
Low Cost and High Concurrency ID Maker in Distributed Environment 

Kan Yao 1, Hu-Xuan Ni 2, Yuan Wang 3, Jing Tuo 4, Yun-Feng Li5, Jun-Jie Ding6 
1State Grid Hubei Electric Power Research Institute, Wuhan, China 
2State Grid Hubei Electric Power Research Institute, Wuhan, China 
3State Grid Hubei Electric Power Research Institute, Wuhan, China 
4State Grid Hubei Electric Power Research Institute, Wuhan, China 
5State Grid Hubei Electric Power Research Institute, Wuhan, China 
6State Grid Hubei Electric Power Research Institute, Wuhan, China 
1 351784661@qq.com, 2312929323@qq.com, 3365054779@qq.com, 477191928@qq.com, 5460651211@qq.com, 6 10390449@qq.com 

Abstract: In many practical computer engineering projects, will use the ID as a unique identifier. Many methods to 
generate ID, but it is not easy to choose a cost-effective solution. Through the improved ID method to generate 
common defects, ID manufacturing is to build a high performance and low cost, for rapid generation of distributed 
only under the environment of ID. 

1. Introduction 
Architecture of a web system, the system is the only ID 
is often encountered problems, in order to adapt to the 
needs of different scenarios and performance 
requirements, the common method of generating ID has 
the following: 

1.1 Relational Self Growth Field Generation 
ID 

This is the way, the most common use of the database, 
the database only. The code is relatively simple, each 
increment to lock field, expensive. ID digital natural 
sorting, paging and sorting of the results is very helpful. 
But the drawbacks in the performance is not up to the 
requirements of the situation, it is difficult to expand in a 
single data or read and write separate or more from a 
major case, only one main library can be generated, the 
risk of a single point of failure. 

1.2 UUID 

The use of machine information and time stamp, a 
theory on the generation of the only global ID. by 
numberandletter, string length generally in about 32. Has 
the advantages of rapid, simple. But the disadvantages 
are obvious: no ranking, cannot guarantee the increasing 
trend. With UUID as the primary storage, query 
efficiency low. The storage space is relatively large, if it 
is a massive database, you need to consider the problem 
of storage. The amount of data transmission is also great, 
UUID and reading is not intuitive. 

1.3 REDIS 

REDIS is a memory database, ID increment operation 
more quickly, when the traditional relational database 
since the increased pressure becomes larger, sometimes 
will take REDIS to generate ID. but when there is no 
REDIS system, also need the introduction of new 
components, increasing the complexity of the system. 
To encoding and the workload is relatively. But there is 
a single point of failure and the cost of network 
communication, redis is usually used in the form of a list 
in the data cache, landing the advantage is not obvious, 
the need for additional open disk synchronous refresh 
function, in order to guarantee the redis after the restart 
of ID only. 

1.4 U Se Zookeeper To Generate Unique ID 

Zookeeper mainly through the znode data version to 
generate a serial number, can generate 32 bit and 64 bit 
data version number, the client can use the version 
number as a unique serial number. This method is 
mainly rely on the zookeeper to generate a unique ID, 
and multistep call API, if the competition is high, need 
to consider the use of.Zookeeper distributed lock in a 
production environment requires at least three machines, 
in order to ensure that a process can be down. And each 
ID needs network communication, each request time at 
the MS level. 

  In summary, the common method of manufacturing 
ID will frequently produce expensive network 
communications, network cost. Relational database and 
redis are single point failure problem obviously. While 

 
    

 
DOI: 10.1051/, 03003 (2017) 712012

ITA 2017  

ITM Web of Conferences itmconf/201 3003

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



the use of zookeeper cluster, in order to ensure the high 
availability of cluster server, you need at least three or 
more expensive machines, in order to solve the above 
problems., reduce network communication, improve the 
clustering performance, then defines a new ID machine, 
the following named id_maker. 

2. System Architecture 
Wherever In order to reduce the network communication 
as much as possible, we can get a batch of ID after the 
cache to the corresponding machine, so as to avoid the 
distribution of ID to store ID machine request. Then 
when the ID is fast enough, then get ahead of another 
batch of ID, added to the original cache architecture as 
shown Are in figure1below  

 

 
Figure1. nnotation   Dao: Data Access Object     DB: Database. 

I id_list is used to store the list of Id blocks obtained 
from Dao, most of which are discontinuous between 
blocks and blocks 
 

There is a unified update thread behind each use 
process, if the number of id_list in ID is less than 10% of 
each allocation depth of the configuration, the new block 
will be filled 
 

E Dao is used to assign each type of manufacturer 
from the DB global unique ID list block, mainly 
responsible for the implementation of SQL (UPDATE 
Fid=Fid Falloc_size WHERE Fsect=xxx;)It’s features 
like Michi Ko, each of the types used have a pool, each 
ID will be filled with a large piece of water level, when 
the water level is insufficient to update the water level 

3. Unified Configuration 
As shown in figure 2: 

Type: used to distinguish between different business 
needs  

Used id: inform current usage of Id 
Block size: each time the size of the block, the 

configuration determines the height of the water level of 
each fill. The smaller the value of the business can be 
configured smaller, equivalent to the appropriate 
increase in the value of the configuration can be large 

Initial size: there will be an initial water level item at 
the time of the first increase in configuration. When used 
for initial data entry, do not repeat the existing data 

4. Interface Definition and 
Realization 

4.1 Interface Definition Code Is As Follows 

Public abstract class IdMaker {public abstract long 
createId() throws IdException; public int 
createIdIntSafe() throws IdException;} 

Public class IdMakerFactory { public IdMaker 
getIdMaker(int type);} 

4.2 Realization 

Pull the ID from the local buffer ID, if the number of the 
buffer pool is found to be 1/10 of the original, then start 
the update, fill. If there is no buffer in itself, then directly 
from the DB (as shown in figure 3): 

 

Figure2. configuration 

Figure3.  

4.3 Database Table Design: 

Field name Field type Meaning 

Fsect INT 
the type of 
business 

Fid BIGINT 
current 
depth 

Falloc_size INT 

each 
allocation 

size 

Fdesc VARCHAR(128) 
business 

description 
Fcreate_timestamp INT create time 

Flastmodify_timestamp INT 

last 
modified 

time 

CREATE TABLE tallocid_bysect ( 
Fsect INT UNSIGNED NOT NULL, // the type of 
business 
Fid BIGINT UNSIGNED NOT NULL DEFAULT 
1000// current depth 
Falloc_size INT UNSIGNED NOT NULL DEFAULT 
500 //each allocation size 
Fdesc VARCHAR (128) NOT NULL DEFAULT ", // 

 
    

 
DOI: 10.1051/, 03003 (2017) 712012

ITA 2017  

ITM Web of Conferences itmconf/201 3003

2



business description 
Fcreate_timestamp INT NOT NULL DEFAULT 0 // 
create time 
Flastmodify_timestamp INT NOT NULL DEFAULT 
0//last modified time 
PRIMARY KEY (Fsect) 

5. Conclusions 
Easy to use, only need to configure different types, can 
support the needs of a variety of different types of online 
ID generated. 

High availability in MySQL crash case, each 
machine can be configured with large enough buffer 
pool. Combined with the rapid MySQL downtime 
monitoring system, operation and maintenance can be 
involved in. 

Less input resources, only a single MySQL can be 
carried on the theory of infinite number of types of 
business infinite number of distribution (depending on 
the frequency of CPU) 

Production speed, no network communication 
pressure. Every time to get ID is an integer of 1 
operation, time-consuming basic for 0 

References 
[1] [1]Distributed Systems: An Algorithmic Approach, 

Second Edition (Chapman & Hall/CRC Computer 
and Information Science Series) 

[2] [2]Big Data: A Revolution That Will Transform 
How We Live, Work, and Think2013-03 

[3] [3] Java programming ideas (fourth edition) 
paperback - June 1, 2007  Shi Er (author), Chen 
Haopeng (translator) 

 

 
    

 
DOI: 10.1051/, 03003 (2017) 712012

ITA 2017  

ITM Web of Conferences itmconf/201 3003

3


