ThesisPDF Available

Développement d’un AFM virtuel pour l’évaluation du bilan d’incertitude de l’AFM métrologique du LNE

Authors:

Abstract and Figures

À l’heure où les nanotechnologies sont en plein essor, la précision des mesures réalisées à l’échelle nanométrique devient un défi essentiel pour améliorer les performances et la qualité des produits intégrant des nano. Pour répondre aux besoins sous-jacents en nanométrologie dimensionnelle, le Laboratoire National de métrologie et d’Essais (LNE) a conçu intégralement un Microscope à Force Atomique métrologique (mAFM). Son objectif principal est d’assurer la traçabilité au mètre défini par le Système International d’unités (SI) pour les mesures à l’échelle nanométrique. Pour cela, le mAFM utilise quatre interféromètres différentiels qui mesurent en temps réel le déplacement relatif de la pointe par rapport à l’échantillon. Cet instrument de référence est destiné à l’étalonnage d’étalons de transfert couramment utilisés en microscopie à champ proche (SPM) et en microscopie électronique à balayage (SEM). Lors de ce processus, une incertitude de mesure est évaluée. Elle détermine un niveau de confiance de l’étalonnage réalisé par le mAFM. Cette incertitude est généralement évaluée grâce à des mesures expérimentales permettant de déterminer l’impact de certaines sources d’erreur qui dégradent les mesures à l’échelle du nanomètre. Pour d’autres sources d’erreur, leur évaluation reste complexe ou expérimentalement impossible. Pour surmonter cette difficulté, le travail de thèse a consisté à mettre en place un modèle numérique de l’instrument nommé « AFM virtuel ». Il permet de prévoir l’incertitude de mesure du mAFM du LNE en ciblant les sources critiques d’erreur grâce à l’utilisation d’outils statistiques tels que la Méthode de Monte Carlo (MCM), les plans de Morris et les indices de Sobol. Le modèle utilise essentiellement la programmation orientée objet afin de prendre en compte un maximum d’interactions parmi les 140 paramètres d’entrée, en intégrant des sources jusqu’ici négligées ou surestimées par manque d’informations.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Thesis
Full-text available
Avec l’émergence des nanosciences et nanotechnologies ces dernières années, l’étude et la caractérisation des propriétés dimensionnelles et physicochimiques sur des structures ayant des dimensions inférieures à 100 nm sont devenues indispensables. Cela nécessite la mise au point de techniques de mesures et le développement d’instruments adaptées aux échelles nanométriques. Depuis les années 90, les laboratoires nationaux de métrologie ont relevé le défi du développement d'une nouvelle activité de métrologie de référence destinée à satisfaire les besoins de la mesure dimensionnelle à l'échelle nanométrique. Cela a conduit à l’émergence d’une nouvelle science appelée « nanométrologie » qui est définit comme étant la science de la mesure à l’échelle du nanomètre (gamme allant de 1 nm à 100 nm) et à l’estimation des incertitudes de mesure associées. Cette science suscite un intérêt croissant dans la recherche fondamentale et dans l’industrie. A titre d’exemple, la mesure de paramètres géométriques (taille et morphologie) d’un nano-objet est incontournable pour l’investigation de ses propriétés physicochimiques. Ces paramètres se retrouvent au coeur des préoccupations métrologiques des industriels (ex. : microélectronique) et des études sur la toxicité éventuelle des nano produits. En effet, depuis les travaux de l’organisation internationale de normalisation (ISO), et plus particulièrement de son comité technique en charge de la normalisation des nanomatériaux (TC229), la taille et la forme d’un nanoobjet sont reconnus comme un des paramètres indispensables pour son identification. De plus, depuis l’entrée en vigueur le premier janvier 2013 du décret français n◦ 2012-232 concernant la déclaration des substances à l’état nano-particulaire, les activités liées à la caractérisation des nanomatériaux sont en forte croissance. Le développement de ces activités et le fort couplage existant entre propriétés dimensionnelles et propriétés physico-chimique des nanomatériaux, pousse à l’amélioration de la fiabilité et de la comparabilité des mesures à l’échelle nanométrique. Cela génère un réel besoin d’étalonnage et de mise à disposition d’étalons de transferts. Ces étalons, permettent d’étalonner les instruments utilisés pour la mesure des nanomatériaux et d’y associer des incertitudes de mesure nanométriques. L’état actuel de l’instrumentation susceptible d’être utilisée dans ce cadre montre que les microscopes à sonde locale (SPM pour Scanning Probe Microscope) et les microscopes électroniques à balayage (SEM pour Scanning Electron Microscope) représentent des outils puissants pour caractériser des échantillons à l’échelle du nanomètre. Ces instruments équipent la plupart des laboratoires de recherche académiques et industriels. Actuellement, en France, la plupart des utilisateurs de ces instruments pour lesquels l’étalonnage est indispensable se tournent vers des méthodes de substitution (référence interne, étalonnage partiel) ou vers des étalonnages réalisés par des laboratoires nationaux 8 de métrologie étrangers (la PTB et le NIST principalement). Depuis 2007, le LNE développe au sein de l’équipe nanométrologie un Microscope à Force Atomique métrologique (mAFM) qui permettra aux utilisateurs d’étalonner leurs instruments par le biais d’étalons de transfert mesurés au préalable par le mAFM. Ce travail de thèse s’inscrit dans la continuité des travaux de conception du mAFM. Cet instrument a pour but principal la mesure d’étalons de transferts avec la plus faible incertitude possible (1 nm voir inférieur). Ces étalons sont ensuite délivrés aux utilisateurs avec un certificat d’étalonnage leur permettant l’étalonnage des instruments de type SPM ou SEM. Cependant, malgré les très bonnes performances atteintes par l’instrument en termes de stabilité thermique et mécanique (sans tenir compte de la tête AFM), son incertitude de mesure est pénalisée par l’utilisation d’une tête AFM commerciale mal adaptée à la discipline métrologique. Ces pour ces raisons qu’a été initié le développement d’une tête AFM spécifiquement conçue pour les besoin de nanométrologie. Un des objectifs principaux de la thèse a consisté à mener un important travail de développement instrumental afin de poursuivre la conception et l’optimisation des performances du mAFM en l’équipant d’une tête AFM métrologique dans le but de minimiser l’incertitude de mesure globale de l’instrument. Cette tête AFM comporte un système original de mesure des déflexions du levier nécessaire à la détection des forces s’exerçant à l’extrémité de la pointe. Parallèlement à ce développement, le projet a aussi porté sur la caractérisation fine de l’instrument afin d’établir un bilan d’incertitude ainsi que l’optimisation de l’architecture du contrôleur dans le but d’améliorer la vitesse de balayage des échantillons. Le travail présenté dans ce manuscrit est structuré comme suit : Dans un premier temps, le premier chapitre introduit le principe de la microscopie à force atomique. Les notions de traçabilité et d’étalonnage sont abordées et leur mise en pratique est illustrée sur le mAFM. Dans une seconde partie, et suite à la description du mAFM, les limites de l’instrument avec l’ancienne tête AFM sont abordées. La fin du chapitre présente un cahier des charges pour la conception de la nouvelle tête AFM. Le chapitre deux représente une étude bibliographique des principaux systèmes de mesure de déflexions du levier. Les avantages et les inconvénients de chaque système sont présentés et leur éventuelle intégration sur le mAFM est discutée. Une comparaison des performances des différents systèmes a permis de trouver le meilleur compromis pour développer un système de détection stable thermiquement et mécaniquement. Les démarches qui ont mené à la conception de ce système, à sa modélisation, à sa validation par des tests expérimentaux et jusqu’à son intégration sur un AFM sont présentés dans le chapitre trois. La fin de ce chapitre présente des courbes d’approche/retrait obtenues avec ce système en mode contact et en mode Tapping et les premières images de topographies. 9 Dans le chapitre quatre, la conception et la fabrication de la tête AFM pour le Microscope à Force Atomique métrologique est détaillée. Les concepts fondamentaux qui ont guidé cette étape sont rappelés. Les déférents étages qui constituent la tête sont également présentés et les choix de conception justifiés. Enfin, le chapitre cinq présente dans une première partie les mesures qui ont été obtenues sur l’AFM métrologique équipé avec la tête AFM et qui permettent de valider les travaux de thèse. La deuxième partie présente les études expérimentales ayant permis la caractérisation de différentes composantes du mAFM (platine de translation, interféromètres laser, miroirs de références…). L’objectif consistait à quantifier les sources d’erreurs, évaluer leurs incertitudes, pour enfin compléter le premier bilan d’incertitude du mAFM et calculer l’incertitude composée. Ce manuscrit s’achève par une conclusion générale qui résume les travaux réalisés durant cette thèse ainsi que les perspectives retenues pour l’optimisation de l’instrument. Trois annexes A, B et C présentent respectivement la carte électronique développée pour le conditionnent des signaux issus de la tête AFM, la modélisation du trajet optique des têtes interférométrique dans le but de compenser le bras mort ainsi que la nouvelle architecture pour le contrôleur de l’instrument.
Article
In order to evaluate the uncertainty budget of the LNE's mAFM, a reference instrument dedicated to the calibration of nanoscale dimensional standards, a numerical model has been developed to evaluate the measurement uncertainty of the metrology loop involved in the XYZ positioning of the tip relative to the sample. The objective of this model is to overcome difficulties experienced when trying to evaluate some uncertainty components which cannot be experimentally determined and more specifically, the one linked to the geometry of the metrology loop. The model is based on object-oriented programming and developed under Matlab. It integrates one hundred parameters that allow the control of the geometry of the metrology loop without using analytical formulae. The created objects, mainly the reference and the mobile prism and their mirrors, the interferometers and their laser beams, can be moved and deformed freely to take into account several error sources. The Monte Carlo method is then used to determine the positioning uncertainty of the instrument by randomly drawing the parameters according to their associated tolerances and their probability density functions (PDFs). The whole process follows Supplement 2 to 'The Guide to the Expression of the Uncertainty in Measurement' (GUM). Some advanced statistical tools like Morris design and Sobol indices are also used to provide a sensitivity analysis by identifying the most influential parameters and quantifying their contribution to the XYZ positioning uncertainty. The approach validated in the paper shows that the actual positioning uncertainty is about 6 nm. As the final objective is to reach 1 nm, we engage in a discussion to estimate the most effective way to reduce the uncertainty.
Book
Working at the nano-scale demands an understanding of the high-precision measurement techniques that make nanotechnology and advanced manufacturing possible. Richard Leach introduces these techniques to a broad audience of engineers and scientists involved in nanotechnology and manufacturing applications and research. He also provides a routemap and toolkit for metrologists engaging with the rigor of measurement and data analysis at the nano-scale. Starting from the fundamentals of precision measurement, the author progresses into different measurement and characterization techniques. The focus on nanometrology in engineering contexts makes this book an essential guide for the emerging nanomanufacturing / nanofabrication sector, where measurement and standardization requirements are paramount both in product specification and quality assurance. This book provides engineers and scientists with the methods and understanding needed to design and produce high-performance, long-lived products while ensuring that compliance and public health requirements are met. Updated to cover new and emerging technologies, and recent developments in standards and regulatory frameworks, this second edition includes many new sections, e.g. new technologies in scanning probe and e-beam microscopy, recent developments in interferometry and advances in co-ordinate metrology. ? Demystifies nanometrology for a wide audience of engineers, scientists, and students involved in nanotech and advanced manufacturing applications and research. ? Introduces metrologists to the specific techniques and equipment involved in measuring at the nano-scale or to nano-scale uncertainty. ? Fully updated to cover the latest technological developments, standards, and regulations.
Article
In the frame of developing a thermally passive atomic force microscope head, a new kind of 2D displacement sensor based on a four quadrant optic fibre bundle has been implemented. The aim is to replace the quad cell photodiode used in the optical beam deflection method to detect cantilever deflection. The use of the bundle as a position sensor has already been modelled and experimentally evaluated in a previous work. This article reports on the implementation of the bundle as a deflection sensor for atomic force microscopy. The main motivation for such a development was to reduce the heat sources in the instrument. To reach this goal the photodiode and its conditioning circuit used for the measurement of cantilever deflection has been externalized from the AFM head. For the same reason, the laser diode and its electronic driver have been deported using optic fibre. To test the AFM head prototype in real conditions, approach curves and AFM images have been performed. The results show that the bundle is very well suited for AFM applications that require very low heat sources such as metrological AFM where each error source has to be managed.
Chapter
Let A be a real m×n matrix with m≧n. It is well known (cf. [4]) that $$A = U\sum {V^T}$$ (1) where $${U^T}U = {V^T}V = V{V^T} = {I_n}{\text{ and }}\sum {\text{ = diag(}}{\sigma _{\text{1}}}{\text{,}} \ldots {\text{,}}{\sigma _n}{\text{)}}{\text{.}}$$ The matrix U consists of n orthonormalized eigenvectors associated with the n largest eigenvalues of AAT, and the matrix V consists of the orthonormalized eigenvectors of ATA. The diagonal elements of ∑ are the non-negative square roots of the eigenvalues of ATA; they are called singular values. We shall assume that $${\sigma _1} \geqq {\sigma _2} \geqq \cdots \geqq {\sigma _n} \geqq 0.$$ Thus if rank(A)=r, σr+1 = σr+2=⋯=σn = 0. The decomposition (1) is called the singular value decomposition (SVD).