Conference PaperPDF Available

Simulation of Quad-rotor Flight Dynamics for the Analysis of Control, Spatial Navigation and Obstacle Avoidance

Authors:
  • Óbuda University, Budapest, Hungary

Abstract

Autonomous outdoor quadrotor helicopters increasingly attract the attention of potential researchers. Several structures and configurations have been developed to allow 3D movements. The autonomous quadrotor architecture has been chosen for this research for its low dimension, good maneuverability, simple mechanics and payload capability. This paper presents the navigation of an autonomous outdoor quadrotor helicopter. The paper is organized as follows: Section 1: Introduction. In Section 2, the modeling of the Quadrotor helicopter are presented. In Section 3 the control strategy are presented. In Section 4, the GPS navigation of the autonomous quadrotor helicopter is illustrated. Conclusions are given in Section 5.
1
Simulation of Quad-rotor Flight Dynamics for the Analysis of Control, Spatial
Navigation and Obstacle Avoidance
Gyula Mester1, Aleksandar Rodic2
1University of Szeged, Faculty of Engineering, Robotics Laboratory, Szeged, Hungary, drmestergyula@gmail.com.
2University of Belgrade, Institue Mihajlo Pupin, Robotics Laboratory, Belgrade, Serbia, aleksandar.rodic@pupin.rs .
Abstract Autonomous outdoor quadrotor helicopters
increasingly attract the attention of potential researchers.
Several structures and configurations have been
developed to allow 3D movements. The autonomous
quadrotor architecture has been chosen for this research
for its low dimension, good maneuverability, simple
mechanics and payload capability. This paper presents
the navigation of an autonomous outdoor quadrotor
helicopter. The paper is organized as follows: Section
1:Introduction. In Section 2, the modeling of the
Quadrotor helicopter are presented. In Section 3 the
control strategy are presented. In Section 4, the GPS
navigation of the autonomous quadrotor helicopter is
illustrated. Conclusions are given in Section 5.
1. INTRODUCTION
The quadrotor helicopter configuration is well known and
has been studied since the beginning of 1900s. In 1907,
the first known quadrotor helicopter, Gyroplane No. I, fli-
ed. Autonomous quadrotor helicopters increasingly attract
the attention of potential researchers. In fact, several indu-
stries require robots to replace men in dangerous, boring
or onerous situations. A wide area of this research is dedi-
cated to aerial platforms. Several structures and configu-
rations have been developed to allow 3D movements [1]-
[12], there are blimps, fixed-wing planes, single rotor hel-
icopters, bird-like prototypes, quadrotors, etc. Each of
these has advantages and drawbacks. The vertical take-off
and landing requirements exclude some of the aforementi-
oned configurations. However, the platforms which show
these characteristics have a unique ability for vertical, sta-
tionary and low speed flight. The electrically powered
four-rotor quadrotor helicopter architecture has been cho-
sen for this research for its low dimension, good maneuv-
erability, simple mechanics and payload capability (Fig.
1).
Figure 1: Quadrotor helicopter
This structure can be attractive in several applications, in
particular for surveillance, for imaging dangerous
environments and for outdoor navigation and mapping.
The paper is organized as follows: Section 1:Introduction.
In Section 2, the modeling of the Quadrotor helicopter are
presented. In Section 3 the control strategy are presented.
In Section 4, the GPS navigation of the quadrotor helicop-
ter is illustrated. Conclusions are given in Section 5.
2. MODELING OF THE QUADROTOR
HELICOPTER
The model of the quadrotor helicopter and the rotational
directions of the propellers can be see in Figure 2. The
rotor pair 2 and 4 rotates clockwise direction and the rotor
pair 1 and 3, anticlockwise direction. A quad-rotor heli-
copter has fixed pitch angle rotors, and the rotor speeds
are controlled in order to produce the desired lift forces.
Figure 2: The model of the quadrotor helicopter
2.1 Actuators of the Quadrotor Helicopter
The quadrotor helicopter has four actuators - brushless
DC motors wich exert lift forces F1, F2, F3, F4
proportional to the square of the angular velocities of the
rotors. Actually, four motor driver boards are needed to
amplify the power delivered to the motors. Their rotation
is transmitted to the propellers which move the entire
structure.
2.2 Sensor System of the Quadrotor Helicopter
Two types of sensors are used for measuring the robot
attitude and for measuring its height from the ground.
For the first, an Inertial Measurement Unit (IMU) was
adopted, while the distance was estimated with a SOund
Navigation And Ranging (SONAR) and an InfraRed (IR)
modules. There are: accelerometers and angular velocity
sensors ont he board of the quadrotor helicopter. The
concept of the vision system is originated from motion-
stereo approach. The camera is attached to the quadrotor
helicopter.
2
The data processing and the control algorithm are handled
in the Micro Control Unit (MCU) which provides the
signals to the motors.
2.3 Coordinate Systems for Navigation
To describe the motion of a 6 DOF rigid body it is usual
to define two reference frames [1]:
• the earth inertial frame (E-frame), and
the body-fixed frame (B-frame)
The equations of motion are more conveniently formula-
ted in the B-frame because of the following reasons:
• The inertia matrix is time-invariant.
• Advantage of body symmetry can be taken to simplify
the equations.
• Measurements taken on-board are easily converted to
body-fixed frame.
• Control forces are almost always given in body-fixed
frame.
The E-frame (OXYZ) is chosen as the inertial right-hand
reference. Y points toward the North, X points toward the
East, Z points upwards with respect to the Earth, and O is
the axis origin. This frame is used to define the linear
position (in meters) and the angular position (in radians)
of the quad-rotor. The B-frame (oxyz) is attached to the
body. x points toward the quad-rotor front, y points
toward the quad-rotor left, z points upwards and o is the
axis origin. The origin o is chosen to coincide with the
center of the quad-rotor cross structure. This reference is
righthand too. The linear velocity v (m/s), the angular
velocity Ω (rad/s), the forces F (N) and the torques T
(Nm) are defined in this frame. The linear position of the
helicopter (X, Y, Z) is determined by the coordinates of
the vector between the origin of the B-frame and the
origin of the E-frame according to the equation.
The angular position (or attitude) of the helicopter (φ
) is defined by the orientation of the B-frame with
respect to the E-frame. This is given by three consecutive
rotations about the main axes which take the E-frame into
the Bframe. In this paper, the “roll-pitch-yaw” set of
Euler angles were used. The vector that describes the
quad-rotor position and orientation with respect to the
Eframe can be written in the form:
s = [X Y Z φ θ ψ ]T (1)
The rotation matrix between the E- and B-frames has the
following form:
ccscs
cssscssscccs
cscssssccscc
R
(2)
The corresponding transfer matrix has the form:
cccs
sc
tcts
T
//0
0
1
(3)
In the previous two equations (and in the following) this
notation has been adopted:
sin(.)
(.) s
,
cos(.)
(.) c
,
tan(.)
(.) t
.
2.4 Kinematic Model of the Quadrotor Helicopter
The system Jacobian matrix, taking (2) and (3), can be
written in the form:
T
R
J
x
x
33
33
0
0
(4)
where
33
0x
is a zero-matrix. The generalized quad-rotor
velocity in the B-frame has a form [1]:
(5)
Finally, the kinematical model of the quadrotor helicopter
can be defined in the following way:
vJs
(6)
2.5 Dynamic Model of the Quadrotor Helicopter
Dynamic modelling of the quadrotor helicopter is a well
elaborated field of aeronautics. The dynamics of a generic
6 DOF rigid-body system takes into account the mass of
the body m and its inertia matrix I.
Two assumptions have been done in this approach:
The first one states that the origin of the body-fixed
frame is coincident with the center of mass (COM) of the
body. Otherwise, another point (COM) should be taken
into account, which could make the body equations
considerably more complicated without significantly
improving model accuracy.
The second one specifies that the axes of the B-frame
coincide with the body principal axes of inertia. In this
case the inertia matrix I is diagonal and, once again, the
body equations become simpler.
The dynamic model of a quad-rotor can be defined in the
following matrix form:
BBB GvvCvM )(
(7)
where
B
M
is the system Inertia matrix,
B
C
represents
the matrix of Coriolis and centrifugal forces and
B
G
is
the gravity matrix. The mentioned matrices have the
known forms as presented in [6]. A generalized force
vector
has the form [3]:
2
)( BB EvO
(8)
where:
0000
0000
0000
0000
TPBJO
(9)
3
is the gyroscopic propeller matrix and
TP
J
is the total
rotational moment of inertia around the propeller axis.
The movement aerodynamic matrix has the form [3]:
dddd
lblb
lblb
bbbb
EB
00
00
0000
0000
(10)
where:
b
(
2
sN
) and
d
(
2
smN
) are thrust and drag
factors [6] and l (m) is the distance between the center of
the quad-rotor and the center of the propeller. Equation
(11) defines the overall propellers’ speed (rad s−1) and the
propellers’ speed vector (rad s−1) used in equation (8).
4321
(11)
 
T
4321
(12)
Equations (1)-(12) take into account the entire quadrotor
non-linear model including the most influential effects.
3. MODELING OF THE CONTROL STRATEGY
Together with modeling, the determination of the control
algorithm structure is very important for improving
stabilization. Controlling a autonomous quadrotor
helicopter is basically dealing with highly unstable
dynamics and strong axes coupling. In addition to this,
any additional on-board sensor increases the autonomous
quadrotor helicopter total weight and therefore decreases
its operation time. The control system of the autonomous
quadrotor helicopter requires accurate position and
orientation information [4], [5], [7] [8] [9]. In this section
we present a control strategy to stabilize of the quad-rotor.
Figure 3 shows the block diagram of the quad-rotor
control system.
Figure 3: The block diagram of the quadrotor helicopter control system
4. GPS NAVIGATION OF THE AUTONOMOUS
QUADROTOR HELICOPTER
The trajectory of the autonomous quadrotor can be
introduced by GPS coordinates (e.g.
)( jPGPS
) as shown
in Figure 4.
Figure 4: Quadrotor helicopter localization and navigation
with respect to the imposed GPS coordinates
The autonomous quadrotor helicopter is requested to track
the imposed trajectory between the particular points
(
nj ,...,1
) with satisfactory precision, keeping the
desired attitude and height of flight [10], [11]. The
autonomous quadrotor helicopter checks for the current
position: X and Y by use of a GPS sensor and/or
electronic compass. Also, the altitude is measured by a
barometric sensor. An on-board microcontroller calculates
the actual position deviation from the imposed trajectory
given by successive GPS positions
)( jPGPS
. It localizes
itself with respect to the nearest trajectory segment, by
calculation of the distances:
1
or
2
.
Gyroscopes provide angular velocity measurements with
respect to inertial space. With recent developments in
gyroscope technology, their usage in various fields is
observably increasing. In combination with accelero-
meters, gyroscopes are used in position, velocity, and
attitude computation in a variety of navigation and motion
tracking applications for aircraft and robots [13-19]. By
providing angular velocity measurements, gyroscopes can
also be used in angular orientation estimation.
Using the gyroscope, the autonomous quadrotor
helicopter determines desired azimuth of flight
(Figure
4) and keeps the desired direction of flight. The height of
flight is also controlled to enable the performance of
the imposed mission (task).
4
5. CONCLUSIONS
We presented the modeling and navigation of an
autonomous quadrotor helicopter in a outdoor scenario.
The main aspects of modeling of rotorcraft kinematics
and rigid body dynamics, spatial system localization and
navigation of autonomous quadrotor helicopter in
outdoor scenario are considered in the paper. The control
strategy are presented. The GPS navigation of the
autonomous quadrotor helicopter is illustrated.
Acknowledgement
This work was supported by the innovation project
‘Research and Development of Ambientally Intelligent
Service Robots’, TR-35003,. 2011-2014, funded by the
Ministry of Science of the Republic Serbia and partially
supported by the TÁMOP-4.2.2/08/1/2008-0008 program
of the Hungarian National Development Agency.
REFERENCES
[1] Aleksandar Rodic, Gyula Mester, The Modeling and
Simulation of an Autonomous Quad-Rotor Microcopter
in a Virtual Outdoor Scenario, Acta Polytechnica
Hungarica, Journal of Applied Sciences, Vol. 8, Issue No. 4,
pp. 107-122, Budapest, Hungary, 2011.
[2] Aleksandar Rodic, Gyula Mester, Ambientally
Aware Bi-Functional Ground-Aerial Robot-Sensor
Networked System for Remote Environmental
Surveillance and Monitoring Tasks, Proceedings of
the 55th ETRAN Conference, Section Robotics,
Volume RO2.5, pp 1-4, ISBN 978-86-80509-66-2,
Banja Vrućica, Bosnia and Herzegovina, 2011.
[3] Aleksandar Rodic, Gyula Mester, Modeling and
Simulation of Quad-rotor Dynamics and Spatial
Navigation, Proceedings of the SISY 2011, 9th IEEE
International Symposium on Intelligent Systems and
Informatics, pp 23-28, ISBN: 978-1-4577-1973-8,
DOI: 10.1109/SISY.2011.6034325, Subotica, Serbia,
2011
[4] C. Lebres, V. Santos, N. M. Fonseca Ferreira and J.
A. Tenreiro Machado: Application of Fractional
Controllers for Quad Rotor, Nonlinear Science and
Complexity, Part 6, DOI: 10.1007/978-90-481-9884-
9_35, Springer, 2011, pp. 303-309.
[5] J. Coelho, R. Neto, C. Lebres, V. Santos: Appli-
cation of Fractional Algorithms in Control of a Quad
Rotor Flight, Proceedings of the 2nd Conference on
Nonlinear Scienceand Complexity, Porto, Portugal, July
28-31, 2008, pp. 1-12.
[6] Tommaso Bresciani, Modelling, Identification and
Control of a Quadrotor Helicopter, Department of
Automatic Control, Lund University, ISSN 0280-5316,
ISRN LUTFD2/TFRT/5823.SE, October 2008.
[7] B. Siciliano and O. Khatib, Eds., Handbook of
Robotics, Springer, ISBN:978-3-540-23957-4, 2008, pp.
391-410
[8] Barnes W. and McCormick, W., Aerodynamics
Aeronautics and FlightMechanics. New York: Wiley,
1995.
[9] Gordon Leishman, J., Principles of Helicopter
Aerodynamics, Second Edition, Cambridge University
Press, 1995.
[10] Etkin, B. and Reid L. R., Dynamics of Flight-
Stability and Control. JohnWiley & Sons. New York,
1996.
[11] Castillo, P. Dzul, A. Lozano, R. Stabilization of a
Mini Rotorcraft Having Four Rotors, Control Systems
Magazine, Vol. 25, No. 6, pp. 45-55, December 2005.
[12] Aircraft X650 Quad-rotor, http://www.infmetry.
com/coolstuff/xaircraftx650-quadcopterquadrotor/
[13] Koifman, M.; Bar-Itzhack, I.Y. Inertial navigation
system aided by aircraft dynamics. IEEE Trans. Control
Syst. Technol. 1999, 7, 487-493.
[14] Wang, J.H.; Gao, Y. Land Vehicle Dynamics-Aided
Inertial Navigation. IEEE Transactions on Aerospace and
Electronic Systems, 2010, 46, 1638-1653.
[15] Gyula Mester, Pletl Szilveszter, Gizella Pajor, Djuro
Basic: Adaptive Control of Rigid-Link Flexible-Joint
Robots. Proceedings of 3rd International Workshop of
Advanced Motion Control, pp. 593-602, Berkeley, USA,
March 20-23, 1994.
[16] Gyula Mester, Neuro-Fuzzy-Genetic Trajectory
Tracking Control of Flexible Joint Robots. Proceedings of
the I ECPD International Conference on Advanced
Robotics and Intelligent Automation, pp. 93-98, Athens,
Greece, September 6-8, 1995.
[17] Gyula Mester, Szilveszter Pletl, Gizella Pajor, and
Imre Rudas, Adaptive Control of Robot Manipulators
with Fuzzy Supervisor Using Genetic Algorithms,
Proceedings of International Conference on Recent
Advances in Mechatronics, ICRAM’95, O. Kaynak (ed.),
Vol. 2, pp. 661666, ISBN 975-518-063-X, Bogazici
University Bebek, Istanbul, Turkey, August 14-16, 1995.
[18] Gyula Mester, Szilveszter Pletl, Gizella Pajor, Zoltan
Jeges, Flexible Planetary Gear Drives in Robotics,
Proceedings of the 1992 International Conference on
Industrial Electronics, Control, Instrumentation and
Automation - Robotics, CIM and Automation, Emerging
Technologies, IEEE IECON '92, Vol. 2, pp. 646-649,
ISBN 0-7803-0582-5, DOI: 10.1109/IECON. 1992.25
4556, San Diego, California, USA, November 9-13, 1992.
[19] Josip Stepanic, Gyula Mester, Josip Kasac, Synthetic
Inertial Navigation Systems: Case Study of Determining
Direction, Proceedings of 57th ETRAN Conference, pp.
RO 2.7.1-3, Zlatibor, Serbia, June 3-6, 2013.
... Elmondható tehát, hogy az önvezetés forradalom az autóiparban, közlekedésben és a társadalomban [31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]. Az önvezető autók elterjedésével az autó megosztás -car sharing -használata mindinkább teret hódít. ...
Conference Paper
Full-text available
Absztrakt: Az elektromos meghajtású önvezető autó-Self Driving Car-a közúti és városi forgalomban emberi beavatkozás nélkül képes közlekedni, érzékeli és értékeli a környezetet, digitális technológiák segíségével ütközésmentesen irányítja önmagát. Az önvezető autók kutatása-fejlesztése a közúti, városi közlekedés biztonsága szempontjából fontos és időszerű. Az önvezető autók fejlesztése forradalmat jelent az autóiparbabn. Az automata járművezető rendszernek 6 szintje van. Bemutatjuk a Toyota LQ negyedik szintű önvezető autót és a Matlab 2022R programcsomagot, valamint a programcsomag eszköztárait. Az önvezető autók elterjedésével az autó megosztás-car sharing-használata mindinkább teret hódít. Kulcsszavak: önvezető autó, elektromos meghajtás, autó megosztás, érzékeli és értékeli a környezetet, digitális technológiák, járművezető rendszer szintjei, Toyota LQ, Matlab 2022R.
... Rang listu istraživača naučnometrije u 2022 god. prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača [21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40]. ...
Conference Paper
Full-text available
Apstrakt: Rang listu istraživača naučnometrije/Scientometrics u svetu u 2022 god., prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača. Ako dva ili više istraživača imaju isti h-indeks tada se rangiranje vrši prema broju citata na publikacije istraživača. Na prikazanoj rang listi prikazujemo 12 istraživača, minimalna vrednost h-indeksa je 59. Prikazujemo i Orcid ID istraživača. Ključne reči: Rang lista istraživača naučnometrije u 2022 god., h-indeks, Google Scholar, citati, Orcid ID. 1. Uvod Rad prezentira rang listu istraživača naučnometrije/Scientometrics u svetu u 2022 god. Rang listu istraživača prvenstveno prezentujemo prema h-indeksu. Istraživač ima indeks h ako od ukupnog broja njegovih radova, h radova ima najmanje h citata. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. U slučaju ako se h-indeks dva ili više istraživača poklapaju, tada rangiranje vršimo prema broju citata na radove istraživača. Na rang listi prikazujemo 12 najboljih istraživača sa minimalnim h-indeksom 59. Rang listu prezentujemo primenom baze Google Scholar [1-20]. Prikazujemo i Orcid ID istraživača. Prvo poglavlje obuhvata uvod, u drugom poglavlju prezentujemo rang listu istraživača naučnometrije, treće poglavlje obuhvata zaključke. 2. Rang lista istraživača naučnometrije 2022 Rang listu istraživača naučnometrije u 2022 god. prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača [21-40]. Ako dva ili više istraživača imaju isti h-indeks tada se rangiranje vrši prema broju citata na publikacije istraživača [41-67]. Prikazujemo i Orcid ID istraživača (ukoliko istraživač ima Orcid ID).
... In this article, we review the latest developments in flying cars (Terra Fugia TF-X). Many prototypes have been built in the last years using a variety of flight technologies and some have true VTOL performance [5][6][7][8][9][10][11][12][13][14][15][16][17][18]. ...
Article
Full-text available
A flying electric car in the smart city is a type of personal air vehicle that provides door-to-door transportation by both ground and air. In this article, we review the latest developments in flying cars. The autonomous flying car detects and evaluates the environment, uses digital technologies to control and navigate itself without collision, travels in space, can take off and land (VTOL), and uses electric propulsion. Today, several companies are developing flying cars: Terrafugia, Aero Mobil, Volocopter, Lilium, Hyundai, Uber, Bosch. Many prototypes have been built in the last years using a variety of flight technologies and some have true VTOL performance.
... A ranglistát a Google Scholar adatbázis alkalmazásával szerkesztettük. Megegyező hindex szerinti kutatókat az idézetek száma szerint rangsoroljuk [21][22][23][24][25][26][27][28][29][30][31][32][33][34][35]. ...
Conference Paper
Full-text available
Absztrakt: A tudományos közlemény bemutatja az Újvidéki Egyetem kutatóinak 2021-es ranglistáját. A 2021-es Sanghaji egyetemi világranglistán az Újvidéki Egyetem a 901-1000-es klaszterben található. A ranglistát elsődlegesen a kutatók h-indexe szerint prezentáljuk. Megegyező h-index szerinti kutatókat az idézetek száma szerint rangsoroljuk. A ranglistán szereplő 20 kutató minimális h-indexe 24. A h-index meghatározható a következő internetes adatbázisokból: Web of Science, Scopus, Google Scholar, Magyar Tudományos Művek Tára és a Publish or Perish program alkalmazásával. A ranglistát a Google Scholar adatbázis alkalmazásával szerkesztetjük. Kulcsszavak: Újvidéki Egyetem kutatói, Sanghaji egyetemi világranglista, tudományos teljesítmény mérése, h-index, hivatkozások, idézetek, Google Scholar. Abstract: The paper presents the 2021 ranking of researchers at the University of Novi Sad. In the 2021 Shanghai World University Rankings, the University of Novi Sad is ranked in the 901-1000 cluster. The ranking is presented primarily according to the h-index of researchers. Researchers with the same h-index are ranked by the number of citations. The minimum h-index of the 20 ranked researchers is 24. h-index can be determined from the following online databases: Web of Science, Scopus, Google Scholar, Hungarian Scientific Datanases and the Publish or Perish program. The ranking is edited using the Google Scholar database.
Conference Paper
Full-text available
Rad analizira na koji način digitalne tehnologije podržavaju saradnju aktera u ekonomiji i društvu da bi se obezbedila veća ekonomska dinamika razvoja i socijalna inkluzivnost i stabilnost. S druge strane, digitalni prodori kao što su brz napredak u veštačkoj inteligenciji,oblak računarstvu, internetu stvari, analitici podataka, kvantnom skoku računarskih potencijala otvaraju rizike sigurnosti, poverenja, koncentracije moći, socijalnih i digitalnih disproporcija, ekoloških rizika koji se samo kroz saradnju i zajedničku akciju na globalnom nivou mogu rešiti, a njihove negativne posledice svesti na minimum. Poseban akcenat analiza stavlja na digitalne platforme i digitalne poslovne ekosisteme kao nove modele organizovanja ekonomske aktivnosti koji kroz saradnju obezbeđuju kreiranje novih znanja, novih proizvode i nove vrednosti za sve učesnike. Ključne reči: digitalne tehnologije, saradnja, konkurentnost, razvoj
Conference Paper
Full-text available
Da bi kompanije danas opstale na tržištu treba da poznaju svoje potrošače, razumeju njihove želje i potrebe i obezbeđuju im zahtevana iskustva, proizvode i usluge, brzo i u realnom vremenu. To znači da su kompanije uvek na raspolaganju svojim konzumentima i da imaju vrlo fleksibilne strategije pristupa istim, a sve kako bi odgovorile njihovim promenljivim potrebama. Proaktivni kupci, kao nova vrsta korisnika, su zahtevni, informisani i imaju mogućnost da do proizvoda i usluga različitih kompanija dođu jako brzo. Oni su onalajn konzumenti na prvom mestu, i definiše ih potreba da komuniciraju na sve moguće načine. Proaktivni kupci, očekuju da kompanije predviđaju njihove potrebe, da ih slušaju, sa njima razgovarju i brinu o njima, a za uzvrat postaju lojalni saradnici i verni kupc, koji će svoja pozitivna iskustva deliti u onlajn sferi i na taj način privući nove korisnike. Ključne reči: kompanija, proaktivnost, kupac, komunikacija
Conference Paper
Full-text available
Absztrakt: A tudományos közlemény bemutatja a tudománymetria tudományterületi magyar kutatók 2022-es ranglistáját. A ranglistát elsődlegesen a kutatók h-indexe szerint prezentáljuk. Megegyező h-index szerinti kutatókat az idézetek száma szerint rangsoroljuk. A ranglistán 15 kutató szerepel. A h-index meghatározható a következő internetes adatbázisokból: Web of Science, Scopus, Google Scholar, Magyar Tudományos Művek Tára és a Tud-O-Méter, Publish or Perish programok alkalmazásával. A ranglistát a Google Scholar internetes adatbázis és a Publish or Perish program alkalmazásával szerkesztjük.
Conference Paper
Full-text available
Absztrakt: A repülő elektromos autó egy olyan típusú személyi légi jármű, amely háztól-házig közlekedik, földi és légi közlekedést egyaránt biztosít. Ebben a cikkben áttekintjük a repülő autók legújabb fejlesztéseit. Az autonóm repülő autó érzékeli és értékeli a környezetet, digitális techno-lógiákat használ a vezérléshez és navigálja magát ütközés nélkül, térben közlekedik, képes helyből felszállni és leszállni (VTOL) és elektromos meghajtással működik. Napjainkban több vállalat is fejleszt repülő autókat: Terrafugia, Aero Mobil, Volocopter, Lilium, Hyundai, Uber, Bosch. Az elmúlt években számos prototípust építettek, amelyekhez különböző repülési technológiákat alkalmaznak, és néhányuk valódi VTOL-teljesítménnyel rendelkezik. Kulcszavak: autonóm repülő autó, elektromos meghajtás, VTOL-teljesítménny, érzékeli és értékeli a környezetet, digitális technológiák ___________________________________________________________________________ Abstract: A flying electric car is a type of personal air vehicle that provides door-to-door transportation by both ground and air. In this article, we review the latest developments in flying cars. The autonomous flying car detects and evaluates the environment, uses digital technologies to control and navigate itself without collision, travels in space, can take off and land (VTOL), and uses electric propulsion. Today, several companies are developing flying cars: Terrafugia, Aero Mobil, Volocop-ter, Lilium, Hyundai, Uber, Bosch. Many prototypes have been built in the last years using a variety of flight technologies and some have true VTOL performance. Az autonóm repülő autók megjelenése nem csupán fejlesztés, hanem forradalom. Manapság úgy tűnik, hogy tőbb cég fejleszti autonóm, elektromos, függőlegesen felszálló és leszálló (VTOL) repülő autóját. Az autonóm repülő autó érzékeli és értékeli a környezetet, digitális technológiákat használ az irányításhoz, ütközés nélkül navigálja magát, közlekedik a térben, képes fel-és leszállni, és elektro-mos meghajtást használ. Az autonóm repülő elektromos autó egy olyan típusú személyi légi jármű, amely biztosítja a földön és a levegőben is háztól házig történő szállítást.
Conference Paper
Full-text available
Apstrakt: Publikacija prezentira rang listu istraživača u Srbiji u 2022 god. Rang listu prezentiramo prema h-indeksu istraživača. U slučaju ako dva istraživača imaju isti h-indeks, rangiranje vršimo prema broju citata. Na rang listi prikazujemo 20 najboljih istraživača. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. Rang listu prezentujemo primenom baze Google Scholar. Kjučne reči: rang lista, istraživači u Srbiji, merenje rezultata naučnih istraživanja, h-indeks, citati, Google Scholar. ___________________________________________________________________________ Abstract: The paper presents the 2022 ranking list of researchers from Serbia. The ranking is presented primarily according to the h-index of researchers. Researchers with the same h-index are ranked by the number of citations. We present the top 20 researchers in the ranking list. h-index can be determined from the following online databases: Web of Science, Scopus, Google Scholar and the Publish or Perish program. The ranking is edited using the Google Scholar database.
Conference Paper
Full-text available
Publikacija prezentira rang listu istraživača Univerziteta u Novom Sadu u 2022 god. Na Šangajskoj rang listi univerziteta u svetu ARWU u 2022 god., Univerzitet u Novom Sadu nalazi se u klasteru 901-1000. Rang listu prezentiramo prema h-indeksu istraživača. U slučaju ako dva istraživača imaju isti h-indeks, rangiranje vršimo prema broju citata. Na rang listi prikazujemo 20 najboljih istraživača sa minimalnim h-indeksom 25. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. Rang listu prezentujemo primenom baze Google Scholar.
Conference Paper
Full-text available
Neuro-Fuzzy-Genetic Trajectory Tracking Control of Flexible Joint Robots.
Conference Paper
Full-text available
The paper regards technical aspects of development of a prototype of small or middle-size, bi-functional, ground-aerial remotely controlled robot-sensor networked system for environmental exploration, remote surveillance, monitoring and risk management. The proposed bi-functional robotic system is imagined to perform different environmental tasks such as remote surveillance (urban and rural areas), monitoring of urban traffic system and civil engineering infrastructure (highway system, city bridges, road protection barriers, electric power-transmission lines, canalization, water pipelines , irrigation channels, etc.), inspection of health-destructive areas (due to chemical pollution or radiation), rescue and recovery missions (fires and floods), risk management activities (alarming, evacuation) during and postpone different hazardous situations and natural disasters), etc. Prototyping of one such bi-functional robot-sensor network system assumes assembling and integration of a wheeled mobile robot as carrier-platform of unmanned aerial vehicle such as micro copter (e.g. quad rotor or hex rotor) together with corresponding sensorial and video equipment and their customization to the specific task requirements. In the paper, a global control architecture, communication scheme and model of one such advanced system is presented.
Article
Full-text available
This paper presents the modeling and simulation of an autonomous quad-rotor microcopter in a virtual outdoor scenario. The main contribution of this paper focuses on the development of a flight simulator to provide an advanced R/D tool suitable for control design and model evaluation of a quad-rotor systems to be used for control algorithm development and verification, before working with a real experimental system. The main aspects of modeling of rotorcraft kinematics and rigid body dynamics, spatial system localization and navigation in a virtual outdoor scenario are considered in the paper. Some high-level control aspects are considered, as well. Finally, several basic maneuvers (examples) are investigated and simulated in the paper to verify the simulation software capabilities and engineering capabilities.
Chapter
Full-text available
This paper studies the application of fractional algorithms in the control of a quad-rotor rotorcraft. The development of a flight simulator provides the opportunity to evaluate the controller algorithm. Several basic maneuvers are investigated, namely the elevation and the position control.
Article
Full-text available
This paper studies the application of fractional algorithms in the control of a quad-rotor rotorcraft machine. The main contribution of this paper focuses in the development a flight simulator to provide the evaluation model of the quad-rotor. Several basic maneuvers are investigated, namely the elevation and the position control.
Conference Paper
Full-text available
The paper regards modeling, control and simulation of a quad-rotor rotorcraft machine that represents an advanced aerial robot. The main contribution of this paper focuses to the development of a flight simulator to provide advanced R/D tool suitable for control design and model evaluation of a quad-rotor systems to be used for control algorithms development and verification before working with real experimental system. The main aspects of modeling of rotorcraft kinematics and rigid body dynamics, spatial system localization and navigation are considered in the paper. Some high-level control aspects are considered, too. Several basic maneuvers (examples) are investigated and simulated in the paper to verify the simulation software capabilities and engineering capabilities.
Conference Paper
Synthetic Inertial Navigation Systems: Case Study of Determining Direction.
Article
The major challenge of using low-cost micro-electro-mechanical-system (MEMS) inertial navigation system (INS) is the rapid navigation error drift when the aiding sensors are unavailable. A self-contained dynamics-aided error correction method is developed to overcome this problem. Additional measurements are generated to update the navigation filter and control the navigation error based on the knowledge of land vehicle dynamics. The contribution of the proposed dynamics-aided method to INS/GPS navigation during long GPS outages has been demonstrated through field tests.