ArticlePDF Available

Peppermint and Its Functionality: A Review

Authors:

Abstract and Figures

Peppermint (Mentha piperita L.), is a medicinal plant that has received more attention from both food and pharmaceutical industries because of its health benefits for human society. Herein, the chemical structure of peppermint compounds evaluated using theoretical studies. Indeed, the health benefits of peppermint were reviewed. Our molecular docking showed that among peppermaint compounds, cineol and menthyl acetate apparently bound to the active site of arylamine N-acetyltransferase enzyme. This type of interaction indicates the inhibitory effects of these compounds against this enzyme. Quantum studies revealed that menthol (Egap=16.9 eV) and pulegone (Egap=12.6 eV) are stable and unstable compounds in this plant. Finally, our theoretical results are similar to experimental investigations that reported before. Summing up, this plant is a good target for research and further studies should be focus on evaluating of peppermint in prevention of human diseases.
Content may be subject to copyright.
2017
Vol. 8 No. 4:54
Research Article
1
© Under License of Creative Commons Attribution 3.0 License | This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
iMedPub Journals
www.imedpub.com
DOI: 10.4172/1989-8436.100053
Loolaie M1#, Moase N2#,
Rasouli H2* and Adibi H3
1 Department of Biology, Science and
Research Branch, Islamic Azad university,
Tehran, Iran
2 Medical Biology Research Center,
Kermanshah University of Medical
Sciences, Kermanshah, Iran
3 PharmaceucalSciencesResearch
Center, Kermanshah University of
Medical Sciences, Kermanshah, Iran
# Thersttwoauthorshaveequally
contribuoninthiswork
*Corresponding author: Hassan R
Hrasouli@kums.ac.ir,
hadibi@kums.ac.ir
Medical Biology Research Center,
Kermanshah University of Medical Sciences,
Kermanshah,Iran.
Citation: LoolaieM,MoaseN,Rasouli
H, Adibi H (2017) Peppermint and
ItsFunctionality:AReview.ArchClin
Microbiol.Vol.8No.4:54
Peppermint and Its Funconality: A Review
Abstract
Peppermint (Mentha piperita L.), is a medicinal plant that has received more
aenon from both food and pharmaceucal industries because of its health
benets for human society. Herein, the chemical structure of peppermint
compounds evaluated using theorecal studies. Indeed, the health benets
of peppermint were reviewed. Our molecular docking showed that among
peppermaint compounds, cineol and menthyl acetate apparently bound to the
acve site of arylamine N-acetyltransferase enzyme. This type of interacon
indicatestheinhibitoryeectsofthesecompoundsagainstthisenzyme.Quantum
studies revealed that menthol (Egap=16.9eV)andpulegone(Egap=12.6eV)arestable
andunstablecompoundsinthis plant.Finally,ourtheorecalresultsaresimilar
to experimental invesgaons that reported before. Summing up, this plant is
agoodtarget for researchandfurtherstudiesshouldbefocuson evaluang of
peppermintinprevenonofhumandiseases.
Keywords: Peppermint; Human diseases; Peppermint oil; Quantum chemistry;
Moleculardocking
Received: July 06, 2017; Accepted: July 31, 2017; Published: August05,2017
Abbreviaons
PO: Peppermint oil; WHO: World Health Organizaon; HOMO:
The highest occupied molecule orbital LUMO: The lowest
un-occupied molecular orbital; MEP: Molecular electrostac
potenals; NAT: Arylamine N- acetyltransferase; SD: Standard
deviaon; IBS: Irritable bowel syndrome; HSV=Herpes simplex
virus(DNAvirus);VACV=Vacciniavirus
Introducon
Medicinal plants have receivedmoreaenonbecauseoftheir
healthbenets,suchasan-infecousproperes,sinceancient
mes[1-6].Thetermofmedicalplantsisreferredtothenatural
remediesthathaveusedfortreatmentofhumandiseases[4,7-
10]. These medicinal plants can be considered as a valuable
source of ingredients which can be used in drug development
[5,11-13]. On the other hand, medical plants signicantly
aectedthehumanlifeacrosstheenreworld[5,7,14,15].The
useof herbal medicineis leading modality,followed in Middle
East, Europe and certain other advance countries, in order to
treat of catastrophic human diseases [16]. Based on the WHO
reports, the advanced countries have used medicinal plant for
bothclinicaltherapyandfoodindustriessignicantly[16,17].
Medicinalplants havesignicantpotenalsforhumansociees
andconsumedbypeopleacrosstheenreworld.Althoughmost
of theirhealthbenetshavenotinvesgatedyet,theirmedical
acviescanbeconsideredinthetreatmentofpresentorfuture
diseases[7]. Currently,morethan80%of theworldpopulaon
usethetradionalmedicineandmedicinalplants(especiallyplant
extractsandessenal oils) for theirprimary health needs [18].
Peppermint or mint (Mentha piperita L.),a perennialaromac
herb belonging to the Lamiaceae (Labiatae) family, is a natural
hybridbetween spearmint (Mentha spicata L.) andwater mint
(Mentha aquac L.)[19,20].Althoughitisanavegenusofthe
Mediterraneanregions,itculvatedallovertheworldforitsuse
inavor,fragrance,medicinal, and pharmaceucal applicaons
[21]. Members of the mint genus are characterized by their
volaleoilswhichareofgreateconomicimportance,beingused
bytheavor,fragrance,andpharmaceucalindustries[22].
Thisplantiswidelyusedinfolkremediesandtradionalmedicine
fortreatmentofdigesvedisordersandnervoussystemacons
because of its antumor and anmicrobial properes, chemo-
prevenve potenal, its renal acons, anallergenic eects,
andalsoforlesseningcramping,digesvecomplaints,anorexia,
2017
Vol. 8 No. 4:54
2This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
nauseaanddiarrhea[23,24].Preparaonsofpeppermintinclude
leafs, leaf extracts and water, however, the plant is culvated
mainlyforitsessenaloil,whichisobtainedbydisllaonfrom
freshlygroundedleaves[25-28].POiscomposedofmentholand
menthone together with several other minor constuents,
including pulegone, menthofuran and limonene, and its chemical
composionmayvarywithplant maturity, geographical region
andprocessingcondions[28-30].
Mentholoccursnaturallyasacolorlesscrystalorpowder[31].It
isgreatlyresponsible for thespasmolycnatureofpeppermint
[32].Mentholhasreportedtosmulatebileow[33],reducing
the tone in the esophageal sphincter [34], facilitang belching
[35],as wellashavinganbacterial properes[36].Inaddion,
peppermint is also a rich source of polyphenolic compounds and
hencethestronganoxidantproperes[8,22,26,28,37].Among
allcountriesintheworld,Indiaisthelargestproducer,exporter
[38]and consumer of mint oil [39]. Currently China is a major
importerofpeppermint[39].
HOMO(highestoccupied molecular orbital) andLUMO (lowest
unoccupied molecular orbital) orbitals are very important
parametersusedinquantumchemistry [40-42]. Based on their
characteriscs,itcanbespeciedhowamoleculewouldinteract
withothermolecules[40].TheHOMOorbitalscanbeconsidered
asanelectrondonorgroup,whiletheLUMOorbitalsasfreesites
abletoacceptthem[40,43-46].EnergyoftheHOMOorbitalscan
bedirectlylinkedtotheionizaonpotenal,whereastheLUMO
orbitalenergycanbeassociatedwiththeelectronanity[40,44].
ThedierencebetweentheorbitalenergiesofHOMOandLUMO
is referred to as energy gap E)whichisanimportantparameter
thatcandeterminethereacvityorstabilityofmolecules[40,44-
46]. Since quantum chemistry and molecular docking studies
have not been reported, the present study aims at determining
the opmized molecular geometry, HOMO-LUMO energies of
peppermint main compounds, using Hartree-Fock, 3-21G basic
set and also indicates the binding mode of these compounds into
aselectedreceptor.Also,themostabundantmedicinalbenets
of peppermint have reviewed.
Methods
Hereinthetherapeucapplicaonofvolaleoil of peppermint
is discussed and also chemical descriptors are calculated to
determine the electron parameters of peppermint acve
constuentstosearchforbiologicalacviesofthesecompounds.
Molecular quantum studies
Allcomputaonal calculaons were performed atthe Hartree-
Fockmodel on aPenum IV/2.8 GHz personal computer using
Spartan 10 soware Wavefuncon, Inc. [47]. The geometry of
thepeppermint acveconstuents inthe groundstate isfully
opmized.
Molecular docking
The3DstructureofNATenzyme(PDBID:2IJA)wasobtainedfrom
PDB database (hp://www.rcsb.org/pdb/home/home.do) and
selectedas receptor against peppermint chemical compounds.
The molecular docking (blind docking) was done by Molegro
virtualDocker4.2.0version.Visualizaonofdockingresultswas
performed by MOE soware (hps://www.chemcomp.com/
MOE-Molecular_Operang_Environment.htm).
Nomenclature, botany and culvaon
Peppermint hasmorethan101localnamesindierentcountries
(Table 1)[48-51].Theprincipleofnamingofmintisconsidered
basedonlocalcultureandcustoms.
In botany, Mentha piperita L.isthecommonnameforgenusof
peppermint[19]. The genus Mentha includes 25 to 30 species
[52]whichisaperennialherbandnavetoEurope,naturalized
inthenorthernUSAandCanada,andculvatedinmanypartof
theworld[53,54].
The mint is a sterile hybrid of spearmint (Mentha spicata) and
watermint(Mentha aquaca) from the Lamiaceae family (Figure
1)[20,27].
Themostrelevantofmintspecieswithcommercialormedicinal
usage are listed in (Table 2).
Peppermint grows parcularly well in lands with high water-
holdingcapacity soil [55-70]. All commercial mint variees are
seed sterile and are propagated using the underground stolons
(runners or rootstock) produced by exisng plants [71]. The
stolons can’t be stored for more than a few days since they
deterioraterapidlydueto heat or dehydraon[71].Ingeneral,
mintstolerateawiderangeofcondions,andcanalsobegrown
infullsun[72].
Chemical properes
Many studies showedthatpeppermintessenaloiliscomposed
of various secondary metabolites [27,28,31,33,34,38,53,54,73
,74].The mint main chemical compounds consist of limonene,
cineole, menthone, menthofuran, isomenthone, menthyl
Country Local name
Iran Nanafelfeli
Brazil Nortelapimento
USA Lab Mint, mint
Norway Peppermynte
Poland Pepparmunta
Spain Mentainglesa
Portugal Hortelana pimentosa
Swedish Pepparmynt
China Po Ho
India Urdu, mint, Pudina, Pudyana, Puthina
Turkey Nana
Russia Myata perechnaya
Uruguay Menta
French Menthe
Iraq Nana
Bogota Yerba Beuna
Denmark Pebermynte
Germany Peppermint
England Brandy Mint
Mexico Menta piperita
Table 1Themostabundantlocalnamesofmintaroundtheworld.
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
3
© Under License of Creative Commons Attribution 3.0 License
acetate, isopulegol, menthol, pulegone and carvone (Figure 2
and Table 3)[38,74].
Other constuents include avonoid glycoside (eg. Narirun,
Luteolin-7-o-runoside, Isorhoifolin and Hesperidin etc) [75]
polyphenols(e.gRosmaricacid, Eriocitrin, Cinamic acid,Caeic
acid and Narigenin-7-oglucoside); luteolin-diglucoronide and
eriodictyolglucopyranosyl-rhamnopyranosidewerealsopuried
fromaerialpartsofmint[75-79].
The amount of peppermint compounds is dierent in various
species [80]. Various factors including physiological variaons,
environmental condions, geographic dierences and genec
factorscausedierencesinchemicalcomposionoftheseplants[80].
The most abundant chemical compounds that isolated form
peppermint are largely classied into monoterpenes [81].
Currently, peppermint is the best model system for the study of
monoterpene metabolism [82]. The pathway of monoterpene
biosynthesis in peppermint has been well characterized by in
vivo and systems biology studies (Figure 3) [83-85]. and all of
the enzymes involved have been described [81,84]. According
tothe tradional view [86,87] monoterpenesare amongst the
major constuents of essenal oils and common secondary
metabolites of plant metabolism, and as such they generally
havebeenregardedasmetabolicdeadlock[83,84,87].Asshown
in gure 3, the peppermint monoterpene-derived compounds
separate from primary metabolism by conversion of isopentenyl
diphosphateanddimethylallyldiphosphate,viatheaconofthe
prenyltransferasegeranyldiphosphatesynthase(EC2.5.1.29),to
geranyl diphosphate, which undergoes subsequent cyclizaon
bylimonenesynthase(EC4.2.3.16)to(4S)-(-)-limonene[84,88].
In peppermint a microsomal cytochrome (Cyt)P450 limonene-
3-hydroxylase (EC 1.14.13.47) adds an oxygen molecule in an
allylic locaon to produce (-)-trans-isopiperitenol and thereby
establishestheoxygenaonpaernofallsubsequentderivaves
[81,88,89].
AsolubleNADP-dependentdehydrogenase(EC1.3.1.82)oxidizes
Figure 1 Aschemacillustraonofpepperminthybrid.
Mentha spicata Mentha aquatica
Mentha piperita
Species Usage References
Mentha spicata L. Medicine [55]
Mentha suaveolens OrnamentalConsumpon [56]
Mentha requienii Benth. OrnamentalConsumpon [57]
Mentha pulegium L. Medicine [58]
Mentha piperita L. Medicine,Ornamental
consumpon,commercial
[59-61]
Mentha citrata Ehrh Medicine [62]
Mentha longifolia L Medicine, Commercial [63,64]
Mentha cardiaca Medicine [65]
Mentha arvensis Medicine [66]
Mentha canadensis Weed [67]
Mentha avouring Ornamentalconsumpon,
Medicine [68,69]
Table 2Thelistofthemostabundantmintspeciesandtheirfuncons.
Figure 2 Representaon of the most abundant chemical
compoundsofPO.
Compounds IUPAC name Percentage(%) References
Limonene
1-Methyl-4-(1-
methylethenyl)-
cyclohexene
1to5 [38]
Cineole 1,3,3-Trimethyl-2-
oxabicyclo[2,2,2]octane 3.5to14 [23,76]
Menthone (2S,5R)-2-Isopropyl-5-
methylcyclohexanone 14to32 [31]
Menthofuran 3,6-Dimethyl-4,5,6,7-
tetrahydro-1-benzofuran 1to9 [23,28]
Isomenthone
(2R,5R)-5-methyl-2-
propan-2-ylcyclohexan-
1-one
1.5to10 [27]
Menthyl
acetate
Acecacid[(1R,2S,5R)-
2-isopropyl-5-
methylcyclohexyl]ester
2.8to10 [77]
Isopulegol 5-methyl-2-prop-1-en-2-
ylcyclohexan-1-ol 0.2 [73]
Menthol (1R,2S,5R)-2-Isopropyl-5-
methylcyclohexanol 30to55 [23,31,33,
38,49,53,77]
Pulegone p-Menth-4(8)-en-3-one 4 [78]
Carvone 2-Methyl-5-(prop-1-en-2-
yl)cyclohex-2-en-1-one 1[79]
Table 3 ThemostabundantacvecompoundsofMentha spp.
2017
Vol. 8 No. 4:54
4This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
chemistrycalculaons[95,96].TheHOMOenergydeterminesthe
electrondonangabilitywhiletheLUMOdesignatestheelectron
accepng ability and the HOMO–LUMO energy gap (
) (  [97,98] is an important value for stability
index [96,99]. A large implies a good thermodynamic
stabilityofthecompound,inthesenseofitslowerreacvityin
chemical reacons [100,101]. However, the magnitude of the
HOMO-LUMO gap has very important chemical implicaons,
evenifqualitavelyevaluated[102].Todeterminestabilityand
reacvity of peppermint main chemical compounds according
to Hartree-Fock model 3-21G basis set calculaon for water
soluon,thegapenergiesweremeasured(Table 4).
Based on table 4 data, menthol, cineole and isopulegol have
higherstability thanothercompounds.Theincreaseofstability
that showed by  promotes the low reacvity of these
compounds in a chemical reacon. The relaonship between
energy,stabilityandreacvityiswellknowndescribedin
manystudies[103-105].AccordingtoHartree-Fock,3-21Gbasic
set calculaon, the highest and lowest gap energies is related
tomenthol(16.9eV),pulegone(12.6eV)andcarvone(12.6eV)
respecvely.Our resultabout stabilityof mentholis similar to
resultthatreportedbyHarlodandcoworkers[106].Froehlichet
al. reported that in the aqueous ethanolic soluons, pulegone
was unstable and it can be degraded to other products [107].
Thiscaseconrmedourmolecularorbitalsanalysisforpulegone.
Also,surfacesforthefronerorbitalsweredrawntounderstand
the bonding scheme of present compounds. The features of
these molecular orbitals can be seen in (Figure 4).
the alcohol to a ketone, (-)-isopiperitenone, thereby acvang
the adjacent double bond for reducon by a soluble, NADPH-
dependent,regiospecicreductasetoaord(+)-cis-isopulegone.
An isomerase next moves the remaining double bond into
conjugaon with the carbonyl group, yielding (+)-pulegone. A
NADPH-dependent reductase then converts (+)-pulegone to
(+)-isomenthoneand(-)-menthone,whichpredominates[89].
Finally, two stereo-selecve NADPH-dependent reductases
convert (-)-menthone and (+)-isomenthone to (-)-menthol
and (+)-neoisomenthol, respecvely, and (-)-menthone and
(+)-isomenthone to (+)-neomenthol and (+)-isomenthol,
respecvely[81,88,89].Inthesepathways,(-)-limoneneistherst
commiedintermediateforbiosynthesisofothercompoundsin
thepeppermintspecies.However,produconofmonoterpenes
in peppermint id restricted to developing oil glands of young
leaves[88,90,91], and thecorrelaon between in vitro acvity
fortheseveralenzymacstepsofmentholbiosynthesisandthe
rate of biosynthesis measured in vivo suggests that monoterpene
produconiscontrolledbythecoordinatelyregulatedacvityof
relevantbiosynthec enzymes[82,90,92].Asmenonedabove,
(-)-Mentholgreatlyimportantamongthementholisomers(oen
exceeding50%oftheessenaloil)andisprimarilyresponsible
forthecharacteriscavorandcoolingsensaonofpeppermint
[31,89,93,94].
HOMO and LUMO orbitals analysis
TheHOMO and LUMOorbitals are veryimportant in quantum
Figure 3 Aschemacillustraonof metabolicpathwayfor biosynthesisofpeppermint chemicalcompounds(The pathwayistakenfrom
KEGGdatabase:hp://www.genome.jp/kegg/).
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
5
© Under License of Creative Commons Attribution 3.0 License
MEP analysis
Theelectrostac potenal ofa molecule isan established tool
inmedicinal chemistry,modeling,andcomputaonal chemistry
[108,109]. The MEP employed abundantly for predicng
potenals have been and interpreng the reacve behavior
of a wide range of chemical system in both electrophilic and
nucleophilic reacons, the study of biological recognion
processes and hydrogen bonding interacons [109-111]. To
predictreacvesitesforelectrophilicandnucleophilicaackfor
the peppermint chemical compounds, MEP was calculated at
Hartree-Fock,3-21Gbasicsetopmizedgeometries.Inthemost
ofthe MEP, while the maximum negave site which preferred
region for electrophilic aack indicaons as red color, the
maximum posive region which preferred site for nucleophilic
aacksymptomsasbluecolor[112,113].Inthepresentstudy,3D
plotof molecular electrostac potenalof studied compounds
hasbeendrawnin(Figure 5).Inthisplotthedierentvaluesof
electrostac potenal at surface are represented by dierent
colors.Potenalincreaseinorderred<orange<yellowgreen<blue
[113].
Asshownin(Figure 5),theregionshavingthenegavepotenal
are over the electronegave atom oxygen, respecvely. Thus,
itwouldbe predicted that anelectrophilewould preferenally
aack peppermint compounds at the oxygen posions. In
addion,wefoundtheposiveregionsoverhydrogenatomsof
methylgroupofpeppermintcompoundsandindicangthatthese
sitescanbethemostprobablyinvolvedinnucleophilicprocesses.
Red and blue colors in peppermint compounds map refer to the
regions of negave and posive potenals and correspond to
electron rich and electron-poor regions, respecvely, whereas
thegreenregionssignifytheneutralelectrostacpotenal.The
MEP surface map of peppermint compounds provides necessary
informaonaboutreacve sites. These results canbeused for
designanddevelopmentofthestablepeppermint-deriveddrugs.
TheimportanceandapplicaonofMEPmapindrugdevelopment
isdiscussedinmanystudies[114-117].
Anviral Acvity
Nowadays, the development of phytotherapies aiming at
the inhibion of viral diseases [118], in combinaon with
classical an-viral therapies, is among the most intensively
studied approaches for the treatment of pathogenic viruses
[119].Infecous viral diseasesremain an importantworldwide
problem, since many viruses have resisted prophylaxis or therapy
longer than other microorganisms [120]. At the moment, only
feweecve anviraldrugs areavailable forthe treatmentof
viraldiseases [121].Thereisneedtondnewcompoundswith
not only intracellular but also extracellular anviral properes
[122].Thereareseveralreportsshowedthatvariouspeppermint
extracts has signicant anviral acvies [123-126]. It seems,
peppermint helps to immune system and protect the body from
viruses [127-137]. Table 5 presents a comprehensive list of
anviruseectofpeppermintextracts.
Anbacterial Properes
Medicinal plants have been broadly used in common medicine
and therefore, plant secondary metabolites are increasingly
of interest as anmicrobial agents today [138,139]. Currently,
biologically acve compounds from peppermint sources
have always been a great interest for sciensts working on
infecous diseases [140]. PO and extracts showed a good
anmicrobialacvityagainst:1)Escherichia coli, 2) Salmonella
pullorum, 3) Comamonas terrigena, 4)Streptococcus faecalis, 5)
Acinatobacter sp, 6) Streptococcus thermophiles, 7) Lactobacillus
bulgaricus, 8) Staphylococcus pyogenes, 9) Staphylococcus
aureus, 10) Streptococcus pyogenes, 11) Serraa marcescens,
12) Mycobacterium avium, Salmonella typhi, 13) Salmonella
paratyphi A/B, 14)Proteus vulgaris, 15)Enterobacter aerogenes,
16) Yersinia enterocolica and 17) Shigella dysenteriae
[131,141-143]. Studies showed that the anbacterial acvity
of peppermint leaves extract against Gram negave bacilli
washigherthanof its stem extract[131].Anumber of studies
demonstrated that essenal oil  from leaves of peppermint
exhibitedthe highestanbacterial acvitywith 11.58to 17.24
mm±0.87SD,zoneofinhibion[1,62,125,133],whiletheeect
of extract obtained from the stem of peppermint is an average
zoneofinhibion15.82mm±3.56SD,respecvely[131].Onthe
otherhand,POhasstronglyeectsagainstEnterococcus faecium
ATCC10541,Salmonella choleraesuis, Staphylococcus aureus and
Bacillus sublis[140-144]. Therearedierencesinthechemical
composionofpeppermintessenaloilfromdierentparts of
its structure [131]. As menoned above, this dierences can
beeect on anbacterial acvity of peppermint species[133].
Generally, mint oil and menthol have moderate anbacterial
eects against both Gram-posive/negave bacteria [131].
It seems peppermint can become a novel target for synthesis
of plant-derived drugs against a large spectrum of muldrug
resistance bacteria.
Anfungal Acvity
In-vitrodatasuggestedthatPOandextractsaregoodfungicidal
against Candida albicans, Aspergillus albus and dermatophyc
fungi[145].TheleaveoilsofMentha spicata exhibited moderate
acvityagainstAspergillus fumigatus (with16mm±0.5SD,zone
ofinhibion)and A. niger (with14mm±0.5SD)[146].
Compounds HOMO(eV) LUMO(eV) (eV)
Limonene -9.1 5.0 14.1
Cineole -10.1 6.3 16.4
Menthone -10.6 4.2 14.8
Menthofuran -8.4 4.8 13.2
Isomenthone -10.3 4.4 14.7
Menthyl acetate -11 5.0 16.0
Isopulegol -9.7 5.0 14.7
Menthol -10.9 6.0 16.9
Pulegone -9.3 3.3 12.6
Carvone -9.6 3.0 12.6
Table 4 HOMOandLUMOorbitalsenergyvaluesforpeppermintmain
chemical compounds in water, calculated with Spartan 10 V1.1.0,
soware,Hartree-Fock,3-21Gbasicset.
2017
Vol. 8 No. 4:54
6This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
Figure 4 Theatomicorbitalcomposionofthemolecularorbitalofpeppermint-derivedcompounds.Forinterpretaonofthereferencesto
colorinthisgure,thereaderisreferredtothewebversionofthisarcle.
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
7
© Under License of Creative Commons Attribution 3.0 License
Limonene Cineole Menthone
Menthofuran Isomenthone Menthyl acetate
Isopulegol Menthol Pulegone
Carvone
Figure 5 Molecularelectrostacpotenalsurfaceofpeppermintacvecompounds.(Forinterpretaonofthereferencestocolorinthis
gure,thereaderisreferredtothewebversionofthisarcle).
Allelopathic Eects
Allelopathyis one kind of stressthat plays asignicant role in
agro-ecosystems, and aects the growth, quality and quanty
of the crops [147,148]. It was reported that water extract of
peppermint (at concentraon 10% v/v) is able to inhibits the
growthofthetomatoseedlings[149].Skrzypekand Coworkers
[150], demonstrated that aqueous extracts of peppermint (at
concentraon 15% v/v) decreases non-photochemical  and
photochemicalquenchingandvitalityindexofphotosystem
IIinsunower.
Medicinal Uses
Currently,POhas become most considered agentastreatment
foralargebodyofhumandiseases[38].Themajorhealthbenets
ofPO areshownin(Figure6).In addiontomedicinaluses,its
extractisbroadly used as avoring infood industries [151]. As
menonedinpervioussecons,amongallchemicalcompounds
2017
Vol. 8 No. 4:54
8This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
thatpuriedfromPO [31], menthol iscommoningredient and
widelyis used for respiratory congeson [152,153], headache
[154],andskeletalmusclepain[155].ThebestdosageofPOfor
consumpon in adult was reported 0.2 to 0.4 mL of oil three
mesdailyinenteric-coatedcapsules[156].
An-angiogenic/Inammatory eects
Angiogenesis, the formaon of new arterioles from pre-
exisngvessels,is a mulstep eventinvolvingdegradaon and
remodeling of the underlying basement membrane and the
surrounding extracellular matrix with subsequent proliferaon
and migraon of vascular endothelial cells into the ssue to
be vascularized [157-159]. Inammaon is regarded as an
important baseline reacon responsible for manifestaons of
variouschronicdiseasessuchascancer, sepc shock, diabetes,
atherosclerosisandobesity[18,160].Recentdatahaveexpanded
theconcept thatinammaonisa cricalcomponentoftumor
progression [143]. There are several reports that peppermint
compoundshavecrucialrolesinprevenonofinammaonand
angiogenesis [161-163]. Methanol extract of peppermint has
cytotoxiceectonL1210cancercells[164].Linandcolleagues
[165]showedthatapparentlymenthol, in higher doses, eects
onNAT acvity in the human livertumor cell line J5 [166].
TheNAT is responsiblefor the biotransformaon of numerous
arylaminedrugs and carcinogens [141]. Thisenzyme has three
crical residues consist of Cys68, His107 and Asp122 [167]. These
residues corresponding to acve site of NAT enzyme [142].
Herein,we performed a molecular docking to ndthe binding
modeofpeppermintcompoundsinto NAT enzyme as receptor
(Figure 7).
Docking results showed that cineole and menthyl acetate
interactwithHis107 residue and therefore, they are able to inhibit
NATenzyme acvity (Figure 7A and 7C). The docking energies
for cineole, menthol, menthyl acetate, isopulegol, menthone
and carvone were -11.2, -13.4, -11.91, -9.82, -7.83 and -10.11
kcal/mol, respecvely. The His107 is one of crical residues in
theacvesiteofNATenzymeanditisimportantforitsacvity
[168].LinandCo-workers[165]reportedthatmentholapossible
uncompeveinhibitor toNATacvityincytosols.Our docking
resultshowedthatmentholisabletointeractwithtworesidues
(Tyr94 and Thr96) from NAT enzyme with a great probability
(Figure 7B). In other hand, menthon was also able to interact
Figure 6 ThemajorhealthbenetsofPO.
Main Idea
Ulcer healing
Anti-bloat effects
Anti-lipid peroxidation
Anti-obesity
Anti-cancer
Anti-diabetic activity
Peppermint
oil
Immunomodulation
Reducing irritable bowel syndrome
Reducing symptoms of non-ulcer dyspepsia
Anti-headache
Reducing gastrointestinal complications
Figure 7 Representaon of peppermint compounds docked
withNATenzymeasareceptor.(A)Cineole(B)Menthol
(C) Menthyl acetate (D) Isopulegol (E) Menthone and
(F)Carvone.
Cineole
His107
Menthol
Tyr94
Thr96
Menthyl acetate
His107
Gly124
Isopulegol
Thr289
A
B
C
D
Menthone
Tyr94
Thr96
Carvone Gly124
E
F
with these two residues from NAT enzyme (Figure 7E). Other
docked compounds (i.e. isopulegol and carvone) interact with
dierentresiduesofreceptor(Figure 7D and 7F).
Anspasmodic eects
PO relaxes gastrointesnal smooth muscle [169] by reducing
calciuminuxinbothlargeintesneandjejunum[170].POand
menthol are inhibitor for calcium channel acvity in rats and
Extracts Virus References
Aqueous
HSV-1/2 [128,129]
HIV-1 [130]
InuenzaAvirus [131]
Newcastlediseasevirus [132]
VACVinegg [132]
SemlikiForest [133]
WestNileviruses [133]
Alcohol InuenzaAvirus [134]
HSV [135]
Essenaloil HSV-1 [122,136,137]
HSV-2 [122,137]
Table 5 Anviralacvityofdierentpeppermintextracts.
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
9
© Under License of Creative Commons Attribution 3.0 License
guinea pig atrial and papillary muscle, rat brain synaptosomes,
andchickrenalneurons[171,172].
Treang Irritable Bowel Syndrome
IBS is dened as a chronic disorder of altered bowel funcon
characterized by symptoms of diarrhea, conspaon, or
alternangbowelhabitsaccompaniedbypainordiscomfortand
may include a constellaon of other symptoms, e.g., bloang,
urgency, and incomplete evacuaon [156,171,173-175]. This
syndromeaects 9 to 23% ofthe populaon across the world
[176].ItwasreportedthatPOisasafeandeecveshort-term
treatmentforIBS[177,178].Also,POactsasinhibitorforcalcium
channelacvityintheintesneandthereforeitcanabletoreduce
symptomsof IBS [31]. Other postulatedmechanisms for PO in
treatmentofIBSincludeinhibionofpotassiumdepolarizaon-
inducedandelectricallysmulatedresponsesintheileum[179].
Also,it wasreported that PO has crucial eects on histamine,
serotonin,andcholinergicreceptorsinthegastrointesnaltract
mayalsomediatesomeofitsanemeceects[180].Cappello
et al. showed that a four weeks treatment with PO improved
abdominal symptoms in paents with IBS [181]. The similar
resultsalsowerereportedinotherstudies[176,182-184].Taken
together, peppermint is the most encouraged plant for treatment
ofgastrointesnaldisorders.
An-headache acvity
Sinceancientmes, herbal therapy has been used as treatment
forheadachedisorders [185]. Consumpon ofpeppermintand
derivavesisthebesttargetforheadachetherapy[186].Gobel
etal.showedsomebenetfrompeppermintandeucalyptusoil
incombinaoninrelievingpaents’ headache pain [186]. Also,
similarresultwasreportedbyLevin[187].
Eect on hepac enzymes
Maliakal and Wanwimolruk reported that aqueous extract of
peppermint(atconcentraon2% v/v) can modulate ofphaseI
andphaseIIdrugmetabolizingenzymes[188].InphaseI,avariety
ofenzymesacttointroducereacveandpolargroupsintotheir
substrates[189]. PhaseIIbiotransformaonreaconsgenerally
serveasadetoxifyingstepindrugmetabolism[190].Khodadust
etal.showedthatpeppermintalcoholicextractamelioratedthe
adverseeectsofCCl4ongrowthperformanceandliverfuncon,
thereforetheyindicatedthatitmightbeusefulfortheprevenon
ofoxidavestress-inducedhepatotoxicityinbroilers[191].
Radioprotecve Eects
The radioprotecve acvity of peppermint oil and aqueous
extract has well been documented [192,193]. Kaushik et al.
demonstratedtheeecvenessofpeppermintalcoholicextract
against  radiaon induced morbidity and mortality using the
opmum dose of 100 mg/kg for 3 consecuve days [192].
Samarth and Coworkers suggested the anoxidant and free
radical scavenging acvies of leaf extract of peppermint are
directlyrelatedtoits mechanism of radiaonprotecon[193].
Severalmechanismssuchasanoxidantacvity,immuneresponse,
andenhancedrecoveryofbone marrow have been suggested for
chemoprevenonandradioproteconofpeppermintextracts[194].
Side Eects and Toxicity
Although peppermint is a considered medicinal plant for
treatmentof human diseases, it was reported that in rats, PO
causedcyst-likechangesinthewhitemaer of the cerebellum
and nephropathy at doses of 40-100 mg/kg per day for 28-90
days[195].
Adversereacons toentericcoatedPOcapsulesarerare[174],
but may include hypersensivity reacon, contact dermas,
abdominal pain, heartburn, perianal burning, bradycardia and
muscletremor[175,196].
Inpaentswithchroniccough,pre-inhalaonofmentholreduces
coughsensivity toinhaledcapsaicinand inuencesinspiratory
ows[197].Inrats,dosesof80and160mgofpulgeonefor28
days caused atonia, weight loss, decreased blood creanine
content,andhistopathologicalchangesintheliverandthewhite
maerofthecerebellum[198].Menthol causes hepatocellular
changesinrats[195].
Markeng
ThemarketforPO in the enre worldisdividedinto local and
internaonal buyers. The local buyers included small buyers
and companies from chemical and pharmaceucal, as well
as food and avoring industries. The internaonal buyers are
dividedintoavorandfragrancehouses,cosmecsandpersonal
healthcare,aromatherapy andfoodmanufacturerswhobuyin
large quanes [199]. The peppermint industry is the largest
commercialherbindustryintheUnitedStates(morethan4000
tonsperyear).Keepinginviewmulplebenetsofpeppermint,
various dosage forms are available in market for treatment of
various human lifestyle diseases (Figure 8).
Conclusion Remarks
Regardingtohealthbenetsofpeppermint,itcanbeconcluded
that this plant has great potenals for treatment of human
diseases and also it has strong future in the world markeng.
Furtherstudiesareneedtoexploraonofcellularandmolecular
mechanismsofpeppermintanditscompoundsonhumanbody.
Althoughpeppermintplanthasgreatbenecialandeconomical
role in human society, researches must be considered its minor
side eects and toxicity. The future in vivo human studies are
neededtodeterminethemolecularmechanismofPOinhuman
health.CurrentlyPOismostfrequentlytradedessenaloilinthe
enreworldandinmanydevelopedanddevelopingcountriesit
consideredasavaluabletargetforbothfoodandpharmaceucal
studies.
2017
Vol. 8 No. 4:54
10 This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
PO ca psules
PO ta bletes
PO gel and cr eams
Figure 8 DierentdosageformsofPOaloneorincombinaonwithotherchemicalingredientsareavailableinmarket.
Acknowledgment
Hereby,theauthorswouldliketoexpresstheirgratudetothe
Research Council of Kermanshah University of Medical Science
(KUMS)fortheirsupportofthiswork.Also,wegratefullythank
Yoshihiro Kawaoka (editor in chief of Journal of Archives of
ClinicalMicrobiology)forhiskindinvitaontowritethecurrent
manuscript
Conicts of Interest
Authorscerfythatnoactualorpotenalconictofinterestin
relaontothisarcleexists.
References
1 Nabavi SM, Marchese A, Izadi M, Cur V, Daglia M, et al. (2015)
Plantsbelongingtothegenusthymusasanbacterialagents:From
farmtopharmacy.FoodChem 173:339-347.
2 AkbariM,RasouliH,BahdorT(2012)Physiologicalandpharmaceucal
eectoffenugreek:Areview.IOSRPHR2:49-53.
3 WangJ,YangD,WangZ,ChenB,YaoS(2009)Simultaneousofillegal
addivesin dietary supplementsandtradionalmedicines byhigh
performance liquid chromatography–electrospray ionizaon mass
spectrometry.FoodChem113:227-232.
4 Xiao J (2016) Report of the internaonal symposium on
phytochemicalsinmedicineandfood.FoodChem204:497-498.
5 JaberianH, Piri K, Nazari J (2013) Phytochemicalcomposion and
in vitro anmicrobial and anoxidantacvies of some medicinal
plants.FoodChem136:237-244.
6 Rezaie-Tavirani M, Fayazfar S, Heydari-Keshel S, Rezaee MB,
Zamanian-Azodi M, et al. (2001) Eect of essenal oil of rosa
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
11
© Under License of Creative Commons Attribution 3.0 License
damascenaonhuman colon cancercelllinesw742. Gastroenterol
HepatolBedBench6.
7 Hassan BAR(2012)Medicinal plants(importance and uses). Pharm
AnalActa3:1000-1139.
8 WongCC,Li HB, Cheng KW,Chen F (2006) A systemacsurveyof
anoxidantacvity of30 chinese medicinal plants usingthe ferric
reducinganoxidantpowerassay.FoodChem 97:705-711.
9 Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi
(2016) R Plant cell cancer: May natural phenolic compounds prevent
onsetanddevelopmentofplantcellmalignancy?Aliteraturereview.
Molecules21:1104.
10 Farzaei MH, Bahramsoltani R, Rahimi R, Abbasabadi F, Abdollahi
(2016)MAsystemacreviewofplant-derivednatural compounds
foranxietydisorders.Curr.Top.Med.Chem16:1924-1942.
11 EdeogaHO,OkwuDE,MbaebieBO(2005)Phytochemicalconstuents
ofsomenigerianmedicinalplants.AfrJBiotechnol 4:685-688.
12 daSilvaDX,deSouzaMW,CorrêaCdS,MoyaHD(2013)Acricalstudy
of use of the fe(ii)/3-hydroxy-4-nitroso-2,7-naphthalenedisulfonic
acid complexes in the quancaon of polyphenols in medicinal
plants.FoodChem138:1325-1332.
13 Li Y, ZhouYC,YangMH,OuYangZ(2012)Naturaloccurrenceofcitrinin
inwidelyconsumedtradionalchinesefoodred yeast rice, medicinal
plantsandtheirrelatedproducts.FoodChem132:1040-1045.
14 Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985)
Medicinalplantsintherapy.BullWorldHealthOrgan 63:965.
15 Zamaninan Azodi M, Ardeshirylajimi A, Ahmadi N, Rezaee MB,
JalilianFA,et al.(2013)Anbacterialeectsof scrophularia striata
seedaqueousextractonstaphilococcusaureus.JPharmSci4:1-11.
16 AhmadR, Ahmad N,NaqviA.A,ShehzadA, Al-Ghamdi (2016)M.S.
Roleoftradionalislamicandarabicplantsincancertherapy. J Tradit
ComplementMed1-10.
17 Hong Kong S (2013) Tradional medicine strategy. World Health
Organizaon:China20:113.
18 McKay DL, Blumberg JB (2006) A review of the bioacvity and
potenal health benets of peppermint tea (mentha piperita l.).
Phytother Res 20:619-633.
19 Khalil AF, Elkatry HO, El Mehairy, HF (2015) Protecve eect of
peppermint and parsley leaves oils against hepatotoxicity on
experimentalrats.Ann.Agric.Sci60:353-359.
20 Spirling LI, Daniels IR (2001) Botanical perspecves on health
peppermint: More than just an aer-dinnermint. J R Soc Promot
Health121:62-63.
21 Iscan G, KIrimer N, Kürkcüoglu Mn, Baser HC, DEMIrci F (2002)
Anmicrobialscreeningofmenthapiperitaessenaloils.JAgriFood
Chem 50:3943-3946.
22 DormanHD,KosarM,KahlosK,HolmY,HiltunenR(2003)Anoxidant
properes and composion of aqueous extracts from mentha
species,hybrids,variees,andculvars.JAgriFoodChem51:4563-
4569.
23 Keifer D, Ulbricht C, Abrams TR, Basch E, Giese N, et al. (2008)
Peppermint (mentha xpiperita) an evidence-based systemac
reviewby thenaturalstandardresearchcollaboraon.JHerbMed
7:91-143.
24 SaeidniaS,GohariAR,YassaN,ShaeeA(2005)Composionofthe
volaleoilofachilleaconfertadc.Fromiran.DARU13:34-36.
25 Cosenno M, Bombelli R, Con A, Colombo ML, Azze A, et al.
(2009) Anoxidant properes and in vitro immunomodulatory
eectsofpeppermint(menthaxpiperital.)essenaloilsin human
leukocytes.JPharmSciRes1:33-43.
26 MairapetyanS,MamikonyanV,AlexanyanJ,TovmasyanA,Daryadar
M(2016)Producvity,biochemicalindicesandanoxidantacvityof
peppermint(menthapiperital.)andbasil(ocimum basilicum l.) in
condionsofhydroponics.JAquacResDevelopment7:2.
27 UribeE,MarínD,VegGálvezA,Quispe-FuentesI,RodríguezA(2016)
Assessmentof vacuum-dried peppermint (mentha piperita l.) as a
sourceofnaturalanoxidants.FoodChem 190:559-565.
28 RiachiLG,DeMaria(2015)C.A.B.Peppermintanoxidantsrevisited.
FoodChem176:72-81.
29 Ansari M, Vasudevan P, Tandon M, Razda R (2000) Larvicidal and
mosquito repellent acon of peppermint (mentha piperita) oil.
BiosciRep71:267-271.
30 Chen H, Zhong Q (2015) Thermal and uv stability of β-carotene
dissolved in peppermint oil microemulsied by sunower lecithin
andtween20blend.FoodChem174:630-636.
31 Hawthorn M, Ferrante J, Luchowski E, Rutledge A, Wei X, et al.
(1988) The acons of peppermint oil and menthol on calcium
channel dependent processes in intesnal, neuronal and cardiac
preparaons.AlimentPharmacolTher2:101-118.
32 PeatJ,FrazeeC,KearnsG,GargU(2016)Determinaonofmenthol
inplasmaandurinebygaschromatography/massspectrometry(gc/
ms)205-211.
33 Arab Ameri S, Samadi F, Dastar B, Zerehdaran S (2016) Eect of
peppermint (mentha piperita) powder on immune response of
broilerchickensinheatstress.IranianJAppAnimSci6:435-445.
34 Oktemer T, Ipçi K, Muluk NB, Cingi C (2015) A paslle combining
myrrh ncture, peppermint oil and menthol to treat the upper
airway.ENTUpdates5:128.
35 Babaeian M, Naseri M, Kamalinejad M, Ghaari F, Emadi F, et al.
(2016)ParkJWThe ecacy of mentha longifolia in the treatment
of paents with postprandial distress syndrome: A double-blind
randomizedclinicaltrial.Iran.Red.Crescent19.
36 ChoiO,ChoSK,KimJ,ParkCG,KimJ(2016)Anbacterialproperes
andmajor bioacve components ofmentha piperita essenal oils
againstbacterialfruitblotchofwatermelon.Arch PhytopathPlant
Protect49:325-334.
37 LvJ,HuangH,YuL,WhentM,NiuY,etal.(2012)Phenoliccomposion
andnutraceucalproperesoforganicandconvenonalcinnamon
andpeppermint.FoodChem132:1442-1450.
38 AlankarS(2009)Areviewonpeppermintoil.AsianJPharmClin Res
2:27-33.
39 NairPS,RamanathanHN(2012)Thefutureofindianmint-astudyto
forecastthemintexportsfromindia.JSCM1:10.
40 StachowiczJ, KrajewskaKułak E,ŁukaszukC, NiewiadomyA(2014)
Relaonship between anfungal acvity against candida albicans
and electron parameters of selected n-heterocyclic thioamides.
IndianJPharmSci76:287.
41 AiharaJi(1999)Weightedhomo-lumoenergyseparaonasanindex
ofkinecstabilityforfullerenes.Theor.Chem.Acc102:134-138.
42 RakhiR,SureshCH(2016)Adstudyondihydropyrazineannulated
linear polyacenes: Aromacity, stability and homo–lumo energy
modulaon.Phys.Chem.Chem.Phys18:24631-24641.
2017
Vol. 8 No. 4:54
12 This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
43 Janjua MRSA, Yamani ZH, Jamil S, Mahmood A, Ahmad I, et al.
(2016)Firstprinciplestudyofelectronicandnon-linearopcal(nlo)
properesoftriphenylaminedyes: Interacvedesigncomputaon
ofnewnlocompounds.AustJChem69:467-472.
44 Buyukuslu H, Akdogan M, Yildirim G, Parlak C (2010) Ab inio
hartree-fockanddensityfunconaltheorystudyoncharacterizaon
of3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1h-indole.Spectrochim
ActaMolBiomolSpectrosc75:1362-1369.
45 FukuiK(1982)Roleoffronerorbitalsinchemicalreacons.Science
218:747-754.
46 YamaguchiK, HommaT,Nomi Y,OtsukaY(2014) Characterisaon
ofmaillardreaconproductsderivedfromlekfd–apentapepde
found in β-lactoglobulin sequence, glycated with glucose – by
tandemmass spectrometry,molecularorbital calculaons and gel
ltraon chromatography coupled with connuous photodiode
array.FoodChem145:892-902.
47 ShaoY,MolnarLF,JungY,KussmannJ,OchsenfeldC, etal.(2006)
Advancesinmethodsandalgorithmsinamodernquantumchemistry
programpackage.PhysChemChemPhys8:3172-3191.
48 Anjali J, Nardev SA (2016) Review on natural addives used in
cosmecpreparaons.WorldJPharmSci 5:630-648.
49 Rita P, Animesh DK (2011) An updated overview on peppermint
(menthapiperital.).IntResJPharm 2:1-10.
50 Anonymous(2016)Mentha3:126.
51 Katzer G (2016) Peppermint (mentha piperita l).  Journal of
Pharmacology121.
52 HawryłM,NiemiecM,SłomkaK,Waksmundzka-HajnosM,Szymczak
G (2016) Micro-2d-tlc separaon of phenolics in some species of
mintandtheirngerprintsondiolbondedpolarstaonaryphase.
ActaChromat28:119-127.
53 HockingGM,EdwardsLD(1955)Culvaonofpeppermintinorida.
Economic Botany 9:78-93.
54 KavrayanD,AydemirT(2001)Paralpuricaonandcharacterizaon
of polyphenoloxidase from peppermint (mentha piperita). Food
Chem 74:147-154.
55 Fitsiou E, Mitropoulou G, Spyridopoulou K, Tipri-Kourpe A,
Vamvakias M, et al. (2016) Phytochemical prole and evaluaon
ofthe biological acvies of essenal oils derived fromthe greek
aromacplantspeciesocimumbasilicum,menthaspicata,pimpinella
anisumandfortunellamargarita.Molecules21:1069.
56 Wang J, Li R, Tan J,  Jiang  ZT ( 2016) Chemical composion of
essenaloilof grapefruit mint (mentha suaveolens×piperita) from
china.JEssentOilBearPlant19:1047-1050.
57 Gaurav N (2016) An experimental text book on phytochemical
analysisandanmicrobialacvityofmenthapiperita.Onlinegatha:
58 Nogueira MVC,  de Lima Castro SAB,de Amorim AM, Maia RM,
Paulillo LCMS ( 2016) Ethnobotanical survey of plants from the
caangawithpossibletherapeucuses.Int.J.Curr.Microbiol.App.
Sci5:767-772.
59 ÇobanÖ,BaydarNG(2016)Brassinosteroideectsonsomephysical
andbiochemicalproperesandsecondarymetaboliteaccumulaon
inpeppermint(menthapiperital.)undersaltstress.IndCropsProd
86:251-258.
60 MallickB,SinhaS,RoyD(2016)Evaluaonofanoxidavepotenal
ofeld grownandssueculture derivedmenthapiperita l.Plants.
IntJCurrMicrobiolAppSci5:382-391.
61 Gras A, Garnatje T, Bonet MÀ, Carrió  E, MayansM, et al.( 2016)
Beyond food and medicine, but necessary forlife, too: Other folk
plantusesinseveralterritoriesofcataloniaandthebalearicislands.
JEthnobiolEthnomed12:23.
62 BokhariN,PerveenK,AlKhulaiM,KumarA,SiddiquiI(2016)In
vitroanbacterialacvityandchemicalcomposionofessenaloil
ofmenthaarvensislinn.Leaves.JEssentOilBearPl19:907-915.
63 MahmoudiR,KaraeeF,TajikH, Abbas A (2016) Inhibitory eect
ofmenthalongifolial. Essenal oil against listeria monocytogenes
usingtransmissionelectronmicroscopy.IntJVetSciRes17:14-23.
64 Diop  SM, Guèye  MT, Ndiaye  I, Hadji  E, Fauconnier  GL( 2016)
Chemicalcomposion ofessenaloilsand oralwatersofmentha
longifolia(l.)huds.Fromsenegal.AmJEssentOilsNatProd4:46-49.
65 SajiN(2016)1-vinylcyclohex-3-enecarbaldehydeand4-vinylcyclohex-
1-ene carbaldehyde for use in avour and oral care composion.
GooglePatents.
66 BharN,BarnawalD,ShuklaS,TewariSK,KayarR,etal.(2016)
Integrated applicaon of exiguobacterium oxidotolerans, glomus
fasciculatum,andvermicompostimprovesgrowth,yieldandquality
ofmenthaarvensisinsalt-stressedsoils.IndCropsProd83:717-728.
67 Yingying L, Haitao L, Xiaohua L, Lixia Z ( 2016) Diversity of tropical
plantresourcesin yunnan provinceand its conservaon. J Landsc
Res8:90-92.
68 NairB(2000)Finalreportonthesafetyassessmentofmenthapiperita
(peppermint) oil, mentha piperita (peppermint) leaf extract, mentha
piperita (peppermint) leaf, and mentha piperita (peppermint) leaf
water.intJToxicol20:61-73.
69 Jenner P, Hagan E, Taylor JM, Cook E, Fitzhugh O (1964). Food
avourings and compounds of related structure i.e.  Acute oral
toxicity.FoodCosmetToxicol2:327-343.
70 Wraith JM, Robinson DA,  Jones  SB,  Long  DS ( 2005) Spaally
characterizingapparentelectricalconducvityandwatercontentof
surfacesoilswithmedomainreectometry. Comput Electron Agric
46:239-261.
71 Douhan, LI, Johnson D (2001) Vegetave compability and
pathogenicityofvercilliumdahliaefromspearmintandpeppermint.
PlantDis85:297-302.
72 MaeiM (1999) Sustainablemethodsfora sustainableproducon
ofpeppermint (mentha x piperita l.)essenal oil. J EssentOil Res
11:267-282.
73 ClarkR,MenaryR(1981)Variaonsincomposionofpeppermintoil
inrelaontoproduconareas.EconomicBotany35:59-69.
74 Rohlo  J (1999) Monoterpene composion of essenal oil from
peppermint (mentha×piperita l.) with regard to leaf posion
using solid-phase microextracon and gas chromatography/mass
spectrometryanalysis.JAgriFoodChem47:3782-3786.
75 AreiasF,ValentaoP,AndradeP,FerreresF,SeabraR(2001)Phenolic
ngerprintofpeppermintleaves.Foodchem73:307-311.
76 Umezu T, Sakata A,  Ito H (2001) Ambulaon-promong eect
of peppermint oil and idencaon of its acve constuents.
Pharmacol.Biochem.Behav69:383-390.
77 Clark R,  Menary R(1980) Environmental eects on peppermint
(menthapiperital.).I.Eectofdaylength,photonuxdensity,night
temperatureanddaytemperatureonthe yieldandcomposionof
peppermintoil.FunctPlantBiol7:685-692.
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
13
© Under License of Creative Commons Attribution 3.0 License
78 CroteauR,VenkatachalamK(1986)Metabolismofmonoterpenes:
Demonstraon that (+)-cis-isopulegone, not piperitenone, is
the key intermediate in the conversion of (−)-isopiperitenone to
(+)-pulegoneinpeppermint(menthapiperita).AnnuRevPhysChem
249:306-315.
79 MascherH,KikutaC,SchielH(2001)Pharmacokinecsofmenthol
andcarvoneaeradministraonofanentericcoatedformulaon
containing peppermint oil and caraway oil. Arzneimielforschung
51:465-469.
80 ParkYJ,BaskarTB,YeoSK,ArasuMV,Al-DhabiNA,etal.(2016)
Composionofvolalecompoundsandinvitroanmicrobialacvity
ofninementhaspp.Springerplus5:1628.
81 Gershenzon J, McConkey M.E, Croteau  RB (2000) Regulaon of
monoterpeneaccumulaonin leavesof peppermint. Plant Physiol
122:205-214.
82 MahmoudSS, Williams M,CroteauR ( 2004) Cosuppression of
limonene-3-hydroxylase in peppermint promotes accumulaon of
limoneneintheessenaloil.Phytochem65:547-554.
83 McGarveyDJ, Croteau R (1995) Terpenoidmetabolism. The Plant
Cell7:1015.
84 Mahmoud SS, Croteau RB (2002) Strategies for transgenic
manipulaonof monoterpene biosynthesis in plants. TrendsPlant
Sci7:366-373.
85 Rios-EstepaR, TurnerGW,LeeJM,CroteauRB,LangeBM (2008) A
systems biology approach idenes the biochemical mechanisms
regulangmonoterpenoidessenaloilcomposioninpeppermint.
ProcNatlAcadSciUSA105:2818-2823.
86 BurboAJ, Loomis WD (1969) Evidenceformetabolicturnoverof
monoterpenesinpeppermint.PlantPhysiol44:173-179.
87 Tan  XC,  Chua KH,  Ravishankar Ram  M, Kuppusamy UR (2016)
Monoterpenes:Novelinsightsintotheirbiologicaleectsandroles
onglucoseuptakeandlipidmetabolismin 3t3-l1adipocytes.Food
Chem196:242-250.
88 Turner  GW, Gershenzon J,  Croteau RB (2000) Development of
peltateglandulartrichomesofpeppermint.PlantPhysiol124:665-
680.
89 McConkey ME, Gershenzon  J, Croteau RB (2000) Developmental
regulaonofmonoterpenebiosynthesisin theglandulartrichomes
ofpeppermint.PlantPhysiol122:215-224.
90 MahmoudSS,Croteau,RB (2003) Menthofuranregulatesessenal
oil biosynthesis in peppermint by controlling a downstream
monoterpenereductase.ProcNatlAcadSciUSA100:14481-14486.
91 TurnerG,Gershenzon J, Nielson EE, FroehlichJE,CroteauR
(1999)Limonenesynthase,theenzymeresponsibleformonoterpene
biosynthesis in peppermint, is localized to leucoplasts of oil gland
secretorycells.PlantPhysiol120:879-886.
92 LangeBM,MahmoudSS,WildungMR,TurnerGW,DavisEM,et
al.( 2011)Improvingpeppermintessenaloilyieldandcomposion
by metabolic engineering. Proc. Natl. Acad.Sci. USA 108:  16944-
16949.
93 FigueroaPérezMG,Rocha-GuzmánNE,Mercado-SilvaE,Loarca-
Piña G,  Reynoso-Camacho R(2014) Eect of chemical elicitors
on peppermint (mentha piperita) plants and their impact on the
metabolite prole and anoxidant capacity of resulng infusions.
FoodChem156:273-278.
94 MortonC,GariochJ,ToddP,LameyP,ForsythA(1995)Contact
sensivity to menthol and peppermint in paents with intra-oral
symptoms.ContactDermas32:281-284.
95 Chaitanya K (2012) Molecular structure, vibraonal spectroscopic
(-ir, -raman),uv–vis spectra, rst order hyperpolarizability, nbo
analysis, homo and lumo analysis, thermodynamic properes of
benzophenone 2, 4-dicarboxylic acid by ab inio hf and density
funconal method. Spectrochim. Acta Mol Biomol Spectrosc  86:
159-173.
96 EndoA,SatoK,YoshimuraK,KaiT, Kawada A, et al. ( 2011)
Ecient up-conversion of triplet excitons into a singlet state and
itsapplicaon fororganiclightemingdiodes.Appl PhysLe 98:
083302.
97 MillsNS,LevyA,PlummerBF(2004)Anaromacityinuorenylidene
dicaons.Experimentalandtheorecalevidencefortherelaonship
betweenthehomo/lumogapandanaromacity.J Org Chem 69:
6623-6633.
98 CunhaJD, LavaggiML,Abasolo MI, CereceoH,GonzálezM
(2011)2d-and3d-quantavestructure-acvityrelaonshipstudies
foraseriesofphenazinen,n’-dioxideasantumouragents.Chem
BiolDrugDes78:960-968.
99 VennilaP,GovindarajuM,VenkateshG,KamalC(2016)Molecular
structure,vibraonalspectralassignments(-irand-raman),nmr,
nbo, homo-lumo and nlo properes of o-methoxybenzaldehyde
basedondcalculaons.JMolStruct1111:151-156.
100 PrabavathiN,NiluferA,KrishnakumarV(2012)Molecularstructure,
vibraonal, uv, nmr, hyperpolarizability, nbo and homo–lumo
analysis of pteridine2, 4-dione. Spectrochim. Acta Mol Biomol
Spectrosc99:292-302.
101 ZhouZ,ParrRG(1990)Acvaonhardness:Newindexfordescribing
theorientaonof
102 electrophilicaromacsubstuon.JAmChemSoc112:5720-5724.
103 Ruiz-Morales Y (2002) Homo-lumo gap as an index of molecular
sizeandstructureforpolycyclicaromachydrocarbons(pahs)and
asphaltenes:Atheorecalstudy.I. J. Phys. Chem. A 106:11283-
11308.
104 ImH,KimS,ParkC,JangSH,KimCJetal.(2010)Highperformance
organic photosensizers for dye-sensized solar cells. Chem
Commun46:1335-1337.
105 NakagawaT,KuSY,WongKT,AdachiC(2012)Electroluminescence
based on thermally acvated delayed uorescencegenerated by
a spirobiuorene donor–acceptor structure. Chem Commun  48:
9580-9582.
106 GoswamiS,AichK,DasAK,SarkarD,PanjaSA(2013)reduorescence
‘o–on’molecularswitchforselecvedeteconofal3+,fe3+and
cr 3+: Experimental and theorecal studies along with living cell
imaging.Chem.Commun49:10739-10741.
107 NolenIH, Friend DR (1994) Menthol-β-d-glucuronide: A potenal
prodrugfortreatmentoftheirritablebowelsyndrome.PharmRes
11:1707-1711.
108 FroehlichO,ShibamotoT(1990)Stabilityofpulegoneandthujone
inethanolicsoluon.JAgriFoodChem38:2057-2060.
109 Wandtke CM, Lübben J,Dirich B (2016) Molecular electrostac
potenalsfrominvariompointcharges.Chem.Phys.Chem17:1-10.
110 Kumar A, Gadre SR (2016) Exploring the gradient paths and zero
uxsurfacesof molecular electrostacpotenal.J.Chem.Theory
Comput12:1705-1713.
2017
Vol. 8 No. 4:54
14 This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
111 PolitzerP,LaurencePR,JayasuriyaK(1985)Molecularelectrostac
potenals: An eecve tool for the elucidaon of biochemical
phenomena.EnvironHealthPerspect61:191.
112 Arabi AA, Maa CF (2016) Electrostac potenals and average
electrondensiesofbioisosteresinmethylsquarateandacecacid.
FutureMed.Chem8:361-371.
113 Tao Y, Han L, Li X, Han Y, Liu Z (2016) Molecular structure, spectroscopy
(-ir,-raman),thermodynamicparameters,molecularelectrostac
potenalandhomo-lumoanalysisof2,6-dichlorobenzamide.JMol
Struct1108:307-314.
114 Balachandran V, Santhi G, Karpagam V, Revathi B, Karabacak M
(2015) Spectroscopic invesgaon, natural bond orbital analysis,
homo–lumoandthermodynamicfunconsof2-tert-butyl-5-methyl
anisole using d (b3lyp) calculaons. Spectrochim. Acta Mol.
Biomol.Spectrosc136:451-463.
115 PolitzerP,TruhlarDG (2013) Chemical applicaons of atomicand
molecularelectrostacpotenals:Reacvity,structure, scaering,
and energecs of organic, inorganic, and biological systems.
SpringerScience&BusinessMedia.
116 Naray-SzaboG,FerenczyGG(1995)Molecularelectrostacs.Chem
Rev95:829-847.
117 BeckeA,MaaCF,BoydRJ(2007)Thequantumtheoryofatomsin
molecules:FromsolidstatetoDNAanddrugdesign.JohnWiley&
Sons.
118 Honig B, Nicholls A (1995) Classical electrostacs in biology and
chemistry.Science268:1144.
119 NawawiAA,NakamuraN,HaoriM,KurokawaM,ShirakiK(1999)
Inhibitoryeectsofindonesianmedicinalplantsontheinfeconof
herpessimplexvirustype1.PhytotherRes13:37-41.
120 Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pella D et al. (2008)
Anviral eects of glycyrrhiza species. Phytother Res  22: 141-
148. Hall CB, Powell KR, MacDonald NE, Gala CL, Menegus ME
et al. (1986) Respiratory syncyal viral infecon in children with
compromisedimmunefuncon.NEnglJMed315:77-81.
121 VijayanP,RaghuC, AshokG,DhanarajS, SureshB(2004) Anviral
acvityofmedicinalplantsofnilgiris.IndianJMedRes120:24.
122 Reichling J, Schnitzler P, Suschke U, Saller R (2009) Essenal oils
of aromac plants with anbacterial, anfungal, anviral, and
cytotoxicproperes–anoverview.Forsch16:79-90.
123 Brand YM, RoaLinares VC, BetancurGalvis LA, DuránGarcía DC,
Stashenko E (2016) Anviral acvity of colombian labiatae and
verbenaceae family essenal oils and monoterpenes on human
herpesviruses.JEssentOilRes28:130-137.
124 SchuhmacherA,ReichlingJ, Schnitzler P(2003)Virucidaleectof
peppermint oil on the enveloped viruses herpes simplex virus type
1andtype2invitro.Phytomedicine10:504-510.
125 ShalayelM,AsaadA,QureshiM, ElhusseinA(2016)An-bacterial
acvity of peppermint (mentha piperita) extracts against some
emergingmul-drugresistanthumanbacterial pathogens. J Herb
Med22:152.
126 BekhitAE,ChengVJ,McConnellM,ZhaoJH,SedcoleRetal.(2011)
Anoxidantacvies,sensory and an-inuenza acvity of grape
skinteainfusion.FoodChem129:837-845.
127 FleischnerAM(2001) Dietarysupplementsforeachspecicblood
type.GooglePatents
128 MoradiMT,Raeian-KopaeiM, KarimiA(2016) Areviewstudy on
theeectofiranianherbalmedicinesagainstinvitroreplicaonof
herpessimplexvirus.AvicennaJPhytomed20:1-11.
129 SantoyoS,JaimeL,García-RiscoMR,RodríguezA,RegleroG(2014)
Anviralproperesofsupercricalco2extractsfromoreganoand
sage.IntJFoodProp17:1150-1161.
130 GeuenichS,Gonet C,VenzkeS,NolkemperS,BaumannI(2008)
Aqueous extracts from peppermint,sage and lemon balm leaves
display potent an-hiv-1 acvity byincreasing the virion density.
Retrovirology5:1-16.
131 ShaikhS,YaacobHB,RahimZHA(2014)Prospecveroleintreatment
ofmajorillnessesand potenalbenetsas a safeinseccide and
naturalfoodpreservaveofmint(menthaspp.): Areview.AsianJ
BiomedPharm4:1.
132 AroraR, Chawla R,MarwahR,AroraP,SharmaR(2010)Potenal
of complementary and alternave medicine in prevenve
management of novel h1n1 u (swine u) pandemic: Thwarng
potenaldisastersin thebud.J EvidBasedComplementaryAltern
Med10:1-16.
133 SinghR,ShushniMM,BelkheirA(2015)Anbacterialandanoxidant
acviesofmenthapiperital.ArabianJ.Geosci8:322-328.
134 Kunnumakkara AB, Chung JG, Koca C, Dey S (2009) Mint and its
constuents.In Moleculartargetsandtherapeucusesofspices:
Modernusesforancientmedicine9:373-401.
135 ReichlingJ,NolkemperS,SntzingFC,SchnitzlerP(2008)Impactof
ethanoliclamiaceaeextractsonherpesvirusinfecvityincellculture.
Forschende Komplementärmedizin/Research in Complementary
Medicine15:313-320.
136 Edris AE (2007) Pharmaceucal and therapeuc potenals of
essenal oils and their individual volale constuents: A review.
PhytotherRes21:308-323.
137 ShaabanHA,GhorabAH,ShibamotoT(2012)Bioacvityofessenal
oilsandtheirvolalearomacomponents:Review.JESSENTOILRES
24:203-212.
138 Mahboubi M, Kazempour N (2014) Chemical composion and
anmicrobialacvityofpeppermint(menthapiperital)essenaloil
SJST20:36.
139 AlmajanoMP,CarbóR,JiménezJAL,GordonMH(2008)Anoxidant
andanmicrobialacviesofteainfusions.FoodChem108:55-63.
140 Mucciarelli M, Camusso W, Maei M, Panicco P, Bicchi C (2007)
Volale terpenoids of endophyte-free and infected peppermint
(mentha piperita l): Chemical paroning of a symbiosis. Microb
Ecol54:685-696.
141 Bohnert T, Patel A, Templeton I, Chen Y, Lu C (2016) Evaluaon
of a new molecular enty as a vicm of metabolic drug-drug
interacons-anindustryperspecve.DrugMetabDisposdmd115:
690-696.
142 Rodrigues F, Dupret JM (2002) 3d model of human arylamine
n-acetyltransferase 2: Structural basis of the slow acetylator
phenotypeofther64qvariantandanalysisof theacve-siteloop.
Biochem.Biophys.Res.Commun291:116-123.
143 SunZ,WangH,WangJ,ZhouL,YangP(2014)Chemicalcomposion
and an-inammatory, cytotoxic and anoxidant acvies of
essenal oil from leavesof mentha piperita grown in china. PloS
one9:e114-767.
144 Saeed S, Naim A, Tariq P (2006) In vitro anbacterial acvity of
peppermint.PakJBot38:869.
2017
Vol. 8 No. 4:54
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
15
© Under License of Creative Commons Attribution 3.0 License
145 OumzilH, GhoulamiS,RhajaouiM,Ilidrissi A,FaidM etal.(2002)
Anbacterial and anfungal acvity of essenal oils of mentha
suaveolens.PhytotherRes16:727-731.
146 Bansod S, Rai M (2008) Anfungal acvity of essenal oils from
indian medicinal plants against human pathogenic aspergillus
fumigatusanda.Niger.WorldJMedRes3:81-88.
147 GogaM,AntreichSJ,BačkorM,WeckwerthW,LangI(2016)Lichen
secondary metabolites aectgrowth of physcomitrella patens by
allelopathy.Protoplasma20:1-9.
148 Shah AN, Iqbal J, Ullah A, Yang G, Yousaf M (2016) Allelopathic
potenalofoilseedcropsinproduconofcrops:Areview.Environ
SciPollutRes20:1-14.
149 Mahdavikia F, Saharkhiz MJ (2016) Secondary metabolites of
peppermint change the morphophysiological and biochemical
characteriscsoftomato.BiocatalAgricBiotechnol7:127-133.
150 SKRZYPEK E, REPKA P, STACHURSKASA, BARABASZ KB, MOŻDŻEŃ
K(2015)Allelopathiceectofaqueousextractsfromtheleavesof
peppermint(mentha×piperita)onselectedphysiologicalprocesses
ofcommonsunower(helianthusannuusl).NotBotHorAgrobot
ClujNapoca20:43-48.
151 Ashurst PR (1991) Food avorings. Springer Science & Business
Media19:151.
152 EcclesR (1994) Mentholandrelatedcooling compounds.JPharm
Pharmacol46:618-630.
153 EcclesR(2003)Menthol:Eectsonnasal sensaonofairow and
thedrivetobreathe.CurrAllergyAsthmaRep3:210-214.
154 Haghighi AB, Motazedian S, Rezaii R, Mohammadi F, Salarian L,
et al. (2010) Cutaneous applicaon of menthol 10% soluon as
an aborve treatment of migraine without aura: A randomised,
double-blind,placebo-controlled,crossed-overstudy.IntJClinPract
64:451-456.
155 PatelT,IshiujiY,YosipovitchG(2007)Menthol:Arefreshinglookat
thisancientcompound.JAmAcadDermatol57:873-878.
156 KhannaR, MacDonald JK, LevesqueBG (2014) Peppermint oil for
thetreatmentofirritablebowelsyndrome:Asystemacreviewand
meta-analysis.JClinGastroenterol48:505-512.
157 WatsonEC,KoenigMN,GrantZL,WhiteheadL,TrounsonE,(2016)
Apoptosis regulates endothelial cell number and capillary vessel
diameter but not vessel regression during renal angiogenesis.
Development143:2973-2982.
158 Rasouli H, Mansouri K, Mahamed-Khosroushahi L (2014) An-
angiogenic/inammatory behavior of mushroom ganoderma
lucidum extract could be eecve for treatment of corneal
neovascularizaon:Ahypothesis.JRepPharmSci3:14-18.
159 RasouliH,ParvanehS,MahnamA,Rastegari-PouyaniM,Hoseinkhani
Z,etal.(2017)An-angiogenicpotenaloftrypsininhibitorpuried
from cucumis melo seeds: Homology modeling and molecular
dockingperspecve.IntJBiolMacromolec96:118-128.
160 Ku CM, Lin JY (2013) An-inammatory eects of 27 selected
terpenoidcompoundstestedthroughmodulangth1/th2cytokine
secreon proles using murine primary splenocytes. Food Chem
141:1104-1113.
161 KaeferCM,MilnerJA(2008)Theroleofherbsandspicesincancer
prevenon.JNutrBiochem19:347-361.
162 Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB (2010)
Targeng inammatory pathways by triterpenoids for prevenon
andtreatmentofcancer.Toxins2:2428-2466.
163 KaleA,GawandeS,KotwalS(2008)Cancerphytotherapeucs:Role
foravonoidsatthecellularlevel.PhytotherRes22:567-577.
164 Liu X, Sun Z-L, Jia A-R, Shi Y-P, Li R-H, et al. (2014) Extracon,
preliminary characterizaon and evaluaon of in vitro antumor
andanoxidantacviesofpolysaccharidesfrommenthapiperita.
IntJMolSci15:16302-16319.
165 LinJ-P,LiY-C,LinW-C,HsiehC-L,ChungJ-G(2001)Eectsofmenthol
onarylaminen-acetyltransferaseacvityinhumanlivertumorcells.
AmJChinMed29:321-329.
166 Deguchi T, Mashimo M, Suzuki T (1990) Correlaon between
acetylator phenotypes and genotypes of polymorphic arylamine
n-acetyltransferaseinhumanliver.JBiolChem265:12757-12760.
167 Payton M, Mushtaq A, Yu TW, Wu LJ, Sinclair J, et al. (2001)
Eubacterial arylamine n-acetyltransferases–idencaon and
comparisonof 18 members ofthe protein family with conserved
acvesitecysteine,hisdineandaspartateresidues.Microbiology
147:1137-1147.
168 Upton A, Johnson N, Sandy J, Sim E (2001) Arylamine
n-acetyltransferases–of mice, men and microorganisms. Trends
PharmacolSci22:140-146.
169 NissenL,LauE(2016)Olddrugnewindicaon:Anhistaminefor
thepaininyourstomach?AustralianPharmacist35:32-35.
170 SadraeiH,AsghariG,AlipourM(2016)An-spasmodicassessment
ofhydroalcoholicextractandessenaloilofaerialpartofpycnocycla
caespitosaboiss. & hausskn on ratileumcontracons.Res Pharm
Sci11:33-37.
171 Harris LA (2016) Treang irritable bowel syndrome: A fresh and
mintyapproachtoanoldtherapy.DigDisSci61:334-336.
172 Jain PK, Das D, Jain P, Jain P (2016) Pharmacognosc and
pharmacological aspect of bacopa monnieri-a review. Innovare J
AyurvedicSci1:7-11.
173 CheyWD,Kurlander,J,EswaranS(2015)Irritablebowelsyndrome:
Aclinicalreview.Jama313:949-958.
174 KlineRM,KlineJJ,DiPalmaJ,BarberoGJ(2001)Enteric-coated,ph-
dependent peppermint oil capsules for the treatment of irritable
bowelsyndromeinchildren.JPediatr138:125-128.
175 ReesW,EvansB,RhodesJ(1979)Treangirritablebowelsyndrome
withpeppermintoil.BMJ2:835-836.
176 SahaL (2014) Irritable bowel syndrome: Pathogenesis, diagnosis,
treatment, and evidence-based medicine. World J Gastroenterol
20:6759-6773.
177 Korterink JJ, Ruen JM, Venmans L, Benninga MA, Tabbers MM
(2015)Pharmacologictreatmentin pediatricfunconalabdominal
paindisorders:Asystemacreview.JPediatr166:424-431.
178 EganM,ConnorsEM,AnwarZ,WalshJJ(2015)Nature’streatment
forirritablebowelsyndrome:Studiesontheisolaonof(−)-menthol
from peppermint oil and its conversion to (−)-menthyl acetate J
ChemEduc92:1736-1740.
179 Sagduyu K (2002) Peppermint oil for irritable bowel syndrome.
Psychosomacs43:508-509.
180 TateS(1997)Peppermintoil:Atreatmentforpostoperavenausea.
J Adv Nurs26:543-549.
2017
Vol. 8 No. 4:54
16 This article is available from: www.acmicrob.com
ARCHIVES OF CLINICAL MICROBIOLOGY
ISSN 1989-8436
181 Cappello G, Spezzaferro M, Grossi L, Manzoli L, Marzio L (2007)
Peppermint oil (mintoil®) in the treatment of irritable bowel
syndrome: A prospecve double blind placebo-controlled
randomizedtrial.DigLiverDis39:530-536.
182 Akehurst R, Kaltenthaler E (2001) Treatment of irritable bowel
syndrome:Areviewofrandomisedcontrolledtrials.Gut48:272-282.
183 Camilleri M, CHOI MG (1997) Review arcle: Irritable bowel
syndrome.AlimentPharmacolTher11:3-15.
184 MadischA,HoltmannG,PleinK,HotzJ(2004)Treatmentofirritable
bowelsyndromewithherbalpreparaons:Resultsofadoubleblind,
randomized, placebo-controlled, mulcentre trial. Aliment
PharmacolTher19:271-279.
185 LevinM(2012)Herbaltreatmentofheadache.Headache52:76-80.
186 Gobel H, Schmidt G, Soyka D (1994) Eect of peppermint and
eucalyptusoilpreparaonsonneurophysiologicalandexperimental
algesimetricheadacheparameters.Cephalalgia14:228-234.
187 Maliakal PP, Wanwimolruk S (2001) Eect of herbal teas on hepac
drugmetabolizingenzymesinrats.JPharmPharmacol53:1323-1329.
188 WolfKK,GuordBT,BrantleySJ,WatkinsPB,PaineMF(2016)Drug
metabolism,transport.pharmacogenomics22:626-638.
189 Jancova P, Anzenbacher P, Anzenbacherova E (2010) Phase ii drug
metabolizingenzymes.BiomedPapers154:103-116.
190 Khodadust MR, Asadi GH (2015) Eects of peppermint (mentha
piperita l.) alcoholic extract on carbon tetrachloride-induced
hepatotoxicity in broiler chickens under heat stress condion.
PoultrySciJ3:1-16.
191 KaushikP,MathurM,RawatN,DuP(2012)Radioprotecveeect
of alcoholicextract ofmenthapiperita(linn) on swiss albinomice
exposedtowholebodygammairradiaon:Apreliminarystudy.Int
JPharmBioSci3:598-610.
192 Samarth RM, Panwar M, Kumar M, Kumar A (2006) Retracted:
Radioprotecveinuenceofmenthapiperita(linn) againstgamma
irradiaoninmice:Anoxidantandradicalscavengingacvity.IntJ
RadBiol82:331-337.
193 Kumar A, Samarth R, Yasmeen S, Sharma A, Sugahara T (2004)
Ancancer and radioprotecve potenals of mentha piperita.
Biofactors22:87-91.
194 GardinerP(2000)Peppermint(menthapiperita).LongwoodHerbal
TaskForce1-22.
195 NashP,GouldS,BernardoD(1986)Peppermintoildoesnotrelieve
thepainofirritablebowelsyndrome.BrJClinPract40:292-293.
196 Millqvist E, Ternesten-Hasséus E, Bende M (2013) Inhalaon
of menthol reduces capsaicin cough sensivity and inuences
inspiratoryowsinchroniccough.RespirMed107:433-438.
197 ShahPP,MelloP(2004)Areviewofmedicinalusesandpharmacological
eectsofmenthapiperita.NatProdRad3:214-221.
198 MitchellAR,CroweFJ(1996)Peppermintoilyieldandcomposion
fromminiand industrial dislleries. J HerbsSpices Med Plants 4:
81-88.
199 MatzatJH(1980)Thepeppermintindustry:Situaonand outlook
withemphasisonoregon.Pharmacogenecs1-155.
... 50 Además de los reconocidos usos en productos cosméticos, como las pastas dentales para proporcionar buen aliento y minimizar el crecimiento bacteriano, 7 en los últimos tiempos se ha visto un gran incremento de la utilización del AE de Mpi (o sus extractos) en farmacología, ya sea como principio activo o como excipiente. 48 Así, colagogos comerciales (Cholagogum Nattermann ® ), medicamentos gastrointestinales (Gastricholan ® , Iberogast ® , Ventrodigest ® , Colpermint ® , Gaviscon ® ), hipnóticos y sedativos (Nerventee Stada ® , Esberinervin ® ), bálsamos expectorantes (Pinimenthol Forte ® ) y suplementos dietarios, 28,31 también representan diferentes formas de exposición. Recientemente, los principales portales médicos internacionales se han hecho eco de las alarmantes concentraciones de PUL halladas en los compuestos a base de menta y mentol utilizados en los cigarrillos electrónicos y en el de otros productos como el tabaco sin humo, detectándose niveles muy superiores a los establecidos por la FDA para la ingesta de alimentos. ...
... Masomeh y col. 31 calcularon de forma teórica las energías de los orbitales frontera HOMO-LUMO (highest occupied and lowest unoccupied molecular orbital) de los principales componentes de la Mpi para determinar sus estabilidades y reactividades relativas (Tabla 7). ...
... Como puede observarse en la Tabla 7, tanto la PUL como el MF son los menos estables y por lo tanto, los más reactivos. 31 Entre ambos compuestos, la PUL es la que posee un menor ∆EGap, lo que evidencia la reactividad de la unidad estructural α-isopropiliden cetona analizada previamente. Pero la reactividad de ambas sustancias no solo repercute en el aspecto biológico sino que, además, tiene incumbencia directa sobre lo tecnológico. ...
Thesis
Full-text available
El objetivo general de esta Tesis es realizar una revisión e investigación bibliográfica sobre las reacciones químicas destinadas a disminuir el contenido de (R)-pulegona en aceites esenciales de menta de uso alimenticio, en particular, de las especies Mentha x piperita L. (Mpi) y Mentha arvensis L. (Mar), incluyéndose, además, la Mentha pulegium L. (Mpo) por su importancia toxicológica.
... Plants of medicinal values such as mint species have been exploited by man in folk medicine for several years (Saharkhiz et al., 2012). To date, over 80% of the world population rely on folk medicine as well as extracts or essential oil from medicinal plants to fulfil their prime health requirements (Loolaie et al., 2017). Mentha piperita which is otherwise known as peppermint or simply mint is naturally cultivated as hybrid of spearmint (Mentha spicata L.) and water mint (Mentha aquatic L.) (Khalil et al., 2015;Loolaie et al., 2017). ...
... To date, over 80% of the world population rely on folk medicine as well as extracts or essential oil from medicinal plants to fulfil their prime health requirements (Loolaie et al., 2017). Mentha piperita which is otherwise known as peppermint or simply mint is naturally cultivated as hybrid of spearmint (Mentha spicata L.) and water mint (Mentha aquatic L.) (Khalil et al., 2015;Loolaie et al., 2017). Even though, this plant is a native to Mediterranean region, it is being grown all over the world for several uses such as fragrance, flavour, medicinal, as well as pharmaceutical significance (Bellassoued et al., 2018;Heywood et al., 1993). ...
... Nutritionally, peppermint is a low-calorie plant and offers vitamins A and C, iron, potassium, and fiber. The substance, giving the mints their medicinal characteristic, aromas, and flavors, is menthol (Loolaie et al. 2017). The positive effects of peppermint on improving liver health and reducing oxidative stress have been shown in previous animal model studies (McKay and Blumberg 2006). ...
Article
Full-text available
The present study was conducted to evaluate aflatoxin B1 (AFB1) detoxification effects of some medicinal plants under both in vitro and in vivo. The in vitro experiment was performed with 25 treatments in 5 replications. The samples of medicinal plants were incubated with AFB1 for 72 hours, and the toxin residual in the supernatant was determined. The highest aflatoxin elimination was found to be related to peppermint (81%). Thereafter, in vivo experiment was conducted to investigate the effects of peppermint dried leaves, essential oil, and menthol on liver, bone, and meat, as well as the performance of growing Japanese quail fed diet contaminated with AFB1. A total of 640 seven-day-old Japanese quails were assigned using a completely randomized design as 2 × 4 factorial arrangement with two levels of AFB1 (including 0 and 2.5 mg/kg diet) and four treatments (including no additive; peppermint powder, 20 g/kg; peppermint essential oil, 800 mg/kg; and menthol powder, 400 mg/kg). Those birds fed AFB1 contaminated diet with no additives showed the worst liver health status by considering super oxide dismutase (P = 0.0399), glutathione peroxidase (P = 0.0139), alanine aminotransferase (P < 0.0001), and aspartate aminotransferase levels (P = 0.0512). However, the supplementation of AFB1 contaminated diet with additives improved their liver health status. Menthol receiving birds showed the highest tibia strength, while the birds fed with AFB1 contaminated diet with no additives had the weakest bone strength (P < 0.0001). A significant increase was also observed in Malondialdehyde level of meat by dietary inclusion of AFB1, which was well-repressed by the dietary supplementation of peppermint essential oil and menthol (P = 0.0075). Body weight gain dramatically decreased by adding AFB1 to the diet, which was recovered with the dietary supplementation of additives (P = 0.0585). According to the results of the current study, peppermint and its derivatives can be used to suppress aflatoxin effects on liver, bone, and meat quality and to improve the performance of Japanese quails. Keywords: Aflatoxin, Aspartate aminotransferase, Malondialdehyde, Peppermint, Super oxide dismutase
... which is biosynthesized and accumulated in the capillaries of the secretory glands on the surface of the epidermis. Additionally, peppermint EO contains compounds such as 1,8-Cineole, limonene, isopulegol, isomenthone, carvone, and pulegone (Loolaie et al. 2017). Zhao et al. (2005) indicated that the generation of secondary metabolites in plants is mostly associated with environmental stresses and their aggregation stimulated by elicitors. ...
... Essential oils produced from various plant species have also been suggested as potential biological control agents and shown to have antimicrobial activity and antioxidant and bio-regulatory properties [17]. Peppermint (Mentha × piperita or Mentha balsamea Wild.) is a medicinal plant with high nutritional value and use in both food and pharmaceutical industries [18]. The application of essential oils is considered an effective method for preventing Fusarium wilt in banana, muskmelon, and tomato [19,20]. ...
Article
Full-text available
The most important disease of tomato is Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (FOL). To control this disease, this study examined the combined use of bacterial bioagents and peppermint oil (PO). Seven bacterial isolates were collected from tomato plant rhizospheres and tested in vitro against FOL. The highest growth inhibition against FOL was shown by isolate No.3. This isolate was identified using 16S rRNA sequencing gene as Bacillus amyloliquefaciens (BA). Peppermint oil tested at different concentrations (1, 2, and 3%) against FOL mycelial growth in vitro showed the highest inhibition at 3%. The effects of BA, PO, and BA + PO in vitro on the seed germination and seedling vigor index of the tomato cv. ‘Tala F1’ was also tested. All “BA, PO, and BA + PO” treatments increased the percentage of germinated seeds and seedlings’ main shoots and root length compared to control treated seeds. The BA, PO, and BA + PO treatments were further tested under greenhouse and field conditions with pre-treated seedlings in FOL-contaminated soil. Under greenhouse conditions, each treatment decreased disease severity compared to untreated seedlings. Under field conditions, pre-treatment of tomato seedlings with BA and PO treatments reduced disease severity greater than BA + PO in combination and the mock-treated plants (66.6% for BA, 66.6% for PO and 55.3% for BA + PO, respectively). These findings support the use of BA or PO as bio-control agents against F. oxysporum in tomato. The interplay between peppermint oil, B. amyloliquefaciens, F. oxysporum, and the host plant requires further study to identify the causative mechanism for this increased disease resistance.
... Peppermint oil, which is obtained from the leaves of Mentha piperita L., Lamiaceae, is a well-known and important phytoproduct widely used in traditional medicine for several thousand years. The chemical composition of peppermint oil has been studied thoroughly in the literature [8]. It has a wide variety of medicinal properties, such as analgesic, anesthetic, antiseptic, astringent, carminative, decongestant, expectorant, stimulant, anti-inflammatory, etc. [9][10][11]. ...
Article
Full-text available
Essential oils have been studied for various applications, including for therapeutic purposes. There is extensive literature regarding their properties; however, their low stability limits their application. Generally, the microencapsulation of essential oils allows enhanced stability and enables the potential incorporation in solid dosage forms. Lavender and peppermint oils were encapsulated in microparticles using a spray-drying technique under optimized conditions: 170 °C temperature, 35 m3/h aspiration volume flow, and 7.5 mL/min feed flow. Arabic gum and maltodextrin were used as coating polymers individually in varying concentrations from 5 to 20% (w/v) and in combination. The microparticles were studied for morphology, particle size, oil content, and flowability. The formulated powder particles showed a high yield of 71 to 84%, mean diameter 2.41 to 5.99 µm, and total oil content of up to 10.80%. The results showed that both the wall material type and concentration, as well as the type of essential oil, significantly affected the encapsulation process and the final particle characteristics. Our study has demonstrated that the encapsulation of lavender and peppermint oils in Arabic gum/maltodextrin microparticles by spray-drying represents a feasible approach for the conversion of liquids into solids regarding their further use in powder technology.
... A variety of plant extracts (or essential oils) and chemical substances have been evaluated to identify their toxicity profiles on infectious organisms (Zarayneh et al. 2018). Despite all efforts in this field, the accumulating body of evidence suggests that only a few numbers of practical antibacterial agents commercially available to fight against infectious strains (Loolaie et al. 2017). ...
Article
Full-text available
This study sets out to compare the antibacterial and antibiofilm profiles of Ci/Ca EOs alone and in combination together against infectious bacterial strains. MIC assay was carried out to survey the effectiveness of prepared EOs by two-fold serial dilution method and MTT evaluation. Synergic antibacterial properties of EOs against target strains were studied by using checkerboard titration method. Biofilm growth and development were evaluated using CV and XTT reduction assays. Antibacterial activity was observed for EOs against both bacterial strains with stronger activity for CiEO against both bacteria. The synergistic antibacterial effect was observed only against B. subtilis . Based on the FIC index, combinations could not inhibit the growth of E. coli . The pure EOs and their combination inhibited cell attachment for both studied bacteria with stronger effect on E. coli . CV and XTT reduction assays results showed that Ci EO and its combination with CaEO had the highest antibiofilm activity at lowest MIC value 0.08% and 0.04/0.02% against biofilm formed by E. coli and B. subtilis respectively, indicating a high antibiofilm potential. Computational docking analyses also postulated that the active constituents of evaluated EOs have the potential to interact with different bacterial targets, suggested binding mode of action of EOs metabolites. By and large, synergistic anti-biofilm properties of EOs may provide further options for developing novel formula to inhibit a variety of infectious clinical and industrial strains without (or less) toxicity effects on human body. Graphical Abstract
Article
Background: Chronic pruritus is one of the most common conditions in dermatology as well as a common manifestation in many systemic diseases. Since the etiology of chronic pruritus remains somewhat unknown, hence, conventional medications may not always show a good therapeutic response. This finding has led both investigators and patients to use herbal and complementary remedies for its treatment. The aim of this study was to review clinical trials in which herbal and complementary medicine was used in the control and treatment of chronic pruritus. Materials and methods: In this study, we reviewed related articles in this domain, from 2000 to 2020. The search involved electronic databases including PubMed, Scopus, Web of Science, Cochrane, Google Scholar, and SID databases using the keywords "pruritus", "itch", "herb", "complementary medicine", "traditional medicine", "integrative medicine", and their related MeSH terms. Finally, we extracted the pertinent information from these articles and summarized the results. Results: The findings of this study showed that 17 clinical trials have been conducted to date in order to evaluate the efficacy of herbal remedies and complementary medicines in the treatment of chronic pruritus. Herbal remedies including turmeric, Fumaria parviflora, Avena sativa, capsaicin, sweet almond oil, peppermint oil, violet oil, vinegar, as well as manual therapies including aromatherapy, auricular acupressure and acupuncture, were significantly effective in the treatment of chronic pruritus. Conclusion: There are only a few studies published on the therapeutic efficacy of herbal remedies and complementary medicine in the treatment of chronic pruritus. Some have shown promising results. Therefore, more evidence-based studies are needed in order to determine if herbal remedies and complementary medicine could be an effective alternative or adjuvant treatment modality in chronic pruritus.
Article
Full-text available
To study the effect of different levels of peppermint (Mentha piperita) plant powder, on immune system of broilers under heat stress condition, 192 one-day old chickens (Ross, 308) were randomly allocated to 4 dietary treatments with 4 replicates of 12 chicks each, using a completely randomized design. The four groups were characterized by a basal diet (control), basal diet supplemented with 1 and 2 percent peppermint powder and basal diet supplemented with 300 mg/kg vitamin E. Heat stress was created by setting room temperature at 34 °C for 8 hour/day from the 35th to the 42nd day of experiment. Results showed differences (P < 0.05) for feed conversion ratio (FCR) at 21 days and body weight (BW) at 42 days of the experiment. Birds treated by 2 percent peppermint powder and 1 percent peppermint powder showed higher and lower body weight gain, respectively, at 21 days of age, when compared with birds fed basal diet and vitamin E. A significantly higher level of total Ig, IgM and IgG was found for peppermint powder than other treatment groups at 35 days and 42 days of age. Significant interactions were observed between diet and sex on IgG at 35 days of the experiment (P < 0.05). There were significant (P < 0.05) differences among the treatments for total white blood cells, lymphocytes, heterophils, heterophils to lymphocytes ratio at 42 days of experiment and 2 percent peppermint powder increased total white blood cells values compared to basal diet and vitamin E. The peppermint powder significantly made a difference for serum concentrations of total protein, albumin, globulin, triglyceride, total cholesterol, highdensity lipoprotein-cholesterol (HDLC), low-density lipoprotein-cholesterol (LDLC) and very low-density lipoprotein-cholesterol (VLDLC) at 21days and 42 days of age (P < 0.05). Blood serum concentration of HDLC increased by peppermint powder treatment, whereas they were lower for basal diet and vitamin E at 42 days of age. Liver weight was higher and lower in 1 percent peppermint powder and basal diet treated groups, respectively (P < 0.05). In general, results indicated that supplementation of peppermint powder in the diet did not improve bursa of fabricius and spleen weight of broiler chicken, but ha an antioxidative potential to improve oxidative stability and immune response.
Article
Full-text available
Objective There are a number of published data indicating in vitro anti-HSV activity of some of Iranian herbal extracts with no systematic review to discuss these results. Therefore, this article was aimed to review and discuss the methods carried out and the phytochemistry and bioactivity of the extracts used and also conclusions provided in these publications. Materials and Methods Published articles both in English (from Medline, Science Direct, EMBASE, Scopus, Pro Quest, Google scholar, Cochrane Library) and in Persian (from SID, Iran Medex and Magiran) databases, from 1966 to October 2014 were incorporated in this review. The in vitro studies that lacked CC50, IC50, were excluded. Results Only 42 published reports were found to examine Iranian herbs against HSV replication in vitro. Seventeen out of 42 studies in which 23 kinds of medicinal plants were subjected to crude extraction were included. The review of data showed that some of the herbal extracts including Hyssopus officinalis methanolic extract, Melissa officinalis aqueous extract, Quercus persica L. hydroalcoholic extract and Securigeras ecuridaca methanolic extract with selective index (SI) of 234, 877, >778 and 250, respectively were highly effective against HSV in vitro. Conclusion More comprehensive studies using more advanced methods are needed to be done to achieve promising anti-HSV agents from the bioactive compounds isolated from these herbs.
Article
Full-text available
Background Mentha plants containing over 25 species are aromatic perennial herbs. These species have been interested and widely used because of various clinical findings. Many volatile compounds facilitate environmental interactions such as protecting themselves from pathogens, parasites, and herbivores. Therefore, this study assessed comparison of volatile composition and antimicrobial activity from nine Mentha species. The composition of volatiles was investigated from the aerial parts of nine different Mentha species using gas chromatography-mass spectrometry (GC/MS). In addition, screened antimicrobial activities against six food borne pathogenic bacteria using extracts obtained these plants. Results 77 volatile compounds were identified in total and it included 13 monoterpenoids, 19 sesquiterpenoids, and others. In particular, monoterpenoids such as eucalyptol (9.35–62.16 %), (±)camphorquinone (1.50–51.61 %), and menthol (0.83–36.91 %) were mostly detected as major constituents in Mentha species. The ethanol extract of nine Mentha species showed higher activity compared to other solvent extracts (methanol, hexane, di ethyl ether). Among these nine Mentha species chocomint showed higher inhibition activity against all bacteria. Conclusions It is concluded that monoterpenoids are mainly rich in Mentha plants. Moreover, most of extracts obtained from Mentha showed strong antimicrobial activity against bacteria. Of these, chocomint indicates the highest inhibition activity.
Article
Full-text available
Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes. In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites. Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.
Article
Full-text available
Linear polyacenes (LPAs) beyond pentacene are highly unstable and their application potential in the optoelectronics field is very limited. On the basis of theoretical studies at the M06L/6-311++G(d,p) level of DFT, we show that annulating dihydropyrazine units to LPA cores can yield large LPA mimics. This strategy enhances the aromaticity of the LPA core and also provides a way to modulate the HOMO-LUMO energy gap by choosing an appropriate LPA core and extending dihydropyrazine annulation. The study is conducted for LPA mimics containing up to six dihydropyrazine units annulated to benzene (pB1-pB6), naphthalene (pN1-pN6), anthracene (pA1-pA6) and tetracene (pT1-pT6) cores. The longest of them pT6 contains 34 linearly connected six-membered rings. The dehydrogenation energy (Edh) of the N-heterocycles of the LPA mimics showed endothermic character and indicated their higher stability than dehydrogenated N-heteroacenes. The total Edh (ΣEdh) is proportional to the increase in the number of heterocycles and the increase in the size of the LPA core. The aromaticity of individual rings of all the LPA mimics is assessed on the basis of the harmonic oscillator model of aromaticity (HOMA) and nucleus independent chemical shift (NICS) parameters. Both parameters showed strong linear correlation with ΣEdh, confirming the geometric, magnetic and energetic criteria of aromaticity. The electronic features of the LPA mimics assessed by analysing molecular electrostatic potential topography and molecular orbitals have shown that the LPA cores retain the reactivity of the parent LPA. Furthermore, significant mixing of the N-lone pairs of the heterocycle with carbon π-orbitals improves aromaticity and decreases the HOMO-LUMO energy gap.
Article
Full-text available
Various plant extracts have great potential against infectious agents and can be used for therapeutic purposes. This study was carried out to evaluate the antimicrobial activities of peppermint (Mentha piperita) extracts against 10 multidrug resistant (MDR) pathogenic bacterial clinical isolates.The antibacterial activities of ethanol, methanol, ethyl acetate and chloroform peppermint extracts were assessed using the standard minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) methods. Overall, the ethyl acetate extract of peppermint had strong growth inhibitory effects on the tested pathogens, followed by the chloroform, ethanol and methanol extracts. The inhibitory activity of the ethyl acetate extract against all Gram-negative pathogens was higher than that of chloroform (10-80. mg/ml), methanol (10-(>80. mg/ml) and ethanol (40-(>80. mg/ml). The lowest MIC value was seen for . Streptococcus pyogenes (1.25. mg/ml for ethyl acetate extract), followed by methicillin-resistant . Staphylococcus epidermidis (MRSE) and . Enterococcus faecalis (2.5. mg/ml for ethyl acetate extract).The MBC values of all extracts were higher than the corresponding MIC values for the majority of pathogens. This study highlights the potential antibacterial activity for . M. piperita extracts, especially the ethyl acetate extract, against MDR . S. pyogenes, E. faecalis, methicillin-resistant . Staphylococcus aureus (MRSA), MRSE and carbapenem-resistant . E. coli, and . Klebsiella pneumonia clinical isolates. Further . in vitro and . in vivo studies on a large number of clinical isolates of MRSA, . Acinetobacter baumannii and . Stenotrophomonas maltophilia are necessary to further investigate and standardize the inhibitory effect of peppermint extracts against these emerging pathogens.
Article
Full-text available
The essential oil obtained from fresh leaves of Mentha arvensis (Lamiaceae), a perennial aromatic herb grown in Saudi Arabia, was screened for in vitro antibacterial activity and chemical composition. Hydro-distilled essential oil (yield 0.71%) was analysed for its chemical composition by gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was tested in vitro on gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Streptococcus pyogenes) and gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) using agar disc diffusion assay and minimum inhibitory concentration (MIC) was also determined. The essential oil analysis displayed the presence of 21 constituents which represent 97.51% relative peak area of the whole chromatogram. The leading components of the oil were monoterpenes (92.52%) represented by 04 hydrocarbons (5.10%) and 11 oxygenated derivatives (87.42%) with menthol (56.35%), menthone (10.90%), methyl acetate (7.70%) and isomenthone (5.20%) as the major constituents. The pathogens were sensitive to the oil and showed highly effective antibacterial activity with the maximum inhibition zone against S. aureus (22.33 ± 1.15 mm). The minimum inhibitory concentration (MIC) of the oil was higher against gram-positive bacteria than the gram-negative bacteria. The results indicate that the fresh leaves oil of M. arvensis has high potential as an antibacterial agent for both pharmaceutical and pesticide industries and can also be a promising candidate for flavor and fragrance applications.
Article
Melons have a good source of protease inhibitors. Its fruit and seeds have been used as a traditional medicine. However, its effects on angiogenesis and mechanism of its action remain elusive. Herein trypsin inhibitor from aqueous extract of C. melo seeds (TICMS) was purified. Its effects on different steps of angiogenesis were evaluated. Also, we examined its effects on migration and angiogenesis of endothelial cells. Three dimensional model of TICMS protein was accurately built in which TICMS docked to αVβ3 integrin and VEGFR1. Electrophoresis analysis of the purified protein revealed a single band with a molecular mass of about 3 kDa. Treatment with TICMS at six doses resulted in a significant decrease of endothelial cell proliferation with an IC50 value of about 20 μg/ml. Tubulogenesis assay revealed that a dose dependent anti-angiogenic activity of TICMS (5–40 μg/ml). Also, TICMS had inhibitory effects on VEGF, MMP-2 and MMP-9 secretion. Our docking result speculated that TICMS could bind to the cleft between the αVβ3 integrin and it able to decrease the activity of this receptor. The TICMS was also able to interact with VEGFR1 receptor, but with low probability. Based on our study, TICMS could be used as a specific angiogenesis inhibitor.
Article
Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.