ArticlePDF Available

Abstract and Figures

Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere. Anthropogenic sources of black carbon, although distributed globally, are most concentrated in the tropics where solar irradiance is highest. Black carbon is often transported over long distances, mixing with other aerosols along the way. The aerosol mix can form transcontinental plumes of atmospheric brown clouds, with vertical extents of 3 to 5 km. Because of the combination of high absorption, a regional distribution roughly aligned with solar irradiance, and the capacity to form widespread atmospheric brown clouds in a mixture with other aerosols, emissions of black carbon are the second strongest contribution to current global warming, after carbon dioxide emissions. In the Himalayan region, solar heating from black carbon at high elevations may be just as important as carbon dioxide in the melting of snowpacks and glaciers. The interception of solar radiation by atmospheric brown clouds leads to dimming at the Earth's surface with important implications for the hydrological cycle, and the deposition of black carbon darkens snow and ice surfaces, which can contribute to melting, in particular of Arctic sea ice.
Content may be subject to copyright.
nature geoscience | ADVANCE ONLINE PUBLICATION | 221
Global and regional climate changes due
to black carbon
Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere.
Anthropogenic sources of black carbon, although distributed globally, are most concentrated in the
tropics where solar irradiance is highest. Black carbon is often transported over long distances, mixing
with other aerosols along the way. The aerosol mix can form transcontinental plumes of atmospheric
brown clouds, with vertical extents of 3 to 5 km. Because of the combination of high absorption,
a regional distribution roughly aligned with solar irradiance, and the capacity to form widespread
atmospheric brown clouds in a mixture with other aerosols, emissions of black carbon are the second
strongest contribution to current global warming, after carbon dioxide emissions. In the Himalayan
region, solar heating from black carbon at high elevations may be just as important as carbon dioxide
in the melting of snowpacks and glaciers. The interception of solar radiation by atmospheric brown
clouds leads to dimming at the Earth’s surface with important implications for the hydrological cycle,
and the deposition of black carbon darkens snow and ice surfaces, which can contribute to melting, in
particular of Arctic sea ice.
1Scripps Institution of Oceanography, University of California at San Diego,
9500 Gilman Drive, #0221, La Jolla, California 92093-0221, USA;
2College of Engineering, University of Iowa, Iowa City, Iowa 52240, USA
Black carbon (BC) is an important part of the combustion product
commonly referred to as soot1. BC in indoor environments is
largely due to cooking with biofuels such as wood, dung and
crop residue. Outdoors, it is due to fossil fuel combustion (diesel
and coal), open biomass burning (associated with deforestation
and crop residue burning), and cooking with biofuels1. Soot
aerosols absorb and scatter solar radiation. BC refers to the
absorbing components of soot, oen dened using elemental
carbon and some condensed organics2. Recent ndings suggest
other secondary organics also contribute to strong absorption
in the ultraviolet region of the spectrum, components that were
presumably ignored in the original denition of BC3. Dust, which
also absorbs solar radiation, is not included in the denition of
BC. Globally, the annual emissions of BC are (for the year 1996)
~8 Tg yr–1 (ref. 4), with about 20% from biofuels, 40% from fossil
fuels and 40% from open biomass burning. e uncertainty in the
published estimates for BC emissions is a factor of two to ve on
regional scales and at least ±50% on global scales.
High BC emissions (Fig. 1) occur in both the northern and
the Southern Hemisphere, resulting largely from fossil fuel
combustion and open burning, respectively. Atmospheric brown
clouds (ABCs) are composed of numerous submicrometre aerosols,
including BC, but also sulphates, nitrates, y ash and others. ABCs
have been extensively documented by surface observatories,
eld observations and satellite data5–15. Single-particle mass
spectrometer data reveal that BC is internally mixed with other
aerosol species such as sulphates, nitrates, organics, dust and sea
salt16. BC is removed from the atmosphere by rain and snowfall2.
Wet removal as well as direct deposition to the surface limits the
atmospheric lifetime of BC to about one (±1) week17.
Until about the 1950s, North America and Western Europe were
the major sources of soot emissions, but now developing nations in
the tropics and East Asia are the major source regions18,19 (Fig. 1).
Historical BC emissions are available for fossil fuel combustion and
biofuel cooking18,19. Past emissions of BC from biomass burning are
very uncertain19, although, published reports of extensive brown
clouds and their possible eects on the atmosphere date back to at
least the 1880s20.
Integration of eld observations7,14 and new satellite aerosol
sensors15 have revealed the global distribution of ABCs and their
radiative forcing21–23. eir concentrations peak close to major
source regions and give rise to regional hotspots of BC-induced
atmospheric solar heating (Fig. 1b). Such hotspots have recently
been identied24 as the Indo-Gangetic plains in South Asia; eastern
China; most of Southeast Asia including Indonesia; regions
of Africa between sub-Sahara and South Africa; Mexico and
Central America; and most of Brazil and Peru in South America.
Populations of about 3 billion are living under the inuence of
these regional ABC hotspots.
© 2008 Nature Publishing Group
222 nature geoscience | ADVANCE ONLINE PUBLICATION |
Solar absorption by BC increases inversely with wavelengths
from near-infrared (1 µm) to ultraviolet wavelengths with a
power law of one to three depending on the source3,25, thus giving
the brownish colour to the sky. Unlike the greenhouse effect of
CO2, which leads to a positive radiative forcing of the atmosphere
and at the surface26 with moderate latitudinal gradients27,28, black
carbon has opposing effects of adding energy to the atmosphere
and reducing it at the surface. Furthermore the forcing has
significant latitudinal gradients. It alters the radiative forcing
through a complex web of processes7.
e rst concerns the increase in top-of-the atmosphere (TOA)
radiative forcing. is occurs via several pathways: (1) by absorbing
the solar radiation reected by the surface–atmosphere–cloud
system, BC reduces the albedo of the planet; (2) soot deposited
over snow and sea ice can decrease the surface albedo29–32; (3) soot
inside cloud drops and ice crystals can decrease the albedo of
clouds by enhancing absorption by droplets and ice crystals31–34.
All three of these processes contribute to a positive TOA forcing.
On the other hand, non-BC aerosols such as sulphates, nitrates
and organics in ABCs reect more solar radiation, increasing
the albedo of the planet and resulting in a negative TOA forcing.
In addition non-BC aerosols also nucleate cloud drops and thus
increase the albedo of clouds. is eect is referred to as an
indirect eect or ‘cloud-albedo eect’35–37.
Figure 2 compares the BC forcing (Fig. 2c) with forcing due
to all greenhouse gases (GHGs; Fig. 2a), forcing due to CO2 alone
(Fig. 2b) and forcing of all aerosols other than BC (Fig. 2d). The
BC forcing includes only the direct forcing from pathway 1
because pathways 2 and 3 are more uncertain and, furthermore,
contribute only about 0.1 W m–2 to the global forcing33. At the
TOA, the ABC (that is, BC + non-BC) forcing of –1.4 W m–2
(sum of TOA values in Figs 2c,d), which includes a –1 W m–2
indirect forcing, may have masked as much as 50% 25%) of
the global forcing due to GHGs. The estimated aerosol forcing
of –1.4 W m–2 due to ABCs is within 15% of the aerosol forcing
derived in the recent IPCC report3 7 and is also consistent with
other studies35,36.
The BC forcing of 0.9 W m–2 (with a range of 0.4 to 1.2 W m
2) (Fig. 2c) is as much as 55% of the CO2 forcing and is larger
than the forcing due to the other GHGs such as CH4, CFCs, N2O
or tropospheric ozone37. Similar conclusions regarding the large
magnitude of the BC forcing have been inferred by others38–41
and their estimates range from 0.4 W m–2 to 1.2 W m–2. The
estimate shown in Fig. 2c is obtained from the observationally
constrained study of Chung et al.23. Values generated by many
general circulation climate models (GCMs) are mostly in the
lower range of 0.2 W m 2 to 0.4 W m–2 (refs 37,42,43). There
are several reasons for the lower estimates. Many ignore the
internally mixed state of BC with other aerosols. Such mixing
enhances forcing by a factor of two (ref. 39). Field observations
have consistently shown that BC is well mixed with sulphates,
organics and others16,44. Another factor contributing to lower
BC forcing in GCMs is that observed BC concentrations peak
at about 2 km above the surface7,14,44 whereas, in most models
they are concentrated close to the surface45. BC at elevated
levels enhances solar absorption significantly because it can
absorb the solar radiation reflected by the highly reflective low
clouds38,40,46. Furthermore, GCMs with lower positive forcing,
in general, ignore biomass burning, which is about 40% of
the total BC emission. Column integrated aerosol absorption
has been retrieved from a worldwide surface network of solar
spectral radiometers, referred to as AERONET47. The retrieved
aerosol absorption11,48 is a factor of two or more larger than the
GCM simulated values41,49. The exceptions to the low forcing
bias of GCMs are the models that constrain aerosol solar
absorption with AERONET values50 and models that account
for the mixing state of BC with other aerosols and include BC
from biomass burning39,40. The BC forcings estimated by these
models are in the range of 0.6 to 0.8 W m 2 (refs 39,40) and 0.8
to 1.2 W m–2 (refs 41,50).
The second process concerns atmospheric solar heating. In
addition to absorbing reflected solar radiation, BC absorbs direct
solar radiation and together the two processes contribute to a
0.5 25 390 660 1,100 1,800 2,900 13,0004,700 21,000
–2 –1 1 2 4 6 8 12 16
–20 –12 –1–3–6
Figure 1 Global distribution of BC sources and radiative forcing. a, BC emission
strength in tons per year from a study by Bond et al.4, including emissions from
fuel combustion (fossil fuels and biofuels) and open biomass burning (forest fires,
savanna burning and outdoor cooking) for the year 1996. The uncertainty in the
regional emission is about ±100% or more. b, Atmospheric solar heating due to BC
from the study by Chung et al.23 for the 2001 to 2003 period. This study integrates
satellite aerosol data, surface network of aerosol remote sensing instruments and
field observations with an aerosol-transport-chemical model and a radiative transfer
model to obtain the forcing. Uncertainty in the forcing is ±30%. c, As in b, but for
surface dimming due to ABCs. This shows the reduction in absorbed solar radiation
at the surface by all anthropogenic aerosols (BC and non-BC) in ABCs.
© 2008 Nature Publishing Group
nature geoscience | ADVANCE ONLINE PUBLICATION | 223
significant enhancement of lower atmosphere (from the surface
to about 3 km altitude) solar heating, by as much as 50% in the
hotspots (that is, regions with 15 W m–2 forcing) (see Fig. 1b).
Direct measurement of this solar heating has evaded us until
now as it requires multiple aircraft flying over the same domain
at different altitudes to measure flux divergences (that is, heating
rates) for an extensive period of time. These challenges were
recently overcome by deploying three lightweight unmanned
aerial vehicles (UAVs) with well-calibrated and miniaturized
instruments to simultaneously measure aerosols, BC and
spectral as well as broadband radiation fluxes14,51,52. The UAV
study14 demonstrated that ABCs with a visible absorption optical
depth as low as 0.02 are sufficient to enhance solar heating of the
lower atmosphere by 50%. Global average BC solar heating of the
atmosphere, as per the present estimate, is 2.6 W m–2 (Fig. 2c),
which is comparable to the TOA GHG forcing (Fig. 2a).
The third process is the surface dimming. The BC absorption
of direct solar radiation reduces the solar radiation reaching the
surface and leads to dimming (Fig. 2c). The BC dimming is
further enhanced by the direct and indirect effects of non-BC
aerosols (Fig. 2d). The total dimming effect is –4.4 W m–2 (sum
of Fig. 2c,d) — about –3.4 W m–2 from the direct effect of ABCs
and the remaining –1 W m–2 from the indirect effect35–37. The
dimming can be as large as 5 to 10% over the regional hotspots
(Fig. 1). It is important to note that the surface dimming and
absorption of direct solar radiation do not contribute much to
TOA forcing as it is simply a redistribution of the direct solar
radiation between the surface and the atmosphere. However,
globally, this redistribution can weaken the radiative–convective
coupling of the atmosphere and decrease global mean evaporation
and rainfall26.
Is the planet dimmer now than it was during the early twentieth
century? Solar radiometers around the world are indicating that
surface solar radiation in the extra tropics was lower by as much
as 5% to 10% during the mid-twentieth century53,54, whereas in
the tropics such dimming trends have been reported to extend
into the twenty-first century. But many of these radiometers are
close to urban areas and it is unclear if the published trends are
representative of true regional to global averages55 . The Indian
Ocean Experiment7 used a variety of chemical, physical and
optical measurements to convincingly demonstrate that ABCs
can lead to dimming as large as 5–10% (Fig. 1c) over widespread
regions in the North Indian Ocean and South Asia. In order
to get a handle on the global average dimming, Chung et al.23
integrated field observations with satellite data and aerosol
transport models to retrieve an observationally constrained
estimate. As seen from Fig. 1c, over large regions the reduction of
solar absorption at the surface exceeds 10 W m–2 (>5%), which is
consistent with the dimming reported from surface observations.
The global annual average dimming (for 2001–2003), however, is
–4.4 W m–2, as opposed to the –10 W m–2 estimated by surface
radiometers. Thus, great care should be exercised to extrapolate
surface measurements over land areas to global averages. The
global dimming of –4.4 W m 2 has been compared to the GHGs
forcing of 3 W m–2 from 1850 to present54. Such comparisons,
without a proper context could be misleading because, as shown
in Fig. 2, for BC, the surface forcing is negative whereas the TOA
forcing is positive (Fig. 2c).
The TOA BC forcing implies that BC has a surface warming
effect of about 0.5 to 1 °C, where we have assumed a climate
sensitivity of 2 to 4 ºC for a doubling of CO2. Conversely, ABCs
have a cooling effect of about –0.75 to –2.5 ºC (ref. 35). Because
BC forcing results in a vertical redistribution of the solar forcing,
a simple scaling of the forcing with the CO2 doubling climate
sensitivity parameter may not be appropriate40,56,57. For example,
GCMs suggest that the reduction of sea ice and snow albedo by
BC is three times as effective as CO2 forcing for global average
surface warming57.
BC and non-BC aerosols perturb the hydrological cycle
significantly. The surface and atmospheric warming due to GHGs
would lead to an increase in atmospheric humidity (owing to an
increase in saturation vapour pressure) and rainfall (owing to an
increase in the radiative heating at the surface)26,58. With respect
to ABCs, the overall negative forcing at the TOA, as well as the
surface dimming, should lead to a decrease in evaporation and
rainfall7,37. It is difficult to predict the net effect of GHGs and
ABCs on global rainfall, given the large positive forcing at the
TOA and the larger negative forcing at the surface. We can not
resort to observed rainfall trends to infer the net anthropogenic
effect on global rainfall as long-term rainfall measurements are
only available for land regions.
We have just begun to comprehend the chain of response and
feedbacks on the regional climate due to BC9,12,14,23,59–65. In regions
where radiative–convective coupling of the surface and the
atmosphere is strong (for example, equatorial oceans and tropical
3 1.6
1.4 1
0.9 –2.3
2.6 0.4
1.6 0.6 –1.7 –2.7
All GHGs CO2BC (direct) Non-BC
Figure 2 Comparison of the global mean radiative forcing due to greenhouse
gases (GHGs) with that of ABCs. a,b, Forcing for all GHGs (CO2, CH4, N2O, halons and
ozone) (a), and for CO2 (b). The number at the top of the atmosphere box (blue box)
is the top-of-the atmosphere (TOA) forcing; the number within the atmosphere box
is the atmospheric forcing; and the number within the brown box is the forcing at
the surface. The TOA forcing is the sum of the forcing of the atmosphere and the
surface. The forcing values represent the change in radiative forcing due to increase
in gases for the year 2005, which is the same as the forcing from pre-industrial to
present. The TOA numbers are taken from ref. 68 and the atmospheric and surface
forcings are derived from an atmospheric radiative transfer model. The numbers at
the surface and the atmosphere are slightly adjusted to agree with the TOA IPCC
forcing. The uncertainty in the forcing values is ±20%. c, BC forcing obtained by
running the Chung et al. analysis23 with and without BC. The forcing values are valid
for the 2001–2003 period and have an uncertainty of ±50%. d, Non-BC forcing.
This includes the direct and the indirect forcing. The direct forcing is obtained by
subtracting the total anthropogenic forcing in Chung et al. from the BC forcing shown
in b. The indirect forcing (of about 1 W m–2 at the TOA and at the surface) is an
average of values derived from recent studies35–37.
© 2008 Nature Publishing Group
224 nature geoscience | ADVANCE ONLINE PUBLICATION |
land during wet seasons), the surface–atmosphere response will
be determined by the TOA forcing, and as a result BC by itself
will lead to a warming of both the surface (in spite of the surface
dimming) and the atmosphere (in spite of the atmospheric solar
heating), whereas ABCs will lead to a cooling of both the surface
and the atmosphere. In regions where such coupling is weak
(for example, dry seasons in the tropics), the surface dimming
due to ABCs can lead to surface cooling and thus can mask the
greenhouse warming66, whereas the atmospheric solar heating
by BCs can lead to a warming of the atmosphere and intensify
the greenhouse warming of the troposphere. GCMs that include
just the BC forcing14,64,67 show that BC leads to a warming from
the surface to about 12 km altitude, by as much 0.6 °C over
most of the Northern Hemisphere including the Arctic region
(for example, see Fig. 11 in Chung and Seinfeld40, and ref. 64).
The magnitude of the BC atmospheric warming is comparable
to the simulated warming due to GHGs forcing68 . Regionally,
the combined effect of ABCs is to cause a surface cooling65 over
South Asia while warming the atmosphere by as much as 0.6 ºC
during winter and spring14,60. Such differential warming of the
atmosphere with respect to the surface over the South Asian
region has also been obser ved with microwave satellite sensor
observations of the trends from 1979 to 200314,60.
BC atmospheric heating may be an important contributing
factor to the retreat of Himalayan glaciers. Analysis of
temperature trends on the Tibetan side of the Himalayas reveals
warming in excess of 1 °C since the 1950s. This large warming
trend at the elevated levels is proposed as the causal factor for the
retreat of glaciers through melting69,70. GCM simulations suggest
that advection of the warmer air heated by BC from South
and East Asia over the Himalayas contributes to a warming of
about 0.6 °C (annual mean) in the lower and mid troposphere
(see Fig. 3) of the Himalayan region14,64. This is as large as the
warming trend due to the GHGs (Fig. 3), leading to the inference14
that BC forcing is as important as GHGs in the observed retreat
of over two thirds of the Himalayan glaciers71.
BC contributes to melting of snow through another process.
When soot is deposited over snow and sea ice, it darkens the
snow and significantly enhances solar absorption by snow and
ice30,32. Recent studies suggest that this is one of the important
contributors to the retreat of the Arctic sea ice (see summary of
earlier studies in ref. 57). Simulations by Flanner et al.57 showed
that the deposition of BC from sources in North America and
Europe over the Arctic sea ice may have resulted in an Arctic
surface warming trend of as much as 0.5 to 1 °C (ref. 72). In
addition, the study estimated that BC-induced reduction of snow
albedo is a major forcing term (about 20 W m–2 ) in the Tibetan
side of the Himalayas. Ice-core records of BC deposition over
Greenland from the early nineteenth century onwards have now
provided a historical record for examining the role of BC forcing
in the retreat of sea ice73.
Atmospheric heating and dimming by BC and non-BC aerosols
can perturb the monsoon significantly. Precipitation trends over
many regions of the tropics during the last 50 years have been
negative, particularly over Africa, South Asia and northern China
(Fig. 4)68. These drying patterns can not be explained solely by
global warming74,75. Natural variability and anthropogenic aerosol
forcing are emerging as major players in the observed trends60,74–
76. The impacts of ABCs and BC on the South Asian monsoon
have received attention recently40,59,60,62,63,65,67,74. Precipitation over
land is driven by evaporation from the land surface and long-
range transport of moisture from the surrounding Indian Ocean.
These model studies reveal that ABCs have three distinct effects
on the long-range transport of moisture and its convergence over
South Asia:
(i) A decrease in the evaporation of the Indian Ocean owing
to dimming. Emissions of BC and other aerosol precursors from
South Asia have increased significantly since 1950s18,19. This has
resulted in a dimming trend of about 7% as detected by surface
radiometers in India60. Similar dimming has also occurred
0.0 0.2 0.4 0.6 0.8
Annual mean temperature change (°C)
Pressure (mb)
Internal mixed BC
Figure 3 Simulated atmospheric temperature change due to GHGs and BC for the
South Asian region. The values are annual mean temperature changes over the
South Asian region, averaged from 20° N to 40° N and from 70° E to 100° E. The
blue line is the change due to the increase in all GHGs and sulphate aerosols as
simulated by ref. 60. The red line is the estimated temperature change due to BC
taken from the global circulation model study of Chung and Seinfeld67.
The Sahelian
The weakening
Indian monsoon
shift in
Asian rainfall
15 W 15 E 30 E 45 E 60 E 75 E 90 E 105 E 120 E 135 E
45 N
30 N
15 N
15 S
30 S
–1.2 –0.6 –0.3 –0.1 0.1 0.3 0.6 1.2
Figure 4 Precipitation trend from 1950–2002. The plot is adopted from ref. 65.
(units: change in mm per day from 1950 to 2002). The red and dark blue shaded
regions are statistically significant.
© 2008 Nature Publishing Group
nature geoscience | ADVANCE ONLINE PUBLICATION | 225
over the Indian Ocean7 (See Fig. 1c). As about 75% or more of
the surface radiative heating is balanced by evaporation2 6, the
dimming trend leads to a decrease in evaporation from the
North Indian Ocean60, so less moisture is fed to the monsoonal
inflow into South Asia.
(ii) A decrease in meridional sea surface temperature
(SST) gradient. Because ABCs are concentrated over the
North Indian Ocean (Fig 1), the dimming is suppressing the
greenhouse warming over the North Indian Ocean while the
GHGs warming is proceeding unabated over the southern
Indian Ocean. As a result, the summertime north-to-south SST
gradient (with warmer waters over the North Indian Ocean) has
decreased since the 1950s, as has been seen from obser vations60,74.
The weakening of the SST gradient weakens the monsoonal
circulation, as shown by numerous studies60,74,75, and in turn
weakens the monsoonal rainfall during summertime. It is
important to note that, although the ABC dimming peaks in
winter and spring, the SST response is delayed until summer
owing to the slower response time of the ocean60,64,74.
(iii) An increase in atmospheric meridional heating gradient.
The stronger BC solar heating of the atmosphere over South Asia
(Fig. 1b) strengthens the monsoonal outflow with stronger rising
motions over the subcontinent, accompanied by a stronger
moisture flux into South Asia60,63,64,74. This effect, which increases
rainfall, peaks during spring when the BC heating is at its
peak value.
e atmospheric heating shown in Fig. 1b is solely due to BC,
whereas the dimming is due to both the BCs and non-BC aerosols
in ABCs (Figs 1c and 2d). e larger dimming over the land regions
compared with the adjacent oceans also suggest that the dimming
decreases the land–sea contrast in surface temperature — a major
monsoon forcing term. In order to account for the delayed oceanic
response to the dimming, fully coupled ocean–atmosphere models
are required. To date, three such studies have been published60,62,64
and all of them estimate an increase in pre-monsoon rainfall during
spring followed by a decrease in summer monsoon rainfall, in
agreement with observed trends (Fig. 4; ref. 60). e link between
dimming, the north–south SST gradient and a decrease in land
rainfall has also been invoked to explain the Sahel drought75 of the
1970s and 1980s.
e immediate response of the atmosphere to ABCs is to increase
or decrease cloud cover. e non-BC aerosols, by nucleating more
cloud drops, decrease the eective radius of the cloud drop. is can
suppress formation of larger drizzle drops, extend the lifetime of
clouds, and thus increase cloud cover37. On the other hand, BC solar
heating can decrease the relative humidity of the cloud layer, leading
to evaporation of cloud drops and thus decreasing low cloud fraction
and albedo. is semi-direct eect can enhance the positive climate
forcing by BC37. A relative comparison of the increase in cloud cover
by non-BC aerosols and the decrease due to BC was undertaken77
empirically with a surface network of sun photometers47. is study
suggested that the non-BC eects dominate overall, except for in
heavily polluted regions with absorption optical depths exceeding 0.05
(for example, the Amazon during the burning season; Africa during
Savanna burning season; and urban regions in South and East Asia).
An alternative scenario is that BC solar heating induces convection
and consequently leads to cloud formation78. e global magnitude of
the semi-direct eect is highly uncertain.
Spring season dust storms from Asia and Africa transport
large quantities of dust across the Pacic Ocean79,80 and the
Atlantic Ocean81.e dust is transported either as individual layers
or mixed with industrial soot. Such dust–soot mixtures increase the
atmospheric solar heating and surface dimming signicantly79,80
and can also serve as nuclei for ice clouds and feedback on
precipitation82. For the rst time, such dust–soot mixtures were
tracked in an aircra all the way across the Pacic Ocean from
near the surface to about 14 km altitude83.
An increase in drought intensity due to global warming can
intensify occurrence of forest fires, as has been documented for
California84. Increase in forest fires, such as the boreal forest fires
of 1996, can increase soot deposition in sea ice and enhance its
melting57. Surface cooling occurring simultaneously with lower
atmosphere warming (due to BC and dust) can stabilize the
0.003 0.004 0.005 0.006 0.0075 0.009 0.01 0.015 0.025 0.03 0.04 0.003 0.004 0.005 0.006 0.0075 0.009 0.01 0.015 0.025 0.03 0.04
Figure 5 The effect of biofuel cooking on Asian BC loading. a, The simulated annual mean optical depth of BC aerosols for 2004–2005 using the regional aerosol/chemical/
transport model described in ref. 96. The values include BC emissions from biofuel cooking (indoor cooking with wood/dung/crop residues), fossil fuels and biomass burning.
b, As for a, but without biofuel cooking.
© 2008 Nature Publishing Group
226 nature geoscience | ADVANCE ONLINE PUBLICATION |
boundary layer during the dry season and increase the lifetimes
of aerosols in ABCs and increase persistence of soot-filled fog.
Soot can also influence precipitation formation mechanisms85,86.
Two extreme scenarios have been proposed for such feedbacks.
For South Asia, GCM simulations suggest that a two- to threefold
increase in soot loading (from present day levels) is sucient to
substantially weaken the monsoon circulation, decrease rainfall by
more than 25% and increase drought frequency signicantly59. As
wash out by rain is a major sink for BC, large decreases in rainfall
can have a positive feedback on BC concentrations. e other
scenario is the so-called nuclear winter scenario87–89, in which
large-scale increase in BC from res resulting from a global-scale
nuclear war can nearly shut down sunlight at the ground (total
dimming), which can collapse the troposphere and decrease
rainfall drastically.
Given that BC has a signicant contribution to global radiative forcing,
and a much shorter lifetime compared with CO2 (which has a lifetime
of 100 years or more), a major focus on decreasing BC emissions
oers an opportunity to mitigate the eects of global warming trends
in the short term (see, for example, refs 90–92). Reductions in BC are
also warranted from considerations of regional climate change and
human health93,94.
It is clear from Fig. 2 that air pollution mitigation steps can
have significant impacts on future climate changes. The logical
deduction from Fig. 2a,c,d is that the elimination of present day
ABCs through emission reduction strategies would intensify
surface warming by about 0.4 to 2.4 ºC (see also, ref. 35). If
only the non-BC aerosols were controlled, it could potentially
add 2.3 W m–2 to the TOA forcing and push the system closer
to the 3 °C cumulative warming (since 1850s), which is a
likely threshold for unprecedented climate change95. If on the
other hand, the immediate target for control shifts entirely to
BC (owing to its health impacts) without a reduction in non-
BC aerosols, the elimination of the positive forcing by BC will
decrease both the global warming and the retreat of sea ice and
glaciers. It is important to emphasize that BC reduction can only
help delay and not prevent unprecedented climate changes due
to CO2 emissions.
Given the fact that technology exists for large reductions of soot
emissions, we explore the impact of a major focus on soot reductions.
We focus on Asia, where emissions from China and India alone
account for ~25 to 35% of global BC emissions and the regional
climate responses to BC are (expected to be) large. In addition, with
the economies of China and India expanding with double digit growth
rates, Asia can become a much larger source of ABCs, depending on
the energy path taken to sustain this growth rate. In fact new estimates
indicate that BC emissions for China in 2006 have doubled since
2000, whereas SO2 emissions have grown during this period by more
than 50% (D. G. Streets, manuscript in preparation, data available at
changes.html). East Asia and South Asia also represent a dierent mix
of emissions, and therefore can illustrate potentials for various control
options that are also representative of global choices. e majority of
soot emission in South Asia is due to biofuel cooking, whereas in
East Asia, coal combustion for residential and industrial uses plays a
larger role. e large BC emissions are reected in the geographical
extent of the large absorbing component of aerosol optical depth,
simulated with a regional aerosol-chemistry transport model96 (see
areas with BC optical depth > 0.01 in Fig. 5a).
What are the opportunities to reduce the positive forcing
by BC? Providing alternative energy-ecient and smoke-free
cookers and introducing transferring technology for reducing soot
emissions from coal combustion in small industries could have
major impacts on the radiative forcing due to soot97. Figure 4b
shows the impact of replacing biofuel cooking with BC-free
cookers (solar and bio and natural gas) in South and East Asia.
e impacts are dramatic: over South Asia, a 70 to 80% reduction
in BC heating; and in East Asia, a 20 to 40% reduction. e impact
on human health will potentially be even more dramatic as over
400,000 annual fatalities among women and children are attributed
to smoke inhalation during indoor cooking93,94. However, changes
in BC alone do not tell the entire story as the climate response also
depends on how the BC to non-BC aerosol fraction responds to
future emissions. As BC is co-emitted with non-BC aerosols, it is
necessary to evaluate how various mitigation strategies impact this
fraction. With an emphasis on the opportunities discussed here,
this ratio would probably decrease in the future, more quickly in
East Asia, amplifying the eectiveness of BC reductions98.
Published online: 23 March 2008.
1. Andreae, M. O. & Crutzen, P. J. Atmospheric aerosols: Bio-geochemical sources and role in
atmospheric chemistry. Science 276, 1052–1056 (1997).
2. Penner, J. E. & Novakov, T. Carbonaceous particles in the atmosphere: A historical perspective to
the Fih International Conference on Carbonaceous Particles in the Atmosphere. J. Geophys. Res.
101, 19373–19378 (1996).
3. Andreae, M. O. & Geleneser, A. Black carbon or brown carbon? the nature of light-absorbing
carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006).
4. Bond, T. C. et al. A technology-bas ed global inventory of black and organic carbon emissions from
combustion. J. Geophys. Res. 109, doi:10.1029/2003JD003697 (2004).
5. Russell, P. B., Hobbs, P. V., & Stowe, L. L. Aerosol properties and radiative eects in the United States
East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational
Experiment (TARFOX). J. Geophys. Res. 104, 2213–2222 (1999).
6. Scholes, M. & Andreae, M. O. Biogenic and pyrogenic emisssion from Africa and their impact on
the global atmosphere. Ambio 29, 23–29 (2000).
7. Ramanathan, V. et al. Indian Ocean experiment: An integrated analysis of the climate forcing and
eects of the great Indo-Asian haze. J. Geophys. Res. 106, 28371–28398 (2001).
8. Kaufman, Y. J., Tucker, C. J., & Mahoney, R. L. Fossil fuel and biomass burning eect on climate:
heating or cooling? J. Climate 4, 578–588 (1991).
9. Abel, S. J. et al. Evolution of biomass burning aerosol properties from an agricultural re in southern
Africa. Geophys. Res. Lett. 30, doi:10.1029/2003GL017342 (2003).
10. Bellouin, N., Boucher, O., Tanré, D., & Dubovik, O. Aerosol absorption over the clear-sky oceans
deduced from POLDER-1 and AERONET observations. Geophys. Res. Lett.
30, doi:10.1029/2003GL017121 (2003).
11. Eck, T. F. et al. Variability of biomass burning aerosol optical characteristics in southern
Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo
estimates from radiometric measurements. J. Geophys. Res. 108, doi:10.1029/2002JD002321 (2003).
12. Haywood, J. M. et al. e mean physical and optical properties of regional haze dominated by
biomass burning aerosol measured from the C-130 aircra during SAFARI 2000. J. Geophys. Res.
108, doi:10.1029/2002JD002226 (2003).
13. Hsu, N. C., Herman, J. R., & Tsay, S. C. Radiative impacts from biomass burning in the presence of
clouds during boreal spring in southeast Asia. Geophys. Res. Lett. 108, doi:10.1029/2002GL016485 (2003).
14. Ramanathan, V. et al. Warming trends in Asia amplied by brown cloud solar absorption. Nature
448, 575–578 (2007).
15. Kaufman, Y. J. et al. Absorption of sunlight by dust as inferred from satellite and ground-based
remote sensing. Geophys. Res. Lett. 28, 1479–1482 (2001).
16. Guazzotti, S. A., Coee, K. R., & Prather, K. A. Continuous measurements of size-resolved particle
chemistry during INDOEX-Intensive Field Phase 99. J. Geophys. Res. 106, 28607–28628 (2001).
17. Rodhe, H., Persson, C., & Akesson, O. An investigation into regional transport of soot and sulfate
aerosols. Atmos. Environ. 6, 675–693 (1972).
18. Novakov, T. et al. Large historical changes of fossil-fuel black carbon aerosols. Geophys. Res. Lett.
30, doi:10.1029/2002GL016345 (2003).
19. Bond, T. C. et al. Historical emissions of black and organic carbon aerosol from energy-related
combustion, 1850–2000. Global Biogeochem. Cycles 21, doi:10.1029/2006GB002840 (2007).
20. Danckelman, V. Die Bewölkungsverhältnisse des südwestlichen Afrikas. Meteor. Z.
1, 301–311 (1884).
21. Yu, H. et al. A review of measurement-based assessments of the aerosol direct radiative eect and
forcing. Atmos. Chem. Phys. 6, 613–666 (2006).
22. Bellouin, N., Boucher, O., Haywood, J., & Reddy, M. S. Global estimate of aerosol direct radiative
forcing from satellite measurements. Nature 438, 1138–1141 (2005).
23. Chung, C., Ramanathan, V., Kim, D., & Podgorny, I. A. Global anthropogenic aerosol direct forcing
derived from satellite and ground-based observations. J. Geophys. Res.
110, doi:10.1029/2005JD006356 (2005).
© 2008 Nature Publishing Group
nature geoscience | ADVANCE ONLINE PUBLICATION | 227
24. Ramanathan, V. et al. Atmospheric brown clouds: Hemispherical and regional variations in
long-range transport, absorption, and radiative forcing. J. Geophys. Res.
112, doi:10.1029/2006JD008124 (2007).
25. Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. Evidence that the spectral dependence of
light absorption by aerosols is aected by organic carbon. J. Geophys. Res.
109, doi:10.1029/2004JD004999 (2004).
26. Ramanathan, V. e role of ocean-atmosphere interactions in the CO2 climate problem.
J. Atmos. Sci. 38, (918–930) (1981).
27. Kiehl, J. T. & Briegleb, B. P. e relative roles of sulfate aerosols and greenhouse gases in climate
forcing. Science 260, 311–314 (1993).
28. Ramanathan, V., Lian, M. S., & Cess, R. D. Increased atmospheric CO2: Zonal and Seasonal
Estimates of the Eect on the Radiation Energy Balance and Surface Temperature. J. Geophys. Res.
84, 4949–4958 (1979).
29. Cess, R. D. Arctic aerosols: Model estimates of interactive inuences upon the surface-atmosphere
clear-sky radiation budget. Atmos. Environ. 17, 2555–2564 (1983).
30. Clarke, A. & Noone, K. Soot in the Arctic: a cause for perturbation in radiative transfer.
J. Geophys. Res. 19, 2045–2053 (1985).
31. Chylek, P., Ramaswamy, V., & Cheng, R. J. Eect of graphitic carbon on the albedo of clouds.
J. Atmos. Sci. 41, 3076–3084 (1984).
32. Warren, S. & Wiscombe, W. Dirty snow aer nuclear war. Nature 313, 467–470 (1985).
33. Jacobson, M. Z. Eects of absorption by soot inclusions within clouds and precipitation on global
climate. J. Phys. Chem. 110, 6860–6873 (2006).
34. Mikhailov, E. F. et al. Optical properties of soot-water drop agglomerates: an experimental study.
J. Geophys. Res. 111, doi:10.1029/2005JD006389 (2006).
35. Andreae, M. O., Jones, C. D., & Cox, P. M. Strong present-day aerosol cooling implies a hot future.
Nature 435, 1187–1190 (2003).
36. Crutzen, P. J. & Ramanathan, V. e Parasol Eect in Climate. Science 302, 1679–1681 (2003).
37. Forster, P. & Ramanswamy, V. in Climate Change 2007: e Physical Science Basis — Contribution
of Working Group I to the Fourth Assessment Repor t of the Intergo vernmental Panel o n Climate
Change (eds Solomon, S. et al.) (Cambridge Univ. Press, Cambridge, UK, New York, USA, 2007).
38. Haywood, J. M. & Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due
to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. 103, 6043–6058 (1998).
39. Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon.
Nature 409, 695–697 (2001).
40. Chung, S. H. & Seinfeld, J. H. Global distribution and climate forcing of carbonaceous aerosols.
J. Geophys. Res. 107, doi:10.1029/2001JD001397 (2002).
41. Sato, M. et al. Global atmospheric black carbon inferred from AERONET. Proc. Natl Acad. Sci. USA
100, 6319–6324 (2003).
42. Highwood, E. J. & Kinnersley, R. P. When smoke gets in our eyes: e multiple impacts of
atmospheric black carbon on climate, air quality and health. Environ. Intl 32, 560–566 (2006).
43. Koch, D. et al. Global impacts of aerosols from particu lar source regions and sectors.
J. Geophys. Res. 112, doi:10.1029/2005JD007024 (2007).
44. Spencer, M. T. et al. Size-resolved chemical composition of aerosol particles during a monsoonal
transition period over the Indian Ocean. J. Geophys. Res. (in the press).
45. Textor, C. et al. Analysis and quantication of the diversities of aerosol life cycles within AeroCom.
Atmos. Chem. Phys. 6, 1777–1813 (2006).
46. Podgorny, I. A. & Ramanathan, V. A modeling study of the direct eect of aerosol over the Tropical
Indian Ocean. J. Geophys. Res. 106, 24097–24105 (2001).
47. Holben, B. N. et al. An emerging ground-based aerosol climatology : aerosol optical depth from
AERONET. J. Geophys. Res. 106, 12067–12097 (2001).
48. Dubovik, O. et al. Variability of absorption and optical properties of key aerosol types ovserved in
worldwide locations. J. Atmos. Sci. 59, 590–608 (2002).
49. Schuster, G. L., Dubovick, O., Holben, B. N., & Clothiaux, E. E. Inferring black carbon content and
specic absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J. Geophys. Res.
110, doi:10.1029/2004JD004548 (2005).
50. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA
101, 423–428 (2004).
51. Corrigan, C. E. et al. Capturing vertic al proles of aerosols and bla ck carbon over the Indian
Ocean using autonomous unmanned aerial vehicles. Atmos. Chem. Phys. Discuss.
7, 11429–11463 (2007).
52. Ramana, M. V. et al. Albedo, atmospheric solar absorption and heating rate measurements with
stacked UAVs. Quart. J. Royal. Met. Soc. (in the press).
53. Stanhill, G. & Cohen, S. Global dimming: a review of the evidence for a widespread and signicant
reductions in global radiation with discussion of its probable causes and possible agricultural
consequences. Agric. Forest Meteorol. 107, 255–278 (2001).
54. Wild, M. et al. From dimming to brightening: Decadal changes in solar radiation at the Earth’s
surface. Science 308, 847–850 (2005).
55. Alpert, P., Kishcha, P., Kaufman, Y. J., & Schwarzbard, R. Global dimming or local dimming? Eect
of urbanization on sunlight availability. Geophys. Res. Lett. 32, doi:10.1029/2005GL023320 (2005).
56. Hansen, J. et al. Ecacy of climate forcings. J. Geophys. Res. 110, doi:10.1029/2005JD005776 (2005).
57. Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. Present-day forcing and response from
black carbon in snow. J. Geophys. Res. 112, doi:10.1029/2006JD008003 (2007).
58. Manabe, S. & Wetherald, R. T. ermal equilibrium of the atmosphere with a given distribution of
relative humidity. J. Atmos. Sci. 24, 241–259 (1967).
59. Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. Climate eects of black carbon aerosols in China and
India. Science 297, 2250–2253 (2002).
60. Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrologic
cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).
61. Lau, K.-M. & Kim, M.-K. Asian monsoon anomalies induced by aerosol direct eects.
Clim. Dynam. 26, 855–864 (2006).
62. Lau, W. M. Aerosol-hydrological cycle research: a new challenge for monsoon climate research.
B. Am. Meteorol. Soc. (in the press).
63. Wang, C. A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res.
109, doi:10.1029/2003JD004084 (2004).
64. Meehl, G. A., Arblaster, J. M., & Collins, W. D. Eects of black carbon aerosols on the Indian
monsoon. J. Climate (in the press).
65. Chung, C. & Ramanathan, V. Weakening of N. Indian SST gradients and the monsoon rainfall in
India and the Sahel. J. Climate. 19, 2036–2045 (2006).
66. Krishnan, R. & Ramanathan, V. Evidence of surface cooling from absorbing aerosols. J. Geophys. Res.
29, doi:10.1029/2002GL014687 (2002).
67. Chung, S. H. & Seinfeld, J. H. Climate response of direct radiative forcing of anthropogenic black
carbon. J. Geophys. Res. 110, doi:10.1029/2004JD005441 (2005).
68. Solomon, S. et al. (eds) Climate Change 2007: e Physical Science Basis — Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
(Cambridge Univ. Press, Cambridge, UK, New York, USA, 2007).
69. ompson, L. G. et al. Tropical glacier and ice core evidence of climate changes on annual to
millenial time scales. Climatic Change 59, 137–155 (2003).
70. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. Potential impacts of a warming climate on water
availability in snow-dominated regions. Nature 438, 303–309 (2005).
71. Global Outlook for Ice and Snow (United Nations Environment Program, Nairobi, Kenya, 2007).
72. Holland, M. M., Bitz, C. M., & Tremblay, B. Future abrupt reductions in the summer Arctic sea ice.
Geophys. Res. Lett. 33, doi:10.1029/2006GL028024 (2006).
73. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered arctic climate forcing.
Science 317, 1381–1384 (2007).
74. Chung, C. & Ramanathan, V. Relationship between trends in land precipitation and tropical SST
gradient. Geophys. Res. Lett. 34, doi10.1029/2007GL030491 (2007).
75. Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol eect. J. Climate
15, 2103–2116 (2002).
76. Hoerling, M., Hurrell, J., & Eischeid, J. Detection and attribution of 20th century northern and
southern African rainfall change. J. Climate 19, 3989–4008 (2006).
77. Kaufman, Y. J. & Koren, I. Smoke and pollution aerosol eect on cloud cover. Science
313, 655–658 (2006).
78. Rudich, Y., Sagi, A., & Rosenfeld, D. Inuence of the Kuwait oil res plume (1991). on the
microphysical development of clouds. J. Geophys. Res. 108, doi:10.1029/2003JD003472 (2003).
79. Zhu, A., Ramanathan, V., Li, F., & Kim, D. Dust plumes over the Pacic, Indian and Atlantic Oceans:
Climatology and radiative impact. J. Geophys. Res. 112, doi:10.1029/2007JD008427 (2007).
80. Clarke, A. D. et al. Size distributions and mixtures of dust and black carbon aerosol in
Asian outow: Phys iochemistry and optical properties. J. Geophys. Res.
109, doi:10.1029/2003JD004378 (2004).
81. Prospero, J. M. & Lamb, J. P. African droughts and dust transport to the Caribbean: Climate change
and implications. Science 302, 1024–1027 (2003).
82. Rosenfeld, D., Rudich, Y., & Lahav, R. Desert dust suppressing precipitation: a possible
desertication feedback loop. Proc. Natl Acad. Sci. USA 98, 5975–5980 (2001).
83. Stith, J. L. & Ramanathan, V. e Pacic Dust Experiment (PaCDEX) Field Campaign: A summary
of accomplishments during the eld campaign and examples of early results. Eos Trans. AGU 88
(Fall Meeting suppl.) A13G-08 (2007).
84. Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. Warming and earlier spring
increase western US forest wildre activity. Science 313, 940–943 (2006).
85. Andreae, M. O. et al. Smoking Rain Clouds over the Amazon. Science 303, 1337–1341 (2004).
86. Rosenfeld, D. TRMM observed rst direct evidence of smoke from forest res inhibiting rainfall.
Geophys. Res. Lett. 26, 3105–3108 (1999).
87. Crutzen, P. J. & Birks, J. W. e atmosphere aer a nuclear war: twilight at noon. Ambio
11, 115–125 (1982).
88. ompson, S. L., Ramaswamy, V., & Covey, C. Atmospheric eects of nuclear war aerosols in general
circulation model simulations: inuence of smoke optical properties. J. Geophys. Res.
92, 10942–10960 (1987).
89. Turco, P. et al. Nuclear winter: globa l consequences of multiple nuclear explosions. Science
222, 1283–1292 (1983).
90. Hansen, J. E. & Sato, M. Trends of measured climate forcing agents. Proc. Natl Acad. Sci. USA
98, 14778–14783 (2001).
91. Jacobson, M. Z. Control of fossil-fuel particulate black carbon plus organic matter, possibly the most
eective method of slowing global warming. J. Geophys. Res. 107, doi:10.1029/2001JD001376 (2002).
92. Bond, T. C. & Sun, H. Can reducing black carbon emissions counteract global warming?
Environ. Sci. Technol. 39, 5921–5926 (2005).
93. Smith, K. R. National burden of disease in India from indoor air pollution. Proc. Natl Acad. Sci. USA
97, 13286–13293 (2005).
94. Sridharan, P. V. & Pachauri, R. K. Looking Back to ink Ahead: Green India 2047 New Delhi (Tata
Energy Research Institute, 1998).
95. Metz, B., Davidson, O., Bosch, P, Dave, R. & Meyer, L. (eds) Climate Change 2007: Mitigation
of Climate Change — Contribution of Working Group III to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. (Cambridge Univ. Press, Cambridge, UK, New York,
USA, 2007).
96. Adhikary, B. et al. Characterization of the seasonal cycle of south Asian aerosols: A regional-scale
modeling analysis. J. Geophys. Res. 112, doi:10.1029/2006JD008143 (2007).
97. Ramanathan, V. & Balakrishnan, K. Reduction of Air Pollution and Global Warming by Cooking
with Renewable Sources: A Controlled and Practical Experiment in Rural India (Project Surya, 2007);
98. Streets, D. G. Dissecting future aerosol emissions: warming tendencies and mitigation opportunities.
Climatic Change 81, 313–330 (2007).
This work was funded by the NSF, NOAA and NASA. We thank C. Chung, J. H. Seinfeld and
G. A. Meehl for providing simulated temperature changes from their published GCM studies. We thank
V. Ramaswamy, T. Bond, M. Jacobson, M. Flanner, G. Meehl and C. Wang for their valuable comments
on an earlier draft of the paper.
Correspondence and requests for materials should be addressed to V.R.
© 2008 Nature Publishing Group
... The accumulation of carbon on the surface of glaciers is global in character, many researchers consider "black carbon" as one of the factor of global climate change (Anenberg et al., 2012;Hadley and Kirchstetter, 2012;Ramanathan and Carmichael, 2008). The main sources of "black carbon" are forest fires, industrial emissions and volcanic activity (Diehl et al., 2012;Grieshop et al., 2009). ...
Full-text available
The investigation of glacial sediments has not received a lot of attention, but the processes in place on the surface of glaciers are quite interesting and multidirectional. In this article, we focused on glacial sediments material sampled from the surface of the Bellingshausen Ice Dome (King George Island, South Shetland Islands, Antarctica). These sediments have different genesis: material from cryoconite holes, denuded layers of volcanic ash, flushed ash and soils and soil-like bodies formed in the glacial zone. Chemical analysis of the samples showed that the bulk composition of sediments is as follows: SiO 2 > Fe 2 O 3 > Al 2 O 3 > SO 3 > CaO > MgO > Na 2 O > TiO 2 > K 2 O > P 2 O 5 > MnO (with SiO 2 content 50-55%, Fe 2 O 3-17-23%, Al 2 O 3-6-12%). The loss on ignition was maximum (10-11%) for samples taken at the top of the dome. Calculation of geochemical indexes showed that the mineral part of the samples is a product of erosion and sedimentation processes and is less chemically weathered in the lower part of the ice dome. The weathering type is fersiallitic. The maximum content of organogenic compounds (Total organic carbon-up to 5%, ammonium nitrogen-up to 116 mg/kg and mobile potassium-up to 373 mg/kg) also recorded at the top of the glacial dome; this may be associated with microbiological activity in cryoconite holes and the penetration of organic material from bird fauna. The low content of organogenic compounds on the slopes is caused by the processes of their washout with melt water. The content of trace metals Zn, Ni, and Pb found at higher elevations and distribution of Cu and Cd have more a local character associated with tourism activities and anthropogenic influence from year-round scientific stations. Thus, a number of multidirectional processes take place in the glacial sediments on the Bellingshausen Ice Dome, these are not simple denuded layers of ancient volcanic ash. The glacier cover can be considered as a "living" biogeochemical shell, accumulating products of microbiological and anthropogenic activity, products of erosion and sedimentation and organic matter of ornithogenic origin.
... Carbonaceous combustion aerosols constituting elemental (EC) and organic carbon (OC) is produced mostly from urban and industrial (anthropogenic) activities apart from natural sources like wildfires. The black carbon (BC) particles, considered as a proxy for anthropogenic activities (Lelieveld et al. 2019), contribute substantially to the warming of the atmosphere (Ramanathan and Carmichael 2008), alter the atmospheric stability and boundary layer evolution (Yu et al. 2002;Bharali et al. 2019), modify the atmospheric circulation (Allen and Sherwood 2011), and affect the hydrological cycle (Liepert et al. 2004). OC which are generally considered scattering in nature (Ackerman et al. 2000;Bellouin et al. 2005) contributes much to the carbonaceous combustion aerosol loading, especially over the Indian region . ...
Full-text available
The properties of carbonaceous aerosols at the rain-shadow region of the Western Ghats of India are studied as part of the Cloud Aerosol Interaction Precipitation Enhancement Experiment (CAIPEEX) during the Indian summer monsoon using optical and thermal methods. The optically derived black carbon (BC) and thermally derived elemental carbon (EC) correlated well (R = 0.9) with a slope value of 1.02. About 1 μg m⁻³ of mean BC mass concentration is observed with intra-seasonal variations depending upon the wet scavenging during the monsoon. However, rapid recharging of carbonaceous aerosols was observed indicating the presence of local aerosol sources. An enhancement in the absorption Angstrom exponent and the estimated brown carbon (BrC) contribution to absorption is observed during the forenoon hours. High OC/EC ratios (>5) observed over the region indicated the dominance of organic carbon (OC), which reduced (~3.5) subsequently with the onset of monsoon over the region. Primary and secondary organics are estimated from the OC-EC measurements following the novel minimum R-squared (MRS) method. The OC/EC ratio was higher on the intermittent dry days within the monsoon season, during which the primary organic carbon (POC) showed a strong association with the BC mass, indicating common sources for both. Irrespective of the wet and dry days, POC dominated the total carbon loading resulting in the low effective carbon ratio (0.41).
Refractory black carbon (rBC) aerosols play an important role in air quality and climate change, yet highly time-resolved and detailed investigations on the physicochemical properties of rBC and its associated coating are still scarce. In this work, we used a laser-only Aerodyne soot particle aerosol mass spectrometer (SP-AMS) to exclusively measure rBC-containing (rBCc) particles, and we compared their properties with those of the total nonrefractory submicron particles (NR-PM1) measured in parallel by a high-resolution AMS (HR-AMS) in Shanghai. Observations showed that, overall, rBC was thickly coated, with an average mass ratio of coating to rBC core (RBC) of ∼5.0 (±1.7). However, the ratio of the mass of the rBC-coating species to the mass of those species in NR-PM1 was only 19.1 (±4.9) %; sulfate tended to condense preferentially on non-rBC particles, so the ratio of the sulfate on rBC to the NR-PM1 sulfate was only 7.4 (±2.2) %, while the majority (72.7±21.0 %) of the primary organic aerosols (POA) were associated with rBC. Positive matrix factorization revealed that organics emitted from cooking did not coat rBC, and a portion of the organics that coated rBC was from biomass burning; such organics were unidentifiable in NR-PM1. Small rBCc particles were predominantly from traffic, while large-sized ones were often mixed with secondary components and typically had a thick coating. Sulfate and secondary organic aerosol (SOA) species were generated mainly through daytime photochemical oxidation (SOA formation, likely associated with in situ chemical conversion of traffic-related POA to SOA), while nocturnal heterogeneous formation was dominant for nitrate; we also estimated an average time of 5–19 h for those secondary species to coat rBC. During a short period that was affected by ship emissions, particles were characterized as having a high vanadium concentration (on average 6.3±3.1 ng m−3) and a mean vanadium/nickel mass ratio of 2.0 (±0.6). Furthermore, the size-resolved hygroscopicity parameter (κrBCc) of rBCc particles was obtained based on their full chemical characterization, and was parameterized as κrBCc(x)=0.29–0.14 × exp⁡(-0.006×x) (where x ranges from 150 to 1000 nm). Under critical supersaturations (SSC) of 0.1 % and 0.2 %, the D50 values were 166 (±16) and 110 (±5) nm, respectively, and 16 (±3) % and 59 (±4) %, respectively, of the rBCc particles by number could be activated into cloud condensation nuclei (CCN). Our findings are valuable for advancing the understanding of BC chemistry as well as the effective control of atmospheric BC pollution.
This study analyzes the flame images by optical method to distinguish the sooting transition process under different diluent gases (CO 2 , He, and N 2 ) and carries out chemical kinetic simulations during this transition process.
Black carbon (BC), the highly recalcitrant aromatic carbonaceous from the incomplete combustion of fossil fuel and biomass, is an important carbon sink in carbon cycle. Char and soot, the main components of BC, have significantly different origin and physicochemical characteristics (particle sizes and resultant transportability). The limited understanding of char and soot sources leads to poor insight into the effect of BC on carbon cycle. Sources of char and soot were investigated in this study using stable carbon isotopes to study the effect of BC on the organic carbon pool in a lake, thereby improving the knowledge of lacustrine carbon cycling. The concentration of BC in Taihu Lake ranged from 0.0 to 0.7 mg·L⁻¹and accounted for 10.9 ± 4.7% of the particulate organic carbon. The spatial-mean δ¹³C values of BC, char, and soot were −23.2 ± 2.0‰, −23.5 ± 2.2‰, and −22.9 ± 1.6‰, respectively. The BC in water was primarily derived from fossil fuels (66.0 ± 9.3%), with liquid fossil fuel accounting for 48.2 ± 13.2% of the BC. The contribution of liquid fossil fuel to soot (49.3%) was much higher than that to char (36.1%); correspondingly, the contributions of biomass and coal to soot (29.2% and 21.5%) were lower than those to char (38.1% and 25.8%). The contribution of liquid fossil fuel combustion to organic carbon (OC), char, and soot gradually increased from 31.9% to 49.3%. Biomass and coal combustion primarily contributed to char (38.1% and 25.8%) and OC (37.5% and 30.6%). The source apportionment of BC, char, and soot revealed the influence of anthropogenically driven BC, char, and soot on the lake and, by extension, to the global carbon cycle.
Wildfire is an integral part of the Earth’s climate system and plays an important role in shaping terrestrial ecosystems and biodiversity, atmospheric chemistry, regional climate, and the carbon cycle in the Earth’s history. However, the lack of high-resolution records of long wildfires limits our understanding of the natural variability, long-term trends of wildfire activity, and the reasons behind the changes in wildfire on orbital timescales. Here, a 320 ka long high-resolution wildfire record from the subarctic North Pacific is reconstructed with black carbon (BC), including its two subtypes char and soot. A 7-day-long back trajectory simulation analysis reveals the higher frequency of trajectories comes from Siberia. Our data show that continuous incidence of wildfire on a continental scale over the last 320 ka was higher during glacial periods than during the interglacial periods. The increase in wildfire frequency during glacial periods is ascribed to less precipitation. Contrasting patterns of wildfire incidence between marine isotope stages 2 and 6 may be ascribed to different fuel availability, which is related to contrasting configurations of the Northern Hemisphere ice sheet between glacial periods. A significant periodicity of 23 ka of our wildfire record suggests the precession of the Earth’s orbit pace wildfire development. The tight coupling of intensified wildfire and enhanced nutrient utilization efficiency suggests a nontrivial role of fire in the climate system.
Full-text available
Ship black carbon emissions have caused great harm to ecological environment. In order to estimate the black carbon emissions, thereby reducing the cost of black carbon experiments, here, we introduced four machine learning algorithms which are lasso regression, support vector machine, extreme gradient boosting, and artificial neural network to predict ship black carbon emissions. The prediction models were established with using the datasets acquired from similar marine engines under various steady-state conditions. The results show that SVM, XGB, and ANN have higher prediction accuracy than lasso regression, and the adjusted R² of each model is 0.9810, 0.9850, 0.9885, and 0.6088. Although ANN shows the best prediction performance, it is inferior to SVM and XGB in terms of model stability and training cost. Then, in order to simplify the optimization process of hyperparameters and improve the prediction accuracy of the model at the same time, we use three different swarm intelligence algorithms to automatically optimize the hyperparameters of SVM and XGB. In addition, we applied mutual information to measure the correlation between the characteristics of the prediction models and black carbon concentration and found that the characteristics which related to in-cylinder combustion have a strong correlation with the black carbon concentration. The findings in this paper prove the feasibility of machine learning in ship black carbon emission prediction and could provide references for reducing ship black carbon emissions and the formulation of emission regulations.
Full-text available
To probe the bioavailability of soot released into the atmosphere is pivotal to understanding their environmental impacts. Soot aerosol absorbs organic matter, creating a hot spot for biogeochemical transformation and the global carbon cycle. Soot primarily contains condensed aromatics chemically recalcitrant; however, oligotrophic microorganisms might use it as a nutritional source. This study investigated the influence of psychrotolerant bacterial consortia on soot. Significant increase in the bacterial biomass, reduction in water-insoluble organic carbon (OC) and elemental carbon (EC) in soot residues and increase in water-soluble OC in the filtrate signifies the use of soot as a carbon and nutritional source. The influence on morphology and composition of soot was reported using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy, and Energy Dispersive X-Ray analysis (EDX). The FTIR analysis showed significant variations in the pattern of soot spectra, suggesting degradation. Elemental analysis and EDX showed a reduction in carbon percentage. Besides, the reduction of optical density with incubation time signifies the OC and EC consumption. This study shows that soot can be a substrate and pivotal factor in the microbial food web. Nowadays, soot emission to the environment is growing; therefore, soot involvement in microbe-mediated processes should be closely focused.
The COVID-19 epidemic-led lockdown (LD) from March 25 to May 31, 2020, had a different level of impact on air quality in the ecologically sensitive region of northeast India, even though the restriction on main anthropogenic activities was expected to reduce particulate matter concentration. The daily average black carbon concentration measured at 880 nm (BC880) was 1.5–15.6 μg m−3 (mean: 5.75±4.24 μg m−3) during the measurement period. It was 9.29±4.11 μg m−3 during pre-LD (February 12–March 21), 4.70±0.95 μg m−3 during LD1 (March 25–April 14), 3.41±0.56 μg m−3 during LD2 (April 15–May 3), 3.69±1.50 μg m−3 during LD3 (May 4–17), 2.94±0.93 μg m−3 during LD4 (May 18–31), and 6.56±5.35 μg m−3 during the Post-LD (June 6–July 3) of 2020. It decreased up to 68% during the lockdowns. The source apportionment based on an improved method showed a significant improvement in the contribution of BC880 sources. The radiation effect determined by Angstrom Absorption Exponent showed that brown carbon accounted for 25% of the aerosol light absorption at 370 nm during the lockdown period. Relative humidity correlates substantially with BC880, while rainfall, temperature, and solar radiation were negatively correlated. The bivariate analysis showed the dominance of local emissions in the BC880 concentrations.
Full-text available
Black carbon aerosols absorb radiation and their absorptive strength is influenced by particle mixing structures and coating compositions. Liquid-liquid phase separation can move black carbon to organic particle coatings which affects absorptive capacity, but it is unclear which conditions favour this redistribution. Here we combine field observations, laboratory experiments, and transmission electron microscopy to demonstrate that liquid-liquid phase separation redistributes black carbon from inorganic particle cores to organic coatings under a wide range of relative humidity. We find that the ratio of organic coating thickness to black carbon size influences the redistribution. When the ratio is lower than 0.12, over 90% of black carbon is inside inorganic salt cores. However, when the ratio exceeds 0.24, most black carbon is redistributed to organic coatings, due to a change in its affinity for inorganic and organic phases. Using an optical calculation model, we estimate that black carbon redistribution reduces the absorption enhancement effect by 28–34%. We suggest that climate models assuming a core-shell particle structure probably overestimate radiative absorption of black carbon aerosols by approximately 18%.
Full-text available
The microphysical, chemical, optical, and lidar data collected during the Indian Ocean Experiment (INDOEX) resulted in a self-consistent aerosol formulation for a multiple-scattering Monte Carlo radiation model. The model was used to simulate the direct aerosol radiative forcing, cloud radiative forcing, and heating rates for typical winter monsoon conditions over the tropical Indian Ocean. The focus of the study is to understand how the anthropogenic and natural aerosols partition the incoming solar energy between the ocean mixed layer and the overlying cloudy atmosphere. The observed aerosol single-scattering albedo, ω̄, was in the range 0.8-0.9 at 500 nm, mean aerosol visible optical thickness, τA, was in the range 0.1-0.8 at 500 nm, and the low-level clouds had horizontal scales of few kilometers and a cloud fraction of about 25%, typical of low-level clouds in the tropical oceans. The aerosol layer extended well above the low-level clouds in many instances, which has a significant impact on the radiative forcing. Although contributing only about 10% to the aerosol optical thickness, the soot transported from Asia and the Indian subcontinent significantly affects the aerosol direct forcing of the cloudy atmosphere. For monthly mean conditions (τA = 0.4, ω̄ = 0.9 and 25% low-cloud fraction), the diurnal mean surface radiative forcing is about -25 W m-2 and the atmospheric forcing ranges from +22 to +25 W m-2. The top-of-the-atmosphere direct aerosol forcing is in the range of zero to -3 W m-2. The aerosol enhances the cloud atmospheric forcing by 0.5 and by 2.5 W m-2 when aerosol is mostly below and above the clouds, respectively. Furthermore, the trade wind boundary layer is subject to a heating of about 1 to 1.5 K/d which might burn off the trade cumulus themselves. Thus the major impact of the predominantly anthropogenic aerosol over the tropical Indian Ocean is a substantial redistribution of the solar energy between the atmosphere and the ocean mixed layer.
Full-text available
Citation: Jacobson, M. Z., Reply to comment by J. Feichter et al. on ''Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming,'' J. Geophys. Res., 108(D24), 4768, doi:10.1029/2002JD003299, 2003.
Full-text available
A three-dimensional interactive aerosol-climate model has been developed and used to study the climatic impact of black carbon (BC) aerosols. When compared with the model's natural variability, significant global-scale changes caused by BC aerosols occurred in surface latent and sensible heat flux, surface net long-wave radiative flux, planetary boundary layer height, convective precipitation (all negative), and low-cloud coverage (positive), all closely related to the hydrological cycle. The most significant regional change caused by BC revealed in this study is in precipitation that occurs in the tropics (shift of precipitation center in the ITCZ) and in the middle and high latitudes of the Northern Hemisphere (change in snow depth). Influenced by BC caused changes in cloud cover and surface albedo, the interactive model provides smaller positive all-sky forcing at the top of atmosphere (TOA) and larger negative forcing at the surface than the offline diagnostics (the direct forcings). The actual solar radiative forcings by BC derived from the interactive model also exhibit significant interannual variations that are up to 4 times as large as their means. Based on the revealed changes in cloud radiative forcing by BC, a non-Twomey-Albrecht indirect forcing by BC that alters radiative budgets by changing cloud cover via thermodynamics rather than microphysics is also defined. It has been demonstrated that with an absolute amount more than 2 times higher than that of the TOA forcing, the surface forcing by BC is a very important factor in analyzing the climatic impact of BC. The result of this study suggests that with a constant annual emission of 14 TgC, BC aerosols do not cause a significant change in global-mean surface temperature. The calculated surface temperature change is determined by a subtle balance among changes in surface energy budget as well as in the hydrological cycle, all caused by BC forcing and often compensate each other. The result of this study shows that the influences of BC aerosols on climate and environment are more significant in regional scale than in global scale. Important feedbacks between BC radiative effects and climate dynamics revealed in this study suggest the importance of using interactive aerosol-climate models to address the issues related to the climate impacts of aerosols.
Every year, from December to April, anthropogenic haze spreads over most of the North Indian Ocean, and South and Southeast Asia. The Indian Ocean Experiment (INDOEX) documented this Indo-Asian haze at scales ranging from individual particles to its contribution to the regional climate forcing. This study integrates the multiplatform observations (satellites, aircraft, ships, surface stations, and balloons) with one- and four-dimensional models to derive the regional aerosol forcing resulting from the direct, the semidirect and the two indirect effects. The haze particles consisted of several inorganic and carbonaceous species, including absorbing black carbon clusters, fly ash, and mineral dust. The most striking result was the large loading of aerosols over most of the South Asian region and the North Indian Ocean. The January to March 1999 visible optical depths were about 0.5 over most of the continent and reached values as large as 0.2 over the equatorial Indian ocean due to long-range transport. The aerosol layer extended as high as 3 km. Black carbon contributed about 14% to the fine particle mass and 11% to the visible optical depth. The single-scattering albedo estimated by several independent methods was consistently around 0.9 both inland and over the open ocean. Anthropogenic sources contributed as much as 80% (±10%) to the aerosol loading and the optical depth. The in situ data, which clearly support the existence of the first indirect effect (increased aerosol concentration producing more cloud drops with smaller effective radii), are used to develop a composite indirect effect scheme. The Indo-Asian aerosols impact the radiative forcing through a complex set of heating (positive forcing) and cooling (negative forcing) processes. Clouds and black carbon emerge as the major players. The dominant factor, however, is the large negative forcing (-20±4 W m^(−2)) at the surface and the comparably large atmospheric heating. Regionally, the absorbing haze decreased the surface solar radiation by an amount comparable to 50% of the total ocean heat flux and nearly doubled the lower tropospheric solar heating. We demonstrate with a general circulation model how this additional heating significantly perturbs the tropical rainfall patterns and the hydrological cycle with implications to global climate.
South Asian emissions of fossil fuel SO2 and black carbon increased6-fold since 1930, resulting in large atmospheric concentrations of black carbon and other aerosols. This period also witnessed strong negative trends of surface solar radiation, surface evaporation, and summer monsoon rainfall. These changes over India were accompanied by an increase in atmospheric stability and a decrease in sea surface temperature gradients in the Northern Indian Ocean. We conducted an ensemble of coupled ocean-atmosphere simulations from 1930 to 2000 to understand the role of atmospheric brown clouds in the observed trends. The simulations adopt the aerosol radiative forcing from the Indian Ocean experiment observations and also account for global increases in greenhouse gases and sulfate aerosols. The simulated decreases in surface solar radiation, changes in surface and atmospheric temperatures over land and sea, and decreases in monsoon rainfall are similar to the observed trends. We also show that greenhouse gases and sulfates, by themselves, do not account for the magnitude or even the sign in many instances, of the observed trends. Thus, our simulations suggest that absorbing aerosols in atmospheric brown clouds may have played a major role in the observed regional climate and hydrological cycle changes and have masked as much as 50% of the surface warming due to the global increase in greenhouse gases. The simulations also raise the possibility that, if current trends in emissions continue, the subcontinent may experience a doubling of the drought frequency in the coming decades. aerosols | black carbon | regional climate change