Content uploaded by Yun-Seok Kang
Author content
All content in this area was uploaded by Yun-Seok Kang on Sep 21, 2017
Content may be subject to copyright.
Abstract
Ribfracturessustainedduringmotorvehiclecrashesareacommoncauseofincreasedmortality,andtheir
causeswithinandbetweenindividualsisnotfullyunderstood.Thisstudyaimedtoidentifytheeffectofbody
height,bodyweight,andbodymassindex(BMI)onmeasuredstructuralpropertiesofhumanribs.Two‐
hundredsixtyoneribsfromone‐hundredfortysevenindividualswereimpactedinadynamic(2.0m/s)bending
scenariorepresentingafrontalthoracicimpact.Linearregressionrevealedbodyheightandweighteachhada
significantpositiverelationshipwithpeakforceandstiffness(p<0.001forall),andweakerrelationshipswith
totalenergy(p=0.003and0.015,respectively),althoughexplanatorypowerremainedlowforallrelationships
(R2=10‐12%).Theintroductionofageasanadditionalvariableinmultipleregressionsincreasedtheabilityto
predictstructuralproperties:R2=33%,17%,and41%forpeakforce,stiffnessandtotalenergy,respectively.
Bodysizeparametershaveameasurableeffectonribproperties,butshouldbeusedwithcautionto
understandvarianceindynamicwholeribresponsebecausethesourceofthemajorityofvariationremains
unaccountedforinallmodelsexploredhere.Futureworkwillincorporaterib‐specificvariablesandexplorethe
utilityoftheserelationshipsonscalingandnormalizationtechniques.
KeywordsEnergy,Force,Fracture,Stiffness,Thoraxinjury
I. INTRODUCTION
Thethorax,andespeciallyribs,arecommonlyinjuredinmotorvehiclecrashes(MVC)andthistrauma
representsasignificantthreattolife[1].Understandingribresponseiscrucialtoelucidatespecificmechanisms
offractureanddevelopaccuratetools(e.g.,anthropomorphictestdevicesandcomputationalmodels)designed
toassistinmeasuringthoracicresponseinanMVCandultimatelytomitigatefracturerisk.
Humanribstructuralpropertieshavepreviouslybeenreportedastohowtheyrelatetoindividual
characteristicssuchaschronologicalageandsexwithlimitedsuccess[2].However,theinfluenceofbodysize
onstructuralpropertiesisrelativelyunexplored,andtheseparametershavepotentialtoexplainadditional
variationinpropertiesthatageandsexalonedonot.Therehavebeenonlyafewstudiesexploringhumanbody
sizeanditseffectsondynamicribpropertiesrepresentativeofloadinginacarcrashscenario[2,3].
Furthermore, many researchers rely on scaling techniques which utilize height and weight to normalize
impactresponsedataobtainedfromexperimentaltesting[4‐6]. Severalnormalizationtechniquesutilizeother
morecomplexanthropometricvariablesbeyondheightandweightbutstilloperateundertheassumptionthat
the human body behaves as a simple mechanical system and therefore the relationship between impact
responseandbodysizeparameterscanbeobtainedthroughlinearscalefactorratios[7‐10].However,whereas
thesenormalizationtechniquesareeffectivewhenappliedtoresponsedatafromtestsubjectsthathavesmall
variationsinsize/weightaboutacentralpopulation(i.e.,approximate50thmaletestsubjectsnormalizedtoa
precise50thmaleanthropometry),thetechniquestendtoperformworsewhenadjustingonepopulationtoa
vastly different one (e.g., 50th male to child), likely due to anatomical variation and differences in skeletal
geometricormaterialproperties(tissuequality)thataretoocomplextobeaccountedforusinglinearscaling
ratios.Forexample,[11]exploredvariationinbothribcross‐sectionalgeometryandthecombinationofcross‐
sectional and gross geometry and found these parameters could successfully predict impact response.
Furthermore,theauthorsnotedtheserelationshipswereindependentofbodysize(definedsimplyasweight
multiplied by bone length), indicating there is potential for using specific bone geometry to improve existing
scalingtechniques.
Nonetheless,itisimportanttofirstunderstandtheeffectsofsubject‐levelvariables,suchasbodyheightand
TheEffectofBodySizeonAdultHumanRibStructuralProperties
A.M.Agnew,M.M.Murach,E.Misicka,K.Moorhouse,J.H.BolteIV,Y.S.Kang
IRC-17-105
IRCOBI conference 2017
-728-
weight,ontheresponseandfractureriskofcomponentsofthehumanbodywhichareatahighriskofinjury
duringmotorvehicleaccidentssuchasthehumanthorax.Forexample,[12]conductedafiniteelement(FE)
studyinwhichbodyweightandheightaswellasareamomentsofinertiaoftheribcageandribsalonewere
variedtoinvestigatetheireffectsontheresponseofthethorax.Althoughtheauthorsconcludedthatthearea
momentsofinertiawerethemostimportantparameters,theyalsofoundthatweightandheightwere
significantpredictorsofthemaximumforceandmaximumchestdeflection,respectively.
AstheseFEmodelsbecomeincreasinglyutilizedinthefieldofinjurybiomechanics,itisimportantthatthe
load‐bearingcomponentofthehumanthorax,theribs,bescaledandmodeledappropriately.Severalstudies
havefocusedontherelationshipbetweenbodysizeandgrossribgeometryandfoundingeneralthatincreases
inbodysizeresultedinincreasesinribgeometry[1,3,13].However,theinfluenceofbodysizeonthestructural
responseofindividualribstodynamicloadingthatisrepresentativeofacarcrashscenariohasyettobe
investigated.Identifyingparametersthatcanbereadilyquantifiedsuchasbodysizethatareimportantfor
understandingfractureriskwillallowforimprovementstoscalingtechniquesandinjurycountermeasures.
Therefore,theobjectiveofthisstudyistoidentifytheeffectoftotalbodyheight,bodyweight,andbodymass
index(BMI)onribstructuralstiffness,peakforce,andtotalenergy.
II. METHODS
Sample
Two‐hundredsixty‐onemid‐levelribs(4‐7)from147adultpost‐mortemhumansubjects(PMHS)were
analyzedinthissample,including67femalesand194males.RibswereacquiredethicallyviatheOhioState
University’sBodyDonationProgramandLifelineofOhio.Totalbodyheightandbodyweightwererecordedat
thetimeofdeath,andbodymassindex(BMI)wascalculatedas:[weight(kg)/height(m)2].BMIwasfurther
categorizedaccordingtotheWorldHealthOrganization(WHO)standards:<18.5=underweight,18.5‐
24.9=normalweight,25.0‐29.9=overweight,and30.0+=obese[14].Heightwasnotrecordedforoneindividual
forwhichoneribwastested,sothetotalsamplesizeisreducedbyoneforheightandBMI.Table1includes
descriptivestatisticsforthesample.
TABLEI
SAMPLE
HeightWeightBMIAge
(cm)(kg)(kg/cm2)UnderweightNormalOverweightObese(yrs)
n(ribs)260261260231137945261
Mean174.776.625.116.621.827.034.556.6
SD9.518.65.81.61.731.44.6423.3
Min142.232.212.5‐
*18.5*25.0*>30.0*15
Max199.4136.048.4<18.5*24.9*29.9*‐
*108
*
WHOdefinedcorridors
ExperimentalTesting
Completeribsfromcostovertebraltocostochondraljunctionwereexcisedfromindividualsimmediatelynear
thetimeofdeath,wrappedinnormalsaline‐soakedgauze,andstoredat‐20°C.Topreparefortesting,ribs
werethawedandcleanedofallexternalsofttissue,andtheendswerepottedin4x4x3cm3blocksofBondo®
BodyFiller(BondoCorporation,Atlanta,GA)insingle‐planeorientation.Twostraingauges(CEA‐06‐062UW‐350,
VishayMicro‐Measurement,Shelton,CT,)eachwereappliedtothepleuralandcutaneoussurfacesat30%and
60%ofthetotalcurvelength(Cv.Le)oftheribfromvertebraltosternalend.Spanlength(Sp.Le),alinear
measurementbetweenribends,wasalsodocumented.Ribswerekeptwell‐hydratedwithnormalsaline
throughoutpreparationandtesting.
Allribswereimpactedinadynamic(average2.0m/sand0.5strain/s)bendingscenariorepresentingafrontal
thoracicimpactwiththesternalribendtranslatedtowardsthevertebralend.Thiswasaccomplishedina
IRC-17-105
IRCOBI conference 2017
-729-
custompendulum(54kg)fixture.Theexperimentalcoordinatesystemwasconstructedsuchthattheprimary
loadingaxiswasdefinedastheX‐axis,withtheY‐axisextendingverticallyaccordingtotheSAEJ211standard
(Fig.1).Inthisconfiguration,bendingwasrestrictedtotheX‐Yplanealmostentirely.Displacementofthe
sternalribendwasmeasuredbyalinearstringpotentiometer(RayelcoP‐20A,AMETEK,Inc.Berwyn,PA)fixed
tothemovingplateofthefixture.Forcesandmomentswererecordedbya6‐axisloadcell(CRABIneckload
cell,IF‐954,Humanetics,Plymouth,MI)behindthefixedplate.
Fig.1.Bending
experimentshowinga
ribinthetestfixture
DataAnalysis
ForceanddisplacementdatawerefilteredusingaCFC180filter[15].Utilizingtheforce‐displacement(F‐D)
curvefromeachimpact,structuralstiffnesswascalculatedastheslopeof20‐80%ofthelinearelasticportion
[16],peakforcewasdefinedasthemaximumforceintheX(primary)loadingdirectionpriortofracture,and
totalenergywascalculatedastheareabeneaththeF‐Dcurvefromtimezerototimeoffailure.Thestructural
propertiesoflinearstructuralstiffness(K),peakforce(Fpeak),andtotalenergy(Utot)aretreatedasdependent
variablesinthisstudy.Height,weight,andBMIweretreatedasindependentvariablesandwereallassessedas
continuousdatapointstoinvestigatepredictiverelationshipswithstructuralproperties.Thiswasaccomplished
usingbothunivariateandmultipleregressionmodels.Additionally,differencesinmeansofBMIclassifications
werecomparedusinganalysisofvariance(ANOVA)forallstructuralproperties.Anα
valueof<0.05was
consideredsignificantforallstatisticaltests.
III. RESULTS
DescriptivestatisticsforeachstructuralpropertyfortheentiresampleandwhendividedbyBMIcategory
canbefoundinTableII.UnivariateregressionresultsarepresentedinTableIIIandFigure2.Bodyheighthada
significantpositiverelationshipwithpeakforce(p<0.001),stiffness(p<0.001),andtotalenergy(p=0.003).Body
weighthadasignificantpositiverelationshipwithpeakforce(p<0.0001)andstiffness(p<0.0001),andaslightly
weakerrelationshipwithtotalenergy(p=0.015).Bodymassindex(BMI)assessedasdiscretevalueshada
significantpositiverelationshipwithpeakforce(p=0.005)andstiffness(p=0.003),butnottotalenergy
(p=0.200).Heightandweightpredictedpeakforceandstiffnessbest,explainingapproximately10‐12%of
varianceinthedata.
Sincepreviousanalysisonasubsamplehasshownagetohaveastatisticallysignificantinfluenceonthe
structuralpropertiespresentedhere[2],agewasincludedalongwithheightandweightasapredictorvariable
inmultipleregressionanalysis.Thesedatawerestandardizedandcenteredpriortoapplicationinthemodels,
andtheresultscanbefoundinTableIV.Inshort,age,heightandweighttogetherexplainedaround33%of
varianceinpeakforce,17%instiffness,and41%intotalenergy(p<0.0001forallthreemodels),butage
contributestoexplainingthemajorityofvarianceineachcase.
IRC-17-105
IRCOBI conference 2017
-730-
TableII
DESCRIPTIVESTATISTICS
TotalSampleBMIClassification
UnderweightNormalOverweightObese
PeakForce(N)110.7
(±49.3)
86.2
(±35.6)
100.4
(±46.2)
130.5
(±53.0)
114.3
(±44.1)
Stiffness(N/mm)3.33
(±1.69)
2.48
(±1.25)
3.01
(±1.58)
3.85
(±1.60)
3.66
(±1.95)
TotalEnergy(N*mm)3714
(±2934)
2710
(±2551)
3535
(±2989)
4329
(±3169)
3598
(±2360)
TableIII
UNIVARIATEREGRESSIONRESULTS
PeakForceStiffnessTotalEnergy
R2(%)P‐valueR2(%)P‐valueR2(%)P‐value
Age19.3<0.00017.4<0.000136.9<0.0001
Height12.9<0.00019.8<0.00013.40.003
Weight10.3<0.000110.5<0.00012.30.015
BMI3.00.0053.50.0030.60.200
Note:boldedvaluesarestatisticallysignificant
TableIV
MULTIPLEREGRESSIONRESULTS
PeakForceStiffnessTotalEnergy
Contribution
(%)p‐valueContribution
(%)p‐valueContribution
(%)p‐value
Age18.4<0.00016.49<0.000137.19<0.0001
Height7.55<0.00013.900.0242.140.002
Weight6.070.0045.200.0020.230.972
Age*Height0.060.5400.190.2990.650.099
Age*Weight1.230.0441.070.1840.100.092
Height*Weight0.060.6540.040.8540.370.153
Age*Height*Weight0.000.9920.440.2560.550.133
Total R2=33.36<0.0001R2=17.33<0.0001R2=41.22<0.0001
Note:boldedvaluesarestatisticallysignificant
IRC-17-105
IRCOBI conference 2017
-731-
PeakForceStiffnessTotalEnergy
200190180170160150140
300
250
200
150
100
50
0
Heigh t (cm)
Peak Force (N)
200190180170160150140
9
8
7
6
5
4
3
2
1
0
Heigh t (c m)
Stiffness (N/mm)
200190180170160150140
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Heigh t (c m)
Ene rgy (N*mm)
1501251007550
300
250
200
150
100
50
0
Weight (kg)
Peak Force ( N)
1501251007550
9
8
7
6
5
4
3
2
1
0
Weight (kg)
St iff nes s ( N/mm)
1501251007550
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Weight (kg)
Ene rg y (N* mm)
5040302010
300
250
200
150
100
50
0
Body Mass Index (BMI)
Peak Force (N)
5040302010
9
8
7
6
5
4
3
2
1
0
Body Mass Index (BMI)
Stiffness (N/mm)
5040302010
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
Body Mass Index (BMI)
Ene rgy ( N*mm)
Fig.2.Scatterplotsshowingindependentrelationshipsofpeakforce(left),stiffness(center),andtotalenergy(right)withheight
(top),weight(middle),andBMI(bottom)
WhenBMIwasassessedcategorically,acleartrendforallstructuralpropertiesemergedofincreasingwith
meanBMIfromtheunderweighttonormaltooverweightcategoriesandthendecreasingfromtheoverweight
toobesecategories(Fig.3).ANOVAresultsrevealsignificantdifferencesinBMIgroups(p<0.0001)forpeak
forceandstiffness,whilenostatisticallysignificantdifferenceswerefoundbetweengroupsfortotalenergy
(p=0.083)despitethesamedistincttrend.Toidentifywherethedifferencesliebetweengroups,posthocTukey
testswereperformed.Nosignificantdifferenceswerefoundbetweenunderweightandnormalgroupsor
betweenoverweightandobesegroups,butadifferencewasfoundbetweennormalandoverweightgroupsfor
peakforceandstiffness.
IRC-17-105
IRCOBI conference 2017
-732-
ObeseOverweightNormalUnderweight
150
140
130
120
110
100
90
80
70
Body Mass Index Classification
Peak Force (N)
95% CI for the Mean
ObeseOverweightNormalUnderweight
5000
4500
4000
3500
3000
2500
2000
1500
Body Mass Index Classification
Total Energy (N*mm)
95% CI for the Mean
Fig.3.Intervalplotsshowingmeanand95%confidenceintervalsofeachBMIclassificationforPeakForce(left)
andTotalEnergy(right).Stiffnessresultsarenotshown,butthetrendappearssimilarwithanincreasein
structuralpropertiesaccompanyinganincreaseinBMI,exceptforintheobesecategory.
IV. DISCUSSION
Thisresearchfoundthatbodysizeparametersplayaroleinthedeterminationofindividualdynamicrib
responseinafrontalloadingscenario.Fewotherstudieshaveexploredtheeffectsofbodysizeonribor
thoracicproperties,althoughtherehasbeenresearchconductedtoexploretherangesofvariationseeninrib
orthoraxgeometryrelatedtosizeparameters.Forexample,[13]usedComputedTomography(CT)datato
developastatisticalribcagegeometrymodelandfoundasignificantinfluenceofheight,BMI,andsex,in
additiontoaweakereffectofage.Similarly,[1]foundalargereffectofBMIthanageonribangle.Despite
thesefindings,therehavebeenfewattemptstolinkthoracicgeometrychangeswithskeletalmechanical
properties.
Kalraetal[17]performed3‐pointbendingonadultribsegmentsataquasi‐staticrateandfoundnoheightor
weighteffectonequivalentmeasuresofmomentandstiffness.Sincethisexperimentwaspointloadingona
smallsectionofribanddidnottaketheoverallsizeoftheboneintoaccount,itisreasonabletoconcludethat
theribcross‐section(presumablyprovidingthemostresistancetobendinginthistest)wouldbelessinfluenced
bytotalbodysize.Althoughinasimilarquasi‐static3‐pointbendingribtestas[17],asignificantrelationship
betweenmomentandheightinchildrenwasfound[18].Tofurtherexploretheeffectoftotalribsizeon
properties,aposthocanalysisonthesampleinthecurrentstudywasconductedutilizingthefollowing
measuresofribsize:totallengthalongthecurvatureoftherib(Cv.Le)andminimumlinearlengthbetweenthe
vertebralandsternalribends(Sp.Le).Asignificant(p<0.0001)correlationwasfoundbetweentotalribsize,
curvelength(Cv.Le)andspanlength(Sp.Le),withbodyheight(Pearson’sr=0.447and0.319,respectively),but
notwithbodyweight(p=0.624and0.185,respectively).Thisisconsistentwithpreviousstudieswhichfoundrib
curvelengthtobeassociatedwithtotalbodyheight[3,19].However,inourstudyanadditionalposthoc
analysisutilizingalinearregressionrevealsnorelationshipbetweenCv.LeorSp.Leandanyofthestructural
properties,suggestingmoreworkneedstobedoneinthisarea.Itisanticipatedthatribcross‐sectional
geometryormicrostructuralvariableswillhelpprovideadditionalunderstanding.Forinstance,inasimulation
study,[12]foundbodyheightandweighttoinfluencethoracicinjuries,butthatrib‐specificmeasurements(e.g.,
areamomentofinertia)couldbetteraccountforoverallthoracicresponsesandinjuries.
Interestingly,[11]foundthatribcross‐sectionalgeometry(totalcross‐sectionalarea,corticalbonearea,and
sectionmodulus)aswellthecombinationofcross‐sectionalandgrossgeometry(robusticityandwholebone
strengthindex)wereallsignificantpredictorsofmeasuredpeakforceandstiffnessandcanaccountforasmuch
as75%ofthevariationseeninthesestructuralproperties.Althoughskeletalmorphology(i.e.grossgeometry)
isrelatedtobodysize,thecross‐sectionalgeometryisdependentonavarietyoffactorssuchasspecificloading
environmentandgenetics[20],andthereforemayprovideawaytoaccountforthesedifferencesbetween
individuals.Thisworkprovidespreliminaryevidencethatinclusionofskeletalgeometrymayimproveexisting
scalingtechniquesandallowforpredictableadjustmentstovariouspopulations(pediatricorelderly),however
moreresearchneedstobedoneinthisarea.
IRC-17-105
IRCOBI conference 2017
-733-
ThetrendinstructuralpropertiesacrossdiscreteBMIclassificationswhereeachpropertyincreasesfrom
underweighttonormalweight,continuestoincreaseandpeaksintheoverweightcategory,butthenisreduced
inobesity,presentsaninterestingdiscussiontopic.Thedescribedpattern,whichisobservableforallthree
structuralproperties,suggestsafunctionaladvantageintheformofhigherresistancetobendingasmorebody
sizeisgained(tallerandheavier),untilathresholdwherethesebenefitsarethenoutweighedbythedeleterious
effectsofobesity.Theeffectofobesity(i.e.,excessiveadiposetissue)onfractureriskiswidelydebatedinthe
literature[21].However,thereisevidencethatthetrendobservedinthecurrentstudyisrepresentativeof
fractureriskvariationsacrossBMIclassificationsseenintheclinicalenvironment[22]suggestingthatadvanced
obesityhasnegativeimpactsonbonequality[23].Theseresultsshouldbeapproachedwithcautionasthereis
greatvariationintheBMIdataasseeninFigure2,andthereareunequalnumbersofsubjectsineachBMI
category.
Displacementwasnotincludedasadependentvariableinthisstudy,becausepotentialrelationshipswith
bodysizemaybeconfoundedbyitstypicalpresentationasavariablenormalizedbyribspanlength[2,16].This
complicatedinteractionwillbeexploredinfutureworkinconjunctionwiththoracicanthropometry(e.g.,chest
depth)tobetterunderstandhowthesizeandshapeofthethorax,isinfluencedbyindividualribresponse.
Additionally,itwillbecrucialtolearnthespecificrolethatindividualribresponseplaysinoverallthoracic
response.Thisaddedlayerofcomplexitywillaidourunderstandingofthoracicinjuryrisk,asthisisbasedmostly
onchestcompression.
Sexwasnotincludedinthemodelspresentedhere.Pastworkonasubsetofthissamplefoundsexto
influencepeakforce,stiffness,andtotalenergy[2].However,thesedifferencesmayhavebeenduetosexual
dimorphism,inwhichcaseincludingsexhereinwouldconfoundthemodelusingbodysizeparameters.Infact,a
posthocanalysisrevealedsignificantdifferencesinheightandweightbetweenmalesandfemales(studentt‐
test,p<0.0001forboth),supportingtheuseofapooledsampleforthispreliminarywork.Futureresearchaims
toutilizeamorecomplexstatisticalmodelabletoteaseoutsex‐differentiatedstructuralpropertieswhile
controllingforbodysize.Furthermore,apossiblesamplingbiascouldbeinfluencingresultsasnotallagesor
bodysizesareequallyrepresentedinthesample.
Itwasassumedherethatlinearregressionmodelswereappropriateforanalysisofthisdataset.While
previousribdataanalysishasutilizeddifferentandmorecomplexmodelingtechniques[2,16],thoseresultsare
veryconsistentwithsimpleregressionmodelsasprovidedhere,andthereforetheanalysiswassimplifiedfor
thispreliminarywork.Futurestudiescanfurtherexploremorecomplicatedmodelsandpossiblynon‐linearfits.
V. CONCLUSIONS
Bodysizeparametershaveaneffectonstructuralpropertiesofhumanribs,butevenwhenincludedwithage,
predictivemodelsstilldonotexplainthemajorityofvariationinpeakforce,stiffness,ortotalenergy.Future
workwillinvestigatetherelationshipbetweenthoracicanthropometryandribsizeandproperties.Additionally,
morebiologically‐relevantvariablesrelatedtothespecificgeometry,cross‐sectionalgeometry,and
microstructureofribswillbeexploredaspredictorsofribstructuralresponsetoloading.Thesedatacan
ultimatelybeadvantageoustoaidinimprovingsize‐basedscalingtechniques.
VI. ACKNOWLEDGEMENT
ThankyoutotheNationalHighwayTrafficSafetyAdministration(NHTSA)forfundingthiswork.Allopinions
expressedwithinthismanuscriptaresolelythoseoftheauthorsanddonotrepresenttheviewsofthesponsor.
WeareindebtedtotheanatomicaldonorswhomadethisresearchpossibleviaTheOhioStateUniversity’sBody
DonorProgramandLifelineofOhio.ThankyoualsotostudentsandstaffoftheInjuryBiomechanicsResearch
CenterincludingArriannaWillis,JulieBing,RakshitRamachandra,DavidStark,JonBlank,RandeeHunter,and
AksharaSreedhar.
IRC-17-105
IRCOBI conference 2017
-734-
VII. REFERENCES
[1]KentR,LeeS,etal.Structuralandmaterialchangesintheagingthoraxandtheirroleincrashprotection
forolderoccupants.StappCarCrashJournal,2005,49:231‐249.
[2]SchafmanM,KangY‐S,MoorhouseK,WhiteS,BolteJH,AgnewAM.Ageandsexaloneareinsufficientto
predicthumanribstructuralresponsetodynamicA‐Ploading.JournalofBiomechanics,2016,49:3516‐3522.
[3]KindigMW,KentR.Characterizationofthecentroidalgeometryofhumanribs.JournalofBiomechanical
Engineering,2013,135(11):1‐9.
[4]EppingerR,MarcusJ,MorganR.DevelopmentofdummyandinjuryindexforNHTSA'sthoracicsideimpact
protectionresearchprogram.SAEInternational,1984,paper840885.
[5]IrwinAL,MertzHJ(1997)BiomechanicalbasesfortheCRABIandHybridIIIchilddummies.StappCarCrash
Journal,1997,41:261‐272.
[6]IrwinAL,MertzHJ,ElhagediabAM,MossS.Guidelinesforassessingthebiofidelityofsideimpactdummies
ofvarioussizesandages.StappCarCrashJournal,2002,46:297‐319.
[7]MertzH.Aprocedurefornormalizingimpactresponsedata.SAEInternational,9184,paper840884.
[8]Viano,DC.Biomechanicalresponsesandinjuriesinbluntlateralimpact.SAEInternational,1989,paper
892432.
[9]MoorhouseKM.Animprovednormalizationmethodologyfordevelopingmeanhumanresponsecurves.
InternationalTechnicalConferenceontheEnhancedSafetyofVehicles(ESV),2013,Seoul,SouthKorea.
[10]DonnellyBR,MoorhouseKM,RhuleHH,StammenJH.Adeformationenergyapproachtonormalizing
PMHSresponsedataanddevelopingbiofidelitytargetsfordummydesign,ProceedingsofIRCOBIConference,
2014,Berlin,Germany.
[11]MurachM,KangY‐S,GoldmanSD,SchafmanMA,SchlechtS,MoorhouseK,BolteJH,AgnewAM.Rib
geometryexplainsvariationindynamicstructuralresponse:Potentialimplicationsforfrontalimpactfracture
risk.AnnalsofBiomedicalEngineering,2017,inpress.DOI:10.1007/s10439‐017‐1850‐4.
[12]KimparaH,LeeJ,YangK,KingA.Effectsofbodyweight,height,andribcageareamomentofinertiaon
bluntchestimpactresponse.TrafficInjuryPrevention,2010,11:207‐214.
[13]ShiX,CaoL,ReedM,RuppJD,HoffCN,HuJ.Astatisticalhumanribcagegeometrymodelaccountingfor
variationsbyage,sex,statureandbodymassindex.JournalofBiomechanics,2014,47:2277‐2285.
[14]WHO.Physicalstatus:theuseandinterpretationofanthropometry.ReportofaWHOExpertCommittee.
WHOTechnicalReportSeries854.Geneva:WorldHealthOrganization,1995.
[15]SAE,SocietyofAutomotiveEngineers.J211/1instrumentationforimpacttest‐part1‐electronic
instrumentation.SocietyofAutomotiveEngineers,2007,Warrendale,PA.
[16]AgnewA,SchafmanM,MoorhouseK,WhiteS,KangY.Theeffectofageonthestructuralpropertiesof
humanribs.JournaloftheMechanicalBehaviorofBiomedicalMaterials,2015,41:302‐314.
[17]KalraA,SaifT,etal.Characterizationofhumanribbiomechanicalresponseduetothree‐pointbending.
IRC-17-105
IRCOBI conference 2017
-735-
StappCarCrashJournal,2015,59:113‐130.
[18]AgnewAM,MoorhouseK,etal.Theresponseofpediatricribstoquasi‐staticloading:Mechanical
propertiesandmicrostructure.AnnalsofBiomedicalEngineering,2013,41(12):2501‐2514.
[19]BellemareF,FuambaT,BourgeaultA.Sexualdimorphismofhumanribs.RespiratoryPhysiology&
Neurobiology,2006,150:233‐239.
[20]JepsenKJ,HuB,etal.Geneticrandomizationrevealsfunctionalrelationshipsamongmorphologicand
tissue‐qualitytraitsthatcontributetobonestrengthandfragility.MammalianGenome,2007,18:492‐507.
[21]ReidI.Fatandbone.ArchivesofBiochemistryandBiophysics,2010,503(1):20‐27.
[22]Prieto‐AlhambraD,etal.Theassociationbetweenfractureandobesityissite‐dependent:Apopulation‐
basedstudyinpostmenopausalwomen.JournalofBoneandMineralResearch,2012,27(2):294‐300.
[23]CohenA,DempsterDW,etal.Abdominalfatisassociatedwithlowerboneformationandinferiorbone
qualityinhealthpremenopausalwomen:Atransiliacbonebiopsystudy.JournalofClinicalEndocrinology&
Metabolism,2013,98(6):2562‐2572.
IRC-17-105
IRCOBI conference 2017
-736-