ArticlePDF Available

Abstract

Organic farming is a promising way to reduce pesticide use but increasing the area under organic farming at the landscape scale could increase pest infestations and reduce crop productivity. Examining the effects of organic farming at multiple spatial scales and in different landscape contexts on pest communities and crop productivity is a major step in the ecological intensification of agricultural systems. We quantified the infestation levels of two pathogens and five arthropod pests, the intensity of pesticide use and crop productivity in 42 vineyards. Using a multi‐scale hierarchical design, we unravelled the relative effects of organic farming at both field and landscape scales from the effects of semi‐natural habitats in the landscape. At the field scale, pest communities did not differ between organic and conventional farming systems. At the landscape scale, increasing the area under organic farming did not increase pest infestation levels. Three out of seven pest taxa were affected both by local farming systems and the proportion of semi‐natural habitats in the landscape. Our findings revealed that the proportion of semi‐natural habitats reduced pest infestation for two out of seven pest taxa. Organic vineyards had much lower treatment intensities, very similar levels of pest control and equal crop productivity levels. Synthesis and Applications . Our results clearly indicate that policies promoting the development of organic farming in conventional vineyard landscapes will not lead to greater pest and disease infestations but will reduce the pesticide treatment intensity and maintain crop productivity. Moreover, the interactions between semi‐natural habitats in landscape and local farming practices suggest that the deployment of organic farming should be adapted to landscape contexts.
J Appl Ecol. 2017;1–10. wileyonlinelibrary.com/journal/jpe  
|
 1
© 2017 The Authors. Journal of Applied Ecology
© 2017 British Ecological Society
Received:20April2017 
|
  Accepted:23October2017
DOI:10.1111/1365-2664.13034
RESEARCH ARTICLE
Deployment of organic farming at a landscape scale maintains
low pest infestation and high crop productivity levels in
vineyards
Lucile Muneret | Denis Thiéry | Benjamin Joubard | Adrien Rusch
1INRAUMR1065SantéetAgroécologie
duVignoble,ISVV,UniversitédeBordeaux,
Bordeaux-Sciences-Agro,Villenaved’Ornon
Cedex,France
Correspondence
AdrienRusch
Email:adrien.rusch@inra.fr
Funding information
RegionAquitaine;AgenceFrançaisepourla
Biodiversité;Ecophyto&theFrenchNational
FoundationforResearchonBiodiversity
HandlingEditor:AilsaMcKenzie
Abstract
1. Organicfarmingisapromisingwaytoreducepesticideusebutincreasingthearea
underorganicfarmingatthelandscapescalecouldincreasepestinfestationsand
reducecropproductivity.Examiningtheeffectsoforganicfarmingatmultiplespa-
tialscalesandindifferentlandscapecontexts onpestcommunitiesandcroppro-
ductivityisamajorstepintheecologicalintensificationofagriculturalsystems.
2. Wequantifiedtheinfestationlevelsoftwopathogensandfivearthropodpests,the
intensityofpesticideuseandcropproductivityin42vineyards.Usingamulti-scale
hierarchicaldesign,weunravelled the relative effects of organicfarmingatboth
field and landscape scales from the effects of semi-natural habitats in the
landscape.
3. Atthefieldscale, pest communities did notdifferbetweenorganicandconven-
tionalfarming systems. Atthelandscape scale,increasingthearea underorganic
farmingdidnotincreasepestinfestationlevels.
4. Threeoutofsevenpesttaxawereaffectedbothbylocalfarmingsystemsandthe
proportionofsemi-naturalhabitatsinthelandscape.Ourfindingsrevealedthatthe
proportionofsemi-naturalhabitats reducedpestinfestationfortwooutofseven
pesttaxa.
5. Organicvineyardshadmuchlowertreatmentintensities,verysimilarlevelsofpest
controlandequalcropproductivitylevels.
6. Synthesis and Applications.Our resultsclearlyindicatethatpolicies promotingthe
developmentoforganicfarminginconventionalvineyardlandscapeswillnotlead
togreaterpestanddiseaseinfestationsbutwillreducethepesticidetreatmentin-
tensityandmaintaincropproductivity.Moreover,theinteractionsbetweensemi-
natural habitats in landscape and local farming practices suggest that the
deploymentoforganicfarmingshouldbeadaptedtolandscapecontexts.
KEYWORDS
biologicalpestcontrol,conventionalfarming,landscapecomplexity,organicfarming,pathogens,
pestcommunity,pesticideuse,TreatmentFrequencyIndex,vineyard,yield
2 
|
    
Journal of Applied Ecology
MUNERET ET al.
1 | INTRODUCTION
Theintensificationofagriculturethatstarted60yearsagoinindustri-
alized countries has had severalnegative impacts that limit the sus-
tainabilityoffoodproductionsystems.Althoughithasbeensuccessful
inmeetingthegrowingdemandforfood,suchanintensificationjeop-
ardizes the environment and long-term production goals, as well as
humanhealth(Foleyetal.,2011).Profoundmodificationstoagricultural
systems,suchasreducingagrochemicaldependency,whilemaintaining
cropproductivity(Tscharntke,Clough,etal.,2012),arethusneeded.
Managinghabitatdiversityatdifferentspatio-temporalscalesisa
promisingwaytolimitpestpressureandreducepesticideuseinagro-
ecosystems(Letourneauetal.,2011).Diversificationschemesreduce
pestpopulationsthrough(1)thedirectbottom-upeffectsofresource
diversificationonpest populations,mediatedbyphysicalorchemical
confusion, that limit plant host localization; or (2) the indirecttop-
downeffectsofdiversificationonpests,mediatedbynaturalenemies
thatbenefit fromalternativehostsorprey,pollen,nectar,refugesor
micro-habitatsinmorediverseenvironments(Letourneauetal.,2011).
Takingmultiplescalesintoaccount,fromthefieldtothelandscape,is
ofmajor importance tounderstandpestpopulation dynamics, natu-
ralenemyactivityandthelevelofbiologicalcontrol(Chaplin-Kramer,
O’Rourke,Blitzer,&Kremen,2011;Rusch,Valantin-Morison,Sarthou,
&Roger-Estrade,2010).
Organicfarmingat the field scale and landscape complexity(i.e.
theamountofsemi-naturalhabitatsinthelandscape)areamongthe
keymanagementoptionsfordiversifyingtheenvironmentandpoten-
tially limiting pest pressure(Bengtsson, Ahnström, & Weibull,2005;
Chaplin-Kramer etal., 2011). However, the relativeeffects of these
variablesatmultiplespatialscalesonpestcommunitiesandcroppro-
ductivityremainpoorlyexplored.Ithasbeenproposedthatlandscape
complexitymaynonlinearlymodifytheeffects oflocalfieldmanage-
ment on biodiversity and ecosystem services, such as pest control
(Concepción,Díaz,&Baquero,2008).Thissuggeststhatorganicfarm-
ingatthefieldscalewouldhaveamaximizedeffectin landscapesof
intermediatecomplexity,whileit wouldhavea minimaleffectin ex-
tremelysimplifiedorextremelycomplexlandscapes.However,studies
exploringthis hypothesisyielded contrastingresults(Birkhoferetal.,
2016;Winqvistetal.,2011).
In addition, most of the studies on pest ornatural enemy com-
munities have focused on the role of semi-natural habitats rather
thanthatoffarmingsystematthelandscapescale.Fewstudieshave
demonstratedthemulti-scale effectsoforganicfarmingon biodiver-
sitynor illustratedpotential interactionsbetween organicfarmingat
thelocalandlandscapelevels(Gabrieletal.,2010;Inclánetal.,2015).
However,howorganic farming at the landscape scale modulatesits
benefits at the local scale remains unclear. Moreover, most of the
studiesexaminingtheeffectsoforganicfarmingatthelandscapescale
focusonbiodiversityandlittle isknown aboutpest abundances(but
seeGosme,DeVillemandy,Bazot,&Jeuffroy,2012).Ontheonehand,
wecouldhypothesizethatagreaterproportionoforganicfarmingat
the landscape scale would promotethe diversity and abundance of
naturalenemies,enhancebiologicalcontrolandlimitpestabundance.
Onetheotherhand,wecouldpostulatethatfieldsunderorganicfarm-
ing may benefit fromreduced pest pressure at the landscape scale
owingtopesticideuseinlandscapeswithahighproportionofconven-
tionalfarming(“thechemicalumbrellaeffect”).Thus,scale-dependent
processes and the interplay between farming practices and semi-
naturalhabitatsonpestcommunitiesneedtobeinvestigated.
Despite the increased use ofpesticides world-wide, crop losses
owing to pests can still be substantial suggesting mixed effects of
pesticideoncropproductivity (Oerke,2006). Evidence ofthe coun-
terproductiveeffects ofpesticideuse have beenreportedin the lit-
erature(Bommarco,Miranda,Bylund,&Björkman,2011;Settleetal.,
1996),andhighlightthat,surprisingly,therelationshipsbetweenpest
pressure,pesticideuseandcropproductivityarepoorlydocumented.
Moreover, studies quantifying crop damage and productivity loss
owingtopestsmostlyconsidersinglespecies,althoughcropplantsare
attackedbymultiplespeciesthatcaninteract(Gagicetal.,2016).Thus,
itremainsdifficult to predict croplossesresultingfrom a largepest
community because (1) both synergistic and antagonisticeffects of
multiplepestattacksonplantperformanceexist(Stephens,Srivastava,
&Myers,2013);and(2)relationshipsbetweenpestcommunitiesand
cropdamagearehighlycontext-dependent(Savary,Teng,Willocquet,
&Nutter,2006).Itisthusofmajorimportancetoinvestigatehowpest
communitiesaffectcropproductivityifweintendtoreducepesticide
useinagroecosystems.
Inthis study,we investigatedtherelativeeffectsof farmingsys-
temsandsemi-naturalhabitatsatmultiplespatialscalesonpestcom-
munities(hereafter,pestsrefertobotharthropodpestsandpathogens)
andcropproductivitylevelsinvineyards.Weselectedviticultureas a
modelsystembecauseitishighlydependentonpesticidesandissub-
jectedto adiverse pestcommunity.Usinganexperimentaldesignin
whichpairsoforganicandconventionalfarmingfieldswereselected
alongtwoorthogonallandscapegradients(proportionofsemi-natural
habitatsand proportionoforganic farming),wewereableto unravel
therelative effectsofthesevariables onpest communities andcrop
productivity.Wehypothesizedthatpestinfestationswouldbegreater
inorganicthaninconventionalfieldsbecauseorganicfarmerscannot
usecurativepesticidesunlikeconventionalvinegrowers.Wealsohy-
pothesizedthatthelocaleffectsoforganicfarmingonpestinfestation
wouldbefurthermodulatedbythelandscapecontext.Weexpected,
on average,greater pest infestations in landscapes with a high pro-
portion of organic farming compared with landscapes containing a
highproportionofconventionalfarmingbutlowerpestinfestationsin
landscapeswitha highproportionofsemi-naturalhabitats compared
withlandscapescontainingalowproportionofsemi-naturalhabitats.
Finally,wehypothesizedthatcropproductivitywoulddirectlydepend
onthelevelofpestinfestation.
2 | MATERIALS AND METHODS
2.1 | Study sites and design
Our study sites were located within a vineyard-dominated region
(44°81′N, −0°14′W) of the Bordeaux area in southwestern France.
    
|
 3
Journal of Applied Ecology
MUNERET ET al.
Thisis amajor wineproduction areawith ~138,000haof vineyards,
and it receives about 16 pesticide treatments a year per unit area
(Agreste, 2013). Our study system consisted of 21 pairs of organic
and conventional fields (42 fields) selected along two orthogonal
landscapegradients:oneofsemi-naturalhabitatsandone oforganic
farming (Table S1, Figure S1). The spatial scale used for calculating
landscapevariables and selectingsiteswas a1,000mradius around
each field. We only included organic vineyards that had been con-
vertedforatleast5years(onaverage11yearssincetheconversion;
TableS1). Thisdesignallowed fortheunravelling offarmingsystem
effectsat thelocalscale aswell astheeffects oftheproportions of
semi-naturalhabitatsandorganicfarmingatthelandscapescale.The
averagedistance betweenthetwo fieldsofa givenpairwas 125m.
In addition, landscape variables were calculated at three other spa-
tialscales:250-,500-and750-mradiiaroundeachfieldusingArcGIS
10.1(ESRI).Independenceamonglandscapevariableswasmaintained
atallscales.
2.2 | Studied pest taxa
Seven pest taxa, including five arthropod pests and two patho-
gens,wereregularlyquantifiedoverfourperiodsbetweenMayand
September2015. Allpesttaxa werecounted on30vine stocksat
each time period. We counted pests on four to six vine rows lo-
cated between the 5th and 15th closest vine rows of the paired
fields. Sampled vine stocks were more than 10m from the edge
or any other sampled vine stock. On each vine stock, the trunk,
threeleaves(thefirstoneatthehead,thesecondinthemiddleof
thevegetation and thethird at thebase)and threegrapeclusters
(randomly chosen) were carefully inspected in the field. On each
plant, the occurrence of mealybugs (Pseudococcidae) on trunks,
downymildew (Plasmopara viticola),black rot(Guignardia bidwellii),
mite galls (Colomerus vitis), phylloxera galls (Daktulosphaira vitifo-
liae)andleafhopperlarvae(Cicadellidae)onleaves,andlarvalnests
ofthegrape moths (Lobesia botrana and Empoecilia ambiguella)on
grape clusters were recorded. Most of the sampled leafhoppers
(>95%)belongedtothespeciesEmpoasca vitisandthe mostabun-
dant mealybug species were Parthenolecanium corni (>95%) and
Pulvinaria vitis(<5%).Botrytisbunchrot(Botrytis cinerea)andpow-
derymildew (Erysiphe necator) occurredonleaves and grapeclus-
ters,buttheoccurrencewassolowthattheywerenotincludedin
ouranalyses. Wesurveyed thesepestsbecausetheyarethemain
taxaattackinggrapevinesinourstudyregion.Downymildew,black
rot,leafhoppersandgrapemothsarethemajorpests,whilephyllox-
era,mitesandmealybugsareconsideredminorpests(Delièreetal.,
2016;Pertotetal.,2017).Noeconomicthresholdhasbeenidenti-
fiedformostofvineyardpestsbut ifmorethan5%oftheclusters
areattackedby grape moths or more than30%ofthe leaves are
attackedbypathogens,thenyieldlossishighlyprobableinthisre-
gion(Savary,Delbac, Rochas, Taisant, & Willocquet, 2009;Thiéry
&Moreau,2005;L.Delière, pers. comm.). In addition to pest oc-
currence and abundance, we calculated pest community richness
andevennessusingPielou’sindexatthefieldscaletoanalysehow
pestcommunities(sensulato)respondtofarmingsystemsandsemi-
naturalhabitats.Assumingthatorganicfarmingismorebeneficialto
peststhanconventionalfarming,weexpectedgreaterpestrichness
andevennesslevelsinorganiccomparedwithconventionalfields.
2.3 | Measurements of pesticide use intensity, crop
vigour and crop productivity
The42vineyardsweremanagedasusualby38differentfarmers.We
collecteddataonpesticideapplicationsforeachfieldbyinterviewing
thevinegrowersandcalculatingtheTreatmentFrequencyIndex(TFI)
forallpesticidesfollowingtheformula:
where n indicates the number of treatments, Appl. dose indicates
theapplied dose perhectareand Recom. doseindicatesthe recom-
mended dose per hectare (Haldberg, Verschuur, & Goodlass, 2005;
Jørgensenetal., 2008;OECD,2001). TheTFI isawell-knownindex
usedto assesspesticide pressureatdifferentscalesand tocompare
pesticide use intensity across different contexts (Jørgensen etal.,
2008).It is easytocalculate andallowsthe aggregation ofverydif-
ferentsubstancestomeasureoverall pesticidepressure.However,it
isnot anindexof toxicitybecauseit doesnot discriminate between
pesticideswithdifferentenvironmentaltoxicitylevels.Inthesurveyed
fields,86%ofthepesticidestargeteddownymildew andoidium,6%
wereinsecticidesagainstgrapemothsandleafhoppers,4%wereher-
bicidesandthe remaining were aimed at Botrytis(2%).Wealso as-
sessedcropvigourusingtheNormalizedDifferenceVegetationIndex
obtainedfrom ground-based measurementswithaGreenseekerleaf
colour analyser (N-Tech Industries, Ukiah, CA, USA and Oklahoma
StateUniversity,Stillwater,OK,USA)onceattheendofAugust2015
alonga 50-mtransect perfield.The meancropvigour perfieldwas
thendividedbythenumberofvinestocksalongthistransecttoelimi-
natetheeffectofvinestockdensityonthecropvigourscore.
Crop productivity was estimated a few days before harvest by
counting the number ofgrapes on 20 randomly chosen vine stocks
andbyweighing25randomlychosengrapesondifferentvinestocks.
Cropproductivityperhectarewascalculatedbymultiplyingtheaver-
agenumberofgrapespervinestockbytheaveragegrapeweightand
thevinestockdensityperfield.
2.4 | Statistical analyses
We used generalized linear mixed models (GLMMs) with Poisson
error distributions to investigate the effects of farming systems and
thelandscapecontextonthelevel of infestation for each pest taxa.
Theresponsevariablesusedinthemodelswerethenumberofleaves
ortrunksinfestedwithmealybugs,mites, downymildew, blackrot or
phylloxeraandthetotalnumberofleafhoppersorgrapemothscounted
perfield(n=166foreachpestexceptgrapemothsforwhichn=125).
Weusedamultimodel inferenceapproach totest ourhypotheses
andevaluatethesupportfromthedataforthreecompetingsetofmod-
elsofincreasingcomplexity.Foreachresponsevariable,westartedwith
TFI
=
n
i=1
Appl.dose
Recom.dose
,
4 
|
    
Journal of Applied Ecology
MUNERET ET al.
afirstsetofmodels,M0,thatincludedfourexplanatoryvariables,“field
age”,“fieldsize”,“vinetrunkdensity”and“cropvigour”,whichwerecon-
sideredas potentialconfoundingvariables.Then,we selecteda setof
best models using the Akaikeinformation criteria corrected for small
samplesize(AICc).ModelsthatwerewithintherangeoftwoAICcunits
of the lowestAICc score were considered as the best set ofmodels 
andwere usedto estimate themean effectsandconfidence intervals
ofeachpredictorvariableusingmodelaveraging(Grueber,Nakagawa,
Laws,& Jamieson,2011).Toaccountforthe studydesign, wealways
addedthe“fieldpairs”(21)andthe “samplingdate”(4)astwo crossed
randomeffects. GLMMswerecorrectedforoverdispersionby includ-
inganobservation-levelrandomeffect.Significantlocalcovariates(i.e.
witha high relativeimportance anda confidenceintervalsignificantly
differentfrom zero)retainedatthis step werethen used as thebasic
modelstructureinthetwoothersetsofcompetingmodels.Thefollow-
ingsetofmodels, M1, included previouslyselected“localcovariates”
and“local farmingsystem”asexplanatoryvariables.Thisstep enabled
thetestingofourhypothesisthatpestpopulationscouldbenefitfrom
organicfarmingatthelocalscale.Thelaststepofourmodellingproce-
dure,M2,includedsignificantlocalcovariatesselectedatM0,thelocal
farmingsystemandlandscapevariables(i.e.“theproportionoforganic
farming”and“theproportionofsemi-naturalhabitats”)atagivenscale.
Weaddedinteractiontermsbetweenthelocalfarmingsystemandboth
landscapevariablesinM2.Wedecidedtoalwaysuse“localfarmingsys-
tem”inM2asitallowedustotestourhypothesesonthemodulationof
theeffectsoflocalfarmingsystemsbylandscapecontext.Fourdifferent
setsofcompetingmodelswere consideredindependently usingland-
scapevariablescalculatedatfourdifferentspatialscales(250,500,750
and1,000m).Ateachstep (M0,M1and M2),weusedthesameaver-
agingapproachandthesamerandomstructureaspreviouslydescribed.
Foreveryresponsevariable andforeach top model ateachstep, we
calculated the marginal R2values and conditional R2valuestoassess
the amount ofvariance explained by the best model (i.e. that having
thelowestAICc; Nakagawa & Schielzeth,2013).FollowingSchielzeth
(2010),westandardizedallexplanatoryvariables,withmeanequalto0
andstandarddeviationequalto0.5beforemodelling.
Additionally,todeterminewhichlevelofmodelcomplexity,andin-
directlywhichspatialscale,wasthemostimportantforexplainingour
responsevariables, werecalculatedtheAkaikeweightsamongallof
themodelsfromthesixdifferentsets(i.e.M0,M1andM2atfourspa-
tialscales)obtainedforagivenresponsevariable.Usingthisapproach,
weestimatedtherelativeimportance ofeachlevelofcomplexityfor
agivenresponsevariable.ThesumoftheAkaikeweights(“SumWi”)
of the models obtained at a givenlevel of complexity provided the
model’sprobabilityofbeingatopmodelatallscales.
Thesame modellingstrategywas usedtoanalysehowpestrich-
ness,pestevenness,totalTFIandcropproductivityrespondedtoour
environmental variablesusing linear mixed models (LMMs) for pest
richnessandPoissonGLMMsfor other responsevariables (n=166,
n=166,n=42andn=38,respectively).Inaddition,weexaminedthe
effectsofpestinfestationsoncropproductivityusingLMMs.Theav-
eragepestinfestationsoftheseventaxawereincludedasexplanatory
variablesandthe“fieldpairs”asarandomfactor.
Diagnosticresidualplotsofallfullmodelswereconfirmedusingthe
DHARMapackage(Hartig,2017).Spatialautocorrelationintheresiduals
wereexploredusingvariograms,andnospatialautocorrelationwasde-
tected.Collinearityamong predictorswasassessedforeachfullmodel
usingthevarianceinflationfactor,andthevalueswereallcloseto1.
Allanalyseswereperformedusingrsoftware(RCoreTeam,2016)
andthepackages“lme4”(Bates,Mächler,Bolker,&Walker,2014)and
“MuMIn”(Bartoń,2016).
3 | RESULTS
3.1 | Relative effects of the farming system and
landscape context on each pest taxa
On average, 20.33% (SD=17.13), 4.7% (SD=9.35), 12.31%
(SD=9.45) and 4.47% (SD=7.18) of leaves were infested with
mites, phylloxera, black rot and downy mildew, respectively. On
average, 13.15% (SD=18.86) of trunks per field were infested
with mealybugs, 8.44% (SD=9.33) with leafhoppers and 1.72%
(SD=3.19) with grape moths. Approximately, 40% of the fields
were subjected to a level of pest attack that could lead to yield
loss.At thepopulationlevel, wefoundthat onlymealybugs, phyl-
loxera and mites responded to farming systems and semi-natural
habitats at multiple scales. Black rot, downy mildew, leafhoppers
andgrapemothsdidnotrespondtoanylocalorlandscapevariables
(seeTablesS2–S5).Amongthelocalcovariates,thecropvigouras
assessedbytheNormalizedDifferenceVegetationIndexwasnever
retainedasasignificantvariable.Atthelandscapescale,thepropor-
tionoforganicfarmingwasneverretainedasasignificantvariable
explainingpestinfestations.
3.1.1 | Mealybugs
Models including local covariates, the local farming system and
landscape variables had the highest probability of being among the
bestsets ofmodels(Table1). Inparticular,models fittedusingland-
scapevariables at the250-m scalehadthe highest probability(Sum
WiM2at250m=0.41)toappearas topmodelsamongallmodels fitted
atallscales. Modelaveragingof modelsfittedat thisspatialscalein-
dicatedthatlocalfarmingsystem, vinestockdensity,andproportion
ofsemi-naturalhabitatswereallincludedinthetopmodels(eachrela-
tivevariable’simportancewasequalto1;Table1).Mealybuginfesta-
tionwasgreaterin organic fields, increased with vinetrunkdensity
anddecreasedwiththeproportionofsemi-naturalhabitats(
R2
m
=0.15;
R2
c
=0.62;Table1).Wedidnotfindanysignificantinteractionsamong
thelocal farmingsystem andlandscape variables(Figure1a).Results
ofthemultimodel inferencesatother spatial scaleswereconsistent
withtheseresults.
3.1.2 | Mites
Models fitted using local covariates, the local farming sys-
tem and landscape variables at the 250-m scale had the highest
    
|
 5
Journal of Applied Ecology
MUNERET ET al.
probabilityofbeingtopmodelsamongallmodelsfittedatallscales(Sum
WiM2at 250m=0.99). Model averaging at this scale showed that the
proportionofleavesinfestedwith mitegallsincreasedwithfield age
and decreased with trunk density, field size and the proportion of
semi-naturalhabitatsinthelandscape(eachrelativevariable’simpor-
tancewas equal to1;
R2
m
=0.44;
R2
c
=0.87;Table2). This modelalso
revealed a significant interaction between the local farming system
andthe proportionof semi-naturalhabitats.Thisindicated thatmite
infestationsweregreaterinconventionalfieldsthanin organicfields
in landscapes with a low proportion of semi-natural habitats, while
therewasnodifferenceinmiteinfestationlevelsbetweenorganicand
conventional farming in landscapes with a high proportion of semi-
naturalhabitats(Figure1b,Table2).
3.1.3 | Phylloxera
Models fitted using local covariates, the local farming system and
landscapevariablescalculated at the 1,000-mscalehad the highest
probability (Sum WiM2 at 1,000m=0.98) of being top models among
all models fitted at all scales. Model averaging of models fitted at
1,000m indicated that phylloxera infestations decreased with field
age and that the effect of the local farming system on phylloxera
infestation was dependent of the proportion of semi-natural habi-
tats (each relative variable’s importance was equal to 1;
R2
m
=0.25;
R2
c
=0.72;Table3).Thisinteractionindicatedthatthe level of phyl-
loxerainfestationwasgreater in organic fields than in conventional
fieldsbutonlyin landscapes with a high proportion of semi-natural
TABLE1 Modelselectiontableformodelsexplainingmealybuginfestationsinvineyards.Thetablereportstheexplanatoryvariables
selected,estimates,confidenceintervals(2.5%–97.5%)andtherelativeimportanceofeachlevelofmodelcomplexity(M0,M1andM2).M0
onlyconsideredlocalcofoundingvariables;M1consideredtheretainedlocalcovariatesfromM0aswellasthelocalfarmingsystem(organicor
conventional);andM2considerspreviousvariablesaswellaslandscapevariables.ForM2,onlymodeloutputsofthemostimportantspatial
scale(identifiedbythesumofAkaikeweightsnormalizedacrosseachspatialscale)areindicatedinthetable.Foreachlevelofmodel
complexity,R²marginalandR²conditionalarereported.R2valueswerecalculatedusingthebestmodelsateachscale.ThesumoftheAkaike
weightnormalizedacrosseachspatialscale(SumWi)providedtheprobabilityofagivenlevelofcomplexitytoappearinthetopmodels
Models Explanatory variables selected Estimates Confidence intervals
Relative variable
importance
M0(
R2
m
=0.06;
R2
c
=0.6;
sumWi<0.01)
Fieldage −0.33 −0.83to0.01 0.81
Vinetrunkdensity 0.86 0.29–1.42 1
Fieldsize 0.08 −0.15to0.74 0.28
Cropvigour −0.04 −0.73to0.31 0.17
M1(
R2
m
=0.08;
R2
c
=0.61;
sumWi=0.03)
Vinetrunkdensity 0.72 0.15–1.29 1a
Localfarmingsystem:Conventional 0.46 0.14–0.78 1a
M2at250m(
R2
m
=0.15;
R2
c
=0.62;sumWi=0.41)
Localfarmingsystem 0.49 0.15–0.84 1
Vinetrunkdensity 0.72 0.18–1.26 1
Proportionofsemi-naturalhabitats −0.8 −1.49to−0.11 1
Proportionoforganicfarming 0.16 −0.35to1.25 0.36
aOnlyonebestmodelselectedhere.
FIGURE1 Responsesofmealybugs(a),mites(b)andphylloxera(c)totheinteractionsbetweenlocalfarmingsystemsandtheproportionof
semi-naturalhabitatsattwodifferentspatialscales(250mor1,000m)
0
10
20
00.1 0.20.3 0.4
Proportion of semi−natural habitats
unks infested with mealybugs
0
20
40
60
00.1 0.20.3 0.4
Proportion of semi−natural habitats
Number of leaves infested with mites
0
20
40
60
00.250.5 0.75
Proportion of semi−natural habitats
aves infested with phylloxera
Farming systems
Conventional
Organic
6 
|
    
Journal of Applied Ecology
MUNERET ET al.
habitats.Theoppositewasfoundinlandscapeswithalowproportion
ofsemi-naturalhabitats(Figure1c).
3.2 | Relative effects of the farming system and
semi- natural habitats on the pest community
Forpestcommunityevenness,models fittedwithlandscapevariables
calculatedatthe250-mscalehadthehighestcumulatedprobabilityof
beingtop models(SumWiM2 at250m=0.45; TableS6).Field age,vine
trunkdensityandtheproportionofsemi-naturalhabitatswereincluded
inthetopmodelsfittedatthe250-mscale(TableS6).Pestcommunity
evenness increased with vine trunk density and with the proportion
ofsemi-naturalhabitatsinthelandscape,whileitdecreasedwithfield
age (each relative variable’s importance was equal to 1;
R2
m
= 0.19;
R2
c
=0.32; Table S6). Our multimodel inference approach showed no
evidenceof any effectscausedby otherlocalor landscapevariables.
Additionally,therewerenoeffectsofthefarmingsystemandsemi-
naturalhabitatsatmultiplespatialscalesonthepesttaxarichness.
3.3 | Crop productivity and management intensity
Cropproductivitywasnotaffectedbythelocalcovariates,localfarm-
ingsystemoranylandscapevariables.Onaverage,organicfieldspro-
duced 11.01t (SD=4.07) of grape per hectare, while conventional
fieldsproduced onaverage 10.90t(SD=3.58) ofgrapeperhectare,
whichhighlighted thesimilar productionlevelsbetween organicand
conventionalsystems (Figure2a).Surprisingly, cropproductivitywas
notaffectedbyanypest infestationsof anytaxadespitevariabilities
inpestinfestationsamongfields(TableS7).Finally,thetotalTFIwas
lowerin organicthanin conventionalfieldsbut wasnot affectedby
thelandscapecompositionatanyscale.Onaverage,thetotalTFIwas
twofoldlowerinorganicthaninconventionalfields(Figure2b).
4 | DISCUSSION
Toourknowledge,thisisthefirststudyinvestigatinghowinfestations
with multiple pest taxa respond to both organic farming and semi-
naturalhabitatsusingamultiplescaledesignwithorthogonallandscape
factors.Contrarytoourinitialhypotheses,thepestcommunitydidnot
differatthefieldscalebetweenorganicandconventionalfarmingsys-
tems.Additionally, theproportion oforganic farminginthelandscape
wasneveranimportantvariableforexplainingpestinfestations.Finally,
ourstudyshowed that threeoutof seven pestspeciesresponded to
local farming systems and semi-natural habitats in the landscape.
Nevertheless,itillustratedtheimportanceofconsideringbothfarming
practicesandlandscapecontextwhenstudyingpestdynamics.
Contraryto expectations, the pestcommunitydid not differbe-
tweenorganicandconventionalfields.Additionally,increasingtheor-
ganicfarmingareainthelandscape(withintherangeexploredinour
studydesign)didnotleadtogreaterpestinfestations.Ourresultscon-
tradictpreviousresultsfromtwotheoreticalstudiesinvestigatingthe
effectsofthespatialarrangementoforganicfarminginthelandscape
(Adl, Iron, & Kolokolnikov,2011; Bianchi, Ives, & Schellhorn, 2013).
Bothstudies showed thatthedeployment oforganicfarming at the
landscapescalecouldincreasepestoutbreaks.However,thesestudies
assumedthatchemical controlwas lesseffective,orevenabsent, in
organicfieldscomparedwithconventionalones,whichisnotthecase
TABLE2 Modelselectiontableformodelsexplainingmiteinfestationsinvineyards.Allmodels,explanatoryvariables,estimates,confidence
intervalsandrelativeimportancesthatarereportedinthistablehavebeenobtainedusingthesameprocedureasthedatareportedinthe
Table1.SeethelegendinTable1
Models Explanatory variables selected Estimates Confidence intervals
Relative variable
importance
M0(
R2
m
= 0.17;
R2
c
=0.63;
sumWi<0.01)
Fieldage 0.81 0.51–1.10 1
Vinetrunkdensity −0.41 −0.74to−0.08 1
Fieldsize 0.47 −0.77to−0.18 1
Cropvigour 0.03 −0.22to0.45 0.3
M1(
R2
m
= 0.19;
R2
c
=0.65;
sumWi<0.01)
Fieldage 0.63 0.33–0.92 1
Localfarmingsystem:Conventional −0.44 −0.64to−0.23 1
Vinetrunkdensity −0.19 −0.61to0.02 0.63
Fieldsize −0.4 −0.68to−0.11 1
M2at250m(
R2
m
=0.44;
R2
c
=0.87;sumWi=0.99)
Vinetrunkdensity −0.38 −0.69to−0.13 1
Fieldage 0.69 0.48–0.98 1
Fieldsize −0.5 −0.79to−0.28 1
Localfarmingsystem:Conventional −0.19 −0.36to0.02 1
Proportionofsemi-naturalhabitats −1.48 −2.04to−1.07 1
Proportionoforganicfarming −0.08 −0.72to0.42 0.27
Localfarmingsystem:proportionof
semi-naturalhabitats
0.5 0.22–0.95 1
    
|
 7
Journal of Applied Ecology
MUNERET ET al.
here. Oursurvey of farming practices showed that organic growers
wereusingorganicpesticidestocontrolpests,asindicatedbyanaver-
agetotalTFIofapproximately9fororganicfields,whiletheyobtained
similarlevelsofcropproductivity.Furthermore,ourresultsareinline
withtwoempirical studies thatshowedno evidenceofgreaterpest
pressure in cerealfields and orchards as the amount of area under
organicfarmingin thelandscape increased(Gosmeetal.,2012;Ricci
etal.,2009).
Threeoutofthesevensurveyedpesttaxarespondedtothepro-
portion of semi-natural habitats in the landscape. Both mealybug
andmiteinfestations decreased astheproportion of semi-natural
habitatsinthelandscapeincreased.Similarly,thephylloxeraabun-
dancedecreasedwiththeproportionofsemi-naturalhabitatsinthe
landscape but only in conventional fields.This negative effect of
landscapecomplexityonpestinfestationsmaybeexplainedbytwo
complementaryhypotheses:(1)directeffectsoflandscapecompo-
sitiononpestdynamicsand(2)indirecteffectsoflandscapecompo-
sitiononpeststhroughtop-downcontrolbynaturalenemies(Rusch
etal.,2010;Veres,Petit,Conord,&Lavigne,2013).Directeffectsof
landscapecomplexityonpestdynamicsincludelimitedpestdisper-
salowingto the direct barriereffectsof unsuitable habitattypes,
such as semi-natural habitats, and reduced pest sources in more
complex landscapes that support lower proportionsof host plant
(Avelino,Romero-Gurdián,Cruz-Cuellar,&Declerck,2012;Kuefler,
Hudgens,Haddad,Morris,&Thurgate,2010;Plantegenest,LeMay,
& Fabre,2007; Summerville, 2004). Indirect effects of landscape
complexityon pests are caused by the presence of keyresources
fornaturalenemies(Landis,Wratten,&Gurr,2000).Theincreased
availabilityofsemi-natural habitatsinthe landscape enhancesthe
diversityand abundance of natural enemies and, in turn, the bio-
logical control of pests (Chaplin-Kramer etal., 2011; Letourneau,
Jedlicka,Bothwell,&Moreno,2009;Ruschetal.,2016).
Mealybugs, mites and phylloxera were also affected by local
farmingsystems,either aloneorthroughinteractionswiththe pro-
portionofsemi-natural habitats in thelandscape.Mitesandphyl-
loxerawerethetwotaxa thatsupported ourhypothesis predicting
that the effects of the local farming system on pest infestation
wouldbemodulatedby the proportion ofsemi-natural habitatsin
thelandscape.Invery simple landscapes, mites and phylloxerain-
festationswere lower inorganicthaninconventional fields, while
incomplex landscapes,theinfestation levelswereeithersimilaror
greaterinorganicthaninconventionalfields.Thisillustrateshowthe
landscapecontextcanmodulatetheeffectoflocalfarmingsystems
onpestinfestations.However,ourresultsseem tonotcorroborate
theintermediatelandscape complexityhypothesisthat statedthat
organic farming would be more effective in enhancing ecosystem
services,suchasbiologicalcontrol,inintermediatelandscapesthan
in simple and complex landscapes (Tscharntke, Tylianakis, etal.,
2012).Phylloxerainfestationsweregreaterinorganicfieldsthanin
conventionalfieldsbutonlyincomplexlandscapes.Thus,processes
otherthantop-downcontrolbynaturalenemiesmightbeinvolved
and other covariatesrelated to bottom-up processes mayexplain
this pattern. Despite the negative effect ofsemi-natural habitats,
TABLE3 Modelselectiontableformodelsexplainingphylloxerainfestationsinvineyards.Allmodels,explanatoryvariables,estimates,
confidenceintervalsandrelativeimportancesthatarereportedinthistablehavebeenobtainedusingthesameprocedureasthedatareported
intheTable1.SeethelegendinTable1
Models Explanatory variables selected Estimates Confidence intervals
Relative variable
importance
M0(
R2
m
= 0.07;
R2
c
=0.66;
sumWi<0.01)
Fieldage −1.11 −1.74to−0.46 1
Cropvigour −0.22 −0.99to0.13 0.51
Vinetrunkdensity −0.08 −1.15to0.52 0.24
Fieldsize −0.06 −0.88to0.37 0.24
M1(
R2
m
= 0.07;
R2
c
=0.66;
sumWi<0.01)
Fieldage −1.11 −1.76to−0.47 1
Localfarmingsystem:Conventional −0.04 −0.54to0.25 0.31
M2at1,000m(
R2
m
=0.25;
R2
c
=0.72;sumWi=0.98)
Fieldage −1.12 −1.54to−0.67 1
Localfarmingsystem:Conventional −0.36 −0.63to−0.10 1
Proportionoforganicfarming 0.71 −0.09to2.51 0.58
Proportionofsemi-naturalhabitats 0.72 −0.34to1.79 1
Localfarmingsystem:proportionof
semi-naturalhabitats
1.82 1.37–2.27 1
FIGURE2 Effectsoflocalfarmingsystems(conventionalor
organic)on(a)cropproductivity(t/ha)and(b)thetotalTreatment
FrequencyIndex(TFI)
5
10
15
ConventionalOrganic
Crop productivity (tons/ha)
(a)
10
20
30
Conventional Organic
Total TFI
(b)
Farming systems
8 
|
    
Journal of Applied Ecology
MUNERET ET al.
infestations by mealybugswere always greater in organic than in
conventionalvineyardssuggestingthatorganic vineyardscouldbe
highlybeneficial tomealybugs.Indeed, mealybugsarefavouredby
thetillage,thepresenceofFormicidaeandadecreasedexposureto
syntheticpesticides(Daaneetal.,2012;Mgocheki&Addison,2010;
Muscasetal.,2017).
Pesttaxathat respondedtothe landscapecontextwereaffected
by the proportion of semi-natural habitats at two different spatial
scales:the250-m(formealybugsandmites)andthe1,000-mradii(for
phylloxera).The most important scale explaining species abundance
canbeinterpretedasthescaleatwhichagivenspeciesperceivesand
interactswiththelandscapeandcanbeusedformanagementissues
(Jackson & Fahrig,2012). This scale of response depends on func-
tionalattributes,suchas the dispersal ability, ofthe species and on
thestructureofthelandscapeitself.Themostimportantscalesfound
in our study forthese three pest taxa are consistent with available
informationon their dispersal abilities (Forneck,Anhalt, Mammerler,
& Griesser, 2015; Grasswitz &James, 2008). Moreover, ourresults
corroboratethose of recent studies in perennial crops in which the
beneficialeffectsofsemi-naturalhabitatsonpestcontrolweregreat-
estatrelativelysmallspatialscales(<250mradius)(Henrietal.,2015;
Thomson&Hoffmann,2013).
Pestpressureatthecommunityleveltendstobelimitedin com-
plex landscapes mainly owing to the negative effect of landscape
complexityonmites.Downymildew,blackrot,leafhoppersandgrape
mothswere not affected bytheproportion of semi-naturalhabitats
inthelandscape.Overall,these findingsareconsistentwiththecon-
clusionsoftworecentmeta-analysesthatfoundnocleartrendinthe
responseof pest abundancetothe proportion ofsemi-natural habi-
tatsinthelandscape,despitethestrongpositiveeffectsoflandscape
complexityonnaturalenemiesandbiologicalcontrol(Chaplin-Kramer
etal.,2011;Veresetal.,2013).Onepossibleexplanationisthatfarm-
ingpractices,andpesticideuseinparticular,mayhavehiddentheef-
fectoflandscapecontextonpestpopulations(Tscharntkeetal.,2016;
Veresetal., 2013). Indeed,the fourpest taxa thatdid not showany
responsetofarmingpracticesorlandscapecontextarethemaintar-
getsofpesticideuseinbothorganicandconventionalvineyards.This
strongly suggests that both farming systemsused effective control
strategiesthatmaskedpotentialeffects.Second,thethematicresolu-
tion,aswellasthespatialextent,usedtocharacterizeourlandscapes
mightdifferfromthe actualfunctionalrolesofthehabitatsandfrom
the scale of response of the given pest species (Jackson & Fahrig,
2012). The most relevant scale of observation corresponds to the
meandispersal distanceof thespecies beingstudied(Gilligan,2008;
Jackson & Fahrig,2012). Thus, the lack of landscape contexteffect
forthefourmajorpestsmightalsoresultfroma toonarrowscaleof
observation,especiallyforpathogensthatdispersebywindoverlong
distances(Fontaineetal.,2013).
Finally, ourstudy demonstrated that organic vineyards haveTFIs
that are twofoldless important than those of conventionalvineyards
havingsimilar levelsof pestinfestations andequalproductivitylevels.
TheTFIisclearlya proxyfortreatmentintensityandisnotameasure
of environmentalimpact. However, increasingthe amount of organic
farming at the landscape scale should decrease treatment intensity
withoutmodifyingpestpressureorcropperformanceinthegivencon-
textofourstudy.Ourresultsareconsistentwitharecentstudyonarable
cropsinwhichthereductionofpesticideusedidnotaffectcropproduc-
tivityoreconomicperformances(Lechenet,Dessaint,Py,Makowski,&
Munier-Jolain,2017).Studiesregardingtheagronomicconsequencesof
organicfarmingexpansionshouldalsoconsidercropquality.
4.1 | Synthesis and applications
Reducing pesticide use, while not altering crop productivity and
quality,isa major challenge foragroecologists.Our study demon-
stratesthatorganic farming can be used asanagri-environmental
schemetoachieve thisgoalinvineyardagroecosystemsthatheav-
ily depend on synthetic pesticides. Increasing the area of organic
farmingin the landscapedidnot leadtogreater pestpressurebut
reduced treatment intensity and maintained crop productivity.
However,thelong-termeffectsoforganicinputslargelyusedinor-
ganicfarmingsuchassulphurandcopper shouldbeinvestigatedin
vineyards.Moreover,ourresultsfurtherillustratehowproportions
ofsemi-naturalhabitatsinthelandscapecanmodulatethelocalef-
fectsof farmingsystemson pestinfestationsby sometaxa.These
results highlight the importance of taking into account landscape
composition to optimize farming system allocation and limit pest
pressure.Ourstudyhasimportant implicationsforbothpractition-
ersand policymakersconcernedwith theecologicalintensification
offarmingsystemsandland-useplanning.However,futureresearch
is still needed to explore potential threshold effects when there
is a much greater proportion of organic farming in the landscape.
Moreover,the relative effectsofthe spatialcompositionand con-
figuration(e.g.connectivity)oforganicfarmingonpestpressureand
biologicalpest controlremain largelyunknownandrequirefurther
investigation.
ACKNOWLEDGEMENTS
Weare gratefultoArthur Auriol,EmilieVergnes, LauraArias, Lionel
Druelle, Pascale Roux, Olivier Bonnard, Sylvie Richard-Cervera,
IsabelleDemeaux, LisaLe Postec,LionelDelbacandGillesTarrisfor
theirtechnical help.Wealsothankthe 38grapevinegrowersforal-
lowing us access to their vineyards and Lesley Benyon, PhD, from
EdanzGroupfor editingadraft ofthismanuscript. Theresearchwas
funded by the Region Aquitaine (REGUL project) and the Agence
Française pour la Biodiversité, joint call Ecophyto & the French
National Foundation for Research on Biodiversity (SOLUTION pro-
ject).ThisresearchisalsopartoftheclusterofExcellenceCote.
AUTHORS’ CONTRIBUTIONS
L.M.,D.T.andA.R.conceivedtheworkanddesignedtheexperiments;
L.M.,B.J.andA.R.collectedthedata;L.M.andA.R.analysedthedata;
L.M.and A.R. ledthewriting ofthemanuscript. All authorscontrib-
utedcriticallytothedraftsandgavefinalapprovalforpublication.
    
|
 9
Journal of Applied Ecology
MUNERET ET al.
DATA ACCESSIBILITY
Data available from the Dryad Digital Repository https://doi.
org/10.5061/dryad.vv1t9(Muneret,Thiéry,Joubard,&Rusch,2017).
ORCID
Adrien Rusch http://orcid.org/0000-0002-3921-9750
REFERENCES
Adl,S.,Iron,D.,&Kolokolnikov,T.(2011).Athresholdarearatiooforganic
to conventional agriculture causes recurrent pathogen outbreaks in
organicagriculture.Science of the Total Environment,409,2192–2197.
Agreste.(2013). Ministèrede l’agriculture,de l’agroalimentaireetde la
forêt–Agreste–Lastatistique,l’évaluationetlaprospectiveagricole–
Pratiquesculturales dansla viticulture.http://agreste.agriculture.go
uv.fr/enquetes/pratiques-culturales/pratiques-culturales-dans-la/.
Avelino, J.,Romero-Gurdián, A., Cruz-Cuellar, H. F., & Declerck, F.A.
(2012).Landscapecontextandscaledifferentiallyimpactcoffeeleaf
rust,coffeeberryborer,andcoffeeroot-knotnematodes.Ecological
Applications,22,584–596.
Bartoń,K.(2016).Package‘MuMIn’.Modelselectionandmodelaverag-
ingbasedoninformationcriteria.Rpackageversion1.15.11.http://
CRAN.R-project.org/package=MuMIn
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear
mixed-effectsmodelsusinglme4.arXivpreprintarXiv:1406.5823.
Bengtsson,J., Ahnström,J., &Weibull,A.-C.(2005).The effectsofor-
ganic agriculture on biodiversity and abundance:A meta-analysis.
Journal of Applied Ecology,42,261–269.
Bianchi,F.J.J.,Ives,A. R., &Schellhorn,N. A.(2013). Interactionsbe-
tween conventional and organic farming for biocontrol services
acrossthelandscape.Ecological Applications,23,1531–1543.
Birkhofer, K.,Arvidsson, F., Ehlers, D., Mader, V. L., Bengtsson, J., &
Smith, H. G. (2016). Organicfarming affects the biological control
ofhemipteranpestsandyieldsinspringbarleyindependentofland-
scapecomplexity.Landscape Ecology,31,567–579.
Bommarco,R.,Miranda,F.,Bylund,H.,&Björkman,C.(2011).Insecticides
suppress natural enemies and increase pest damage in cabbage.
Journal of Economic Entomology,104,782–791.
Chaplin-Kramer,R.,O’Rourke,M.E.,Blitzer,E.J.,&Kremen,C.(2011).A
meta-analysisofcroppestandnaturalenemyresponsetolandscape
complexity.Ecology Letters,14,922–932.
Concepción,E.D.,Díaz,M.,&Baquero,R.A.(2008).Effectsoflandscape
complexity on the ecological effectiveness of agri-environment
schemes.Landscape Ecology,23,135–148.
Daane,K.M., Almeida, R. P.P.,Bell,V.A., Walker,J.T.S.,Botton,M.,
Fallahzadeh,M., … Zaviezo,T. (2012).Biologyand management of
MealybugsinVineyards.Arthropod Management in Vineyards(edsN.
J.Bostanian,C. Vincent & R.Isaacs),pp. 271–307. Dordrecht,the
Netherlands:Springer.
Delière,L.,Burgun,X.,Lafond,D.,Mahé, H.,Métral, R.,Serrano, E.,…
Pillet, E. (2016). Réseau DEPHY EXPE: Synthèse des résultats à
mi-parcoursà l’échellenationale - filièreViticulture.Celluled’Ani-
mationNationale DEPHYEcophyto. http://viticulture.ecophytopic.
fr/sites/default/files/Synth%C3%A8se%20EXPE%20Viticulture.
pdf.
Foley,J. A., Ramankutty, N., Brauman,K. A., Cassidy, E. S., Gerber, J.
S.,Johnston,M.,…Zaks,D.P. M.(2011).Solutionsforacultivated
planet.Nature,478,337–342.
Fontaine,M.C.,Austerlitz,F.,Giraud,T.,Labbé,F.,Papura,D., Richard-
Cervera,S.,& Delmotte,F.(2013).Genetic signatureofarangeex-
pansionand leap-frogeventaftertherecentinvasion ofEuropeby
thegrapevinedownymildewpathogenPlasmopara viticola. Molecular
Ecology,22,2771–2786.
Forneck,A.,Anhalt,U.C.,Mammerler,R.,&Griesser,M.(2015).Noev-
idenceofsuperclones inleaf-feedingformsofAustriangrapephyl-
loxera(Daktulosphaira vitifoliae).European Journal of Plant Pathology,
142,441–448.
Gabriel, D., Sait, S. M., Hodgson, J.A., Schmutz, U., Kunin, W. E., &
Benton,T.G.(2010).Scalematters:Theimpactoforganicfarmingon
biodiversityatdifferentspatialscales.Ecology Letters,13,858–869.
Gagic,V.,Riggi,L.G.,Ekbom,B.,Malsher,G.,Rusch,A.,&Bommarco,R.
(2016).Interactive effectsofpestsincreaseseedyield.Ecology and
Evolution,6,2149–2158.
Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: An
epidemiological perspective. Philosophical Transactions of the Royal
Society of London B: Biological Sciences,363,741–759.
Gosme, M., De Villemandy, M., Bazot, M., & Jeuffroy, M.-H. (2012).
Localandneighbourhoodeffectsoforganicandconventionalwheat
management on aphids, weeds, and foliar diseases. Agriculture,
Ecosystems & Environment,161,121–129.
Grasswitz,T.R., &James,D. G.(2008). Movementofgrapemealybug,
Pseudococcus maritimus, on and between host plants. Entomologia
Experimentalis et Applicata,129,268–275.
Grueber, C. E., Nakagawa, S., Laws, R. J., & Jamieson, I. G. (2011).
Multimodelinferenceinecologyandevolution:Challengesandsolu-
tions.Journal of Evolutionary Biology,24,699–711.
Haldberg,N.,Verschuur,G.,& Goodlass,G. (2005).Farmlevel environ-
mentalindicators;aretheyuseful?Anoverviewofgreenaccounting
systemsfor Europeanfarms. Agriculture, Ecosystems & Environment,
105,195–212.
Hartig,F.(2017).DHARMa:Residualdiagnosticsforhierarchical(multi-
level/mixed) regression models. https://cran.r-project.org/web/
packages/DHARMa/index.html.
Henri,D.C.,Jones,O.,Tsiattalos,A.,Thébault,E.,Seymour,C.L.,&Veen,
F.J. (2015). Natural vegetation benefits synergisticcontrol of the
three main insect and pathogen pests of a fruit cropin southern
Africa.Journal of Applied Ecology,52,1092–1101.
Inclán,D.J.,Cerretti,P.,Gabriel,D.,Benton,T.G.,Sait,S.M.,Kunin,W.
E.,…Marini, L. (2015).Organicfarming enhancesparasitoiddiver-
sityatthelocal andlandscapescales. Journal of Applied Ecology,52,
1102–1109.
Jackson,H. B., & Fahrig,L. (2012). What sizeisa biologically relevant
landscape?Landscape Ecology,27,929–941.
Jørgensen, L. N., Noe, E., Nielsen, G. C.,Jensen, J. E., Ørum, J. E., &
Pinnschmidt,H.O.(2008).Problemswithdisseminatinginformation
ondiseasecontrolinwheatandbarleytofarmers.European Jornal of
Plant Pathology,121,303–312.
Kuefler,D., Hudgens,B., Haddad, N. M.,Morris,W.F.,&Thurgate, N.
(2010).Theconflictingroleofmatrixhabitatsasconduitsandbarri-
ersfordispersal.Ecology,91,944–950.
Landis,D.A.,Wratten,S.D.,&Gurr,G.M.(2000).Habitatmanagement
toconservenaturalenemiesofarthropodpestsinagriculture.Annual
Review of Entomology,45,175–201.
Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-Jolain, N.
(2017). Reducing pesticide use while preserving cropproductivity
andprofitabilityonarablefarms.Nature Plants,3,17008.
Letourneau,D.K.,Armbrecht,I.,Rivera,B.S.,Lerma,J.M.,Carmona,E.J.,
Daza,M.C.,…Trujillo,A.R.(2011).Doesplantdiversitybenefitagro-
ecosystems?Asyntheticreview.Ecological Applications,21,9–21.
Letourneau,D.K.,Jedlicka,J.A.,Bothwell,S.G.,&Moreno,C.R.(2009).
Effectsofnatural enemybiodiversityon thesuppression ofarthro-
pod herbivoresin terrestrial ecosystems. Annual Review of Ecology,
Evolution, and Systematics,40,573–592.
Mgocheki, N., & Addison, P. (2010). Spatial distribution of ants
(Hymenoptera:Formicidae),vine mealybugd andmealybugparasit-
oidsinvineyards.Journal of Applied Entomoly,134,285–295.
10 
|
    
Journal of Applied Ecology
MUNERET ET al.
Muneret, L., Thiéry, D., Joubard, B., & Rusch, A. (2017). Data from:
Deploymentof organicfarmingat a landscapescalemaintains low
pestinfestationandhighcropproductivitylevelsinvineyards.Dryad
Digital Repository,https://doi.org/10.5061/dryad.vv1t9
Muscas,E.,Cocco,A.,Mercenaro,L.,Cabras,M.,Lentini,A.,Porqueddu,
C., & Nieddu, G. (2017). Effects ofvineyard floor cover crops on
grapevine vigor,yield, and fruit quality, and the development of
the vine mealybug under a Mediterranean climate. Agriculture,
Ecosystems & Environment,237,203–212.
Nakagawa,S.,&Schielzeth,H.(2013).Ageneralandsimplemethod for
obtainingR2fromgeneralizedlinearmixed-effectsmodels.Methods
in Ecology and Evolution,4,133–142.
OECD.(2001).Environmentalindicatorsforagriculturevolume3/2001.
https://www.oecd.org/tad/sustainable-agriculture/40680869.pdf.
Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural
Science,144,31–43.
Pertot, I., Caffi,T., Rossi,V., Mugnai, L., Hoffmann, C., Grando, M. S.,
…Anfora, G. (2017). A critical reviewof plant protection tools for
reducingpesticideuse on grapevine and new perspectivesforthe
implementationofIPMinviticulture.Crop Protection,97,70–84.
Plantegenest,M.,LeMay,C.,&Fabre,F.(2007).Landscapeepidemiologyof
plantdiseases.Journal of the Royal Society Interface,4,963–972.
RCoreTeam.(2016).R:TheRprojectforstatisticalcomputing.https://
www.r-project.org/.
Ricci,B.,Franck,P.,Toubon,J.F.,Bouvier,J.C.,Sauphanor,B.,&Lavigne,
C.(2009).Theinfluenceoflandscapeoninsectpestdynamics:Acase
studyinsoutheasternFrance.Landscape Ecology,24,337–349.
Rusch, A., Chaplin-Kramer, R., Gardiner, M. M., Hawro, V., Holland,
J., Landis, D., … Bommarco,R. (2016). Agricultural landscape sim-
plification reduces natural pest control: A quantitative synthesis.
Agriculture, Ecosystems & Environment,221,198–204.
Rusch, A., Valantin-Morison, M., Sarthou, J.-P., & Roger-Estrade, J.
(2010).Biologicalcontrolofinsectpestsinagroecosystems:Effects
ofcrop management,farmingsystems, andseminaturalhabitats at
thelandscapescale:Areview.Advances in Agronomy,109,219–260.
Savary,S., Delbac, L., Rochas, A., Taisant, G., & Willocquet, L. (2009).
Analysisofnonlinearrelationshipsindualepidemics,anditsapplica-
tiontothemanagementofgrapevinedownyandpowderymildews.
Phytopathology,99,930–942.
Savary, S., Teng, P. S., Willocquet, L., & Nutter, F. W. Jr (2006).
Quantification and modeling ofcrop losses: A reviewof purposes.
Annual Review of Phytopathology,44,89–112.
Schielzeth,H.(2010).Simplemeanstoimprovetheinterpretabilityofre-
gressioncoefficients.Methods in Ecology and Evolution,1,103–113.
Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L.,
Hindayana,D., &Lestari,A.S. (1996). Managingtropical ricepests
throughconservation ofgeneralist natural enemiesand alternative
prey. Ecology,77,1975–1988.
Stephens, A. E., Srivastava, D. S., & Myers, J. H. (2013). Strength in
numbers?Effectsofmultiplenaturalenemyspeciesonplantperfor-
mance. Proceedings of the. Royal Society of London B,280,20122756.
Summerville, K. S. (2004). Do smaller forest fragments contain a
greater abundance of lepidopteran crop and forage consumers?
Environmental Entomology,33,234–241.
Thiéry,D.,&Moreau,J.(2005).RelativeperformanceofEuropeangrape-
vine moth (Lobesia botrana)on grapes and other hosts. Oecologia,
143,548–557.
Thomson,L.J.,&Hoffmann,A.A.(2013).Spatialscale ofbenefitsfrom
adjacent woody vegetation on natural enemies within vineyards.
Biological Control,64,57–65.
Tscharntke,T.,Clough,Y.,Wanger,T.C.,Jackson,L.,Motzke,I.,Perfecto,I.,
… Whitbread, A. (2012). Global food security, biodiversity con-
servation and the future of agricultural intensification. Biological
Conservation,151,53–59.
Tscharntke, T., Karp, D. S., Chaplin-Kramer, R., Batáry, P., DeClerck,
F.,Gratton, C., … Zhang, W. (2016). When naturalhabitat fails to
enhance biological pest control – Five hypotheses. Biological
Conservation,204,449–458.
Tscharntke, T., Tylianakis, J. M., Rand,T. A., Didham, R. K., Fahrig, L.,
Batary,P., …Westphal, C. (2012). Landscape moderation of biodi-
versitypatternsandprocesses-eighthypotheses.Biological Reviews,
87,661–685.
Veres,A.,Petit,S.,Conord,C.,&Lavigne,C.(2013).Doeslandscapecom-
positionaffectpestabundanceandtheircontrolbynaturalenemies?
A review. Agriculture, Ecosystems & Environment,166,110–117.
Winqvist,C.,Bengtsson,J.,Aavik,T.,Berendse,F.,Clement,L.W.,Eggers,
S., … Bommarco, R. (2011). Mixed effectsof organic farming and
landscapecomplexityonfarmlandbiodiversityandbiologicalcontrol
potentialacrossEurope.Journal of Applied Ecology,48,570–579.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:MuneretL,ThiéryD,JoubardB,
RuschA.Deploymentoforganicfarmingatalandscape
scalemaintainslowpestinfestationandhighcrop
productivitylevelsinvineyards.J Appl Ecol. 2017;00:1–10.
https://doi.org/10.1111/1365-2664.13034
... Papura et al. [51] reported that increasing the proportion of semi-natural habitats in a vineyard agroecosystem increases the predation rate of the grape berry moth by harvestmen. Muneret et al. [52] confirmed that semi-natural habitats significantly impact the biological control of pests in vineyard landscapes. It was demonstrated that reducing the area of semi-natural habitats can result in an increase in pest infestation levels, particularly mealybugs, mites, and phylloxera [52]. ...
... Muneret et al. [52] confirmed that semi-natural habitats significantly impact the biological control of pests in vineyard landscapes. It was demonstrated that reducing the area of semi-natural habitats can result in an increase in pest infestation levels, particularly mealybugs, mites, and phylloxera [52]. ...
Article
Full-text available
Agricultural expansion and intensification worldwide has caused a reduction in ecological infrastructures for insects, herbaceous plants, and vertebrate insectivores, among other organisms. Agriculture is recognized as one of the key influences in biodiversity decline, and initiatives such as the European Green Deal highlight the need to reduce ecosystem degradation. Among fruit crops, grapes are considered one of the most intensive agricultural systems with the greatest economic relevance. This study presents a compilation of management practices to enhance biodiversity performance, which applies generally to the agricultural sector and, in particular, to viticulture, concerning the diversity of plants, semi-natural habitats, soil management, and the chemical control strategies and pesticides used in agricultural cultivation. Through a critical review, this study identifies a set of recommendations for biodiversity performance and their corresponding effects, contributing to the dissemination of management options to boost biodiversity performance. The results highlight opportunities for future investigations in determining the needed conditions to ensure both biodiversity enhancement and productive gains, and understanding the long-term effects of innovative biodiversity-friendly approaches.
... Intensive interventions in crop fields to control pests also weakens ecological services provided by natural enemies, potentially leading to a resurgence of pests across the landscape (Batáry et al. 2010). Areas with low management intensity, such as semi-natural habitats and organic crop fields, can enhance the conservation of natural enemies, that, in turn, may reduce pests in crop fields within the landscape (Muneret et al. 2018;Katayama et al. 2023). Therefore, well targeted, environmentally friendly insecticides usually have few negative effects on natural enemies, while still controlling pests. ...
... This research is crucial for enhancing our understanding of how organic farming practices, particularly those that combine habitat modification and biopesticidal fertilizers, can improve the sustainability of food production. By understanding the dynamics of natural enemy diversity and the function of its bioindicators, we can develop more effective and environmentally friendly land management strategies [8][9][10][11]. Furthermore, the findings from this study are expected to provide practical recommendations for farmers to adopt improved organic farming techniques that support productivity and maintain the balance of agricultural ecosystems. ...
Article
Full-text available
Indonesian rice farming relies heavily on intensive systems, adversely affecting soil quality, human health, and non-target organisms. Organic systems are a viable alternative characterized by organic fertilizers and biopesticides, avoiding genetically modified microorganisms and promoting biodiversity. This study investigated the impact of biopesticidal fertilizer (BF), and refugia plants on arthropod pests and natural enemy composition. Refugia plants, including Luffa acutangula, Elegans zinnia, Capsicum frutescens, Solanum licopersicum, Vigna unguiculata, and Cosmos caudatus, were planted in rice field bunds to promote habitat modification. A visual encounter survey (VES) was conducted in the morning, afternoon, and evening to examine arthropod composition. Results showed that habitat modification with BF balanced the visiting patterns of herbivorous, predatory, parasitoid, and pollinator insects. The importance value index of predatory insects was higher in plots using habitat modification (PV = 44.65%, and PG = 46.04%) compared to plots without habitat modification (KV = 37.71%, and KG = 38.54%). Changes in light intensity, air temperature, and humidity also influenced insect diversity on agricultural land. This study demonstrates the potential of habitat modification with biopesticidal fertilizers to promote balanced ecosystems in rice farming, reducing the reliance on intensive systems and their negative consequences.
... Employing organic farming in the landscape increases weed diversity and can positively affect predatory insects and predation rates (Inclán et al. 2015;Muneret et al. 2018). However, the effects are poorly documented, and there are also studies that show only marginal effects (Petit et al. 2020). ...
Article
Full-text available
To attain food security, we must minimize crop losses caused by weed growth, animal herbivores, and pathogens (or “pests”). Today, crop production depends heavily on the use of chemical pesticides (or “pesticides”) to protect the crops. However, pesticides are phased out as they lose efficiency due to pest resistance, and few new pesticides are appearing on the market. In addition, policies and national action programs are implemented with the aim of reducing pesticide risks. We must redesign our cropping systems to successfully protect our crops against pests using fewer or no pesticides. In this review, I focus on the principles for redesigning the crop ecosystem. Ecological redesign aims to enhance ecological functions in order to regulate pest populations and diminish crop losses. Exploring ecology and ecosystems plays an important role in this transition. Guiding principles for redesigning the cropping system can be drawn from understanding its ecology. Ecosystem and community ecologists have identified four principal ecological characteristics that enhance the biotic regulation of ecological processes across ecosystems: (i) advanced ecosystem succession through introducing and conserving perennial crops and landscape habitats; (ii) reduced disturbance frequency and intensity; (iii) an increase in both managed and wild functional biological diversity, above and below ground; and (iv) matched spatial extent of land use (e.g., crop field size) with that of ecological processes (e.g., dispersal capacity of predators). I review the practices that link these ecosystem characteristics to crop protection in grain commodity cropping in both the crop field and the agricultural landscape. The review brings forth how basic understandings drawn from ecosystem and community ecology can guide agricultural research in the redesign of cropping systems, ensuring that technologies, breeding, innovation, and policy are adapted to and support the reshaped crop ecosystem.
... Currently, pest management practices are generally limited to chemical pesticide application; vineyards are subjected to very high levels of synthetic pesticides [10]. The use of synthetic pesticides to manage phytophagous mites results in the resistance of mites to major pesticides, the resurgence of secondary diseases and pests, the lethal effects of pesticides on natural enemies and other non-target organisms, and the presence of pesticide residues in crops, as well as negative impacts on biodiversity and on the environment and human health [11][12][13]. ...
Article
Full-text available
Phytoseius plumifer (Canestrini and Fanzago) and Euseius scutalis (Athias-Henriot (Phytoseiidae) are generalist predatory mites important in controlling phytophagous mites on some agricultural crops. The biology of both species as potential biological control agents of the grape erineum mite, Colomerus vitis (Pagenstecher (Eriophyidae) on grape leaf disks was studied in the laboratory at 33 ± 1 ◦C, 60%RH, 12:12 h L:D. The developmental time, survival, and reproductive parameters of P. plumifer and E. scutalis on C. vitis, date palm pollen as well as C. vitis plus date palm pollen were investigated. Both predators, P. plumifer and E. scutalis, thrived on the mixed diet of C. vitis and date palm pollen resulting in a shorter developmental time (6.16 and 6.69 days, respectively), higher oviposition rate (2.11 and 1.96 eggs/female/day, respectively), and higher intrinsic rate of increase (0.251 and 0.229 per female/day, respectively) than on any other diet. Date palm pollen was an adequate alternative food source for P. plumifer and E. scutalis. The results suggest that both predators have good potential to suppress C. vitis populations and that date palm pollen can support the population establishment of both predators in the absence or scarcity of the main prey in the environment. We discuss the relevance of our results for the biocontrol of C. vitis.
... An increase in the proportion of OF fields in the landscape may therefore not increase pest occurrence, at least in low pest pressure contexts (Gosme et al. 2012). Increasing OF area has been reported to have a neutral effect on pest infestations, such as in vineyards (Muneret et al. 2018). On the other hand-and this is an important distinction-it appears that the biological control service may decrease when the share of non-organically farmed fields in the landscape increases. ...
Article
Farming management and alterations in land cover play crucial roles in driving changes in biodiversity, ecosystem functioning , and the provision of ecosystem services. Whereas land cover corresponds to the identity of cultivated/non-cultivated ecosystems in the landscape, farming management describes all the components of farming activities within crops and grassland (i.e., farming practices, crop successions, and farming systems). Despite extensive research on the relationship between land cover and biodiversity at the landscape scale, there is a surprising scarcity of studies examining the impacts of farming management on biodiversity at the same scale. This is unexpected given the already recognized field-scale impact on biodiversity and ecosystem services, and the fact that most species move or supplement their resources in multiple patches across agricultural landscapes. We conducted a comprehensive literature review aimed at answering two fundamental questions: (1) What components of farming management are considered at the landscape scale? (2) Does farming management at the landscape scale impact biodiversity and associated ecosystem functions and services? We retrieved 133 studies through a query on the Web of Science, published from January 2005 to December 2021 addressing the broad notion of farming management at the landscape scale. The key findings are as follows: (1) The effect of farming management components at the landscape scale on biodiversity was tackled in only 41 studies that highlighted that its response was highly taxon-dependent. They reported positive effects of organic farming on pollinators, weeds, and birds, as well as positive effects of extensification of farming practices on natural enemies. (2) Most studies focused on the effect of organic farming on natural enemies and associated pests, and reported contrasting effects on these taxa. Our study underscores the challenges in quantifying farming management at the landscape scale, and yet its importance in comprehending the dynamics of biodiversity and related ecosystem services.
... We found no effect of this variable, contrary to our initial hypothesis. This absence of effect is consistent with former results obtained at a smaller spatial scale (Ricci et al. 2009) and concur with results on grapevines (Muneret et al. 2018b) and arable crops (Gosme et al. 2012). Farmers manage pests with a diversity of practices in organic apple orchards (Marliac et al. 2016). ...
Article
Full-text available
Context The composition and configuration of habitats in agricultural landscapes may determine crop damage resulting from pests or pathogens either by directly affecting their population dynamics or through indirect effects on their natural enemies. Objectives The aim of this study was to assess the impact of landscape composition and configuration on the occurrence and damage caused by the codling moth and apple scab in apple orchards. Methods Using monitoring data at the French national scale, we examined how the proportion of landscape area grown with orchards, the mean patch area of orchards, the share of organic orchards and the proportion of woodlands and grasslands affected the occurrence and damage of these two pests from 2015 to 2019 in approximately sixty apple orchards each year. Results Landscapes with a higher proportion of orchards supported a higher occurrence of apple scab and earlier colonisation of codling moths. In addition, we found that codling moth damage decreased with increasing orchard patch area in the landscape. The proportion of seminatural habitats or organic farming in the landscape never significantly explained pest occurrence or damage. Conclusions Our results clearly highlight the importance of considering the amount and spatial arrangement of the pests’ and pathogens’ host crops to understand their infestation levels. Our study calls for the territorial management of orchard distribution to limit pesticide use in apple orchards.
... Although parasitoids regulate these mealybugs in their native habitats (Flanders, 1940;Guerrieri & Cascone, 2018), parasitism is highly variable in Spain. The effects of habitat heterogeneity on mealybug abundance may be mediated by the presence of these specific parasitoids, which could be one of the reasons explaining differences in mealybug responses to habitat context (Le et al., 2018;Moore, 1988;Muneret et al., 2018;Shapira et al., 2018). ...
Article
Full-text available
The simplification of agricultural landscapes has been associated with an increase in pest pressure. While monocultures increase the resources available for pests and may facilitate their dispersion, the lack of non‐crop habitats may reduce the resources available for pest natural enemies. Herein, we tested which of these hypotheses, namely ‘resource concentration’ and ‘natural enemies’, can better explain the abundance of invasive mealybug pests in two subtropical fruit crops. For this aim, 17 persimmon orchards and 16 citrus orchards were sampled during three different seasons across two consecutive years. Using a model selection approach, we assessed the effects of the surrounding landscape (proportion of focal crops and semi‐natural habitats at different distances) and inter‐row ground cover vegetation on the abundance of mealybugs and their natural enemies. The proportion of focal crop in the landscape increased the abundance of mealybugs attacking both crops. This effect was found at closer distances (up to ~600 m) in citrus and at both closer and further distances (up to 1250 m) in persimmon. Non‐crop habitats, both surrounding semi‐natural habitats and ground cover vegetation, decreased the abundance of mealybugs by increasing the activity of their parasitoids in persimmon. Conversely, non‐crop habitats did not decrease the abundance of the main mealybug species attacking citrus, likely because this mealybug species was not attacked by native or naturalized parasitoids. Synthesis and applications. Our models show that the increase in habitat heterogeneity at local and landscape scales can reduce the abundance of invasive mealybugs in subtropical crops via ‘resource concentration’ and ‘natural enemies’ mechanisms. Therefore, habitat diversification strategies should be considered in the conservation biological control of invasive mealybugs. Importantly, our findings also show that the presence of efficient natural enemies is critical to maximize their control through habitat diversification strategies.
... Some studies miss the adequate scale of response, because they often focus on a single trophic level exclusively on an area-wide basis (Karp et al., 2018), or at a small local scale (Blassioli-Moraes et al., 2022). Furthermore, most studies on this subject took place in temperate zone countries, especially in Europe (Happe et al., 2019;Muneret et al., 2018;Tougeron et al., 2022), and there is a great gap in the current knowledge regarding the combined effects of local management and landscape context across spatial scales on insect populations for tropical regions. These limitations extend to pest insect dispersion models that frequently use stochastic particle simulations and target mainly abiotic characteristics (Koralewski et al., 2021). ...
Article
Full-text available
The simplification and fragmentation of agricultural landscapes generate effects on insects at multiple spatial scales. As each functional group perceives and uses the habitat differently, the response of pest insects and their associated natural enemies to environmental changes varies. Therefore, landscape structure may have consequences on gene flow among pest populations in space. This study aimed to evaluate the effects of local and landscape factors, at multiple scales, on the local infestation, gene flow and broad dispersion dynamics of the pest insect Bemisia tabaci (Genn.) Middle East‐Asia Minor 1 (MEAM‐1, former biotype B) (Hemiptera: Aleyrodidae) and its associated natural enemies in a tropical agroecosystem. We evaluated the abundance of B. tabaci populations and their natural enemy community in 20 tomato farms in Brazil and the gene flow between farms from 2019 to 2021. Landscapes dominated by agriculture resulted in larger B. tabaci populations and higher gene flow, especially in conventional farms. A higher density of native vegetation patches disfavored pest populations, regardless of the management system. The results revealed that whitefly responds to intermediate spatial scales and that landscape factors interact with management systems to modulate whitefly populations on focal farms. Conversely, whitefly natural enemies benefited from higher amounts of natural vegetation at small spatial scales, while the connectivity between natural habitat patches was beneficial for natural enemies regardless of the distance from the focal farm. The resulting dispersion model predicts that the movement of whiteflies between farms increases as the amount of natural vegetation decreases. Our findings demonstrate that landscape features, notably landscape configuration, can mediate infestation episodes, as they affect pest insects and natural enemies in opposite ways. We also showed that landscape features interact with farm traits, which highlights the need for management strategies at multiple spatial scales. In conclusion, we demonstrated the importance of the conservation of natural areas as a key strategy for area‐wide ecological pest management and the relevance of organic farming to benefit natural enemy communities in tropical agroecosystems.
Book
Full-text available
Proceedings oftheMeeting at Logroño, La Rioja (Spain) 03-05 October, 2023 Plant protection in viticulture is matter of discussion due to the undesirable effects of pesticide use on human health and the environment. EU has launched various measures to reduce negative impacts of intensive management practices and to promote the transition towards more ecologically-based pest management methods. In addition, climate change poses particular regional challenges in the different wine-growing countries. While heat, drought and fire are pushing viticulture to its limits here, other areas are struggling at times with continuous rain and fungal diseases. The particular challenge here is to develop plant protection and cultivation systems that are as sustainable and effective as possible for each region. Research in this field is producing excellent results but their implementation in practice is still challenging. For our working group, which represents the wine-growing regions of the Western Palearctic, it is particularly important to understand scientifically the regional bottlenecks of sustainability and to communicate towards policy-makers that these may vary greatly from region to region. Against this backdrop, the last meeting of the IOBC-WPRS Working Group “Integrated Protection in Viticulture” took place in Logroño, Spain, October 3-5, 2023. This international conference aimed to bring together scientists, researchers, students and consultants working on biological control and integrated protection in viticulture. Thes conference offered many opportunities to share ideas and to discuss current research findings. Promising areas for future research could be identified. The IOBC-WPRS WG meeting had 124 participants from many countries, representatives from universities, research institutes, industry and private companies. The scientific program was subdivided into seven oral (52 talks) and two poster sessions (40 posters). Topics of oral sessions were as follows: 1. Advances in knowledge and new solutions against diseases a) Pathogens - plant interactions b) Resistant varieties: strengths and weakness c) Inducing resistance through chemical or agro-technical means d) Pathogens – arthropods relationships 2. New strategies in arthropod pest control a) Conservation biological control in viticulture b) Bio-ecology and management of invasive pests in viticulture c) Disruption in communication and pest control 3. Sustainable management of soil and weeds a) Alternatives to herbicides b) Soil management strategies: implications for pest control 4. IPM implementation and tools for sustainable viticulture a) New technologies and products aimed at reducing pesticide use b) Organic viticulture: opportunities and limitations V The meeting was organized by scientist of Instituto de Ciencias de la Vid y del Vino (David Gramaje, Raquel Campos Herrera, Rebeca Bujanda Muñoz, Beatriz López Manzanares) from the University of La Rioja (Saioa Legarrea Imizcoz, Vicente Marco Mancebón, Ignacio Pérez Moreno, María Elena Martínez Villar) and by the government of La Rioja (José Luis Ramos Sáez de Ojer).
Article
Full-text available
Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century1. Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities2. The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies3, 4, 5; however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17. Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.
Article
Full-text available
Ecologists and farmers often have contrasting perceptions about the value of natural habitat in agricultural production landscapes, which so far has been little acknowledged in ecology and conservation. Ecologists and conservationists often appreciate the contribution of natural habitat to biodiversity and potential ecosystem services such as biological pest control, whereas many farmers see habitat remnants as a waste of cropland or source of pests. While natural habitat has been shown to increase pest control in many systems, we here identify five hypotheses for when and why natural habitat can fail to support biological pest control, and illustrate each with case studies from the literature: (1) pest populations have no effective natural enemies in the region, (2) natural habitat is a greater source of pests than natural enemies, (3) crops provide more resources for natural enemies than does natural habitat, (4) natural habitat is insufficient in amount, proximity, composition, or configuration to provide large enough enemy populations needed for pest control, and (5) agricultural practices counteract enemy establishment and biocontrol provided by natural habitat. In conclusion, we show that the relative importance of natural habitat for biocontrol can vary dramatically depending on type of crop, pest, predator, land management, and landscape structure. This variation needs to be considered when designing measures aimed at enhancing biocontrol services through restoring or maintaining natural habitat.
Article
Full-text available
Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.
Article
Full-text available
Context Hemipteran pests cause significant yield losses in European cereal fields. It has been suggested that local management interventions to promote natural enemies are most successful in simple landscapes that are dominated by large arable fields. Objectives We study how farming category (conventional, new and old organic fields) and landscape complexity affect pests, natural enemies and biological control services in spring barley. We further analyse if yields are related to pest infestation or biological control services. Methods The amount of pasture and the length of field borders were used to define landscape complexity around barley fields in Southern Sweden. Arthropods were sampled with an insect suction sampler and predation and parasitism services were estimated by field observations and inspections of pest individuals. Results Pest infestation was affected by landscape complexity, with higher aphid, but lower leafhopper numbers in more complex landscapes. Aphid predation was higher under organic farming and affected by effects on predator abundance and community composition independent of landscape complexity. Auchenorrhyncha parasitism was neither significantly affected by landscape complexity nor by farming category. Higher aphid predation rates and lower aphid densities were characteristic for organically managed fields with higher barley yields. Conclusions Our results suggest that it is possible to increase both aphid biological control services and barley yield via local management effects on predator communities independent of landscape complexity. However, the success of such management practices is highly dependent on the pest and natural enemy taxa and the nature of the trophic interaction.
Article
Full-text available
Most studies of the potential for natural habitat to improve agricultural productivity have been conducted in transformed, temperate regions, but little is known of the importance of agroecosystem services in biodiverse developing countries. Natural vegetation may promote the density and/or diversity of natural enemies of crop pests, but the strength of the effect varies, and few studies directly measure concurrent impacts on pest density. Considering multiple pest species within the same agroecosystem may help explain why some pests are more affected than others by landscape complexity. Here, we investigated multiple pest species (three species of Tephritidae fruit fly, leaf galling flies and pathogenic fungi Fusarium spp.) and their enemies in cultivated mango Mangifera indica , in north‐eastern South Africa. The density of generalist Tephritidae fruit flies increased with distance from natural vegetation during harvesting months, and predation rate of pupae sharply decreased from ~50% at the edge with natural vegetation to 0% at 250 m into the crop. Parasitism rates of the cryptic, gall‐forming fly increased with proximity to natural vegetation, but pest density was unrelated to distance from natural vegetation. Incidence of the fungal pathogen disease increased with distance from natural vegetation, possibly due to decreased predation of commensal mites. Although the relationship with distance to natural vegetation was significant for all species considered, the strength of this relationship varied across pest species and type of natural enemy studied, suggesting the benefits of natural vegetation depend on each natural enemy species' ability to disperse into the agricultural environment. Synthesis and applications . Our results suggest that natural vegetation is a net source of natural enemies in a region of South Africa that still contains much of its natural biodiversity. However, the decline in natural enemies, and increase in pests, with distance from natural habitat indicates that this biocontrol is limited by natural enemy dispersal. In landscapes like these that are still dominated by natural habitat, conservation biocontrol can still be improved by management aimed at providing corridors of key plants and habitat elements into the crops, to facilitate natural enemy dispersal.
Article
Full-text available
The genetic structure of ten grape phylloxera populations, sampled in summer of 2006 and 2007 from four distinct viticultural areas in Austria, Daktulosphaira vitifoliae (Fitch) (Homoptera: Phylloxeridae) was analyzed using six SSR markers (Dvit1-Dvit6). Leaf-feeding populations were chosen from similar ecological habitats, where susceptible rootstock hosts have overtaken scions in abandoned vineyards and produce grape phylloxera populations. To study population structures and test for dominating genotypes, population genetic measures were performed. The genetic diversity detected within the entire set of 315 genotypes was high, with 223 distinct multilocus genotypes (MLGs). Excess of heterozygotes and significant deviations from Hardy-Weinberg equilibrium in some populations indicated that the major reproduction mode in these populations is asexual but, sexual reproduction also confirmed by the sign. P sex values. The genetic diversity within populations was higher than between populations, although only three overlapping genotypes could be found. MLGs were rare, indicating that no candidate for superclones were detected in the leaf-feeding populations studied.
Article
The influence of complete cover cropping (inter- and intra-row) on grapevine growth, yield and must quality was evaluated in a three-year field trial in a commercial vineyard in northwestern Sardinia (Italy). Effects on developmental and reproductive parameters of the vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), were also investigated. The cover crop treatments were: natural covering, legume mixture, grass mixture, and conventional soil tillage, which was included as the reference treatment. Relative to soil tillage, cover crops reduced grape production by modifying yield components in different ways: legume mixture reduced the cluster weight, whereas grass mixture led to a lower number of clusters per vine coupled with a lower cluster weight. Cover crops also altered the must qualities relative to soil tillage. Grass mixture increased the content of sugar, anthocyanins and polyphenols, whereas legume mixture and natural covering reduced total polyphenols and anthocyanin content, respectively. All the P. ficus biological parameters examined were affected by the floor management practices. Mealybugs reared on grapevines subjected to soil tillage and legume covering showed a faster development time and higher survival, fecundity and fertility than those developed on natural covering and grass plots. The vine mealybug showed a higher performance on grapevines with a higher nitrogen content and vigor. Effects of cover crop treatments appear to be mediated through nutrient availability and content in grape plants. Consequently, utilizing competitive cover crops, while reducing yields, would improve must quality and reduce pest development
Article
1.The magnitude of the benefits derived from organic farming within contrasting managed landscapes remains unclear and, in particular, the potential scale-dependent response of insect parasitoids is relatively unexplored. Identifying the scale at which parasitoids are affected by organic farming will be an important step to enhance their conservation. 2.We sampled tachinid parasitoids at the centre and margin of arable and grassland fields on paired organic and conventional farms located in landscapes with different proportions of organic land. A total of 192 fields were sampled in two biogeographical regions of the UK. 3.We found that the positive effect of organic farming on tachinid parasitoid diversity can be observed at multiple spatial scales. At the local scale, we found higher abundance and species richness of tachinid parasitoids on organic than on conventional farms and on field margins than on field centres. At the landscape scale, the diversity of tachinids was higher in landscapes with higher proportions of organic land. At both scales, the positive effect of organic farming was clear for arable fields, while it was almost neutral for grasslands. 4.Synthesis and applications. Any attempt to enhance parasitoid diversity in agricultural landscapes needs to consider the local management in relation to the habitat type, location within the field and agricultural management in the surrounding landscape. To restore parasitoid diversity, the promotion of organic agriculture should aim to increase both the total extent of organic farming and the connectivity of individual farms. As the benefits of organic farming to biodiversity clearly spread beyond individual farm boundaries, any assessment of organic farming should consider these positive externalities.