Conference PaperPDF Available

Abdominal Biofidelity Assessment of 50th Percentile Male and 10‐Year‐Old ATD Responses Relative to a Recently Developed Belt‐Loading Corridor

Authors:
  • Transportation Research Center Inc.

Abstract and Figures

This study investigated the biofidelity of anthropomorphic test device (ATD) abdomens subjected to a belt loading test condition. A total of six ATD/abdomen insert combinations were subjected to belt loading using a seatbelt pull mechanism, with the ATDs seated upright in a free‐back configuration. Three 50th percentile male ATDs were tested, including THOR‐K, Hybrid III 50th percentile male with reusable rate‐sensitive abdomen (HIII‐50M RRSA), and Hybrid III 50th percentile male with standard abdominal insert (HIII‐50M). Additionally, three 10‐year‐old (10yo) size child ATDs including Large Omni‐directional Child (LODC), Q10, and HIII 10yo were tested and evaluated. Force‐penetration results of the 50 th percentile male ATDs were compared directly to a belt loading corridor derived from post‐mortem human subject (PMHS) testing in this test configuration, while 10yo ATD responses were compared to a scaled version of the corridor. Biofidelity of the ATD abdomen responses under free‐back seatbelt loading condition were quantified using the NHTSA Biofidelity Ranking System (BioRank). Among the adult ATDs, HIII‐50M, HIII‐50M RRSA and THOR‐K scored 1.99, 1.71 and 1.33 respectively, indicating that the THOR‐K has a response closest to PMHS. All three child ATDs displayed responses that were outside of the scaled PMHS corridor. The child ATDs showed surprisingly similar responses even though their abdominal area structures are quite different.
Content may be subject to copyright.
AbstractThisstudyinvestigatedthebiofidelityofanthropomorphictestdevice(ATD)abdomenssubjected
toabeltloadingtestcondition.AtotalofsixATD/abdomeninsertcombinationsweresubjectedtobeltloading
usingaseatbeltpullmechanism,withtheATDsseateduprightinafreebackconfiguration.Three50th
percentilemaleATDsweretested,includingTHORK,HybridIII50thpercentilemalewithreusableratesensitive
abdomen(HIII50MRRSA),andHybridIII50thpercentilemalewithstandardabdominalinsert(HIII50M).
Additionally,three10yearold(10yo)sizechildATDsincludingLargeOmnidirectionalChild(LODC),Q10,and
HIII10yoweretestedandevaluated.Forcepenetrationresultsofthe50thpercentilemaleATDswerecompared
directlytoabeltloadingcorridorderivedfrompostmortemhumansubject(PMHS)testinginthistest
configuration,while10yoATDresponseswerecomparedtoascaledversionofthecorridor.Biofidelityofthe
ATDabdomenresponsesunderfreebackseatbeltloadingconditionwerequantifiedusingtheNHTSABiofidelity
RankingSystem(BioRank).AmongtheadultATDs,HIII50M,HIII50MRRSAandTHORKscored1.99,1.71and
1.33respectively,indicatingthattheTHORKhasaresponseclosesttoPMHS.AllthreechildATDsdisplayed
responsesthatwereoutsideofthescaledPMHScorridor.ThechildATDsshowedsurprisinglysimilarresponses
eventhoughtheirabdominalareastructuresarequitedifferent.
Keywordsabdomen,biofidelity,LODC,seatbelt,THOR.
I. INTRODUCTION
Abdominalinjuriescausedbybluntorpenetratingtraumasuchasthoseexperiencedinmotorvehiclecrashes
(MVCs)maybelifethreatening,especiallyduetothelackofearlysymptomswhichmayleadtoadiagnosisthat
istoolate.Forinstance,inaneventofblunttraumatotheabdomen,avascularinsufficiencyleadingtobowel
necrosismaynotmanifestuntilhoursaftertheevent.Duetotheconsiderableriskofabdominalinjuriestoboth
adultsandchildreninMVCsasshownbyvariousstudies[14],itisdesirabletohaveananthropomorphictest
device(ATD)abdomenthatwouldevaluateinjuryriskinalltypesofcarcrashes.
MeasuringtheriskofabdominalinjurieswithATDsisachallengefrombothabiofidelityandinstrumentation
standpoint.Itisdifficulttoaccuratelyrepresenttheviscoelastic,heterogeneousnatureofthehumanabdomen
andorganmobilityinresponsetoloading.Itisalsoachallengetodevelopviableinstrumentationtomeasure
beltpenetrationinsuchasoftcomponent.Thelackofabiofidelicresponsemayleadtoinaccurateconclusions
whileevaluatingmotorvehiclesafetysystems.ToevaluateandimproveuponthebiofidelityofanATD
abdomen,datafromATDtestsshouldbecomparedtopublishedresponsecorridorsbasedonlaboratorytests
usingpostmortemhumansurrogates(PMHSs)underidenticaltestconditions.Additionally,anATDshouldbe
capableofmeasuringparametersthatarerelevanttopredictionofinjurywhensubjectedtocrashloads.
Severalstudieshaveinvestigatedvariousmetricsforbothinjuryandresponsepredictionthathaveledtothe
developmentofnewerabdomeninserts[58].
TheabdominalinsertfortheHybridIII50thpercentilemale(HIII50M)ismadeofurethanefoamcovered
withvinylskinandfillsthespaceinthepelvis.Itissomewhatellipticalinshapeandhasnoinstrumentationto
measureabdominalinjuryinadditiontonothavingabiofidelicmechanicalresponse[9].Inorderto
demonstrateratesensitivityandgoodbiofidelityundervariousloadingconditions,[10]developedaReusable
RateSensitiveAbdomen(RRSA)forusewithintheHIII50M.TheRRSAinsertcomprisesofabladdermadeof
R.RamachandraisaPhD(ramachandra.6@osu.edu/+16142924448),YS.KangandJH.BolteIVarePhDsattheInjuryBiomechanics
ResearchCenteratTheOhioStateUniversity,Columbus,OH,USA.J.StammenisaPhDatNationalHighwayTrafficSafety
Administration,VehicleResearch&TestCenter,U.S.DepartmentofTransportation,Washington,DC,USA. A.HagedornisaResearch
ScientistatTransportationResearchCenterInc.,EastLiberty,OH,USA.
AbdominalBiofidelityAssessmentof50thPercentileMaleand10YearOldATDResponsesRelativeto
aRecentlyDevelopedBeltLoadingCorridor
R.Ramachandra,YS.Kang, A.Hagedorn,J.Stammen,J.BolteIV
IRC-17-41
IRCOBI Conference 2017
-257-
siliconerubberfilledwithsiliconegelsiliconegelwithinathicksiliconeshellandthisinsertperformedwell
comparedtothePMHSabdomenresponsedataof[11]underrigidbar,seatbelt,andairbagloading.TheTHOR
Kabdominalinsertconsistsinasinglefoamblockwithinavinylskinlayerequippedwithbilateralthree
dimensionalIRTRACC(InfraRedTelescopingRodforAssessmentofChestCompression)devicesmeasuring
deflectionandanglevariation[12].
Studiessuggestthatchildoccupantsinthe612yearoldagegroupareespeciallysusceptibletolapbelt
inducedabdominalinjuriesiftheirstatureisnotappropriateforseatbelts[2][5].Thesestudiesalsoindicatethat
havingawaytomeasureriskofabdominalinjurywouldpreventchildoccupantsfromsubmariningunderthe
lapbelt.WhiletheHybridIII10yearold(HIII10yo)doesnotdirectlymeasureabdominalloading,therehave
beendevelopmenteffortstoaddressthisnecessity.TheHIII10yoabdominalinsertisconstructedsimilartothe
HIII50Minsert.AsapartoftheEnablingProtectionforOlderChildren(EPOCh)project,AbdominalPressure
TwinSensors(APTSs)wereintroducedintotheQseriesATDstomeasurerestraintloadingtotheabdomen[13
14].TheLargeOmniDirectionalChild(LODC)developedbyNHTSA/OSU/TRCissimilarinsizetotheHIII10yoand
Q10ATDsandalsousestheAPTS[15].
ThepurposeofthecurrentstudywastocomparetheresponsesofdifferentATDabdominalinsertsthatareat
variousstagesofdevelopmentorimplementation,totheresponsesfromPMHStestsunderidenticaltest
conditions[16].AdultsizeATDsevaluatedincludedtheHybridIII50thpercentilemale(HIII50M)withstandard
abdomen,HIII50MretrofittedwithRRSA,andTHORK.ThechildATDsevaluatedwereHIII10yo,Q10,and
LODC.
II. METHODS
Theseatbeltloadingdevicedescribedin[16]wasusedtotesttheATDs.Thedeviceusedapneumaticpiston
topullaseatbeltintotheabdomenoftheATDsinacontrolled,dynamicscenario.Theinstrumentationusedfor
theATDtestswereidenticaltothePMHStests,exceptforthe3aω motionblocksconsistingofthreelinear
accelerometers(Endevco,CA,Model#7264c)andthreeangularratesensors(DTS,CA,Model#ARS8k/ARSPRO
18k)onthespineandpressuretransducerslocatedwithintheabdominalvasculature.Astringpotentiometer
(FirstMark,NC,Model#1623405)wasattachedtothelumbarspineoftheATDsusingawiretietomeasure
displacementoftheATDwithrespecttothetable.Toaccountforanydifferenceinpelvisstructurebetweenthe
HIII10yo,Q10andLODC,thebeltwaspositionedatthesameheightfromthetableforallthreeATDs.Likethe
PMHStests,anotherstringpotentiometer(Celesco,CA,Model#PT101)attachedtotheseatbeltwebbingin
frontofthespecimenattheleveloftheumbilicusmeasureddisplacementofthebeltwithrespecttothetable.
Lastly,alineardisplacementpotentiometer(PennyGiles,UK,Model#SLS190)mountedbetweenthemoving
ramanditsstationaryframemeasuredramdisplacement.Abdomenpenetrationwascalculated,asshownin
Equation1,bysubtractingthedisplacementofthelumbarspineatthelevelofthebeltfromthedisplacement
oftheseatbeltintotheabdomen.
(1)
where,δ
Abd=abdomenpenetration;δ
Lumbar=displacementofthelumbarspinerelativetoram;δ
Belt=
displacementofseatbeltrelativetotablefixture;andδRam=displacementofram.Abdomenpenetrationspeed
wasfoundbydifferentiatingabdomenpenetration.Seatbeltloadcells(Denton,Model#5755)wereaffixedto
thebeltontheleftandrightsidesoftheATDtomeasurebeltforces.Beltforcewascalculatedasthesumof
forcesobtainedfromthetwoseatbeltloadcells.
Fig.1showsthepretestpositionoftheHIII50Malongwiththeexternalinstrumentationused.Priorto
impact,thearmswereliftedtoshoulderleveltoensurethattheywouldnotinterferewiththemovementofthe
ATD.Thelegssplayedslightlyoutwardinanaturalseatedposition.Theseatbeltwaspositionedtowraparound
theanteriorandlateralaspectsoftheATDabdomenatthemidabdomenlevel.Theinitialbelttensionwas
adjustedsothateachbeltloadcellmeasured1520N,toensurerepeatableinitialpositionofthebeltwith
respecttoeachATDandremoveanyslack.Additionally,thisinitialbelttensionwassimilartotheprestiffening
loadappliedtotheabdomeninthePMHSstudy.
IRC-17-41
IRCOBI Conference 2017
-258-
Fig.1.PretestpositioningofHIII50MRRSAontheseatbelttestdevice(A:Linearpotentiometeronram;B:
Forcetransduceronram;C:Seatbeltloadcell;D:Stringpotentiometerattachedtolumbarspine;andE:String
potentiometerattachedtoseatbelt).
ForalltheATDtests,thechestjacketwasusedforaccurateATDrepresentationandtotakeintoaccountthe
influenceofouterflesh/skinontheabdominalresponse.Intermsofinput,allsixATDsweretestedusingan
accumulatorpressureof620kPa,whichisthesamepressureasTestConditionAforthePMHStestsin[16].Fig.
2showsthepretestpositionsoftheHIII50M,THORK,HIII10yo,Q10,andLODConthetestapparatus.
Fig.2.PretestpositionsofHIII50M(topleft),THORK(topright),HIII10yo(bottomleft),Q10(bottomcenter),
andLODC(bottomright).
Datawereacquiredatasamplingfrequencyof20,000Hzandinthelaboratorycoordinatesystem(LCS),with
thepositivexaxisdirectedfromposteriortoanterior,positiveyaxisdirectedfromlefttoright,andpositivez
axisdirectedfromsuperiortoinferior,perstandardSAEJ211.Timechannelswerezeroedwhentheram
accelerationreached0.5g.TheforcepenetrationresponsesfromalltheadultATDtestswerecomparedtothe
PMHScorridorshowninFig.33.
IRC-17-41
IRCOBI Conference 2017
-259-
Fig.3:ForcepenetrationcorridorsdevelopedinthePMHSstudy[2].
InordertoquantitativelyassessthesimilarityoftheadultATDresponsestothePMHSbasedcorridor,an
objectivebiofidelityrankingscorewascalculatedusingthemethodologydescribedby[17].Theforceand
penetrationchannelswerefirstbroughttoacommontimebasisacrossthePMHSandATDtests.Thetimezero
wasestablishedasthefirst0.5gaccelerationofthepneumaticram.Thecalculationincludedthemiddle80%of
theeventconsideringthepeakforceandpeakpenetrationforeachtest.Equation2showsthecalculationused
forgeneratingabiofidelityscore.The√RvaluecorrespondstotheraoofcumulavevariancebetweentheATD
responseandmeanPMHSresponseoverthecumulativevariancebetweenthemeanPMHSresponseandmean
plusonestandarddeviation.AlowervalueoftheBiofidelityRank(BR)representsbetterbiofidelity.
(2)
whereR=responsemeasurementcomparisonvalue, ,i=bodyregion,j=testcondition,k=response
measurement,l=numberofbodyregions=1(abdomen),m=numberoftestconditions=1(seatbeltloading),
andn=numberofresponsemeasurementspertestcondition=2(forceandpenetration).TheBioRank
calculationsweredoneusingforcetimeandpenetrationtimehistories,andnotusingforcepenetration.
ScalingNormalisedAdultPMHSDatato10YearOld
ThenormalisedabdomenforcepenetrationdataobtainedfromthePMHSstudyonsevendifferentPMHSs
(Fig.4)werescaledsothatthechildATDresponsesmaybecomparedqualitativelytotheestimatedabdominal
responseofa10yo.BiofidelityrankingscoreswerenotcalculatedforthechildATDsgivenuncertaintyofhow
appropriatethechosenscalingmethodisforthisfreebackabdominalbeltloadingcondition.
IRC-17-41
IRCOBI Conference 2017
-260-
Fig.4.AdultPMHSabdomendatafrom[16]
Reference[17]adaptedthescalingapproachintroducedby[18]toderiveresponsecharacteristicsfora10yo
byscalingelasticmodulusbyage.Thiswasusedforscalingtheabdominalresponseinthisstudy(TableI).In
TableI,mistheratioof10yomasstotheadultPMHSmass,vistheinputvelocityscalefactor(PMHSand10yo
ATDsweretestedatthesameinputrampressure),Listheratioof10yotoPMHSseatedabdominaldepth,Eis
theelasticmodulusscalefactorreportedfora10yo[19],Kisthestiffnessscalefactorcalculatedasaproduct
ofelasticmodulusandseateddepthratios,andtisthetimescalefactor.Theapproximateresponseofa10yo
wascalculatedbymultiplyingtheadultPMHSforce,penetrationandtimedatashowninFig.4byRf,Rp,
andtrespectively.Theaverageresponsewascalculatedfromthescaledforce,penetrationandtimedatafrom
thesevenPMHSstocomparewiththeHIII10yo,Q10,andLODCresponses.
TABLEI
SCALINGFACTORSUSINGEPPINGER/MERTZMETHOD
Parameters10yoPMHS1PMHS2PMHS3PMHS4PMHS5PMHS6PMHS7
M 33.456647086507467
m =
M1 /Mre
f
0.600.520.480.390.670.450.50
v =
V1 /
Vre
f
1111111
L 186358311300300200265265
L =
L1 /Lre
f
0.520.600.620.620.930.700.70
e 10.8540.8540.8540.8540.8540.8540.854
K
=

*

L
0.440.510.530.530.790.600.60
t =

-1/2 *

m1/3
0.910.870.850.790.950.830.86
R
=
v * (
m *
K
)1/2 0.510.520.500.450.730.520.55
R
p
=
v * (
m /
K
)1/2 1.161.010.950.860.920.870.91
III. RESULTS
AtotalofsixATDsweretestedincludingtheHIII50M,HIII50MretrofittedwithRRSA,THORK,HIII10yo,
Q10andLODC.Alltestswereconductedatthebaselineaccumulatorpressureof620kPatobeconsistentwith
theinputusedtodevelopthePMHScorridor.
IRC-17-41
IRCOBI Conference 2017
-261-
Fig. 5showstheresponsesofthethree50thpercentileATDstestedincomparisonwiththePMHScorridor.
TableIIcataloguesthepeakforce,penetrationandcompressionresultsfortheadultATDs.
Fig.5.ComparisonoftheforcepenetrationresponsesofHIII50M,HIII50MRRSAandTHORKtothePMHS
corridor.
TABLEII
SUMMARYOFVALUESRECORDEDANDCALCULATEDFROMTHEADULTATDTESTS
Fig.A1intheAppendixshowstheadultATDresponsescomparedtoPMHSbiofidelitytargets.TableIII
showsthattheBiofidelityRankofTHORKabdomenisbetterthantheotherATDstestedundersimilarinput
conditions.AllthreeabdomensdemonstratedoverallBRunder2.0,suggestingabiofidelicresponse[20].Witha
differenceinBiofidelityRankofover0.2betweeneachother,thethreeATDabdomensareconsidered
significantlydifferentfromeachotherwithrespecttobiofidelity[17].Overall,theTHORKabdomenhadthe
lowest√Rindicangthemostbiodelicresponseinthisparculartestconguraon.
TABLEIII
BIOFIDELITYRANKSFORATDS
MeasurementHIII50MHIII50MRRSATHORK
ForceTime1.291.071.18
PenetrationTime2.692.361.48
Overall1.991.711.33
Fig.6showstheforcepenetrationresponsesfromthe10yochildATDsincomparisontothescaledcorridor.
TestIDPeakForce
(kN)
PeakPenetration
(mm)
Compression
(%)
HIII50M5.257028
HIII50MRRSA3.429337
THORK5.0210040
PMHS[12]2.904.801101774559
IRC-17-41
IRCOBI Conference 2017
-262-
Fig.A2intheAppendixshowsthechildATDresponseswiththeMertzscaled/normalisedlargechildbiofidelity
targets.TableIVcataloguesthepeakforce,penetrationandcompressionforthechildATDs.
Fig.6.ComparisonoftheforcepenetrationresponsesofHIII10yo,Q10andLODCtotheaverage+/1SDscaled
responsefromPMHStests.
TABLEIV
SUMMARYOFVALUESRECORDEDANDCALCULATEDFROMTHECHILDATDTESTS
IV. DISCUSSION
Inthisstudy,adultPMHSabdominalresponsedatawerecomparedtoadultATDresponsedatainorderto
evaluatethebiofidelityoftheHIII50M,HIII50MRRSA,andTHORKabdomen.Secondly,theadultPMHSdata
werescaledtoestimatea10yearoldabdominaltargetresponseandthatscaledresponsewasthencompared
withHIII10yo,Q10andLODC.
ForthepurposesofATDevaluation,itisimportantthatabiofidelitytestconditionhaveaconsistentinput.
Thetestsetupusedinthisstudyachievesthisobjectiveasitisamorerepeatable,betterdefinedtestcondition
thanpreviouslypublishedcorridors[11][21]andthereforemoreappropriateforATDdevelopmentand
evaluationpurposes.Whiletheabdomenofthesubjectmayinfluencetheoverallstrokeoftheram,sucha
responseisidenticaltoallothercomponentlevelbiofidelitytestswhereaknowninputvelocityisappliedbut
oncecontactwiththespecimenorATDismade,theimpactorisaffectedbywhatitcontacts.
TheinitialstiffnessoftheHIII50MwithRRSAwashigherwhencomparedtothePMHStests(seeFig.5).Itis
likelythattheshiftingoforgansandcontentsintheabdominalcompartmentupondistributedloadingisnot
capturedintheRRSA,inturnresultinginahigherinitialstiffnessresponseoftheabdomen.Whenseated,the
abdominalcontentsofthePMHS,likeinlivinghumans,arebroughtdownwards,especiallywhenthelungsare
filledduringadeepinhaleandtheorgansareallowedtomovefreelyawayfromthebeltloadingpath.However,
astudyconductedby[22]usingafixedbackconfigurationwiththePMHSininvertedpositionsimilarto[23]
suggestedthattheinitialpositionofabdominalorgans,especiallytheliver,withrespecttotheimpactorplays
animportantroleintheinternalorgankinematicsandoverallresponse.
Ontheotherhand,theTHORKabdomenexhibitedaninitialresponsethatissimilartotheresponse
recordedinPMHStests.Therewasanevidentsoftbehaviouruntilapproximately45mm,whichissimilartothe
PMHSresponseinthecurrentstudy,afterwhichthereisanincreaseinstiffnessuntilreachingapeakforceof5
kNandpenetrationof100mm.AdditionaltestswiththeTHORKabdomenundervariousloadingratesmay
provideinformationaboutviscousanddampingcharacteristics.Whileitmaybearguedthattheprestiffening
TestIDPeakForce
(kN)
PeakPenetration
(mm)
Compression
(%)
HIII10yo3.4713170
Q103.1014475
LODC3.408245
PMHSScaled1.602.151051405776
IRC-17-41
IRCOBI Conference 2017
-263-
loadof1520Nappliedonthebeltmaypossiblyconfoundthetoeregionofforcepenetration,itisunlikelythat
thebiofidelitywasaffectedsincetherewaslittletonoinitialpenetrationduetothebeltpreload.
ThesuddendipinforceofHIII50MRRSAaround40mmpenetrationwascausedbythebeltslidingoffinto
thegapbetweenthechestjacketandpelvisandcontinuingtoloadtheabdomendirectly.Thisphenomenonis
highlightedinFig.7thatshowstheposttestpositionofbelttrappedunderthepelvisskinandincontact
directlywiththeabdomen.WhentheHIII50Mhousedthestandardabdominalinsert,therewasverylittlegap
betweenthepelvicrimandthejacketlipasthetorsoflexesforwardslightlywiththeoriginallumbarspine
assembly.However,theinitialgapwasmorepronouncedwiththeRRSAasitusesamodifiedlumbarspine
assemblythatextendsthetorsoslightlyandabeltslippagemaybeexpectedinanactualfullscalevehicleor
sledtesting.Althoughtherewasaslippage,thebeltcontinuedtoloadtheabdomenafteritwentbetweenthe
pelvisandchestjacket,whichmaybeconsideredaresponsecharacteristicoftheabdomen.Further
investigationisnecessarytoidentifythevariationinBRSwithouttheslippage.InorderfortheRRSAabdomen
todrivetheoverallforcepenetrationresponseandminimizetheriskofthisslippageoccurringinasledor
vehicletest,itmaybenecessarytoremovetheanteriorpelvisskinsimilartohowtheabdomenisconfiguredin
theLODCandQ10.
Fig.7.InitialplacementofseatbeltontheHybridIIIwithRRSA(left);finalpositionofseatbelttrappedbetween
thechestjacketandpelvis(right)
ToprovideamoredirectcomparisonforthechildATDabdominalresponses,thescalingapproachsuggested
by[18]wasappliedtotheadultPMHSdata.Thescalefactorsreducedtheforcebyalmosthalfwhileonly
slightlyreducingthepenetration(Rfaverage=0.54,Rpaverage=0.95).AllthreechildATDsdisplayedresponses
thatwereoutsideofthescaledPMHScorridor.ThechildATDsshowedsurprisinglysimilarresponseseven
thoughtheirabdominalareastructuresarequitedifferent.ThissimilarityislikelyduetothechildATDsbeing
lighterthanbothadultPMHSandATDs,whichindicatesthattheinertialeffect(childATDsaresimilarinmassto
oneanother)isdominatingtheresponseinthefreebackcondition,whereasinthefixedbackcondition,the
abdomenstiffnessisdominant.Moreinvestigationisneededtodevelopanappropriatepulseforevaluatingthe
biofidelityofchildATDsinthefreebackcondition,giventheapparentlackofresponsesensitivitytoabdominal
designs.
Inaddition,thefreebackconditionislikelyinfluencedmorebypretestATDpositioningthanthefixedback
case.AllthreechildATDshavingdifferentpelvicstructures,alongwithdifferencesintheabdomenconstruction.
TheQseriesATDshaveamoreroundedabdomenandexhibitamoreflexedposture[24]comparedtoHIII10yo
andLODC.TheQ10inthecurrentstudystartsoutmuchmoreuprightwhenseatedcomparedtotheHIII10yo
andLODCduetodifferencesintheconstructionofthespine.ComparedtotheHIII10yoandLODC,theQ10
exhibitedagreaterpenetrationandareducedbeltforce,whichmaybeduetothehigherflexibilityofthetorso
leadingtothesofterabdominalresponseinadditiontothedifferentstartingpositions(Fig.8).TheQ10
responsehaddropinforce,liketheRRSA,buttherewasnobeltslip.However,intheQ10tests,thebeltwas
trappedbetweentheribcageandthepelvisuponforwardflexion.Sucharesponsemaybesimilartowhatmay
beseeninasledtest.However,itmustbenotedthatthisforwardflexionoccurredverylateintheevent,after
maximumpenetrationhadbeenreached.Althoughtherewasforwardflexion,suchaswhatmaybeseenina
sledtest,theauthorsareconfidentthattheabdomenresponsewasnotinfluencedbydummyflexionorpelvis
IRC-17-41
IRCOBI Conference 2017
-264-
movementoverthefirst80msec.
Fig.8.Q10(top)andLODC(bottom)inthestartingposition(left)andatpeakpenetration(right)
TheLODContheotherhanddoesnotexhibitasmuchflexionwhichmaybeattributedtotheabdominal
stiffnessasthebeltbeginstodisengagefromtheabdomenmuchsoonerthantheQ10andtheLODCbeginsto
translaterearward.TheHIII10yoalsohadasimilarabdomenbeltinteractionsuchastheLODC,althoughthe
rearwardtranslationoccurredsoonerindicatingastifferabdomencharacteristicoftheHIII10yo.Differencesin
pretestpositioningmaybecompensatingfordifferencesinabdomenresponseamongthechildATDs.Further
quantitativeanalysisofthechangeintorsoanglethroughtheeventisrequiredtoevaluatethedifferencesin
abdominalresponsesofQ10andLODC.
Whilethefixedbacksetupprovidesaneffectivecharacterisationofisolatedabdominalresponseintermsof
biofidelity,oneofthekeybenefitsofafreebackbeltloadingsetupisthatforagiveninputofthepneumatic
ram,thefreebacksetupallowstherestoftheATDtocontributetotheabdominalresponsebynotconstraining
thedummyinanyway,therebyprovidingamoreaccuraterepresentationofhowthedummywouldbeloaded
inacrashevent.WhileaTeflonskidwasusedtominimisefrictionaleffectsinbothPMHSandATDtests,itis
unclearhowmuchthepelvisandlegcontactwiththetablethroughouttheeventcontributedtodifferences
betweenPMHSandATD.Withlowerfriction,theATDmaybeallowedtoslidebackmorefreelyratherthan
allowingtheabdomentoabsorbmuchoftheenergy.However,thiseffectisassumedtobenegligiblebasedon
theinvestigationusinghighspeedvideosandtheslipperynatureoftheTeflonskid.
References[6][25]developedalowerabdomenbiofidelitytargetusingaseriesoffixedbacksupinetestson
porcinespecimensdevelopmentallymatchedtohumanpaediatricages.Thesetargetshoweverarenot
appropriateinthecurrentstudyduetothedissimilartestsetups,althoughtheKentstudyoffersthemostdirect
paediatricdatacomparisondatafortheHIII10yo,Q10andLODC.Reference[15]evaluatedtheHIII10yoand
LODCabdomendynamicresponsesemployingafixedbacksetupsimilartobutnotidenticalto[6].Itwas
determinedthattheLODCresponsewasmoreconsistentwiththebiofidelitytargetthantheHIII10yobasedon
BioRankscores(0.66vs.1.61).
OneofthepossiblereasonsforthedifferencebetweenhowtheLODCabdomen,whichisstillundergoing
development,scoredinthefixedbackconditionandtheresponsewithrespecttothescaledcorridorinthefree
IRC-17-41
IRCOBI Conference 2017
-265-
backconditionmaybethedependencyofthisscalingapproachonthepublishedelasticmodulusscalefactor
derivedusinghardtissuesuchasthecranialboneratherthansoftviscerasuchasintheabdomen.Whilethis
approachprovidedareasonablecomparisonfortheupperthoracicresponseinthe[26]study,thetechnique
maynotbeabestpossiblerepresentationofthepaediatricpopulationwhileexaminingsofttissueresponses.
Additionally,intheabsenceofacomparisonbetweensofttissuestiffnessinadultversuschildspecimensinthe
sametestconfigurationintheliterature,theapproachusedinthisstudyassumesthatagerelateddifferencesin
softandhardtissuepropertiesaresimilar,whichmayormaynotbethecase.Acomprehensivestudyofspinal
kinematicswithfocusonspinalrotationsthatmayleadtodifferencesinabdominalresponseisalsowarranted.
Itispossiblethatboththeforceanddeflectionbehaviorofeachabdomencouldbeinfluencedbythe
instrumentation(suchaspressuresensorsorIRTRACC)selected.Whilefurtherworkcouldinvestigatethe
influenceofdifferenttypesofinstrumentationwithinagivenabdomen,itisimportantthattheabdomen
containsomesensorforthepurposesofmeasuringdirectloadingtotheabdomen.
Alimitationofthisstudyistheuseofthesameaccumulatorpressuretodrivethebeltintotheabdomenin
boththeadultandchildATDtests.Itmaybearguedthattheinputneedstobescaleddownwhenconductinga
similartestbetweenadultandchild.However,therelationshipbetweenaccumulatorpressureandpenetration
velocityishighlydependentontheabdomencharacteristics(stiffnessanddamping).Therefore,ifthe
penetrationvelocityisconsideredtheinputtotheATD,itisdifficulttodeterminetheappropriatescalefactor
foraccumulatorpressure.FurtherworkisrequiredtobetterunderstandtheinputscalingrequiredforchildATD
biofidelityassessmentinthefreebackcondition.
Anotherlimitationrelatestotheuncertaintyinscalingtheabdominalforceandpenetrationresponsesin
bothfixedandfreebacksetups.However,whenevaluatingtheresponsesofthechildATDs,unlikethe
availabilityofadirectcomparisontopediatricdata[6][25]inafixedbacksetup,thereisnotadirectcomparison
inthefreebacksetup,makingthedatafromcurrentstudyheavilyrelyonscalingtechniques.
Insummary,thisstudyprovidesanassessmentofabdominalresponsebiofidelitybetweenPMHSandATDs
underidenticalloadingconditions.Thisevaluationisaimedatguidingdesignimprovementsforfutureversions
oftheseATDsandtheirabdominalinserts,aswellasmodelsthatsimulatethephysicalcounterparts.
V. CONCLUSIONS
ThisstudyinvestigatedtheresponseofATDabdomenssubjectedtoseatbeltloadingusingthesametest
apparatusasPMHStestsunderidenticalloading.ResultsfromtheseATDswerecomparedtoforcepenetration
corridorsdevelopedin[16].Themainoutcomesareasfollows:
Usingthequantitativebiofidelityrankingsystem,theTHORKresultedinthelowestBRoftheadultATDs
indicatingaresponseclosesttothetargetcorridorfromPMHSstudy.
AllthreechildATDsdisplayedresponsesthatwereoutsideofthescaledPMHScorridor.ThechildATDs
showedsurprisinglysimilarresponseseventhoughtheirabdominalareastructuresarequitedifferent.
ScalingofadultPMHSdatatoachildappropriateresponseinthefreebackconditionischallenginggiven
sensitivityoftheresponsetononabdominalfactorssuchaspretestpositioning,frictionalandinertial
considerations,anddifferentmaterialpropertybasedscalefactorsofskeletalandorganstructures
withinthelowertorsoregion.
Whilethefixedbacksetupprovidesaneffectivecharacterisationofisolatedabdominalresponseinterms
ofbiofidelity,thefreebackbeltloadingprovidesamoreaccurateassessmentofhowmultiple
componentsincludingtheabdomencontributetotheoverallATDlowertorsoresponse.
Acknowledgement
ThisresearchwassupportedbytheNationalHighwayTrafficSafetyAdministration(NHTSA),USA.The
authorswouldliketothankKevinMoorhouse(NHTSAVRTC)fortechnicalguidance, andthestaffandstudents
ofInjuryBiomechanicsResearchCenteratTheOhioStateUniversity,USA,forassistinginthetests.
IRC-17-41
IRCOBI Conference 2017
-266-
VI. REFERENCES
[1] ReedAllanP.,etal.,ClinicalCasesinAnesthesia,ElsevierHealthSciences,Dec2,2013
[2] Durbinetal.,Partnersforchildpassengersafety:auniquechildspecificcrashsurveillancesystem,
Accid.Anal.Prev.,2001
[3] Arbogast,KristyB.,etal."Evaluatingpediatricabdominalinjuries."19thInternationalTechnical
ConferenceontheEnhancedSafetyofVehicles.2005.
[4] KlinichKD,etal.,Factorsassociatedwithabdominalinjuryinfrontal,farside,andnearsidecrashes.
StappCarCrashJ.2010
[5] FramptonR,LenardJ,CompigneS,AnIndepthStudyofAbdominalInjuriesSustainedbyCarOccupants
inFrontalCrashes.AnnAdvAutomotMed.,2012.
[6] Kent,Richard,etal."Biomechanicalresponseofthepediatricabdomen,part1:developmentofan
experimentalmodelandquantificationofstructuralresponsetodynamicbeltloading."Stappcarcrash
journal,2006
[7] SparksJL,etal.,Usingpressuretopredictliverinjuryriskfrombluntimpact.StappCarCrashJ2007
[8] KremerMA,etal.,Pressurebasedabdominalinjurycriteriausingisolatedliverandfullbodypost
mortemhumansubjectimpacttests.StappCarCrashJ.2011
[9] Mooney,M.T.,etal.Abdominalpenetrationmeasurementinsertforthehybridiiidummy.InPassenger
Comfort,ConvenienceandSafety:TestToolsandProcedures,P174,pp.285‐289,SAETechnicalPaper
No.860653.SocietyofAutomotiveEngineers,Warrendale,PA,1986.
[10] RouhanaSW,etal.DevelopmentofaReusable,RateSensitiveAbdomenfortheHybridIIIFamilyof
Dummies.StappCarCrashJ.,2001
[11] HardyWN,etal.,Abdominalimpactresponsetorigidbar,seatbelt,andairbagloading.StappCarCrash
J45:1–41.2001
[12] Ridella,S.,andD.Parent."Modificationstoimprovethedurability,usability,andbiofidelityofthe
THORNTdummy."22ndESVConference,2011.
[13] Beillas,P.,etal.,AbdominalPressureTwinSensorsfortheQdummies:fromQ3toQ10.Proceedingsof
theICrashConference,2012
[14] Lemmen,Paul,etal."DevelopmentoftheQ1010YearOldchildcrashtestdummy."Proceedingsofthe
23rdESVConference.Paper,2013.
[15] StammenJ,etal.,TheLargeOmnidirectionalChild(LODC)ATD:BiofidelityComparisonwiththeHybrid
III10YearOld.StappCarCrashJ.2016
[16] Ramachandraetal.,BiomechanicalResponsesofPMHSSubjectedtoAbdominalSeatbeltLoading,Stapp
CarCrashJ.,2016
[17] Rhule,H,etal.,Amethodologyforgeneratingobjectivetargetsforquantitativelyassessingthe
biofidelityofcrashtestdummies.InternationalTechnicalConferenceontheEnhancedSafetyof
Vehicles(ESV),2009
[18] MertzH,etal.“TheHybridIII10YearOldDummy,”StappCarCrashConference,2001.
[19] Eppingeretal.(1984),EppingerR,etal.“DevelopmentofDummyandInjuryIndexforNHTSA’sThoracic
SideImpactProtectionResearchProgram,”SAE840885,1984.
[20] Rhule,H.,etal.,DevelopmentofaNewBiofidelityRankingSystemforAnthropomorphicTestDevices.,
StappCarCrashJournal2002.
[21] Miller,M.A.etal.,Thebiomechanicalresponseofthelowerabdomentobeltrestraintloading.Journal
ofTrauma,1989
[22] LeRuyetA,Beetal.,EffectofAbdominalLoadingLocationonLiverMotion:ExperimentalAssessment
usingUltrafastUltrasoundImagingandSimulationwithaHumanBodyModel.StappCarCrashJ.2016
[23] HowesMK,etal.,Kinematicsofthethoracoabdominalcontentsundervariousloadingscenarios.Stapp
CarCrashJ.2012
[24] LubbeN.ComparisonofHybridIII6yoandQ6childdummiesinhighseverityfrontalimpacttests.
ProtectionChildrenCars;Munich,Germany:2009
[25] Kent,R,etal.Biomechanicalresponsetargetsforphysicalandcomputationalmodelsofthepediatric
trunk.TrafficInjPrev,2012
[26] Stammen,JasonA.,etal."DynamicResponseCriteriaforaLargeChildATDThoracicSpine."InIRCOBI
ConferenceProceedings.2014.
IRC-17-41
IRCOBI Conference 2017
-267-
VII. APPENDIX
Fig.A1.AdultATDsabdomenpenetrationvs.time(top)andbeltforcevs.time(bottom)responsescompared
withPMHSbiofidelitytargets
IRC-17-41
IRCOBI Conference 2017
-268-
Fig.A2.ChildATDsabdomenpenetrationvs.time(top)andbeltforcevs.time(bottom)responsescompared
withMertzscaled/normalisedPMHSbiofidelitytargets
IRC-17-41
IRCOBI Conference 2017
-269-
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading. The objective of this study was to evaluate the LODC by comparing its body region and full-body responses to both standard HIII-10C responses and pediatric biomechanical data. In body region tests, the LODC (BioRank = 1.21) showed improved biofidelity over the HIII-10C (BioRank = 2.70). The LODC also exhibited kinematics more similar to pediatric PMHS kinematics in a reconstruction test. In FMVSS No. 213 tests, the LODC was observed to have lower HIC values with the absence of hard chin-to-chest contacts, indicating that chin-to-chest contact severity is mitigated in the LODC design. LODC abdomen pressures and belt penetrations discriminated between restraint conditions. These results suggest the LODC has biofidelic characteristics that make it a candidate for improved assessment of injury risk in restraint system development.
Article
Full-text available
A series of modifications were completed to improve the durability, usability and biofidelity of the THOR-NT (THOR) frontal crash dummy. There has been growing interest in the safety community to develop a frontal crash dummy that is more sensitive to new restraint systems and more kinematically biofidelic in crash conditions with lateral components, such as narrow-offset or small-overlap impacts. As the THOR had been developed with these goals in mind, it was determined that enhancements were needed to improve the response of the THOR dummy while taking advantage of newer biomechanical data to enhance the design. So called "mod kits" were designed to make changes to the head/neck, thorax, abdomen, and knee/femur/pelvis of the dummy. This paper describes the mod kits and the resulting improvements of the THOR dummy response. Specifically, head changes were focused on improving vibration response, while neck changes included improvements to assembly and disassembly as well as improved tension response. Thoracic changes included creating new clavicle load cells and improving the thoracic deflection instrumentation. Enhancements to the abdomen involved removing redundant upper abdomen instrumentation and improving the lower abdomen displacement instrumentation. The pelvis and pelvis skin were completely changed to improve geometry and fit as well as adding enhanced load cells to the anterior-superior iliac spines. Finally, the KTH (Knee-Thigh-Hip) complexes were completely rebuilt to accommodate more deflection and meet recently established biofidelic response corridors under vehicle impact conditions. This paper will describe the efforts that went into the creation of each of the mod kits completed for the THOR dummy. The rationale, process and results of the mod kits will be explained.
Article
A protocol based on ultrafast ultrasound imaging was applied to study the in situ motion of the liver while the abdomen was subjected to compressive loading at 3 m/s by a hemispherical impactor or a seatbelt. The loading was applied to various locations between the lower abdomen and the mid thorax while feature points inside the liver were followed on the ultrasound movie (2000 frames per second). Based on tests performed on five post mortem human surrogates (including four tested in the current study), trends were found between the loading location and feature point trajectory parameters such as the initial angle of motion or the peak displacement in the direction of impact. The impactor tests were then simulated using the GHBMC M50 human body model that was globally scaled to the dimensions of each surrogate. Some of the experimental trends observed could be reproduced in the simulations (e.g. initial angle) while others differed more widely (e.g. final caudal motion). The causes for the discrepancies need to be further investigated. The liver strain energy density predicted by the model was also widely affected by the impact location. Experimental and simulation results both highlight the importance of the liver position with respect to the impactor when studying its response in situ.
Article
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event. Jejunum tear, colon hemorrhage, omentum tear, splenic fracture and transverse processes fracture were identified during post-test anatomical dissection. Peak abdominal forces ranged from 2.8 to 4.7 kN. Peak abdominal penetrations ranged from 110 to 177 mm. A force-penetration corridor was developed from the PMHS tests in an effort to benchmark ATD biofidelity. Peak aortic pressures ranged from 30 to 104 kPa and peak IVC pressures ranged from 36 to 65 kPa. Updated pressure based abdominal injury risk functions were developed for vascular Ṗmax and Pmax*Ṗmax.
Book
Actual case studies in a Q &A format explore contemporary problems in anesthesia, and provide practical solutions based on a careful examination of all of the important scientific and clinical principles for each case. The 3rd Edition offers brand-new coverage of key topics in the cardiovascular, respiratory, central nervous system, abdomen, and post-anesthesia care sections as well as a completely new section on trauma. It also addresses important topics such as hemophilia, infant anesthesia, lower extremity anesthesia, and celiac plexus blocks. All of the existing cases are thoroughly revised to include new treatments and practice guidelines, and new knowledge of the relevant pharmacology. It's an ideal review tool for board preparation, and a handy resource for practice. Offers solutions to frequently occurring practical problems through discussions of pathophysiology, pharmacology, preoperative evaluation, and intraoperative care. Facilitates the proper identification of both common and rare clinical problems. Examines the crucial scientific and clinical principles for each case study. A completely new section on trauma features five new cases: blunt vs. penetrating trauma neck and airway trauma thoracic trauma closed head injury with open femur fracture and burns. The cardiovascular section offers new cases relating to: cardiac tamponade cardiomyopathy noncardiac surgery after heart transplantation coronary artery bypass grafting and do-not-resuscitate. The respiratory section features new cases on post-thoracotomy complications and thoracoscopy. The central nervous system content is enriched with cases on monitoring in spinal injury transsphenoidal hypophysectomy and magnetic resonance imaging. LThe abdominal section offers new cases on endovascular surgery morbid obesity laparoscopy carcinoid and kidney transplant. Important topics such as hemophilia infant anesthesia lower extremity anesthesia and celiac plexus blocks are now covered. Postanesthesia care is expanded to include pulmonary function testing respiratory failure delayed emergence coma and brain death and anaphylaxis. The existing cases are thoroughly revised to include the new treatments, treatment guidelines, and the relevant pharmacology.
Article
High-speed biplane x-ray was used to investigate relative kinematics of the thoracoabdominal organs in response to blunt loading. Four post-mortem human surrogates instrumented with radiopaque markers were subjected to eight crash- specific loading scenarios, including frontal chest and abdominal impacts, as well as driver-shoulder seatbelt loading. Testing was conducted with each surrogate perfused, ventilated, and positioned in an inverted, fixed-back configuration. Displacement of radiopaque markers recorded with high-speed x-ray in two perspectives was tracked using motion analysis software and projected into calibrated three-dimensional coordinates. Internal organ kinematics in response to blunt impact were quantified for the pericardium, lungs, diaphragm, liver, spleen, stomach, mesentery, and bony structures. These data can be used to better understand the interaction of anatomical structures during impact and the associated injury mechanisms, and for the development or validation of human body finite element models.