ArticlePDF Available

Harry Potter-inspired mathematics

Authors:

Abstract

This article outlines teaching ideas appropriate for primary mathematics. It is mainly aimed at primary school teachers and teacher-researchers. Read, watch, or just discuss J. K. Rowling’s Harry Potter and the Philosopher’s Stone with your class, and then get students to engage with these associated mathematical problems. The problems cover a diverse range of key mathematical concepts. (Note: The title for U.S. readers is Harry Potter and the Sorcerer’s Stone.)
18 September 2017 • teaching children mathematics | Vol. 24, No. 1 www.nctm.org
math by the month James Russo and Toby Russo
James Russo, james.russo@monash.edu (Wilandra Rise Primary School), and Toby Russo, russo.toby.t@edumail.vic.gov.au (Bell Primary
School), are primary school teachers in Victoria, Australia. Their teaching passion revolves around developing engaging games and activities
that extend student thinking. Edited by Lisa Brooks, Lisa.Brooks@ucf.edu, a lecturer in the College of Education and Human Performance
at the University of Central Florida in Orlando; and Samantha Neff, Samantha_neff@scps.k12.fl.us, a K–grade 5 math coach at Highlands
Elementary School in Winter Springs, Florida. Email problem collections for the editors to consider as future Math by the Month columns. See
submission guidelines at http://www.nctm.org/WriteForTCM. Email creative solutions and adapted problems to tcm@nctm.org for potential
publication, noting Readers Exchange in the subject line.
WEEK 1
The Weasley family includes 7 siblings separated by a total of 11 years. In order of their ages, 6 boys (Bill,
Charlie, Percy, Fred, George, and Ron) are followed by 1 girl (Ginny). Fred and George are twins. All the
boys are at least 2 years apart (except, of course, the twins). If the ages of all the boys added to 32 in the
year that Ginny was born, how old were each of the children? How old is each when Ron graduates from
Hogwarts at the age of 18?
WEEK 2
After hours of reading about potions, you have worked out how to make a potion that will help
you get a perfect score on your potions exam. The recipe, which makes enough for 3 students,
requires 8 fairy wings and 12 drops of dragon blood. If you have 48 fairy wings, how much
dragon blood do you need? How many doses of potion could you make with these ingredients?
How many fairy wings would you need to make enough potion for an entire class of 24 students?
WEEK 3
A thunderstorm is fast approaching Hogwarts! A swarm of animals and a group of witches and wizards are
frantically flying to safety. You notice 3 witches and 2 wizards on brooms (each with 2 legs), 1 phoenix (also
with 2 legs), 3 hippogriffs (with 4 legs each), a parliament of owls (with 2 legs each), and a clan of dragons
(with 4 legs each). If you saw 17 pairs of wings and 62 legs in the sky, how many owls and dragons did you see?
WEEK 4
In a Quidditch game, a team tallies 10 points when it scores a goal with the quaffle. To score a goal, a
chaser must throw the quaffle through 1 of 3 hoops. Malfoy is taking a penalty shot for Slytherin, and Ron
is the keeper. Malfoy has an equal chance of putting the penalty shot in any of the 3 hoops; however, he
misses every 4th penalty completely. If Ron guesses the correct hoop, he saves the penalty shot. What is the
probability that Malfoy scores the penalty shot?
Grades 5–6
Harry Potter–inspired
mathematics
Read, watch, or just discuss J. K. Rowling’s Harry Potter and the Philosopher’s Stone
with your class, and then get students to engage with these associated mathematical
problems. The problems cover a diverse range of key mathematical concepts.
(Note: The title for U.S. readers is Harry Potter and the Sorcerer’s Stone.)
Copyright © 2017 The National Council of Teachers of Mathematics, Inc. www.nctm.org.
All rights reserved. This material may not be copied or distributed electronically or in any other format without written permission from NCTM.
This content downloaded from 130.194.20.173 on Thu, 31 Aug 2017 03:59:56 UTC
All use subject to http://about.jstor.org/terms
www.nctm.org Vol. 24, No. 1 | teaching children mathematics • September 2017 19
WEEK 1
Harry, Ginny, and Ron were meeting in Hogsmeade for butterbeers. Ginny left from Hagrid’s cabin,
traveling on 1 of the old Cleansweep Brooms, at 60 miles per hour (mph). Harry left from the Gryffindor
common room, which is 4 miles from Hogsmeade, traveling on his Firebolt at 120 mph. Harry and
Ginny left for Hogsmeade at exactly the same time and arrived at exactly the same time. How
far is Hagrid’s cabin from Hogsmeade? How long did their journey take?
WEEK 2
Slytherin smashes Gryffindor! In Quidditch, a team scores 10 points when they score a goal with the quaffle
and 150 points when the seeker catches the snitch. Despite scoring 17 goals with the quaffle and Harry catching
the snitch, Gryffindor still lost the match to Slytherin by more than 100 points. How many quaffle goals might
Slytherin have scored? What might have been the score in the game? Record at least 5 different possibilities.
WEEK 3
The Hogwarts Express leaves Platform 93
4 at 11:00 a.m. on the 1st of September at the start
of the school year. If the locomotive travels at 90 miles per hour, and the length of the trip
is 570 miles, precisely what time does it arrive at Hogsmeade Station?
WEEK 4
New students at Hogwarts are sorted into the 4 houses by the magical Sorting Hat. Each student has an equal
chance of being chosen for Gryffindor, Hufflepuff, Ravenclaw, or Slytherin. Also, there are exactly the same
number of new witches as there are new wizards in each of the 4 houses. Imagine that there were 56 new
students. How many would you expect to be witches in Gryffindor, like Hermione?
Grades 3–4
SANDRA HARO/THINKSTOCK (POTION); ORENSILA/ISTOCK (BROOM); TOMACCO/ISTOCK (TRAIN); SILMAIREL/THINKSTOCK (SORTING HAT)
WEEK 1
Each Hogwarts Quidditch team has 3 chasers, 2 beaters, 1 seeker, and 1 keeper. Hogwarts has 4 Quidditch
teams altogether. How many students get to play Quidditch for one of the house teams? Can you work it
out another way? Which way do you think is easier and why?
WEEK 2
The Sorting Hat at Hogwarts School sorts students into 1 of 4 houses. In total, exactly 1
4 of new
students at Hogwarts are put into Gryffindor (red), 1
4 into Slytherin (green),
1
4 into Ravenclaw
(blue), and 1
4 into Hufflepuff (yellow). Professor Dumbledore takes a photo on the 1st day of the
year, and all the new students must wear their house colors. Draw a picture of what this photo
might look like if 20 new students are at Hogwarts. How would your picture change if
40 students are at Hogwarts? Explain your thinking.
WEEK 3
Hagrid taught his 3-headed dog, Fluffy, to guard the philosopher’s stone by keeping at least 1 eye open at
all times, to make sure no one could sneak past him and steal the stone. How many of Fluffy’s eyes might be
open, and how many might be closed, at any one time? Show as many possibilities as you can.
WEEK 4
Professor McGonagall, who is in charge of Gryffindor house, thinks that students make too much noise
when lining up for lessons. To cut down on chatter, she lines up students boy-girl-boy-girl-boy-girl (and
so on). If Hermione (who is a girl) is the 1st student in line for lessons, will the 6th student be a boy or a
girl? Will the 11th student be a boy or a girl? Will the 20th student be a boy or a girl?
e
w
h
e
o
K–Grade 2
This content downloaded from 130.194.20.173 on Thu, 31 Aug 2017 03:59:56 UTC
All use subject to http://about.jstor.org/terms
... Popular media are sometimes used by teachers to encourage students' interest in mathematics, and examples of media-inspired activities for mathematics classes are often shared in practitioner journals. For instance, several mathematics activities inspired by the Harry Potter series and Hunger Games series have been published in the National Council of Teachers of Mathematics' practitioner journals (e.g., Bush & Karp, 2012;Howe, 2002;Russo & Russo, 2017). Additionally, several books have been published to support teachers in connecting students to popular media, such as Math, Culture, and Popular Media: Activities to Engage Middle School Students Through Film, Literature, and the Internet (Chappell & Thompson, 2009) and Teaching Mathematics Using Popular Culture: Strategies for Common Core Instruction from Film and Television (Reiser, 2015). ...
Article
Full-text available
Media play an important role in young people’s lives as an agent of socialization, both generally and with regard to mathematics. To understand the mathematics-related messages disseminated to young people via popular media, we analyzed portrayals of mathematics and mathematicians in over 40 media examples (television shows, movies, websites, video games, and books). Notably, the selection of media was based on elementary students’ responses to a questionnaire about their media favourites, thus enabling an analysis of the messages to which students are exposed during typical media use. While there were differences in the portrayals across the media types, the messages disseminated consistently related to the invisibility of mathematics, narrow views of mathematics, and stereotypical portrayals of mathematicians. Such messages are problematic as they can influence young people’s views of mathematics and mathematicians, as well as of themselves as mathematics learners.
... We have attempted to demonstrate how the narrative-first approach can simultaneously engageteachers and students and energise the mathematics classroom, whilst allowing a range of mathematical skills and concepts to be covered across a variety of ability levels. For other examples of our attempts to employ this approach, see Russo & Russo (2017a, 2017b, 2017c, 2017d., 2018. If you'd like to find out more about this approach or any of the example lessons, please feel free to email the authors. ...
Article
Full-text available
The four pillars of student engagement, teacher engagement, breadth of mathematics and depth of mathematics are used to explain the benefits of a narrative-first approach for supporting the integration of mathematics and children's literature.
ResearchGate has not been able to resolve any references for this publication.