Conference Paper

200 mm Wafer level graphene transfer by wafer bonding technique

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Chip-size patches of graphene are transferred from the epi-Ge/Si growth wafer by electrochemical delamination [19] to various sorts of patterned 200 mm wafers on which further process development takes place. This method of graphene transfer is not yet fully compatible with Si technology, however, it offers convenient prototyping opportunities as an intermediate solution [20] until full 200 mm wafer transfer processes as for example the wafer bonding are developed [21]. ...
Article
We present insights into processes of cleaning, patterning, encapsulation, and contacting graphene in a 200 mm wafer pilot line routinely used for the fabrication of integrated circuits in Si technologies. We demonstrate key process steps and discuss challenges and roadblocks which need to be overcome to enable integration of this material with Si technologies.
Article
Graphene epitaxy on germanium by chemical vapor deposition is a promising approach to integrate graphene into microelectronics, but the synthesis is still accompanied by several challenges such as the high process temperature, the reproducibility of growth, and the formation of etch pits during the process. We show that the substrate cleaning by preannealing in molecular hydrogen, which is crucial to successful and reproducible graphene growth, requires a high temperature and dose. During both substrate cleaning and graphene growth, etch pits can develop under certain conditions and disrupt the synthesis process. We explain the mechanisms how these etch pits may form by preferential evaporation of substrate, how substrate topography is related to the state of the cleaning process, and how etch pit formation during graphene growth can be controlled by choice of a sufficiently high precursor flow. Our study explains how graphene can be grown reliably on germanium at high temperature and thereby lays the foundation for further optimization of the growth process.
Conference Paper
Full-text available
We report on a wafer scale fabrication of graphene based field effect transistors (GFETs) for use in future radio frequency (RF) and sensor applications. The process is also almost entirely CMOS compatible and uses a scalable graphene transfer method that can be incorporated in standard CMOS back end of the line (BEOL) process flows. Such a process can be used to integrate high speed GFET devices and graphene sensors with silicon CMOS circuits.
Article
Full-text available
Physical vapor deposition of Si onto transferred graphene is investigated. At elevated temperatures, Si nucleates preferably on wrinkles and multilayer graphene islands. In some cases, however, Si can be quasi-selectively grown only on the monolayer graphene regions while the multilayer islands remain uncovered. Experimental insights and ab initio calculations show that variations in the removal efficiency of carbon residuals after the transfer process can be responsible for this behavior. Low-temperature Si seed layer results in improved wetting and enables homogeneous growth. This is an important step towards realization of electronic devices in which graphene is embedded between two Si layers.
Article
Full-text available
The advance of graphene-based nanoelectronics has been hampered due to the difficulty in producing single- or few-layer graphene over large areas. We report a simple, scalable, and cost-efficient method to prepare graphene using methane-based CVD on nickel films deposited over complete Si/SiO<sub>2</sub> wafers. By using highly diluted methane, single- and few-layer graphene were obtained, as confirmed by micro-Raman spectroscopy. In addition, a transfer technique has been applied to transfer the graphene film to target substrates via nickel etching. FETs based on the graphene films transferred to Si/SiO<sub>2</sub> substrates revealed a weak p-type gate dependence, while transferring of the graphene films to glass substrate allowed its characterization as transparent conductive films, exhibiting transmittance of 80% in the visible wavelength range.
Article
Full-text available
The high carrier mobility of graphene has been exploited in field-effect transistors that operate at high frequencies. Transistors were fabricated on epitaxial graphene synthesized on the silicon face of a silicon carbide wafer, achieving a cutoff frequency of 100 gigahertz for a gate length of 240 nanometers. The high-frequency performance of these epitaxial graphene transistors exceeds that of state-of-the-art silicon transistors of the same gate length.
Article
Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH4 as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ~ 3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half maximum value of 39 cm-1 was extracted for the 2D mode; further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2x2 cm² pieces were transferred onto SiO2/Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ~1500 ±100 Ω/sq and µ ~400 ±20 cm2/V∙s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, we explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and we clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.
Conference Paper
We reported the direct graphene transferring tech- nology to SiO2 substrate using self-assembly monolayer (SAM) last year. In this report, this graphene transferring technique was improved by applying other kinds of SAM with silane coupling treatment. In the former report, the SAM was deposited on the substrate after the application of precursor, however, the silane modified SAM was applied to the substrate directly in this report. As result, the silane modified SAMs could be transferred larger area of graphene to the substrate.
Conference Paper
We propose a graphene transfer method based on chemical vapor deposited (CVD) graphene grown on copper foils. This transfer method utilizes a combination of a silicone elastomer (PDMS) and different intermediate polymer layers depending on the process requirements. We use polystyrene and polystyrene/photoresist intermediary layers for dry and wet graphene release. PMMA intermediary layer is applied for bubbling-assisted graphene transfer. The elastomer layer serves as an excellent solid support for electrochemical graphene delamination. Graphene-based field effect transistors (GFETs) were fabricated and characterized using this process. Raman spectroscopy was used in order to verify a successful transfer.
Conference Paper
Graphene has caught the attention of the electronic device community as a potential future option for More Moore and More Than Moore devices and applications. This is owed to its remarkable material properties, which include ballistic conductance over several hundred nanometers or charge carrier mobilities of several 100.000 cm2/Vs in pristine graphene. Furthermore, standard CMOS technology may be applied to graphene in order to make devices. Integrated graphene devices, however, are performance limited by scattering due to defects in the graphene and its dielectric environment and high contact resistance. In addition, graphene has no energy band gap and hence graphene MOSFETs (GFETs) cannot be switched off, but instead show ambipolar behaviour. This has steered interest away from logic to analog radio frequency (RF) applications. This talk will systematically compare the expected RF performance of realistic GFETs with current silicon CMOS technology. GFETs slightly lag behind in maximum cut-off frequency FT,max up to a carrier mobility of 3000 cm2/Vs, where they can achieve similar RF performance as 65nm silicon FETs. While a strongly nonlinear voltage-dependent gate capacitance inherently limits performance, other parasitics such as contact resistance are expected to be optimized as GFET process technology improves.
Article
The first micrometer-sized graphene flakes extracted from graphite demonstrated outstanding electrical, mechanical and chemical properties, but they were too small for practical applications. However, the recent advances in graphene synthesis and transfer techniques have enabled various macroscopic applications such as transparent electrodes for touch screens and light-emitting diodes (LEDs) and thin-film transistors for flexible electronics in particular. With such exciting potential, a great deal of effort has been put towards producing larger size graphene in the hopes of industrializing graphene production. Little less than a decade after the first discovery, graphene now can be synthesized up to 30 inches in its diagonal size using chemical vapour deposition methods. In making this possible, it was not only the advances in the synthesis techniques but also the transfer methods that deliver graphene onto target substrates without significant mechanical damage. In this article, the recent advancements in transferring graphene to arbitrary substrates will be extensively reviewed. The methods are categorized into mechanical exfoliation, polymer-assisted transfer, continuous transfer by roll-to-roll process, and transfer-free techniques including direct synthesis on insulating substrates.
Article
We developed means to produce wafer scale, high-quality graphene films as large as 3 in. wafer size on Ni and Cu films under ambient pressure and transfer them onto arbitrary substrates through instantaneous etching of metal layers. We also demonstrated the applications of the large-area graphene films for the batch fabrication of field-effect transistor (FET) arrays and stretchable strain gauges showing extraordinary performances. Transistors showed the hole and electron mobilities of the device of 1100 +/- 70 and 550 +/- 50 cm(2)/(V s) at drain bias of -0.75 V, respectively. The piezo-resistance gauge factor of strain sensor was approximately 6.1. These methods represent a significant step toward the realization of graphene devices in wafer scale as well as application in optoelectronics, flexible and stretchable electronics.