Content uploaded by Niels Gjøl Jacobsen
Author content
All content in this area was uploaded by Niels Gjøl Jacobsen on Aug 17, 2017
Content may be subject to copyright.
◦t= 0
◦
◦
◦
◦
k−ω
KC
R(τ) = 1
m0Z−∞
0
S(f) cos 2πf τ f
R(τ)S(f)f τ
m0
Rd(τ)'1
2md,0
N−1
X
n=0
[Sd(fn) cos(2πfnτ) + Sd(fn+1 ) cos(2πfn+1τ)] ∆fn
d∆fn=fn+1 −fnN
η
η(t, x) =
N
X
m=1
amcos (ωmt−km·x+ϕm)
amωmkmx
ϕm[0,2π]
am=p[Sd(fm−1) + Sd(fm)]∆fm−1
ωm=π(fm+fm−1)
τ > 0 cos(2π fnτ)=1
n TrTm01
Tr
fn=nδf0∆fn=δf0n= 0,1...,N
Tr=1
δf0
=N
fN
fN
N fNTr
∆fn= (1 + nαf)δf0
fn=nδf0+αfδf0nn+ 1
2−1=δf0(n+αfAn)
1/(1 −N)< αfαf= 0
cos(2πfnτ) = cos(2πnδf0τ) cos(2παfAnδf0τ)
−sin(2πnδf0τ) sin(2παfAnδf0τ)
n
nδf0τ=K αfAnδf0τ=L
K L τ
K
n
L
An
αf= 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
f, [Hz]
10 -4
10 -3
10 -2
10 -1
∆f, [Hz]
A.
0.2 0.25 0.3 0.35 0.4 0.45 0.5
f, [Hz]
0
0.2
0.4
0.6
S, [m2s]
B.
Equidistant
Cosine stretching
∆f f
fL= 0.03 fU= 1.4Tp= 3 N= 200 N= 35
Hm0= 4√m0Tm01 =m0/m1
Tm02 =pm0/m2Tm−10 =m−1/m0N
mii
mi=Z∞
0
fiS(f)f
N
N= 10,000
N= 10,000
N
N
∆t= 0.02 Te= 5,000
TrTr= 730 N= 1,000
N
N N = 100
0.1%
N= 100
10 110 210 310 4
0.98
1
1.02
Rel. Hm0, [-]
A.
10 110 210 310 4
0.98
1
1.02
Rel. Tm01, [-]
B.
10 110 210 310 4
0.98
1
1.02
Rel. Tm02, [-]
C.
10 110 210 310 4
N, [-]
0.98
1
1.02
Rel. Tm−10, [-]
D.
Equidistant
Cosine stretching
N
N= 10,000
η=η0+
N
X
n=1
ancos(ωnt−kn·x+φn)
η η0N ω
tk x φ
η=η0+
N
X
n=1
an[cos(ωnt+φn) cos kn·x−sin(ωnt+φn) sin kn·x]
02468
10 -4
10 -2
10 0
Exceedance
Equidistant
N= 100
02468
10 -4
10 -2
10 0
Exceedance
N= 200
02468
10 -4
10 -2
10 0
Exceedance
N= 500
02468
(H/Hrms)2, (T /Tp)2, [-]
10 -4
10 -2
10 0
Exceedance
N= 1000
02468
10 -4
10 -2
10 0Cosine stretching
N= 100
02468
10 -4
10 -2
10 0
N= 200
02468
10 -4
10 -2
10 0
N= 500
02468
(H/Hrms)2, (T /Tp)2, [-]
10 -4
10 -2
10 0
N= 1000
Rayleigh
Wave height
Wave period
(H/Hrms )2(T/Tp)2
±σ
x
t
2N
z
t x y
◦
x y z