Content uploaded by Tanmoy Mukhopadhyay
Author content
All content in this area was uploaded by Tanmoy Mukhopadhyay on Sep 18, 2017
Content may be subject to copyright.
∗
∗
G(ω) = G0+Pn
k=1
akiω
iω+bk
G(ω) = G0+G∞(iωτ)β
1+(iωτ )β
G(ω) = G0h1 + Pkαk−ω2+2iξkωkω
−ω2+2iξkωkω+ω2
ki
G(ω) = G0h1 + Pn
k=1 ∆kω2+iωΩk
ω2+Ω2
ki
G(ω) = G0h1 + η1−e−st0
st0i
G(ω) = G0h1 + η1+2(st0/π)2−e−st0
1+2(st0/π)2i
G(ω) = G0h1 + η eω2/4µn1−erf iω
2õoi
µ
Es
|E(ω)|=ESsµ2+ω2(1 + )2
µ2+ω2
φ
φE(ω)= tan−1µω
µ2+ω2(1 + )
|E(ω)| → ESµ→ ∞ |E(ω)| → ES(1 + )µ→0∀ω > 0
|E(ω)| → ESω→0|E(ω)| → ES(1 + )ω→ ∞ ∀µ > 0
φE(ω)→0µ→ ∞ φE(ω)→0µ→0∀ω > 0
φE(ω)→0ω→0φE(ω)→0ω→ ∞ ∀µ > 0
µ→ ∞ ω→0
µ→0ω→ ∞
l1l2l3α β γ Es
E1eq =t3
L
n
X
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
l2
1ijl2
2ij (l1ij +l2ij) (cos αij sin βij −sin αij cos βij )2
Esij((l1ij cos αij −l2ij cos βij )2)
E2eq =Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
Esij l2
3ij cos2γij l3ij +l1ij l2ij
l1ij +l2ij +l2
1ij l2
2ij (l1ij +l2ij ) cos2αij cos2βij
(l1ij cos αij −l2ij cos βij )2−1
ν12eq =−1
L
n
X
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
(cos αij sin βij −sin αij cos βij)
cos αij cos βij
ν21eq =−L
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
l2
1ijl2
2ij (l1ij +l2ij) cos αij cos βij (cos αij sin βij −sin αij cos βij )
(l1ij cos αij −l2ij cos βij)2l2
3ij cos2γij l3ij +l1ij l2ij
l1ij +l2ij +l2
1ij l2
2ij (l1ij +l2ij ) cos2αij cos2βij
(l1ij cos αij −l2ij cos βij )2
G12eq =Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
Esij l2
3ij sin2γij l3ij +l1ij l2ij
l1ij +l2ij −1
Esij
t
L i j
i= 1,2,3, ..., m j = 1,2,3, ..., n
m n
ij
ith jth
Es
Esij Esij 1 + ij
iω
µij + iω
E1v(ω) = t3
L
n
X
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
l2
1ijl2
2ij (l1ij +l2ij) (cos αij sin βij −sin αij cos βij )2
Esij 1 + ij
iω
µij + iω((l1ij cos αij −l2ij cos βij)2)
E2v(ω) = Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
Esij 1 + ij
iω
µij + iωl2
3ij cos2γij l3ij +l1ij l2ij
l1ij +l2ij +l2
1ij l2
2ij (l1ij +l2ij ) cos2αij cos2βij
(l1ij cos αij −l2ij cos βij )2−1
G12v(ω) = Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
Esij 1 + ij
iω
µij + iωl2
3ij sin2γij l3ij +l1ij l2ij
l1ij +l2ij −1
L=n(h+lsin θ)l1ij =l2ij =l3ij =l αij =θ βij = 180◦−θ γij = 90◦
i j
E1v=κ1t
l3cos θ
(h
l+ sin θ) sin2θ
E2v=κ2t
l3(h
l+ sin θ)
cos3θ
G12v=κ2t
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θ
κ1κ2
κ1=m
n
n
X
j=1
1
m
P
i=1
1
Esij 1 + ij
iω
µij + iω
κ2=n
m
1
n
P
j=1
1
m
P
i=1
Esij 1 + ij
iω
µij + iω
κ1κ2
ω→0
Esij =Es
µij =µ ij = i = 1,2,3, ..., m j = 1,2,3, ..., n κ1
κ2Es
Esij =Esµij =µ ij = i = 1,2,3, ..., m j = 1,2,3, ..., n
E1v=ES1 + iω
µ+ iωζ1
E2v=ES1 + iω
µ+ iωζ2
G12v=ES1 + iω
µ+ iωζ3
ζi(i= 1,2,3)
ζ1=t3
L
n
X
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1
l2
1ijl2
2ij (l1ij +l2ij) (cos αij sin βij −sin αij cos βij )2
(l1ij cos αij −l2ij cos βij)2
ζ2=Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1 l2
3ij cos2γij l3ij +l1ij l2ij
l1ij +l2ij +l2
1ij l2
2ij (l1ij +l2ij ) cos2αij cos2βij
(l1ij cos αij −l2ij cos βij )2−1
ζ3=Lt3
n
P
j=1
m
P
i=1
(l1ij cos αij −l2ij cos βij)
m
P
i=1 l2
3ij sin2γij l3ij +l1ij l2ij
l1ij +l2ij −1
|E1v|=Esζ1sµ2+ω2(1 + )2
µ2+ω2
|E2v|=Esζ2sµ2+ω2(1 + )2
µ2+ω2
|G12v|=Esζ3sµ2+ω2(1 + )2
µ2+ω2
φ
φE1v=φE2v=φG12v= tan−1µω
µ2+ω2(1 + )
ω→0
L=n(h+lsin θ)l1ij =l2ij =l3ij =l αij =θ βij = 180◦−θ γij = 90◦i j
µ→0µ→ ∞ ω→0ω→ ∞
|E1v| → ESζ1µ→ ∞ |E1v| → ES(1 + )ζ1µ→0∀ω > 0
|E1v| → ESζ1ω→0|E1v| → ES(1 + )ζ1ω→ ∞ ∀µ > 0
|E2v| → ESζ2µ→ ∞ |E2v| → ES(1 + )ζ2µ→0∀ω > 0
|E2v| → ESζ2ω→0|E2v| → ES(1 + )ζ2ω→ ∞ ∀µ > 0
|G12v| → ESζ3µ→ ∞ |G12v| → ES(1 + )ζ3µ→0∀ω > 0
|G12v| → ESζ3ω→0|G12v| → ES(1 + )ζ3ω→ ∞ ∀µ > 0
φE1v, φE2v, φG12v→0µ→ ∞
φE1v, φE2v, φG12v→0µ→0∀ω > 0
φE1v, φE2v, φG12v→0ω→0
φE1v, φE2v, φG12v→0ω→ ∞ ∀µ > 0
L=n(h+lsin θ)l1ij =l2ij =l3ij =l
αij =θ βij = 180◦−θ γij = 90◦i j
Esij =Esµij =µ ij =
i= 1,2,3, ..., m j = 1,2,3, ..., n
E1v=Es1 + iω
µ+ iωt
l3cos θ
(h
l+ sin θ) sin2θ
E2v=Es1 + iω
µ+ iωt
l3(h
l+ sin θ)
cos3θ
G12v=Es1 + iω
µ+ iωt
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θ
|E1v|=Essµ2+ω2(1 + )2
µ2+ω2t
l3cos θ
(h
l+ sin θ) sin2θ
|E2v|=Essµ2+ω2(1 + )2
µ2+ω2t
l3(h
l+ sin θ)
cos3θ
|G12v|=Essµ2+ω2(1 + )2
µ2+ω2t
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θ
φ
φE1v=φE2v=φG12v= tan−1µω
µ2+ω2(1 + )
ω→0µ→0µ→ ∞ ω→0ω→ ∞
|E1v| → ESt
l3cos θ
(h
l+ sin θ) sin2θµ→ ∞
|E1v| → ES(1 + )t
l3cos θ
(h
l+ sin θ) sin2θµ→0∀ω > 0
|E1v| → ESt
l3cos θ
(h
l+ sin θ) sin2θω→0
|E1v| → ES(1 + )t
l3cos θ
(h
l+ sin θ) sin2θω→ ∞ ∀µ > 0
|E2v| → ESt
l3(h
l+ sin θ)
cos3θµ→ ∞
|E2v| → ES(1 + )t
l3(h
l+ sin θ)
cos3θµ→0∀ω > 0
|E2v| → ESt
l3(h
l+ sin θ)
cos3θω→0
|E2v| → ES(1 + )t
l3(h
l+ sin θ)
cos3θω→ ∞ ∀µ > 0
|G12v| → ESt
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θµ→ ∞
|G12v| → ES(1 + )t
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θµ→0∀ω > 0
|G12v| → ESt
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θω→0
|G12v| → ES(1 + )t
l3h
l+ sin θ
h
l2(1 + 2h
l) cos θω→ ∞ ∀µ > 0
φE1v, φE2v, φG12v→0µ→ ∞
φE1v, φE2v, φG12v→0µ→0∀ω > 0
φE1v, φE2v, φG12v→0ω→0
φE1v, φE2v, φG12v→0ω→ ∞ ∀µ > 0
θ= 30◦
E1v=E2v= 2.3ES1 + iω
µ+ iωt
l3
θ= 30◦
G12v= 0.57ES1 + iω
µ+ iωt
l3
bybz
σ2
H
λiψi(y2, z2) = Za1
−a1Za2
−a2
ΓH(y1, z1;y2, z2)ψi(y1, z1)dy1dz1
−a16y6a1−a26z6a2
ψi(y2, z2) = ψ(y)
i(y2)ψ(z)
i(z2)
λi(y2, z2) = λ(y)
i(y2)λ(z)
i(z2)
λ(y)
iψ(y)
i(y1) = Za1
−a1
e(−|y1−y2|/by)ψ(y)
i(y2)dy2
ψi(ζ) = cos(ωiζ)
qa+sin(2ωia)
2ωi
λi=2σ2
Hb
ω2
i+b2i
ψi(ζ) = sin(ω∗
iζ)
qa−sin(2ω∗
ia)
2ωi∗
λ∗
i=2σ2
Hb
ω∗2
i+b2i
b= 1/by1/bza=a1a2ζ ωiωi∗
b−ωitan(ωia)=0 ωi+btan(ωia)=0
θ= 30◦h
l= 1 θ= 30◦h
l= 1.5
θ= 45◦h
l= 1 θ= 45◦h
l= 1.5
E1
θ= 30◦h
l= 1 θ= 30◦h
l= 1.5
θ= 45◦h
l= 1 θ= 45◦h
l= 1.5
E2
θ= 30◦h
l= 1 θ= 30◦h
l= 1.5
θ= 45◦h
l= 1 θ= 45◦h
l= 1.5
ν12
θ= 30◦h
l= 1 θ= 30◦h
l= 1.5
θ= 45◦h
l= 1 θ= 45◦h
l= 1.5
ν21
E1
E2
G12
θ= 30◦h/l = 1 r= 0 r= 2 r= 4 r= 6
θ= 30◦h/l = 1 r= 6
E1
r= 3 r= 6
E2
r= 3 r= 6
G12
r= 3 r= 6
r= 3
r= 6
E1
r= 3 r= 6
E2
r= 3 r= 6
G12
r= 3 r= 6
&