Article

Microwave Sensors in Your Life [From the Guest Editors' Desk]

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The articles in this special section addresses microwave sensor technology and discusses applications for its use. Radar sensors for military or automotive purposes and airport body scanners are examples that have gained wide interest, and the technology behind these has already been presented several times in the magazine. However, a significant number of microwave sensors used in our daily lives are not so well known to the average person because they are, for example, hidden behind walls or integrated into technical equipment.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Technological innovation with millimeter waves (mm waves), signals having carrier frequencies between 30 and 300 GHz, has become an increasingly important research field. While it is challenging to generate and distribute these high frequency signals using all-electronic means, photonic techniques that transfer the signals to the optical domain for processing can alleviate several of the issues that plague electronic components. By realizing optical signal processing in a photonic integrated circuit (PIC), one can considerably improve the performance, footprint, cost, weight, and energy efficiency of photonics-based mm-wave technologies. In this article, we detail the applications that rely on mm-wave generation and review the requirements for photonics-based technologies to achieve this functionality. We give an overview of the different PIC platforms, with a particular focus on hybrid silicon photonics, and detail how the performance of two key components in the generation of mm waves, photodetectors and modulators, can be optimized in these platforms. Finally, we discuss the potential of hybrid silicon photonics for extending mm-wave generation towards the THz domain and provide an outlook on whether these mm-wave applications will be a new milestone in the evolution of hybrid silicon photonics.
Conference Paper
Analog radio-over-fiber transmission and millimeter-wave and terahertz signal generation through photonic heterodyning are a valuable and versatile solution for many applications. This talk will discuss recent advances, focusing 5G networks, wireless communications and sensing applications.
ResearchGate has not been able to resolve any references for this publication.