There are different approaches to implement sustainability and Design for Sustainability (DfS) is the one that give more accurate result by considering both global and regional scales. Integration of Life Cycle Assessment (LCA) into Product Lifecycle Management (PLM) is an example of tool integration to support sustainability. In LCA framework, Life Cycle Inventory (LCI) is the quantified and classified list of input and output flow of the LCA model that is a model of the product system, linking the technological system to the ecosphere (Environment system). As each region has a unique environmental system, design characteristics and specifications of technological system should be modified and adopted based on these differences. Implementation of this approach will require geographical information of interacted environmental systems, which is a kind of new strategy in DfS. Therefore, we tested the interest of the integration of Geographical Information Systems (GIS) with PLM to support geographical considerations during product development activities. The main research question of this research work is then how to propose this PLM-GIS integration for DfS.
Thus, we conducted that literature review on existing data models about product, environment, geography and their combination is a key to prove the link among them. Later the state of art highlighted the lack of a comprehensive product model integrated with geography and environment models, which could enable to support DfS. In the beginning of chapter 4 through section 4.1, case study of a simple flash light is proposed to identify the details on the relation between product and environment with geographic data classes. Later in section 4.2 a comprehensive data model is proposed, which could integrate product data with geography, through environmental impacts. Finally, in the last section of chapter 4, we discuss proposed data model in details with a defined scope on material aspect. In chapter 5, data model illustration of two existing desalination systems for two regions are analyzed to highlight how geographical differences could change product structure specifications.
Studying a product’s environmental impact on an interacted territory’s environmental status before and after design can increase decision makers’ accuracy when considering design for sustainability. Spatial representation of environmental information using Geographic Information Systems (GIS) is an approach to analyzing environmental status. This paper proposes a new data model to integrate geospatial data with product related data through environmental impacts over the whole lifecycle. This model uses coupling of GIS and PLM by ontology building. This new data model offers the possibility of enhancing sustainable products and obtaining more relevant results due to higher site specificity.
The paper explores the evolution of Design for Sustainability (DfS). Following a quasi-chronological pattern, our exploration provides an overview of the DfS field, categorising the design approaches developed in the past decades under four innovation levels: Product, Product-Service System, Spatio-Social and Socio-Technical System. As a result, we propose an evolutionary framework and map the reviewed DfS approaches onto this framework. The proposed framework synthesizes the evolution of the DfS field, showing how it has progressively expanded from a technical and product-centric focus towards large scale system level changes in which sustainability is understood as a socio-technical challenge. The framework also shows how the various DfS approaches contribute to particular sustainability aspects and visualises linkages, overlaps and complementarities between these approaches.
Life cycle assessment (LCA) is a highly interdisciplinary field that requires knowledge from different domains to be gathered and interpreted together. Although there are relatively few major data sources for LCA, the data themselves are presented with highly heterogeneous formats, interfaces, and distribution mechanisms. The lack of agreement among data providers for descriptions of processes and flows creates substantial barriers for information sharing and reuse of practitioners’ models.
Nevertheless, the many data resources share a common logic. The use of Semantic Web technologies and text mining techniques can facilitate the interpretation of data from diverse sources. Numerous existing efforts have been made to articulate a knowledge model for LCA. In March of 2015 a joint workshop was held that brought together leading international domain experts with ontology engineers to develop a set of simple models called ontology design patterns (ODPs) for LCA information. In this paper we build on the outcomes of the workshop, as well as prior published works, to derive a minimal “consensus model” for LCA. We use the consensus model to derive a description of an LCA “catalog” that can be used to express the semantic content of a data resource. We generate catalogs of several prominent databases, and make those catalogs available to the public for independent use. Finally, we “link” those catalogs to existing knowledge models using JSON-LD, a linked data format that can expose the catalog contents to Semantic Web tools.
We then show by example how the catalogs may be used to answer questions about the scope, coverage, and comparability of data, both within and across data sources, that are difficult to answer when the contents of the catalogs are provided independently and inconsistently. We discuss how the use of semantic catalogs can help address challenges that initiatives such as the “Global Network of Interoperable LCA Databases -- Global LCA Data Access” are facing today.
This second volume moves beyond a general introduction to product lifecycle management (PLM) and its principal elements to provide a more in-depth analysis of the subjects introduced in Volume 1 (21st Century Paradigm for Product Realisation).
Providing insights into the emergence of PLM and the opportunities it offers, key concepts such as the PLM Grid and the PLM Paradigm are introduced along with the main components of PLM and the associated characteristics, issues and approaches.
Detailing the 10 components of PLM: objectives and metrics; management and organisation; business processes; people; product data; PDM systems; other PLM applications; facilities and equipment; methods; and products, it provides examples and best practices.
The book concludes with instructions to help readers implement and use PLM successfully, including outlining the phases of a PLM Initiative: development of PLM vision and strategy; documentation of the current situation; description of future scenarios; development of implementation strategies and plans; implementation and use. The main activities, tasks, methods, timing and tools of the different phases are also described.
This chapter presents the outline of our methodology and introduces the main stages and concepts. At the end of the chapter, a comparison is made with the few other methodologies that have a similar purpose.
Active development has become a necessity for societies to ensure ecological, social, and economical sustainability. This study aimed to investigate the coordinated development of the Hadaqi industrial corridor using GIS/RS technology and a system dynamics (SD) model for social development and the ecological environment. The results show that: (1) Population growth has certain impact, but predatory development of resources and unreasonable development practices is is the main cause for ecological environment deterioration. (2) It makes is the lowest GDP growth on inertia development model, the highest resource consumption and environmental pollution on economic development model, the rapid economic growth, the least pollution emissions and energy consumption on PRED model. (3) Hadaqi industrial corridor is a typical area of high intensity interaction between people and the nature in the current and a period of time in the future. PRED should be promoted step by step to achieve the coordinated development of social development and the ecological environment.
In der Ökobilanz (engl. Life Cycle Assessment, LCA) werden die mit einem Produkt verbundenen Umweltaspekte und produktspezifischen potentiellen Umweltwirkungen im Verlauf des Produktlebenswegs von der Wiege bis zur Bahre abgeschätzt. Die Sachbilanz (engl. Life Cycle Inventory, LCI) ist der Teil der Ökobilanz, in dem der Produktlebensweg (LCI-system) modelliert wird. In der Modellierung des Produktlebenswegs bestimmen die Abschneidekriterien die Systemgrenzen. Die Abschneidekriterien beeinflussen die Daten-symmetrie des Produktsystems. Symmetrisch modellierte LCI-system gewährleisten eine hohe Aussagesicherheit der Ökobilanzergebnisse sowie auch die Vergleichbarkeit der untersuchten LCI-Systeme. In der gegenwärtigen Modellierung werden oft aggregierte Daten in der Form von fixierten Modulen benutzt. Die Anwendung von Modulen minimiert erheblich den Zeit- und Arbeitsaufwand der Ökobilanz-Studie und ermöglicht ihre Durchführbarkeit. Die Anwendung von fixierten Modulen führt allerdings auch zur Bildung von Datenasymmetrien, die zur Folge haben, dass die Endergebnisse verzerrt werden. Die symmetrische Modellierung des Produktsystems wurde gründlich untersucht, wenn verschiedene Abschneidekriterien verwendet wurden. Vorteile und mögliche Nachteile von Abschneidekriterien wurden festgestellt und neu entwickelte Versionen von den zuverlässigsten Abschneidekriterien entwickelt. Darüber hinaus ist die Modellierung des Produktsystems im Fall von komparativen Ökobilanzen (eng. comparative LCAs) auf eine solche Art und Weise weiterentwickelt, die die Datensymmetrie gewährleistet. Anhand von diesen theoretischen Untersuchungen wurde die Module-Funktionalität entwickelt, die durch die entwickelte RUN Modellierung umgesetzt wird. In dieser Modellierung können verschiedene Abschneidekriterien erfolgreich integriert werden, die anschließend auf das Modul Subsystem angewendet werden können. Dadurch werden Daten-Asymmetrien vermieden. So ist ein symmetrischer Anpassungsalgorithmus entstanden, der auch bei Datenbanken durchgeführt werden kann. Die manuelle Anwendung von Abschneidekriterien wird durch den Ökobilanzierer nun innerhalb der Datenbanken automatisiert betrieben. Die Durchführbarkeit der entwickelten multifunktionellen Module im Fall von verschiedenen Abschneidekriterien ist an der Fallstudie von Energieerzeugungsmodulen überprüft worden. An den multifunktionellen Modulen wird Datenasymmetriebildung verhindert. Daher übersteigt die durchschnittliche gesamte Performance, eingegeben in Umweltrelevanzreduzierung von den multifunktionellen Modulen im Vergleich zu den derzeitigen konventionellen Modulen 25%. Die empirische Untersuchung bestätigt alle theoretischen Überlegungen und betont die zwingende Notwendigkeit von symmetrischer Modellierung des Produktsystem. Gedruckte Version im Shaker Verlag [http://www.shaker.de/] erschienen.
GIS: A Computing Perspective, Second Edition, provides a full, up-to-date overview of GIS, both Geographic Information Systems and the study of Geographic Information Science. Analyzing the subject from a computing perspective, the second edition explores conceptual and formal models needed to understand spatial information, and examines the representations and data structures needed to support adequate system performance. This volume also covers the special-purpose interfaces and architectures required to interact with and share spatial information, and explains the importance of uncertainty and time. The material on GIS architectures and interfaces as well as spatiotemporal information systems is almost entirely new.The second edition contains substantial new information, and has been completely reformatted to improve accessibility. Changes include:
* A new chapter on spatial uncertainty* Complete revisions of the bibliography, index, and supporting diagrams* Supplemental material is offset at the top of the page, as are references and links for further study* Definitions of new terms are in the margins of pages where they appear, with corresponding entries in the index