Chapter
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The major reservoirs of C. albicans are the gastrointestinal, oral, and genital mucosa. As these different niches vary considerably in environmental conditions and microbiotic composition (7,8), C. albicans has developed different metabolic strategies and growth forms, such as biofilm formation, which allow establishing perseverance and antifungal resistance (9)(10)(11). Interestingly, some genes important for biofilm formation are also essential for hypoxia adaptation in Candida species (12,13). ...
... Niches commensally colonized by C. albicans vary considerably in oxygen levels (17,18). The yeast major reservoir is in the gastrointestinal tract, as well as the oral and genital mucosa (7). We first determined the levels of hypoxia in uninfected mice to identify tissues with naturally low oxygen levels. ...
Article
Full-text available
Successful human colonizers have evolved mechanisms to bypass immune surveillance. Infiltration of PMNs to the site of infection led to the generation of a low oxygen niche. Exposure to low oxygen levels induced fungal cell wall masking, which in turn hindered pathogen sensing and antifungal responses by PMNs. The cell wall masking effect was prolonged by increasing lactate amounts produced by neutrophil metabolism under oxygen deprivation. In an invertebrate infection model, C. albicans was able to kill infected C. elegans nematodes within 2 days under low oxygen conditions, whereas the majority of uninfected controls and infected worms under normoxic conditions survived. These results suggest that C. albicans benefited from low oxygen niches to increase virulence. The interplay of C. albicans with innate immune cells under these conditions contributed to the overall outcome of infection. Adaption to low oxygen levels was in addition beneficial for C. albicans by reducing susceptibility to selected antifungal drugs. Hence, immunomodulation of host cells under low oxygen conditions could provide a valuable approach to improve current antifungal therapies.
... Candida albicans is a major opportunistic fungus which has recently transitioned from harmless colonizer to virulent pathogen [1] . It can cause disease in animals which include urinary tract infection, peritonitis, keratitis, arthritis and disseminated candidiasis [2] . ...
Article
Full-text available
Candida albicans is an emerging multi-drug resistant fungal pathogen which causes urogenital infections in animals and humans. There is very limited data about the antifungal resistance and virulence activity of hemolysin from companion animals. The aim of the present study was to investigate the in vitro antifungal susceptibility and hemolytic activity of C. albicans isolates from urine of dog and cat which shared a common household. Standard mycological technique was used for isolating and identifying the yeast. Sequencing with Internal transcribed spacer of ribosomal RNA revealed more than 99% similarity between the isolates. Antifungal resistance was seen for Fluconazole, Amphotericin-B and Itraconazole for both the isolates. Both the isolates showed high susceptibility to Micafungin, Voriconazole, Anidulafungin and Caspofungin and presented moderate hemolysin activity. The pathogen being zoonotic can cause a significant public health concern, thus care should be taken in avoiding rampant and irrational use of antifungals.
... Candida albicans is an opportunistic fungal pathogen that causes disease mostly in immunocompromised patients [342,343]. In healthy individuals, its major reservoir is the gut, but this yeast can be found in many niches of the human body, for instance throughout the entire GI tract [344,345]. The most relevant virulence trait of C. albicans is the ability to switch from yeast to hypha form and thereby either proliferate or adhere, penetrate tissues, and disseminate [346]. ...
Article
Full-text available
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Article
The IL-17 signalling pathway is a major target in treatment of plaque psoriasis. IL-17 signalling contributes to chronic inflammation and epidermal hyperplasia seen in psoriatic lesions. Blocking the IL-17 signalling cascade is an effective method in treating this disease. However, IL-17 also plays a role in the immunological protection against fungal infections and therefore, patients on IL-17 biologics experience an increased rate of fungal infections, specifically Candida albicans. It is prudent that patients and physicians are aware of this risk and understand how to recognize and manage Candida infections. In this review, we examine the Candida infection rates associated with IL-17 biologics, both in clinical trials and real-world practice. We discuss common presentations associated with various types of candidiasis and propose a recommended management approach to treating these infections.
Article
Full-text available
The human gut acts as the main reservoir of microbes and a relevant source of life-threatening infections, especially in immunocompromised patients. There, the opportunistic fungal pathogen Candida albicans adapts to the host environment and additionally interacts with residing bacteria. We investigated fungal-bacterial interactions by coinfecting enterocytes with the yeast Candida albicans and the Gram-negative bacterium Proteus mirabilis resulting in enhanced host cell damage. This synergistic effect was conserved across different P. mirabilis isolates and occurred also with non-albicans Candida species and C. albicans mutants defective in filamentation or candidalysin production. Using bacterial deletion mutants, we identified the P. mirabilis hemolysin HpmA to be the key effector for host cell destruction. Spatially separated coinfections demonstrated that synergism between Candida and Proteus is induced by contact, but also by soluble factors. Specifically, we identified Candida-mediated glucose consumption and farnesol production as potential triggers for Proteus virulence. In summary, our study demonstrates that coinfection of enterocytes with C. albicans and P. mirabilis can result in increased host cell damage which is mediated by bacterial virulence factors as a result of fungal niche modification via nutrient consumption and production of soluble factors. This supports the notion that certain fungal-bacterial combinations have the potential to result in enhanced virulence in niches such as the gut and might therefore promote translocation and dissemination.
Article
Full-text available
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening public health. A large number of affected people need to be hospitalized. Immunocompromised patients and ICU-admitted patients are predisposed to further bacterial and fungal infections, making patient outcomes more critical. Among them, COVID-19-associated candidiasis is becoming more widely recognized as a part of severe COVID-19 seque-lae. While the molecular pathophysiology is not fully understood, some factors, including a compromised immune system, iron and zinc deficiencies, and nosocomial and iatrogenic transmissions, predispose COVID-19 patients to candidiasis. In this review, we discuss the existing knowledge of the virulence characteristics of Candida spp. and summarize the key concepts in the possible molecular pathogenesis. We analyze the predisposing factors that make COVID-19 patients more susceptible to candidiasis and the preventive measures which will provide valuable insights to guide the effective prevention of candidiasis in COVID-19 patients.
Article
Full-text available
Purpose: Rapid developments in high throughput screening technology for the detection and identification of the human microbiota have helped in understanding its influence on human health and disease. In the recent past, several seminal studies have demonstrated the influence of microbiota on outcomes of therapy-associated radiation exposure. In this review, we highlight the concepts related to the mechanisms by which radiation alters the microbiota composition linked with radiation-associated toxicity in head and neck and pelvic regions. We further discuss specific microbial changes that can be employed as a biomarker for radiation and tumor response. Conclusion: Knowledge of the influence of microbiota in radiation response and advances in microbiota manipulation techniques would help to design personalized treatment augmenting the efficacy of radiotherapy.
Article
Full-text available
As they proliferate, fungi expose antigens at their cell surface that are potent stimulators of the innate immune response, and yet the commensal fungus Candida albicans is able to colonize immuno competent individuals. We show that C. albicans may evade immune detection by presenting a moving immunological target. We report that the exposure of β-glucan, a key pathogen-associated molecular pattern (PAMP) located at the cell surface of C. albicans and other pathogenic Candida species, is modulated in response to changes in the carbon source. Exposure to lactate induces β-glucan masking in C. albicans via a signalling pathway that has recruited an evolutionarily conserved receptor (Gpr1) and transcriptional factor (Crz1) from other well-characterized pathways. In response to lactate, these regulators control the expression of cell-wall-related genes that contribute to β-glucan masking. This represents the first description of active PAMP masking by a Candida species, a process that reduces the visibility of the fungus to the immune system.
Article
Full-text available
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T-cell deficiency. Patients with autosomal-dominant (AD) hyper IgE syndrome (HIES), AD signal transducer and activator of transcription 1 (STAT1) gain-of-function, autosomal-recessive (AR) deficiencies in interleukin (IL)-12 receptor β1 (IL-12Rβ1), IL-12p40, caspase recruitment domain-containing protein 9 (CARD9) or retinoic acid-related orphan receptor γT (RORγT) or AR autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) develop CMC as a major infectious phenotype that is categorized as Syndromic CMC. In contrast, CMC disease (CMCD) is typically defined as CMC in patients in the absence of any other prominent clinical signs. This definition is not strict; thus, CMCD is currently used to refer to patients presenting with CMC as the main clinical phenotype. The etiology of CMCD is not related to genes that cause severe combined immunodeficiency or combined immunodeficiency, nor to genes responsible for Syndromic CMC. Four genetic etiologies, AR IL-17 receptor A, IL-17 receptor C and ACT1 deficiencies, and AD IL-17F deficiency, are reported to underlie CMCD. Each of these gene defects directly has an impact on IL-17 signaling, suggesting their nonredundant role in host mucosal immunity to Candida. Here, we review current knowledge focusing on IL-17 signaling and the genetic etiologies responsible for, and associated with, CMC.
Article
Full-text available
The interaction of Candida albicans with the innate immune system is the key determinant of the pathogen/commensal balance and has selected for adaptations that facilitate the utilization of nutrients commonly found within the host, including proteins and amino acids; many of the catabolic pathways needed to assimilate these compounds are required for persistence in the host. We have shown that C. albicans co-opts amino acid catabolism to generate and excrete ammonia, which raises extracellular pH, both in vitro and in vivo and induces hyphal morphogenesis. Mutants defective in the uptake or utilization of amino acids, such as those lacking STP2, a transcription factor that regulates the expression of amino acid permeases, are impaired in multiple aspects of fungal-macrophage interactions resulting from an inability to neutralize the phagosome. Here we identified a novel role in amino acid utilization for Ahr1p, a transcription factor previously implicated in regulation of adherence and hyphal morphogenesis. Mutants lacking AHR1 were defective in growth, alkalinization and ammonia release on amino acid-rich media, similar to stp2 Δ and ahr1 Δ stp2 Δ cells, and occupied more acidic phagosomes. Notably, ahr1 Δ and stp2 Δ strains did not induce pyroptosis as measured by Caspase-1-dependent IL-1β release, though this phenotype could be suppressed by pharmacological neutralization of the phagosome. Altogether, we show that C. albicans- driven neutralization of the phagosome promotes hyphal morphogenesis, sufficient for induction of Caspase-1-mediated macrophage lysis.
Article
Full-text available
The facultative anaerobic polymorphic fungus Candida albicans and the strictly anaerobic Gram-positive bacterium Clostridium difficile are two opportunistic pathogens residing in the human gut. While a few studies have focused on the prevalence of C. albicans in C. difficile-infected patients, the nature of the interactions between these two microbes has not been studied thus far. In the current study, both chemical and physical interactions between C. albicans and C. difficile were investigated. In the presence of C. albicans, C. difficile was able to grow under aerobic, normally toxic, conditions. This phenomenon was neither linked to adherence of bacteria to hyphae nor to biofilm formation by C. albicans. Conditioned medium of C. difficile inhibited hyphal growth of C. albicans, which is an important virulence factor of the fungus. In addition, it induced hypha-to-yeast conversion. p-Cresol, a fermentation product of tyrosine produced by C. difficile, also induced morphological effects and was identified as an active component of the conditioned medium. This study shows that in the presence of C. albicans, C. difficile can persist and grow under aerobic conditions. Furthermore, p-cresol, produced by C. difficile, is involved in inhibiting hypha formation of C. albicans, directly affecting the biofilm formation and virulence of C. albicans. This study is the first detailed characterization of the interactions between these two gut pathogens.
Article
Full-text available
Fungal pathogens are more commonly associated with morbidity and mortality than generally appreciated. In fact, a significant portion of the world population is infected by fungi, and an estimated 1.5 million people die from life-threatening fungal infections each year [1]. One of the most common fungal pathogens of humans is Candida albicans. The majority of the human population is colonised with this fungus, and superficial infections of mucosal surfaces are extremely common [2]. The morphological plasticity of C. albicans has long been implicated in the virulence of this pathogen [3]. The two most important morphologies, yeast and hyphal cells, are both required for virulence. Neither yeast-locked strains nor hyperfilamentous mutants are fully virulent in experimental systemic infections. However, it is generally accepted that each of the two forms fulfils specific functions during infection. While the yeast form is likely important for dissemination via the blood stream, the formation of filamentous hyphae contributes to adhesion and invasion of host cells.
Article
Full-text available
Candida albicans is a commensal coloniser of most people and a pathogen of the immunocompromised or patients in which barriers that prevent dissemination have been disrupted. Both the commensal and pathogenic states involve regulation and adaptation to the host microenvironment. The pathogenic potential can be downregulated to sustain commensalism or upregulated to damage host tissue and avoid and subvert immune surveillance. In either case it seems as though the cell biology of this fungus has evolved to enable the establishment of different types of relationships with the human host. Here we summarise latest advances in the analysis of mechanisms that enable C. albicans to occupy different body sites whilst avoiding being eliminated by the sentinel activities of the human immune system.
Article
Full-text available
Candida albicans , normally found as a commensal in the gut, is a major human fungal pathogen responsible for both mucosal and systemic infections in a wide variety of immunocompromised individuals, including cancer patients and organ transplant recipients. The gastrointestinal tract represents a major portal of entry for the establishment of disseminated candidiasis in many of these individuals. Here we report the development of a diet-based mouse model for disseminated candidiasis acquired via the gastrointestinal tract. Using this model, as well as an appropriate immunosuppression regimen, we demonstrate that dissemination of C. albicans from the gastrointestinal tract can result in mortality within 30 days post-infection. We also show a significant increase in fungal burden in systemic, but not gastrointestinal tract, organs upon immunosuppression. Importantly, we demonstrate that administration of two widely used antifungals, fluconazole and caspofungin, either pre- or post-immunosuppression, significantly reduces fungal burden. This model should prove to be of significant value for testing the ability of both established and experimental therapeutics to inhibit C. albicans dissemination from the gastrointestinal tract in an immunocompromised host, as well as the subsequent mortality that can result from disseminated candidiasis.
Article
Full-text available
The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut or alter the localization into the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when it was inoculated together with the wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4 a transcription factor involved in phosphate metabolism is required for adaptation to stress and fitness in C. albicans.
Article
Full-text available
Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog.
Article
Full-text available
Candida spp. are commonly found in humans, colonizing most healthy individuals. A high prevalence of invasive candidiasis has been reported in recent years. Here, we assess the relation between Candida spp. as part of the human mycobiome, the host defense mechanisms, and the pathophysiology of invasive disease in critically ill patients. Many hypotheses have been proposed to explain the different immune responses to the process where Candida goes through healthy mycobiome to colonization to invasion; the involvement of other microbiota inhabitants, changes in temperature, low nitrogen levels, and the caspase system activation have been described. Patients admitted to an intensive care unit (ICU) are at the highest risk for invasive candidiasis, mostly due to the severity of their disease, immune-suppressive states, prolonged length of stay, broad-spectrum antibiotics, septic shock, and Candida colonization. The first approach should be using predictive scores as screening, followed by the determination of biomarkers (when available), and, in the near future, probably immune-genomics and analysis of the clinical background in order to initiate prompt and correct treatment. Regarding treatment, the initiation with an echinocandin is strongly recommended in critically ill patients. In conclusion, prompt treatment and adequate source control in the more severe patients remains the ultimate goal, as well as restoration of a healthy microbiota.
Article
Full-text available
Pathogenic mechanisms of Candida glabrata in oral candidiasis, especially because of its inability to form hyphae, are understudied. Since both Candida albicans and C. glabrata are frequently co-isolated in oropharyngeal candidiasis (OPC), we examined their co-adhesion in vitro and observed adhesion of C. glabrata only to C. albicans hyphae microscopically. Mice were infected sublingually with C. albicans or C. glabrata individually, or with both species concurrently, to study their ability to cause OPC. Infection with C. glabrata alone resulted in negligible infection of tongues; however, colonization by C. glabrata was increased by co-infection or a pre-established infection with C. albicans. Furthermore, C. glabrata required C. albicans for colonization of tongues, since decreasing C. albicans burden with fluconazole also reduced C. glabrata. C. albicans hyphal wall adhesins Als1 and Als3 were important for in vitro adhesion of C. glabrata and to establish OPC. C. glabrata cell wall protein coding genes EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 were implicated in mediating adhesion to C. albicans hyphae and remarkably, their expression was induced by incubation with germinated C. albicans. Thus, we found a near essential requirement for the presence of C. albicans for both initial colonization and establishment of OPC infection by C. glabrata.
Article
Full-text available
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Article
Full-text available
The surveillance and elimination of fungal pathogens rely heavily on the sentinel behaviour of phagocytic cells of the innate immune system, especially macrophages and neutrophils. The efficiency by which these cells recognize, uptake and kill fungal pathogens depends on the size, shape and composition of the fungal cells and the success or failure of various fungal mechanisms of immune evasion. In this Review, we describe how fungi, particularly Candida albicans, interact with phagocytic cells and discuss the many factors that contribute to fungal immune evasion and prevent host elimination of these pathogenic microorganisms.
Article
Full-text available
Objective: The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Design: Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. Results: We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Conclusions: Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis.
Article
Full-text available
Candida albicans , the most common human fungal pathogen, can cause infections with a mortality rate of ~40%. C. albicans is part of the normal gut flora, but when a patient’s immune system is compromised, it can leave the gut and cause infections. By reducing the amount of C. albicans in the gut of susceptible patients, infections (and the resulting fatalities) can be prevented. Currently, this is done using antimicrobial drugs; to “preserve” drugs for treating infections, we looked for a dietary change to reduce the amount of C. albicans in the gut. Using a mouse model, we showed that adding coconut oil to the diet could become the first drug-free way to reduce C. albicans in the gut. More broadly, this model lets us study the interactions between our diet and the microbes in our body and the reasons why some of those microbes, under certain conditions, cause disease.
Article
Full-text available
The human intestine is home to a diverse range of bacterial and fungal species, forming an ecological community that contributes to normal physiology and disease susceptibility. Here, the fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be discriminated by their specific fungal composition, which also distinguished metabolically "healthy" from "unhealthy" obesity. Clusters according to genus abundance co-segregated with body fatness, fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were the species more represented in non-obese subjects compared to obese counterparts. Interestingly, the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be a novel target in the treatment of obesity.
Article
Full-text available
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in high amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer, and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1 , CHT3 , and SCW11 , which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.
Article
Full-text available
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.
Article
Full-text available
Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 10(7) cells/g of stools. Using fluorescently labeled strains, we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days) colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1-3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections.
Article
Full-text available
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.
Article
Full-text available
Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut. Copyright © 2015 Elsevier Inc. All rights reserved.
Article
Full-text available
Candida albicans is an opportunistic fungal pathogen of humans causing superficial mucosal infections and life-threatening systemic disease. The fungal cell wall is the first point of contact between the invading pathogen and the host innate immune system. As a result, the polysaccharides that comprise the cell wall act as pathogen associated molecular patterns, which govern the host-pathogen interaction. The cell wall is dynamic and responsive to changes in the external environment. Therefore, the host environment plays a critical role in regulating the host-pathogen interaction through modulation of the fungal cell wall. This review focuses on how environmental adaptation modulates the cell wall structure and composition, and the subsequent impact this has on the innate immune recognition of C. albicans. This article is protected by copyright. All rights reserved.
Article
Full-text available
Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen.
Article
Full-text available
Candida albicans is a major cause of bloodstream infection which may present as sepsis and septic shock - major causes of morbidity and mortality world-wide. After invasion of the pathogen, innate mechanisms govern the early response. Here, we outline the models used to study these mechanisms and summarize our current understanding of innate immune responses during Candida bloodstream infection. This includes protective immunity as well as harmful responses resulting in Candida induced sepsis. Neutrophilic granulocytes are considered principal effector cells conferring protection and recognize C. albicans mainly via complement receptor 3. They possess a range of effector mechanisms, contributing to elimination of the pathogen. Neutrophil activation is closely linked to complement and modulated by activated mononuclear cells. A thorough understanding of these mechanisms will help in creating an individualized approach to patients suffering from systemic candidiasis and aid in optimizing clinical management.
Article
Full-text available
Until recently, epithelial cells have been a largely ignored component of host responses to microbes. However, this has been largely overturned over the last decade as an ever increasing number of studies have highlighted the key role that these cells play in many of our interactions with our microbiota and pathogens. Interactions of these cells with Candida albicans have been shown to be critical not just in host responses, but also in fungal cell responses, regulating fungal morphology and gene expression profile. In this review, we will explore the interactions between C. albicans and epithelial cells, and discuss how these interactions affect our relationship with this fungus.
Article
Full-text available
The human mycobiome includes 390 fungal species detected on the skin, in the vagina, in the oral cavity, and in the digestive tract that includes 335 species and 158 genera. Among these, 221 species are found only in the digestive tract, 88 only in the oral cavity, and 26 in both. These species belong to 126 genera of yeast and filamentous fungi, of the Ascomycota, Basidiomycota, and Zygomycota phyla. Forty species were identified only by culture, 188 species by molecular techniques, and 19 species with both techniques. Fungal diversity does not differ significantly according to sex but Basidiobolus ranarum is significantly more prevalent in male individuals and Paecilomyces fumosoroseus in female individuals. Fungal diversity is significantly higher in adults than in infants. Only 42 species are identified in the course of inflammatory bowel disease, with 27 species specific to IBD. Twenty-nine are identified in HBV infected patients including 17 specific species, and 11 in HIV-infected patients with the specific Histoplasma capsulatum. Genotyping proved that the gut mycobiome was a source of fungal infection caused by Candida albicans and Candida glabrata. The authors suggest updating the repertoire of the human digestive tract in healthy individuals and patients. Fungal culturomics must be intensified to complete this repertoire. Copyright © 2015. Published by Elsevier SAS.
Article
TUP1 encodes a transcriptional repressor that negatively controls filamentous growth in Candida albicans. Using subtractive hybridization, we identified six genes, termed repressed by TUP1 (RBT), whose expression is regulated by TUP1. One of the genes (HWP1) has previously been characterized, and a seventh TUP1-repressed gene (WAP1) was recovered due to its high similarity to RBT5. These genes all encode secreted or cell surface proteins, and four out of the seven (HWP1, RBT1, RBT5, and WAP1) encode putatively GPI-modified cell wall proteins. The remaining three, RBT2, RBT4, and RBT7, encode, respectively, an apparent ferric reductase, a plant pathogenesis-related protein (PR-1), and a putative secreted RNase T2. The expression of RBT1, RBT4, RBT5, HWP1, and WAP1 was induced in wild-type cells during the switch from the yeast form to filamentous growth, indicating the importance of TUP1 in regulating this process and implicating the RBTs in hyphal-specific functions. We produced knockout strains in C. albicans for RBT1, RBT2, RBT4, RBT5, and WAP1 and detected no phenotypes on several laboratory media. However, two animal models for C. albicans infection, a rabbit cornea model and a mouse systemic infection model, revealed that rbt1Δ and rbt4Δ strains had significantly reduced virulence. TUP1 appears, therefore, to regulate many genes in C. albicans, a significant fraction of which are induced during filamentous growth, and some of which participate in pathogenesis.
Article
Candida albicans is a ubiquitous commensal of the mammalian microbiome and the most prevalent fungal pathogen of humans. A cell-type transition between yeast and hyphal morphologies in C. albicans was thought to underlie much of the variation in virulence observed in different host tissues. However, novel yeast-like cell morphotypes, including opaque(a/α), grey and gastrointestinally induced transition (GUT) cell types, were recently reported that exhibit marked differences in vitro and in animal models of commensalism and disease. In this Review, we explore the characteristics of the classic cell types - yeast, hyphae, pseudohyphae and chlamydospores - as well as the newly identified yeast-like morphotypes. We highlight emerging knowledge about the associations of these different morphotypes with different host niches and virulence potential, as well as the environmental cues and signalling pathways that are involved in the morphological transitions.
Article
Invasive fungal infections are an important cause of morbidity and mortality in hospitalized patients and in the immunocompromised population. This article reviews the current epidemiology of nosocomial fungal infections in adult patients, with an emphasis on invasive candidiasis and aspergillosis. Recently published recommendations and guidelines for the control and prevention of these nosocomial fungal infections are summarized in this article.
Article
Candida albicans is commonly found as a member of the human microflora and a major human opportunistic fungal pathogen. A perturbation of the microbiome can lead to infectious diseases caused by various microorganisms, including C. albicans. Moreover, the interactions between C. albicans and bacteria are considered to play critical roles in human health. The major biological feature of C. albicans, which impacts human health, resides in its ability to form biofilms. In particular, the extracellular matrix (ECM) of Candida biofilm plays a multifaceted role and therefore may be considered as a highly attractive target to combat biofilm-related infectious diseases. In addition, extracellular DNA (eDNA) also plays crucial roles in Candida biofilm formation and its structural integrity and induces the morphological transition from yeast to the hyphal growth form during C. albicans biofilm development. This review focuses on the pathogenic factors, such as eDNA, in Candida biofilm formation and its ECM production and provides meaningful information for future studies to develop a novel strategy to battle infectious diseases elicited by Candida formed biofilm. This article is protected by copyright. All rights reserved.
Article
Although being an utterly frequent, non-mortal, yet distressing disease, and despite good knowledge of the pathogenesis and the availability of specific and safe treatment, vulvovaginal Candida (VVC) infection remains one of the most enigmatic problems for both physicians and patients. Good treatment requires a proper diagnosis. Too many caregivers (and patients treating themselves) react too simple-minded on the symptoms of VVC and treat VVC where they see it on the vulva. In this opinion paper, we plea for a thorough examination of women with VVC, especially in those women who suffer from recurrent disease since a long time, sometimes decades, which necessitates intensive examination of the vaginal flora, as this is invariably the reservoir for relapses and recurrent vulvitis. Examination of such complicated cases requires experienced clinical judgement, expertise bedside phase contrast microscopy of fresh vaginal fluid, classical cultures on Sabouroud medium and, if still unresolved, repetitive cultures taken by the patient herself at moments of symptoms, and/or nuclear acid amplification techniques to detect Candida genes in the vaginal fluid. Even if only vulvitis is evident, thorough expert examination of vaginal fluid is obligatory to diagnose VVC.
Article
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human ‘knock-out’ neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Article
Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.
Article
The recent increase in our knowledge of human gut microbiota has changed our view on antibiotics. Antibiotics are, indeed, no longer considered only beneficial, but also potentially harmful drugs, as their abuse appears to play a role in the pathogenesis of several disorders associated with microbiota impairment (eg, Clostridium difficile infection or metabolic disorders). Both drug-related factors (such as antibiotic class, timing of exposure or route of administration) and host-related factors appear to influence the alterations of human gut microbiota produced by antibiotics. Nevertheless, antibiotics are nowadays considered a reliable therapy for some non-communicable disorders, including IBS or hepatic encephalopathy. Moreover, some antibiotics can also act positively on gut microbiota, providing a so-called ‘eubiotic’ effect, by increasing abundance of beneficial bacteria. Therefore, antibiotics appear to change, for better or worse, the nature of several disorders, including IBS, IBD, metabolic disorders or liver disease. This reviews aims to address the potential of antibiotics in the development of major non-communicable disorders associated with the alteration of gut microbiota and on newly discovered therapeutic avenues of antibiotics beyond the cure of infectious diseases.
Article
Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a “healthy” fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together, these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.
Article
One of the main features of most pathogenic fungi is the ability to switch between different types of morphological forms. These changes include the transition between cells of different shapes (such as the formation of pseudohyphae and hyphae), or the massive growth of the blastoconidia and formation of titan cells. Morphological changes occur during infection, and there is extensive evidence that they play a key role in processes required for disease, such as adhesion, invasion and dissemination, immune recognition evasion, and phagocytosis avoidance. In the present review, we will provide an overview of how morphological transitions contribute to the development of fungal disease, with special emphasis in two cases: Candida albicans as an example of yeast that switches between blastoconidia and filaments, and Cryptococcus neoformans as an example of a fungus that changes the size without modifying the shape of the cell.
Article
Candida albicans is a common resident of the oral cavity, gastrointestinal tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.
Article
The interaction between Candida albicans and its host cells is characterized by a complex interplay between the expression of fungal virulence factors, which results in adherence, invasion and cell damage, and the host immune system, which responds by secreting proinflammatory cytokines, activating antimicrobial activities and killing the fungal pathogen. In this review we describe this interplay by taking a closer look at how C. albicans pathogenicity is induced and executed, how the host responds in order to prevent and clear an infection, and which mechanisms C. albicans has evolved to bypass these immune responses to avoid clearance. Furthermore, we review studies that show how the presence of other microorganisms affects this interplay. © 2016, The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg.
Article
Vulvovaginal candidiasis (VVC) is an infection caused by Candida species that affects millions of women every year. Although Candida albicans is the main cause of VVC, the identification of non-Candida albicans Candida (NCAC) species, especially Candida glabrata, as the cause of this infection, appears to be increasing. The development of VVC is usually attributed to the disturbance of the balance between Candida vaginal colonization and host environment by physiological or nonphysiological changes. Several host-related and behavioral risk factors have been proposed as predisposing factors for VVC. Host-related factors include pregnancy, hormone replacement, uncontrolled diabetes, immunosuppression, antibiotics, glucocorticoids use and genetic predispositions. Behavioral risk factors include use of oral contraceptives, intrauterine device, spermicides and condoms and some habits of hygiene, clothing and sexual practices. Despite a growing list of recognized risk factors, much remains to be elucidated as the role of host versus microorganisms, in inducing VVC and its recurrence. Thus, this review provides information about the current state of knowledge on the risk factors that predispose to VVC, also including a revision of the epidemiology and microbiology of VVC, as well as of Candida virulence factors associated with vaginal pathogenicity.
Article
Immune cell death is often observed in response to infection. There are three potential beneficial outcomes after host cell death: (1) the removal of an intracellular niche for microbes, (2) direct microbicidal activity of released components and (3) the propagation of an inflammatory response. Recent findings suggest that three forms of non-apoptotic regulated cell death, pyroptosis, necroptosis and NETosis, can impact on immunity to bacterial infection. However, it is challenging to design experiments that unequivocally prove the advantageous effects of regulated cell death on immunity. Recent advances in the genetic manipulation of regulated cell death and danger-associated molecular patterns and 'alarmins', such as HMGB1 and the IL-1 family, may hold the key to delineating the consequences of cell death in immunity to infection.
Article
Invasive candidiasis is the most common fungal disease among hospitalized patients in the developed world. Invasive candidiasis comprises both candidemia and deep-seated tissue candidiasis. Candidemia is generally viewed as the more common type of the disease, and it accounts for the majority of cases included in clinical trials. Deep-seated candidiasis arises from either hematogenous dissemination or direct inoculation of candida species to a sterile site, such as the peritoneal cavity (Fig. 1). Mortality among patients with invasive candidiasis is as high as 40%, even when patients receive antifungal therapy. In addition, the global shift in favor of nonalbicans candida species is troubling, as is the emerging resistance to antifungal drugs. During the past few years, new insights have substantially changed diagnostic and therapeutic strategies.
Article
A supramolecular polymer that is stable in the acidic environment of the stomach but dissolves in the neutral-pH environment of the intestines prolongs the safe retention of gastric devices.
Article
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Article
We have entered the Age of the Microbiome, with new studies appearing constantly and whole journals devoted to the human microbiome. While bacteria outnumber other gut microbes by orders of magnitude, eukaryotes are consistently found in the human gut and are represented primarily by the fungi. Compiling 36 studies 1917-2015 we found at least 267 distinct fungal taxa have been reported from the human gut, and seemingly every new study includes one or more fungi not previously described from this niche. This diversity, while impressive, is illusory. If we examine gut fungi, we will quickly observe a division between a small number of commonly detected species (Candida yeasts, Saccharomyces and yeasts in the Dipodascaceae, and Malassezia species) and a long tail of taxa that have been reported only once. Furthermore, an investigation into the ecology of these rare species reveals that many of them are incapable of colonization or long-term persistence in the gut. This paper examines what we know and have yet to learn about the fungal component of the gut microbiome, or "mycobiome", and an overview of methods. We address the potential of the field while introducing some caveats and argue for the necessity of including mycologists in mycobiome studies.
Article
Candida albicans is an opportunistic human fungal pathogen that causes a variety of diseases ranging from superficial mucosal to life threatening systemic infections, the latter particularly in patients with defects in innate immune function. C. albicans cells phagocytosed by macrophages undergo a dramatic change in their metabolism in which amino acids are a key nutrient. We have shown that amino acid catabolism allows the cell to neutralize the phagolysosome and initiate hyphal growth. We show here that members of the ten-member ATO gene family, which are induced by phagocytosis or amino acid presence in an Stp2-dependent manner and encode putative acetate or ammonia transporters, are important effectors of this pH change in vitro and in macrophages. When grown with amino acids as the sole carbon source, deletion of ATO5 or expression of a dominant negative ATO1G53D allele results in a delay in alkalinization, a defect in hyphal formation, and a reduction in the amount of ammonia released from the cell. These strains also form fewer hyphae after phagocytosis, have a reduced ability to escape macrophages, and reside in more acidic phagolysosomal compartments than wild type cells. Further, overexpression of many of the ten ATO genes accelerates ammonia release and an ato5Δ ATO1G53D double mutant strain has additive alkalinization and ammonia release defects. Taken together these results indicate that the Ato protein family is a key mediator of the metabolic changes that allow C. albicans to overcome the macrophage innate immunity barrier.
Article
The related yeasts Saccharomyces cerevisiae and Candida albicans have similar genomes but very different lifestyles. These fungi have modified transcriptional and post-translational regulatory processes to adapt their similar genomes to the distinct biological requirements of the two yeasts. We review recent findings comparing the differences between these species, highlighting how they have achieved specialized metabolic capacities tailored to their lifestyles despite sharing similar genomes. Studying this transcriptional and post-transcriptional rewiring may improve our ability to interpret phenotype from genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
Candida albicans colonization is required for invasive disease. Unlike humans, adult mice with mature intact gut microbiota are resistant to C. albicans gastrointestinal (GI) colonization, but the factors that promote C. albicans colonization resistance are unknown. Here we demonstrate that commensal anaerobic bacteria-specifically clostridial Firmicutes (clusters IV and XIVa) and Bacteroidetes-are critical for maintaining C. albicans colonization resistance in mice. Using Bacteroides thetaiotamicron as a model organism, we find that hypoxia-inducible factor-1α (HIF-1α), a transcription factor important for activating innate immune effectors, and the antimicrobial peptide LL-37 (CRAMP in mice) are key determinants of C. albicans colonization resistance. Although antibiotic treatment enables C. albicans colonization, pharmacologic activation of colonic Hif1a induces CRAMP expression and results in a significant reduction of C. albicans GI colonization and a 50% decrease in mortality from invasive disease. In the setting of antibiotics, Hif1a and Camp (which encodes CRAMP) are required for B. thetaiotamicron-induced protection against C. albicans colonization of the gut. Thus, modulating C. albicans GI colonization by activation of gut mucosal immune effectors may represent a novel therapeutic approach for preventing invasive fungal disease in humans.
Article
Fungal APSES proteins regulate morphogenetic processes, including filamentation and differentiation. The human fungal pathogen Candida albicans contains two APSES proteins: the regulator Efg1p and its homologue Efh1p, described here. Overexpression of EFG1 or EFH1 led to similar phenotypes, including pseudohypha formation and opaque-white switching. An efh1 deletion generated no phenotype under most conditions but caused hyperfilamentation in an efg1 background under embedded or hypoxic conditions. This suggests cooperation of these APSES proteins in the suppression of an alternative morphogenetic signaling pathway. Genome-wide transcriptional profiling revealed that EFG1 and EFH1 regulate partially overlapping sets of genes associated with filament formation. Unexpectedly, Efg1p not only regulates genes involved in morphogenesis but also strongly influences the expression of metabolic genes, inducing glycolytic genes and repressing genes essential for oxidative metabolism. Using one- and two-hybrid assays, we further demonstrate that Efg1p is a repressor, whereas Efh1p is an activator of gene expression. Overall, the results suggest that Efh1p supports the regulatory functions of the primary regulator, Efg1p, and indicate a dual role for these APSES proteins in the regulation of fungal morphogenesis and metabolism.
Article
Candida albicans is both a commensal microorganism in healthy individuals and a major fungal pathogen causing high mortality in immunocompromised patients. Yeast-hypha morphological transition is a well known virulence trait of C. albicans. Host innate immunity to C. albicans critically requires pattern recognition receptors (PRRs). In this review, we summarize the PRRs involved in the recognition of C. albicans in epithelial cells, endothelial cells, and phagocytic cells separately. We figure out the differential recognition of yeasts and hyphae, the findings on PRR-deficient mice, and the discoveries on human PRR-related single nucleotide polymorphisms (SNPs).