNA and protein expression levels were significantly higher in TNBC cell lines and tumor tissues than that in non-TNBC cells and tissues. We inhibited SRGN expression and protein secretion using shRNA and we observed this inhibited the invasive motility of TNBC cancer cells in vitro and metastasis of TNBC cancer cells in vivo. SRGN protein treatment increased the expression and secretion of transforming growth factor-β2 (TGFβ2) by activating CD44/CREB1 signaling and promoted epithelial-to-mesenchymal transition in TNBC cells. Moreover, TGFβ2 treatment increased the mRNA and protein expression of the SRGN gene by activating Smad3 to target the SRGN relative promoter domain in TNBC cells. Our findings demonstrate that SRGN interacts with TGFβ2 which regulates TNBC metastasis via the autocrine and paracrine routes. SRGN could serve as a potential target for development of agents or therapeutics for the TNBC.
Article
Full-text available
The purpose of our study is to clarify the effect of microRNA-129-5p in the progression of human gastric cancer cells by regulating SPOCK1. The expression of microRNA-129-5p and SPOCK1 was tested by quantitative real-time polymerase chain reaction in tissues and cell lines. We validated the targeted relationship between microRNA-129-5p and SPOCK1 by dual luciferase reporter gene assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, flow cytometry, transwell, and wound scratch assays were used to analyze the effects of microRNA-129-5p on SGC-7901 cell viability, proliferation, cell cycle and apoptosis, invasiveness, and migration. MicroRNA-129-5p was downregulated while SPOCK1 was upregulated in gastric cancer tissues and cell lines. The result of luciferase reporter gene assay demonstrated that microRNA-129-5p can target SPOCK1 by binding to the 3′untranslated region. The overexpression of microRNA-129-5p or the inhibition of SPOCK1 inhibited SGC-7901 viability, proliferation, migration, and invasion while promoted cell cycle arrest in G0/G1 stage and cell apoptosis. Our results suggested that microRNA-129-5p could directly specifically suppress SPOCK1, which might be one of the potential mechanisms in inhibiting cell processes including viability, proliferation, cell mitosis, migration, and invasiveness of gastric cancer cells.
Article
Full-text available
We previously demonstrated that pancreatic stellate cells within pancreatic ductal adenocarcinoma (PDAC) stroma secrete lumican and its presence is associated with prolonged survival of patients with localized PDAC. Here, we observed that extracellular lumican decreases PDAC tumour cell growth in xenograft and syngeneic orthotopic animal models, and induces growth inhibition of low-passage human PDAC cells in a species-specific manner. PDAC cells grown in variant culture conditions and exposed to extracellular lumican display typical characterizations of cancer cell in a quiescent state, such as growth inhibition, apoptosis, G0/G1 arrest and chemoresistance. Importantly, extracellular lumican is associated with diminished ERK1/2 phosphorylation and increased p38 phosphorylation within PDAC cells. We further demonstrated that extracellular lumican physically binds with EGFR to trigger EGFR internalization and downregulation of EGFR and its downstream signal molecule ERK. Lumican enhances casitas B-lineage lymphoma expression, which stabilized the TGFβ Type II receptor sensitizing PDAC cells to TGFβ-mediated activation of p38 and SMAD signals. These provide a mechanism for the shift in signalling and phenotypic changes we observed after prolonged exposure to lumican. Together, our findings demonstrate that stromal lumican restrains PDAC cell growth through mediating cell entry into a quiescent state.Oncogene advance online publication, 22 May 2017; doi:10.1038/onc.2017.125.
Article
Full-text available
There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activities of the GPC3/CD3 BiTE were evaluated against various HCC cell lines. The GPC3/CD3 BiTE could efficiently mediate the T cell killing of GPC3-positive HCC in vitro, which was dependent on GPC3 expression on the surface of HCC cells. Moreover, our study indicates that, in the presence of the GPC3/CD3 BiTE, T cells could efficiently destroy GPC3-positive human HCC cells in vitro and in vivo. Additionally, our study further proved that GPC3 is not expressed in normal tissues. Thus, GPC3 may be a cancer-specific antigen. Collectively, these findings suggest that this anti-GPC3 BiTE might be a promising anti-tumor reagent for patients with GPC3-positive HCC.
Article
Full-text available
Background One prominent event associated with colorectal adenoma-to-carcinoma progression is genomic instability. Approximately 85% of colorectal cancer cases exhibit chromosomal instability characterized by accumulation of chromosome copy number aberrations (CNAs). Adenomas with gain of chromosome 8q, 13q, and/or 20q are at high risk of progression to cancer. Tumor progression is also associated with expansion of the extracellular matrix (ECM) and the activation of non-malignant cells within the tumor stroma. The glycoproteins versican and lumican are overexpressed at the mRNA level in colon carcinomas compared to adenomas, and are associated with the formation of tumor stroma. Purpose The aim of this study was to characterize versican and lumican protein expression in tumor progression and investigate their association with CNAs commonly associated with adenoma-to-carcinoma progression. Methods Tissue microarrays were constructed with colon adenomas and carcinomas that were characterized for MSI-status and DNA copy number gains of chromosomes 8q, 13q and 20q. Sections were immunohistochemically stained for lumican and versican. Protein expression levels were evaluated using digitized slides, and scores were finally dichotomized into a positive or negative score per sample. Results Lumican and versican expression were both observed in neoplastic cells and in the tumor stroma of colon adenomas and carcinomas. Lumican expression was more frequently present in epithelial cells of carcinomas than adenomas (49% versus 18%; P = 0.0001) and in high-risk adenomas and carcinomas combined compared to low-risk adenomas (43% versus 16%; P = 0.005). Versican staining in the tumor stroma was more often present in high-risk adenomas combined with carcinomas compared to low-risk adenomas (57% versus 36%; P = 0.03) and was associated with the presence of gain of 13q (71% versus 44%; P = 0.04). Conclusion Epithelial lumican and stromal versican protein expression are increased during colorectal adenoma-to-carcinoma progression.
Article
Full-text available
Small leucine-rich proteoglycans are components of extracellular matrix that regulates neoplastic transformation. Among small leucine rich proteoglycans, Decorin, Biglycan and Lumican are most commonly implicated markers, and their expression is well studied in various malignancies. In this novel study, we have collectively evaluated expression of these three molecules in urothelial carcinoma of bladder. Thirty patients of confirmed untreated bladder cancer, 30 healthy controls for blood and 30 controls for adjacent non-tumour tissue were enrolled. Blood was collected from all subjects and tumour/adjacent normal tissue was obtained from the patients. Circulatory levels were estimated by enzyme-linked immunosorbent assay, relative messenger RNA expression by quantitative polymerase chain reaction and protein expression by immunohistochemistry and western-blotting. Circulatory levels of Biglycan (p = 0.0038) and Lumican (p < 0.0001) were significantly elevated, and that of Decorin (p < 0.0001) was significantly reduced in patients as compared with controls. Protein expression by immunohistochemistry and western-blotting showed elevated expression of Lumican and Biglycan and lower expression of Decorin in urothelial carcinoma of bladder. Quantitative polymerase chain reaction for messenger RNA expression from tissue specimens revealed significantly higher expression of Biglycan (p = 0.0008) and Lumican (p = 0.01) and lower expression of Decorin (p < 0.0001) in urothelial carcinoma of bladder. Out of all molecules receiver operating characteristic curve showed that the 0.207 ng/ml cut-off of serum Lumican provided optimum sensitivity (90.0%) and specificity (90.0%). Significant alteration of matrix small leucine-rich proteoglycans in urothelial carcinoma of bladder was observed. Higher expression of Lumican in Bladder cancer patients with the cut-off value of highest optimum sensitivity and specificity shows its importance as a potential non-invasive marker for early detection of UBC following further validation in large patient cohort.
Article
Full-text available
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in humans, with a 5-year survival rate of <5%. Recently, glypican-1 (GPC1)-expressing circulating exosomes were found to be a promising diagnostic tool for PDAC. However, the aberrant expression of GPC1 has not been systematically evaluated in large-scale clinical samples of PDAC. Here, we performed a comprehensive analysis of GPC1 mRNA and protein expression features. Included in this study were 178 PDAC patients from the cancer genome atlas (TCGA) and 186 subjects whose tissues were used in immunohistochemical staining assays. We demonstrated that GPC1 mRNA was silenced in normal pancreata; however, it was re-expressed in PDAC tissues probably because of the promoter hypomethylation. The GPC1 protein was barely expressed in the normal and adjacent noncancerous pancreata. In tumor tissues, 59.7% (111/186) of the detected samples showed positive expression. Notably, GPC1 was elevated in 63.6% (34/55) of early stage cases. High levels of GPC1 were associated with poorer differentiation and larger tumor diameters. Kaplan-Meier analysis showed a significant difference in overall survival between the groups categorized by GPC1 expression (P = 0.0028). Multivariate analyses indicated that GPC1 was a significant risk factor for poor overall survival with a 1.82-fold increase in the hazard ratio (P = 0.0022). In conclusion, during pancreatic tumorigenesis, GPC1 was ectopically expressed and served as an independent poor prognostic factor. Our findings highlighted the alluring prospect of GPC1 as an early diagnostic and prognostic marker as well as a therapeutic target for PDAC.
Article
Full-text available
Lumican is a small leucine-rich proteoglycan that has been shown to contribute in several physiological processes, but also to exert anticancer activity. On the other hand, it has been recently shown that knockdown of the estrogen receptor α (ERα) in low invasive MCF-7 (ERα+) breast cancer cells and the suppression of ERβ in highly aggressive MDA-MB-231 (ERβ+) cells significantly alter the functional properties of breast cancer cells and the gene expression profile of matrix macromolecules related to cancer progression and cell morphology. In this report, we evaluated the effects of lumican in respect to the ERs-associated breast cancer cell behaviour, before and after suppression of ERs, using scanning electron and confocal microscopies, qPCR and functional assays. Our data pinpointed that lumican significantly attenuated cell functional properties, including proliferation, migration and invasion. Furthermore, it modified cell morphology, inducing cell-cell junctions, evoked EMT/MET reprogramming and suppressed the expression of major matrix effectors (matrix metalloproteinases and EGFR) implicated in breast cancer progression. The effects of lumican were found to be related to the type of breast cancer cells and the ERα/β type. These data support the anticancer activity of lumican and open a new area for the pharmacological targeting of the invasive breast cancer.
Article
Full-text available
Significance By culturing a human colorectal cancer (CRC) cell line (HCA-7) in 3D, we have generated two cell lines (CC and SC) with distinct morphological, genetic, biochemical, and functional properties. Using this 3D system, we have discovered that increased tyrosine phosphorylation of MET and RON results in cetuximab resistance in the SC cell line that can be overcome by addition of the dual MET/RON tyrosine kinase inhibitor, crizotinib. We have also identified that increased epithelial, but not stromal, versican staining correlates with reduced survival in a clinically annotated CRC tissue microarray.
Article
Full-text available
Background Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC. Methods We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests. ResultsOur data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling. Conclusions Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC.
Article
Full-text available
Serglycin is an intracellular proteoglycan with a unique ability to adopt highly divergent structures by glycosylation with variable types of glycosaminoglycans (GAGs) when expressed by different cell types. Serglycin is overexpressed in aggressive cancers suggesting its protumorigenic role. In this study, we explored the expression of serglycin in human glioma and its correlation with survival and immune cell infiltration. We demonstrate that serglycin is expressed in glioma and that increased expression predicts poor survival of patients. Analysis of serglycin expression in a large cohort of low- and high-grade human glioma samples reveals that its expression is grade dependent and is positively correlated with mast cell (MC) infiltration. Moreover, serglycin expression in patient-derived glioma cells is significantly increased upon MC co-culture. This is also accompanied by increased expression of CXCL12, CXCL10, as well as markers of cancer progression, including CD44, ZEB1 and vimentin. In conclusion, these findings indicate the importance of infiltrating MCs in glioma by modulating signaling cascades involving serglycin, CD44 and ZEB1. The present investigation reveals serglycin as a potential prognostic marker for glioma and demonstrates an association with the extent of MC recruitment and glioma progression, uncovering potential future therapeutic opportunities for patients.
Article
Full-text available
We previously discovered that systemic delivery of decorin for treatment of breast carcinoma xenografts induces the paternally expressed gene 3 (Peg3), an imprinted gene encoding a zinc finger transcription factor postulated to function as a tumor suppressor. Here we found that de novo expression of Peg3 increased Beclin 1 promoter activity and protein expression. This process required the full-length Peg3 as truncated mutants lacking either the N-terminal SCAN domain or the zinc fingers failed to translocate to the nucleus and promote Beclin 1 transcription. Importantly, overexpression of Peg3 in endothelial cells stimulated autophagy and concurrently inhibited endothelial cell migration and evasion from a 3D matrix. Mechanistically, we found that Peg3 induced the secretion of the powerful angiostatic glycoprotein, Thrombospondin-1, independently of Beclin 1 transcriptional induction. Thus, we provide a new mechanism whereby Peg3 can simultaneously evoke autophagy in endothelial cells and attenuate angiogenesis.
Article
Full-text available
Follicular dendritic cell (FDC)-sarcoma is a rare neoplasm with morphologic and phenotypic features of FDCs. It shows an extremely heterogeneous morphology, therefore, its diagnosis relys on the phenotype of tumor cells. Aim of the present study was the identification of new specific markers for FDC-sarcoma by whole transcriptome sequencing (WTS). Candidate markers were selected based on gene expression level and biological function. Immunohistochemistry was performed on reactive tonsils, on 22 cases of FDC-sarcomas and 214 control cases including 114 carcinomas, 87 soft tissue tumors, 5 melanomas, 5 thymomas and 3 interdigitating dendritic cell sarcomas. FDC secreted protein (FDCSP) and Serglycin (SRGN) proved to be specific markers of FDC and related tumor. They showed better specificity and sensitivity values than some well known markers used in FDC sarcoma diagnosis (specificity: 98.6%, and 100%, respectively; sensitivity: 72.73% and 68.18%, respectively). In our cohorts CXCL13, CD21, CD35, FDCSP and SRGN were the best markers for FDC-sarcoma diagnosis and could discriminate 21/22 FDC sarcomas from other mesenchymal tumors by linear discriminant analysis. In summary, by WTS we identified two novel FDC markers and by the analysis of a wide cohort of cases and controls we propose an efficient marker panel for the diagnosis of this rare and enigmatic tumor.
Article
Full-text available
Background: Activated protein C/endothelial protein C receptor (APC/EPCR) axis is physiologically involved in anticoagulant and cytoprotective activities in endothelial cells. Emerging evidence indicates that EPCR also plays a role in breast stemness and human tumorigenesis. Yet, its contribution to breast cancer progression and metastasis has not been elucidated. Methods: Transcriptomic status of EPCR was examined in a cohort of 286 breast cancer patients. Cell growth kinetics was evaluated in control and EPCR and SPARC/osteonectin, Cwcv, and kazal-like domains proteoglycan (SPOCK1/testican 1) silenced breast cancer cells in 2D, 3D, and in co-culture conditions. Orthotopic tumor growth and lung and osseous metastases were evaluated in several human and murine xenograft breast cancer models. Tumor-stroma interactions were further studied in vivo by immunohistochemistry and flow cytometry. An EPCR-induced gene signature was identified by microarray analysis. Results: Analysis of a cohort of breast cancer patients revealed an association of high EPCR levels with adverse clinical outcome. Interestingly, EPCR knockdown did not affect cell growth kinetics in 2D but significantly reduced cell growth in 3D cultures. Using several human and murine xenograft breast cancer models, we showed that EPCR silencing reduced primary tumor growth and secondary outgrowths at metastatic sites, including the skeleton and the lungs. Interestingly, these effects were independent of APC ligand stimulation in vitro and in vivo. Transcriptomic analysis of EPCR-silenced tumors unveiled an effect mediated by matricellular secreted proteoglycan SPOCK1/testican 1. Interestingly, SPOCK1 silencing suppressed in vitro 3D growth. Moreover, SPOCK1 ablation severely decreased orthotopic tumor growth and reduced bone metastatic osteolytic tumors. High SPOCK1 levels were also associated with poor clinical outcome in a subset breast cancer patients. Our results suggest that EPCR through SPOCK1 confers a cell growth advantage in 3D promoting breast tumorigenesis and metastasis. Conclusions: EPCR represents a clinically relevant factor associated with poor outcome and a novel vulnerability to develop combination therapies for breast cancer patients.
Article
Full-text available
Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation.
Article
Full-text available
IGF-IR is highly associated with the behaviour of breast cancer cells. In ERα-positive breast cancer, IGF-IR is present at high levels. In clinical practice, prolonged treatment with anti-estrogen agents results in resistance to the therapy with activation of alternative signaling pathways. Receptor Tyrosine Kinases, and especially IGF-IR, have crucial roles in these processes. Here, we report a nodal role of IGF-IR in the regulation of ERα-positive breast cancer cell aggressiveness and the regulation of expression levels of several extracellular matrix molecules. In particular, activation of IGF-IR, but not EGFR, in MCF-7 breast cancer cells results in the reduction of specific matrix metalloproteinases and their inhibitors. In contrast, IGF-IR inhibition leads to the depletion by endocytosis of syndecan-4. Global important changes in cell adhesion receptors, which include integrins and syndecan-4 triggered by IGF-IR inhibition, regulate adhesion and invasion. Cell function assays that were performed in MCF-7 cells as well as their ERα-suppressed counterparts indicate that ER status is a major determinant of IGF-IR regulatory role on cell adhesion and invasion. The strong inhibitory role of IGF-IR on breast cancer cells aggressiveness for which E2-ERα signaling pathway seems to be essential, highlights IGF-IR as a major molecular target for novel therapeutic strategies.
Article
Full-text available
Glypican-3 (GPC3) is a glycosylphosphatidylinositol-anchored cell surface protein overexpressed in hepatocellular carcinoma(HCC), and its overexpression is associated with poor prognosis. The diagnostic potential of GPC3 as a serum marker has been reported. In the present study, we evaluated the usefulness of plasma GPC3 as a predictor for recurrence after surgical resection in stage I HCC patients by newly developed an enzyme-linked immunosorbent assay (ELISA) system. Current study demonstrated that high levels of preoperative plasma GPC3 patients tended to experience postoperative recurrence. On the other hand, pre- and postoperative plasma GPC3 positivity of non-recurrence patients was very low. Moreover, even after surgery, approximately half of patients who experienced recurrence were positive for plasma GPC3. Postoperative plasma GPC3 positivity was significantly correlated with worse recurrence-free survival. Immuohistochemical analysis also showed positive rate of GPC3-expression in HCC was higher in recurrence patients than in non-recurrence patients. These results suggested that both pre- and postoperative plasma GPC3 levels may be accurate predictors for recurrence after curative resection of early-stage HCC. It should be noted that the current study only examined a small number of cases; thus, a larger sample size is necessary to validate GPC3 as a predictor for HCC recurrence.
Article
Full-text available
Burkitt lymphoma (BL) is a malignant disease, which is frequently found in areas with holoendemic Plasmodium falciparum malaria. We have previously found that the VAR2CSA protein is present on malaria-infected erythrocytes and facilitates a highly specific binding to the placenta. OfCS is absent from other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored whether ofCS in BL could act as anchor-site for VAR2CSA-expressing infected erythrocytes. In contrast to the placenta, we found no evidence of in vivo sequestering of infected erythrocytes in the BL tissue. Furthermore, we found VAR2CSA specific antibody titers in children with endemic BL to be lower than in control children from the same malaria endemic region. The abundant presence of ofCS in BL tissue and the absence of ofCS in non-malignant tissue, encouraged us to examine whether recombinant VAR2CSA could be used to target BL. We confirmed the binding of VAR2CSA to BL-derived cells and showed that a VAR2CSA drug conjugate efficiently killed the BL-derived cell lines in vitro. These results identify ofCS as a novel therapeutic BL target and highlight how VAR2CSA could be used as a tool for the discovery of novel approaches for directing BL therapy. This article is protected by copyright. All rights reserved.
Article
Full-text available
Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 1 (SPOCK1), known as testican-1, were found to be involved in the development and progression of tumors. However, in colorectal cancer (CRC), the expression pattern of SPOCK1 and its functional role remain poorly investigated. In the present study, we explored the role of SPOCK1 in CRC. Our results demonstrated that SPOCK1 is overexpressed in CRC cell lines. SPOCK1 silencing significantly inhibited the proliferation in vitro and the tumor growth in vivo. Furthermore, SPOCK1 silencing significantly attenuated the migration/invasion by reversing the EMT process in CRC cells. Finally, knockdown of SPOCK1 obviously decreased the protein expression levels of p-PI3K and p-Akt in HCT116 cells. In total, our study demonstrated for the first time that knockdown of SPOCK1 inhibits the proliferation and invasion in CRC cells, possibly through the PI3K/Akt signaling pathway. Therefore, SPOCK1 may be a potential therapeutic target for the treatment of CRC.
Article
Full-text available
Tumor microenvironment (TME) plays an active role in promoting tumor progression. To further understand the communication between TME and tumor cells, this study aimed at investigating the involvement of CD44, a type I cell surface receptor, in the crosstalk between tumor cells and TME. We have previously shown that chondroitin sulfate proteoglycan serglycin (SRGN), a CD44-interacting factor, was preferentially secreted by cancer-associated fibroblasts (CAFs) for promoting tumor growth in breast cancer patients. In this study, we show that SRGN is overexpressed in primary non-small cell lung cancers (NSCLCs), by both carcinoma and stromal cells. Using gain-of-function and loss-of-function approaches, we show that SRGN promotes NSCLC cell migration and invasion as well as colonization in the lung and liver in a CD44-dependent manner. SRGN induces lung cancer cell stemness, as demonstrated by its ability to enhance NSCLC cell sphere formation via Nanog induction, accompanied with increased chemoresistance and anoikis-resistance. SRGN promotes epithelial-mesenchymal transition by enhancing vimentin expression via CD44/NF-κB/claudin-1 (CLDN1) axis. In support, CLDN1 and SRGN expression are tightly linked together in primary NSCLC. Most importantly, increased expression of SRGN and/or CLDN1 predicts poor prognosis in primary lung adenocarcinomas. In summary, we demonstrate that SRGN secreted by tumor cells and stromal components in the TME promotes malignant phenotypes through interacting with tumor cell receptor CD44, suggesting that a combined therapy targeting both CD44 and its ligands in the TME may be an attractive approach for cancer therapy.Oncogene advance online publication, 7 November 2016; doi:10.1038/onc.2016.404.
Article
Full-text available
Serglycin is a proteoglycan that was first found to be secreted by hematopoietic cells. As an extracellular matrix (ECM) component, serglycin promotes nasopharyngeal carcinoma (NPC) metastasis and serves as an independent, unfavorable NPC prognostic indicator. The detailed mechanism underlying the roles of serglycin in cancer progression remains to be clarified. Here, we report that serglycin knockdown in NPC cells inhibited cell sphere formation and tumor seeding abilities. Serglycin downregulation enhanced high-metastasis NPC cell sensitivity to chemotherapy. It has been reported that serglycin is a novel ligand for the stem cell marker CD44. Interestingly, we found a positive correlation between serglycin expression and CD44 in nasopharyngeal tissues and NPC cell lines. Further study revealed that CD44 was an ERK-dependent downstream effector of serglycin signaling, and serglycin activated the MAPK/β-catenin axis to induce CD44 receptor expression in a positive feedback loop. Taken together, our novel findings suggest that ECM serglycin upregulated CD44 receptor expression to maintain NPC stemness by interacting with CD44 and activating the MAPK/β-catenin pathway, resulting in NPC cell chemoresistance. These findings suggest that the intervention of serglycin/CD44 axis and downstream signaling pathway is a rational strategy for targeting NPC cancer stem cell therapy.
Article
Full-text available
Syndecans are a small family of four transmembrane proteoglycans in mammals. They have similar structural organization, consisting of an N-terminal ectodomain, single transmembrane domain and C-terminal cytoplasmic domain. Over the years the association between syndecans and the actin cytoskeleton has been established, which has consequences for the regulation of cell adhesion and migration. Specifically, ecto- and cytoplasmic domains are responsible for the interaction with extracellular matrix molecules and intracellular kinases, respectively. These interactions indicate syndecans as key molecules during cancer initiation and progression. Particularly syndecans interact with other cell surface receptors, such as growth factor receptors and integrins, which lead to activation of downstream signaling pathways, which are c