Content uploaded by Willian M. Ohara
Author content
All content in this area was uploaded by Willian M. Ohara on Aug 09, 2018
Content may be subject to copyright.
Journal of Fish Biology (2017)
doi:10.1111/jfb.13383, available online at wileyonlinelibrary.com
Hyphessobrycon platyodus (Teleostei: Characiformes), a new
species from the Rio Madeira basin, Brazil, with comments
on how multicuspid teeth relate to feeding habits in
Characidae
W. M. O*, V. P. A V. C. E
Museu de Zoologia da Universidade de São Paulo, Ictiologia Caixa Postal 42494,
04218–970, São Paulo, SP, Brazil
urn:lsid:zoobank.org:pub:9DCE008E-51FC-4891-9D20-08AA0A54FDDC
(Received 14 November 2016, Accepted 19 June 2017, Published online 26 July 2017)
A new species of Hyphessobrycon is described from the Rio Juma, a tributary of the lower Rio
Aripuanã– Rio Madeira basin, Amazonas, Brazil. Hyphessobrycon platyodus can be distinguished
from its congeners by the: presence of an elongated dorsal n in adult males, 25–28 branched anal-n
rays and absence of dark blotches from the dorsal n and caudal peduncle. The presence of multicuspid
teeth in species of Characidae and its relation with feeding habits are briey commented on.
© 2017 The Fisheries Society of the British Isles
Key words: Amazon; endemism; Hyphessobrycon loweae-group; sexual dimorphism; tooth cusps.
INTRODUCTION
Hyphessobrycon Durbin 1908 is one of the most species-rich genera of small characid
shes, comprising 143 species currently considered valid (Ohara & Lima, 2015; Teix-
eira et al., 2016; Lima & Flausino, 2016; Pastana & Ohara, 2016). Species of the genus
are widely distributed from southern México to the Río de La Plata in Argentina (Lima
et al., 2003), with its highest species richness occurring in the Amazon Basin (Ohara
& Lima, 2015). Hyphessobrycon can be diagnosed by a combination of non-exclusive
characters rearranged by Eigenmann (1917), which are: lateral line incomplete; pre-
maxillary teeth in two series with an inner series of ve teeth; second suborbital (=third
infraorbital sensu Weitzman, 1962) not in contact with the preopercle ventrally; few
maxillary teeth; naked caudal n and the adipose n present.
There are currently 12 species of Hyphessobrycon listed from the Brazilian portion
of Rio Madeira basin (Lima et al., 2013). This number continues to increase, however,
as new species are regularly described (Ohara & Lima, 2015; Pastana & Ohara, 2016;
Ohara et al., 2017). Furthermore, recent eldwork in the middle portions of the Rio
Madeira basin in Amazonas State has yielded additional undescribed species that t the
current denition of Hyphessobrycon, suggesting that the real diversity of Hyphesso-
brycon in the Brazilian portion of Rio Madeira basin is far from completely described.
*Author to whom correspondence should be addressed. Tel.: +55 11 2065 8119; email: willianmo-
hara@gmail.com
1
© 2017 The Fisheries Society of the British Isles
2W. M. OHARA ET AL.
The main goal of the present contribution, therefore, is to describe one of these
species recently collected and provide comments on teeth morphology and feeding
habits in Characidae.
MATERIALS AND METHODS
Meristics follow Fink & Weitzman (1974), except for the number of horizontal scale rows
below the lateral line, which were counted to the pelvic-n insertion (excluding the axillary
scale). Morphometrics also follow Fink & Weitzman (1974) with the addition of the distance
from pelvic-n origin to anal-n origin. Standard length (LS) is given to the nearest mm and
all other measurements are expressed as percentages of LS, except subunits of the head, which
are expressed as percentages of head length (LH). In the description, counts are followed by
their absolute frequency in parentheses. The asterisks indicate counts of the holotype. The cir-
culi and radii of the scale were counted from the scale row immediately dorsal to the lateral
line at the vertical through the dorsal-n origin. Counts of supraneurals, branchiostegal rays,
gill-rakers of the rst branchial arch, tooth cusps, diminutive dentary teeth, unbranched anal
n rays, procurrent caudal n rays and position of pterygiophores were taken from cleared and
stained (c&s) specimens, prepared according to Dingerkus & Uhler (1977) and Taylor & Van
Dyke (1985). The vertebrae of the Weberian apparatus were counted as four precaudal elements
and the compound caudal centrum (PU1+U1) as a single caudal element. The precaudal verte-
bral counts include both the Weberian apparatus and vertebrae lacking haemal spines. Caudal
vertebral counts include all vertebrae with haemal spines. Catalogue numbers are followed by
the total number of specimens and their LSrange. The number of c&s specimens is given in
parentheses, followed by their respective LSrange. Sexual dimorphism was conrmed by sex-
ing individuals via direct examination of their gonads and by the shape of their anal and, or
dorsal ns (see Sexual Dimorphism section). Specimens examined herein belong to the fol-
lowing institutions: (ANSP) Academy of Natural Science of Drexel University, Philadelphia;
(INPA) Instituto de Pesquisas da Amazônia, Manaus; (MCP) Museu de Ciências e Tecnologia,
Pontifícia Universidade Católica do Rio Grande do Sul; (MNRJ) Museu Nacional da Universi-
dade Federal do Rio de Janeiro, Rio de Janeiro; (MZUSP) Museu de Zoologia da Universidade
de São Paulo, São Paulo; (ZUEC) Museu de Zoologia da Universidade Estadual de Campinas
‘Adão José Cardoso’, Campinas.
RESULTS
HYPHESSOBRYCON PLATYODUS NOV. SP.
Holotype
MZUSP 120555, male, 31·1mm LS, Rio Juma, tributary of Rio Aripuanã, Rio
Madeira basin, Apuí town, Amazonas, Brazil, nearby the bridge on road BR 230
between Santo Antônio do Matupi (Vila dos 180) and Apuí, 7∘12′43′′ S; 59∘55′18′′
W; W. M. Ohara & V. P. Abrahão, 22 June 2015 (Figs 1 and 2).
Paratypes
All from Brazil, Amazonas State, Apuí town, Rio Aripuanã, Rio Madeira
basin. MZUSP 117607 (21 specimens, 24·4–32·8mm LS, three specimens c&s,
24·4–26·6mm LS), INPA 53127 (six specimens, 24·7–29·9mm LS), ZUEC 13031
(six specimens, 26·3–29·4mm LS), collected with holotype. ANSP 200305 (20
specimens, 25·4–32·0mm LS), MCP 50785 (20 specimens, 25·1–31·1mm LS),
MNRJ 48589 (20 specimens, 26·9–32·6mm LS), MZUSP 120938 (20 specimens,
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 3
(a)
(b)
F. 1. (a) Hyphessobrycon platyodus, holotype MZUSP 120555, 31·1 mm standard length (LS), male; (b)
paratype, MZUSP 117607, 28·4mm LS, female.
26·4–32·1mmLS), Rio Juma, 7∘16′45′′ S; 59∘57′3′′ W; Oyakawa et al., 8 October
2016. MZUSP 120939 (11 specimens, 27·5–33·2mm LS), igarapé Mutum, tributary
of Rio Juma, 7∘14′57′′ S; 59∘58′41′′ W; Oyakawa et al., 8 October 2016.
Diagnosis
Hyphessobrycon platyodus differs from all congeners, except Hyphessobrycon dias-
tatos Dagosta, Marinho & Camelier 2014, Hyphessobrycon elachys Weitzman 1985,
Hyphessobrycon heliacus Moreira, Landim & Costa 2002, Hyphessobrycon loweae
F. 2. Hyphessobrycon platyodus, MZUSP 117607, male, paratype, immediately after capture.
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
4W. M. OHARA ET AL.
Costa & Géry 1994, Hyphessobrycon notidanos Carvalho & Bertaco 2006, Hyphesso-
brycon peugeoti Ingenito, Lima & Buckup 2013, Hyphessobrycon procyon Pastana &
Ohara 2016 and Hyphessobrycon spp. comprising the rosy-tetra group (sensu Weitz-
man & Palmer, 1997), by the presence of an elongated dorsal n in adult males (v. dorsal
n not elongated). Hyphessobrycon platyodus differs from Hyphessobrycon species of
the rosy-tetra group, by the absence of a conspicuous dark blotch on the dorsal-n rays
(v. dark dorsal-n blotch present) and by the absence of an anal-n lobe in adult males
(v. anal-n lobe present, formed by the posteriormost unbranched and anteriormost
branched anal-n rays, which are more elongate than remaining rays). Hyphessobrycon
platyodus differs from H. elachys, H. heliacus, H. loweae,H. peugeoti and H. procyon
by the absence of a caudal-peduncle blotch (v. caudal-peduncle blotch present) and
from H. notidanos and H. diastatos by the presence of a higher number of branched
anal-n rays (24–27, v. 16–21inH. notidanos; 15 –18 in H. diastatus) and by the pres-
ence of chevron-like dark marking along of the body midline (v. chevron-like marking
absent in H. notidanos and H. diastatos).
Description
Morphometric data of holotype and paratypes in Table I. Body compressed and mod-
erately deep; greatest body depth slightly anterior to dorsal-n origin. Dorsal prole of
head convex from upper lip to vertical through posterior nostril; nearly straight from
posterior nostril to tip of supraoccipital spine. Dorsal prole of the body slightly con-
vex from supraoccipital spine to dorsal-n origin; straight to slightly convex along
dorsal-n base; nearly straight from base of last dorsal-n ray to adipose n; concave
along caudal peduncle. Ventral prole of head convex along the dentary; nearly straight
along ventral portion of the head; convex from gular region to anal-n origin; straight
to slightly convex along anal-n base; concave along caudal peduncle.
Mouth terminal. Posterior terminus of maxilla reaching vertical through anterior mar-
gin of orbit. Premaxillary teeth in two rows; outer tooth row with two (1) or three (3)
pentacuspid teeth; inner row with ve (3) tetra to octacuspid teeth, symphyseal tooth of
inner series narrow and asymmetric. Tooth cusps of inner premaxillary row arranged
in semicircular line, directed outward. Maxilla with two (1) or three (2) tetra- to hepta-
cuspid teeth. Dentary with nine (1), 10 (1), or 11 (2) teeth, decreasing gradually from
symphyseal tooth, four or ve anterior hepta-pentacuspid teeth (Fig. 3). Cusps of large
dentary teeth arranged in semicircular line, directed inward.
Scales cycloid, with six to 11 radii;circuli marked anteriorly, absent posteriorly.
Lateral line slightly deected downward and incompletely pored, with eight (4), nine*
(21), or 10 (5) perforated scales and a total of 32 (2), 33 (11), 34 (13), or 35* (4) scales
on longitudinal series. Longitudinal scale rows between dorsal-n origin and lateral
line ve (30). Longitudinal scale rows between lateral line and pelvic-n origin four
* (30). Scales around caudal peduncle 11 (2) or 12* (28). Predorsal scales nine (1) or
10* (29). Caudal n with scales restricted to its base.
Dorsal-n rays ii, nine* (30). Dorsal-n origin at mid-body of LS, slightly posterior
to vertical through pelvic-n origin. First unbranched dorsal-n ray half length, or less,
than second. Adult males with elongated dorsal n, reaching adipose-n origin when
adpressed (reaching area between adipose and caudal-n origin in two specimens); rst
to third branched dorsal-n rays longest. Adult females with dorsal n not reaching
adipose-n origin. Base of last dorsal-n ray at vertical through anal-n origin. First
dorsal-n pterygiophore inserted behind neural spine of ninth (3) vertebra. Adipose n
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 5
T I. Morphometric data for holotype and paratypes of Hyphessobrycon platyodus (n=30;
17 dimorphic males, 13 females and unsexed juveniles)
Characters Holotype Range ..
Standard length (LS; mm) 31·1 24·8–32·8 28·3
%LS
Depth at dorsal-n origin 36·4 31·2–36·9 34·0±1·6
Snout to dorsal-n origin 51·0 46·6–54·1 50·9±1·6
Snout to pectoral-n origin 26·0 25·6–29.7 26·6±1·3
Snout to pelvic-n origin 45·9 38·5–47·2 44·3±1·9
Snout to anal-n origin 55·6 53·0–61·9 57·9±1·9
Caudal-peduncle depth 10·39·1–13·8 10·1±1·0
Caudal-peduncle length 11·69·0–13·3 11·6±1·1
Pectoral-n length 19·9 15·2–20·6 18·6±1·6
Pelvic-n length
Males 20·6 14·8–21·1 18·6±2·1
Females–immature - 13·4–16·5 14·8±1·2
Pelvic-n origin to anal-n origin 13·6 11·9–16·4 13·7±1·2
Dorsal-n-base length 13·8 10·5–15·0 13·2±1·2
Dorsal-n length
Males 33·1 30·0–42·0 34·6±2·9
Females–immature - 22·9–31·4 28·3±2·6
Dorsal-n origin to caudal-n origin 51·6 50·3–56.5 52·9±1·7
Anal-n base length 36·4 30·7–38·1 34·5±1·9
Anal-n length 13·6 12·4–18·3 16·3±1·6
Posterior margin of eye to dorsal-n origin 37·2 31·2–39·9 35·4±1·9
Head length (LH, mm) 25·0 23·9–26·9 25·6±0·9
%LH
Horizontal length eye 44·5 40·0–46·9 42·7±1·9
Snout length 20·3 16·3–24·3 20·5±1·8
Least interorbital width 37·1 31·6–38·5 33·6±1·7
Upper jaw length 47·5 42·8–49·6 45·8±1·8
present. Anal-n rays iv, 25 (9), 26 (10), 27* (9) or 28 (2). Distal margin of anal n
straight in males (17)*, decreasing gradually in length posteriorly, not forming a con-
spicuous lobe. Distal margin of anal n with a conspicuous lobe in females, formed
by last unbranched and rst to seventh branched rays more elongated, remaining rays
gradually decreasing in length posteriorly. First anal-n pterygiophore inserted behind
haemal spine of 15th (3) vertebra. Pectoral-n rays i, nine (1) or 10* (29); tip of pec-
toral n surpassing pelvic-n origin. Pelvic-n rays i, seven* (30); tip of pelvic n
surpassing third branched anal-n ray in males. Pelvic n of adult females and imma-
ture specimens slightly shorter in length, reaching the last unbranched anal-n ray.
Caudal-n rays i, 9/8, i* (30). Caudal n forked; upper and lower lobes similar in size.
Dorsal procurrent caudal-n rays and 10 (1) or 11 (2); ventral procurrent caudal-n
rays nine (3).
Branchiostegal rays four (3), three branchiostegal rays articulating with anterior
ceratohyal and one with posterior ceratohyal. First gill arch with 14 (2) or 15 (1) gill
rakers: four (2) or ve (1) rakers on epibranchial, one (3) between epibranchial and
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
6W. M. OHARA ET AL.
0·1 mm
0·2 mm
0·5 mm
(a) (b)
(c)
F. 3. Hyphessobrycon platyodus, medial view of the right-side (a) premaxilla, (b) dentary and (c) maxilla;
MZUSP 117642, paratype, 25·4 mm standard length.
ceratobranchial, eight (3) on ceratobranchial, one (3) between ceratobranchial and
hypobranchial and one (3) on hypobranchial. Vertebrae 34 (3); precaudal and caudal
vertebrae 14 (3) and 20 (3) respectively. Supraneurals 4 (3).
Colour in alcohol
Overall ground colouration of head and body pale to light yellow. Dorsal portion
of head and body dark from snout to caudal n. Ventral portion of head and body
with few scattered chromatophores. Small dark chromatophores densely concentrated
on dorsal surface of premaxilla, anterior portion of maxilla, dentary, antorbital and
rst and second infraorbitals. Vertical black stripe across the middle portion of the
eye. Opercle with high concentration of guanine and scattered dark chromatophores.
Two or three rst longitudinal series of scales bordered by dark pigmentation forming
faint reticulated pattern, on dorsal portion of body. One humeral blotch present
and conspicuous, slightly oriented at vertical, upper portion wider, located along
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 7
second to fourth lateral line scales. Humeral blotch encompassing c. three to four
scales horizontally and three to ve vertically. Humeral blotch followed by a clear
area and then by a pigmented area progressively fading posteriorly from vertical
through sixth or seventh lateral line scale, over second or third longitudinal scales
rows. Chromatophores at myosepta forming a narrow midlateral dark stripe formed
by chromatophores at myosepta between hypaxial and epaxial bundle of muscles,
anterior to dorsal-n base. Dark chromatophores at midline along myomere junctions
forming series of 16–22 transverse, anteriorly directed chevron-shaped bars, starting
at vertical through dorsal-n origin. Dark pigmentation concentrated along the entire
length of anteriormost ve dorsal-n rays and interradial membranes; remaining rays
with scattered chromatophores along their posterior margins and interradial mem-
branes. Anal n with chromatophores spread along its rays and interradial membranes;
chromatophores more concentrated on distal portion of n. Dark chromatophores scat-
tered mainly over interradial membranes and rays of pectoral, pelvic and caudal ns
(Fig. 1).
Colour in life
Based on photographs taken in the eld of three specimens (Fig. 2). Males and
females with similar colour pattern. Overall body colouration silver. Infraorbitals 2–5,
opercle, preopercle and ventrolateral surface of midanterior portions of the body cov-
ered with guanine. Scattered red chromatophores on body, more concentrated on the
ventrolateral portion. Upper lip and upper half of dentary faint yellow. Dorsal portion
of eye red, lower portions silver. Dorsal, pelvic and anal ns with scattered red chro-
matophores concentrated on interradial membranes of all n rays. Pectoral n hyaline.
Adipose n with scattered red chromatophores. Caudal n mainly hyaline with faint
yellow chromatophores on dorsal and ventral portions. Humeral blotch conspicuous.
Anteriorly directed chevron-shaped bars distinctly visible on live specimens.
Sexual dimorphism
Mature males possess a longer dorsal n that results from a pronounced elongation
of the last unbranched and rst four branched dorsal-n rays. Dorsal n of sexually
mature males, when depressed, reaching the adipose-n origin (two specimens extend-
ing further posteriorly) [Fig. 1(a)]. Females and immature specimens do not exhibit an
elongated dorsal n, with it not reaching the adipose n. Mature males with anal-n
margin straight, not forming a discernible lobe along the anterior portion [Fig. 1(a)].
Females exhibiting a discernible lobe on the anterior portion with the last unbranched
and rst ve to seven branched anal-n rays more elongated [Fig. 1(b)]. Addition-
ally, mature males possess a longer pelvic n, with its tip surpassing the third branched
anal-n ray when adpressed. Females and immature specimens exhibit a shorter pelvic,
reaching up to the last unbranched anal-n ray when depressed. Males apparently reach
larger LSthan females (largest male 32·8mm LS, largest female 30·1mm LS). Bony
hooks on ns, a common dimorphic feature among characids (Malabarba & Weitzman,
2003), is absent in all examined specimens. Colour pattern is not sexually dimorphic.
Etymology
The specic epithet platyodus derives from the Greek, platy, at; odon, tooth, in allu-
sion to the compressed teeth with many cusps, an unusual feature in Hyphessobrycon.
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
8W. M. OHARA ET AL.
63° 60° 57°
3°
6°
Apuí
Humaitá
Porto Velho
Rondônia
Novo Aripuanã
Amazonas
Manaus
Mato Grosso150 km
Rio Juma
Rio Aripuanã
Rio Madeira
Rio Tapajós
9°
N
F. 4. Map showing the type locality (red square) of Hyphessobrycon platyodus, Rio Juma, a tributary from the
Rio Aripuanã, Rio Madeira basin, Apuí, Amazonas, Brazil.
Distribution
Hyphessobrycon platyodus is known only from Rio Juma drainage, upstream of the
Paredão Waterfall (7∘2′58·2′′ S; 60∘3′4·9′′ W), a tributary of the Rio Aripuanã, Rio
Madeira basin, Apuí, Amazonas, Brazil (Fig. 4).
Ecological notes
The type-locality of Hyphessobrycon platyodus is 115 m above sea level. It is a clear
water river that is c. 40 m wide and 0·5 – 2 m deep, with swift currents and a rocky bot-
tom (Fig. 5). The river has little riparian vegetation near the town of Apuí. Syntopic
species included Ancistrus sp., Characidium aff. zebra Eigenmann 1909, Crenicichla
pellegrini Ploeg 1991, Eigenmannia gr. trilineata López & Castello, 1966, Farlowella
amazonum (Günther 1864), Gymnotus coropinae Hoedeman 1962, Helogenes mar-
moratus Günther 1863, H. procyon,Leporinus maculatus Müller & Troschel 1844,
Moenkhausia comma Eigenmann 1908, Moenkhausia collettii (Steindachner 1882),
Otocinclus mura Schaefer 1997, Pimelodella cf. howesi Fowler 1940, Poptella com-
pressa (Günther 1864), Satanoperca jurupari (Heckel 1840) and Tatia dunni (Fowler
1945). Stomach contents of the three (c&s) paratypes contained mostly vegetal matter
(lamentous algae and macrophyte fragments) and a smaller proportion of unidentied
insect fragments, nematodes and sediments.
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 9
F. 5. Type locality of Hyphessobrycon platyodus. Rio Juma, Rio Aripuanã drainage, Rio Madeira basin, Apuí,
Amazonas, Brazil.
Conservation status
Hyphessobrycon platyodus is currently known only from the Rio Juma and it may
have a very restricted distribution (see Discussion section). Considering, however, that
no imminent threats to the species were detected in the area of its occurrence, H. platy-
odus would be classied as least concern (LC) according to the International Union for
Conservation of Nature (IUCN) categories and criteria (IUCN, 2014).
DISCUSSION
The Rio Juma is a short river that extends c. 300km from its headwaters in the
eroded Planalto do Rio Juma, Médio Rio Sucunduri until Rio Aripuanã (IBGE, 2009).
Near to the town of Apuí, the Rio Juma has many rapids and waterfalls which may
function as barriers to sh dispersal (sensu Dias et al., 2013) or ecological lters
(sensu Torrente-Vilara et al., 2011). Based on personal observations and interviews
with local shermen, the sh fauna above Paredão Waterfall, is only composed of
small to medium size shes (see above), with large species absent (≥300 mm LS). A
similar community shift was observed from the upper Rio Aripuanã above the Dard-
anelos and Andorinha waterfalls (10∘09′48·7′′ S; 59∘27′26′′ W) (Britski & Akama,
2011), where medium to large carnivores are naturally absent (W. M. Ohara pers.
obs.). Despite intensive and broad collecting efforts in the Rio Madeira basin (Santos,
1996; Camargo & Giarrizzo, 2007; Rapp Py-Daniel et al., 2007; Perin et al., 2007;
Araújo et al., 2009; Torrente-Vilara et al., 2011; Pedroza et al., 2012; Queiroz et al.,
2013a,b; Casatti et al., 2013; Vieira et al., 2016; Costa et al., 2017), H. platyodus
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
10 W. M. OHARA ET AL.
was only collected in the Rio Juma, upstream of the Paredão Waterfall. Furthermore,
surveys conducted in the upper Rio Aripuanã, near the town of Aripuanã since 1976
by various ichthyologists from several institutions (INPA, MNRJ, MZUSP and UFRO)
and expeditions in the lower Rio Aripuanã (Rapp Py-Daniel et al., 2007; Queiroz
et al., 2013a) failed to detect H. platyodus in localities other than the type locality.
Although sh endemism has been primarily discussed with respect to the upper Rio
Aripuanã (Kullander, 1995), other species with restricted distributions are also only
known from the middle Rio Aripuanã (i.e. Corydoras brittoi Tecantt & Ohara 2016,
Corydoras gracilis Isbrücker & Nijssen 1976, C. pavanelliae Tencatt & Ohara 2016,
C. zawadski Tencatt & Ohara 2016, Gladioglanis anacanthus Rocha, de Oliveira &
Rapp Py-Daniel 2008, Hypostomus dardanelos Zawadski & Hollanda 2014, Jupiaba
citrina Zanata & Ohara 2009, Myloplus zorroi Andrade, Jégu & Giarrizzo 2016 and
Scoloplax baskini Rocha, de Oliveira & Rapp Py-Daniel 2008 (cf. Tencatt & Ohara,
2016). Thus, there is an indication that endemic species are patchily distributed along
the Rio Aripuanã, especially in the upper and middle portions.
Eighteen Hyphessobrycon species were previously recorded from the Rio Madeira
basin: Hyphessobrycon agulha Fowler 1913, Hyphessobrycon bentosi Durbin 1908,
Hyphessobrycon copelandi Durbin 1908, Hyphessobrycon diancistrus Weitzman
1977, Hyphessobrycon eques (Steindachner 1882), Hyphessobrycon hasemani Fowler
1913, Hyphessobrycon megalopterus (Eigenmann 1915), H. sweglesi (Géry 1961),
Hyphessobrycon dorsalis Zarske 2014 (=Hyphessobrycon sp. ‘falso Microschemo-
brycon’ in Lima et al., 2013), Hyphessobrycon lucenorum Ohara & Lima 2015,
Hyphessobrycon petricolus Ohara, Lima & Barros 2017, H. procyon,Hyphessobrycon
nigricinctus Zarske & Géry 2004, Hyphessobrycon eschwartzae García-Alzate,
Román-Valencia & Ortega 2013, Hyphessobrycon taphorni García-Alzate, Román-
Valencia & Ortega 2013 and three undescribed species (Lima et al., 2013). Hyphes-
sobrycon platyodus can be easily distinguished from the aforementioned species by
having a unique combination of features: elongated dorsal n in adult males (v. dorsal
n not elongated) and absence of a conspicuous dark blotch on dorsal-n rays (v.
dorsal-n blotch present).
Hyphessobrycon platyodus shares some features with the species of Hyphessobrycon
loweae-group (sensu Ingenito et al., 2013; Pastana & Ohara, 2016), which include
elongated dorsal n in adult males, absence of bony hooks on the n rays and a straight
prole of the distal margin of the anal n. Pastana & Ohara (2016) mentioned that,
although tooth cusps are highly variable among Neotropical tetras, multiple tooth cusps
(with several or more cusps) are an additional shared character for the Hyphessobrycon
loweae-group. Additionally, the species assigned to the H. loweae-group exhibit sexu-
ally dimorphic live colouration (except, H. moniliger Moreira, Lima & Costa 2002). On
the other hand, the large caudal-peduncle blotch and dimorphic colouration in life are
lacking in H. platyodus. Thus, the inclusion of H. platyodus within the Hyphessobrycon
loweae-group is uncertain and should be tested in a cladistic context.
As mentioned, H. platyodus has a tooth morphology similar to the H. loweae-group
and analysis of the stomach contents of H. platyodus,H. heliacus (MZUSP 115299), H.
loweae (MZUSP 118288) and H. procyon (MZUSP 117642) revealed a predominance
of algae. Although there may be evolutionary convergence in the tooth morphology of
phylogenetically unrelated species based on the use of similar food resources (Wootton,
1990). Shared tooth morphology can indicate shared feeding habits (Winemiller, 1992),
as may be the case in H. platyodus plus species of the Hyphessobrycon loweae-group.
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 11
Dentary and premaxillary teeth with increased cusp number is an uncommon con-
dition among Hyphessobrycon,Hemigrammus Gill 1858 and related small characid
genera (Teixeira et al., 2014). Few characids possess multicuspid and compressed
teeth (frequently with seven or more cusps). Studies of feeding habits indicate that
these characids share a similar diet, composed either primarily of algae (algivores) or
secondarily of vegetal matter, as in Deuterodon spp. (Aranha et al., 1998; Mazzoni
& Rezende, 2003; Barreto & Aranha, 2006; Vitule et al., 2008), Iguanodectes spp.
(W. M. Ohara pers. obs.), Hyphessobrycon kayabi Teixeira, Lima & Zuanon 2014
(Teixeira et al., 2014), Jupiaba spp. (Zanata & Lima, 2005; Birindelli et al., 2009),
Myxiops aphos Zanata & Akama 2004 (Zanata & Akama, 2004), Piabucus melanos-
tomus Holmberg 1891 (Resende et al., 1998) and Serrapinus spp. (Luiz et al., 1998;
Hahn & Loureiro-Crippa, 2006; Casatti et al., 2003; Pelicice & Agostinho, 2006).
On the other hand, small characid species usually possess cylindrical teeth with few
cusps (frequently three or ve) on the upper and lower jaws (Teixeira et al., 2014). The
majority of species with few tooth cusps are predominantly insectivorous, herbivorous
and omnivorous. These feeding habits have been found in Astyanax spp. (Hahn
et al., 1998; Hahn et al., 2002; Bennemann et al., 2005; Bennemann et al., 2006;
Manna et al., 2012), Bryconamericus spp. (Casatti et al., 2003; Novakowski et al.,
2008; Brandão-Gonçalves et al., 2009; Rondineli et al., 2011; Bonato et al., 2012),
Bryconops spp. (Sabino & Zuanon, 1998; Mérona et al., 2001; Silva et al., 2008),
Creagrutus spp. (Ortaz et al., 2006; Moraes et al., 2013), Hemigrammus spp. (Sabino
& Zuanon, 1998; Casatti et al., 2003; Novakowski et al., 2008; Ximenes et al., 2011;
Gonçalves et al., 2013), Hyphessobrycon spp. (Casatti et al., 2003; Graciolli et al.,
2003; Ximenes et al., 2011), Knodus moenkhausii (Eigenmann & Kennedy 1903)
(Ceneviva-Bastos & Casatti, 2007), Moenkhausia spp. (Hahn et al., 1998; Esteves &
Galetti, 1994; Casatti, 2002; Bennemann et al., 2006; Santos et al., 2009), Piabina
argentea Reinhardt 1867 (Gomiero & Braga, 2008; Bonato et al., 2012; Rondineli
et al., 2011) and Jupiaba spp. (Mendonça et al., 2012; Zanata & Ohara, 2009).
As mentioned, most small characid species possess cylindrical teeth with few cusps,
whereas few characids possess multicuspid and compressed teeth. Feeding habits in
Characidae seem to be related to the number of tooth cusps: few cusps among omni-
vores and many cusps among algivores. According to Gibson (2015) shes in both
marine (e.g. Siganidae, Acanthuridae) and freshwater systems (e.g. haplochromine
cichlids, characiforms) have evolved specialized, scoop-like, multicuspid teeth, for
feeding primarily on algae. The similarity of these patterns to those described above
for Characidae supports the hypothesis of a relationship between tooth morphology
and feeding habit.
ADDITIONAL SPECIMENS EXAMINED
In addition to the comparative material examined listed in Pastana & Ohara (2016)
the following species were examined: All from Brazil: Acnodon senai: MZUSP
102338 (one, 80·6mmLS). Astyanax altiparanae: MZUSP 111008 (three specimens,
80·1–100·2mm LS). Bryconamericus iheringii: MZUSP 111181 (nine specimens,
40·3–50·7mm LS). Bryconamericus patriciae: MZUSP 84302 (paratypes, 20 spec-
imens, 38·5–53·5mm LS). Bryconops alburnoides: MZUSP 54456 (two specimens,
100·5–110·3mm LS). Bryconops piracolina: MZUSP 105731 (paratypes, ve
specimens, 32·9–40·1mm LS). Creagrutus anary: MZUSP 35604 (six specimens,
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
12 W. M. OHARA ET AL.
40·4–44·4mmLS). Creagrutus menezesi: MZUSP 4970 (59 specimens, 22·1–26·5mm
LS). Deuterodon iguape: MZUSP 79496 (three specimens, 50·4–70·6mm LS).
Deuterodon rosae: MZUSP 28718 (21 specimens, 43·4–92·1mm LS). Iguanodectes
rachovii: MZUSP 112335 (22 specimens, 50·3–60·7mm LS). Hemigrammus atak-
tos: MZUSP 47864 (paratypes, 44 specimens, 13·2–35·2mm LS). Hemigrammus
parana: MZUSP 95001 (paratypes, 30 specimens, 19·3–26·8mm LS). Hemiodus
sterni: MZUSP 107441 (one, 110·5mm LS). Hyphessobrycon kayabi: MZUSP
112222 (paratypes, 20 specimens, 19·2–26·3mm LS). Jupiaba kurua: MZUSP 96857
(paratypes, 80 specimens, (51·9–86 mm LS). Knodus moenkhausii: MZUSP 114922
(10 specimens, 30·5–50·3mm LS). Laemolyta proxima: MZUSP 21062 (four spec-
imens, 81·4–91·4mm LS). Moenkhausia aurantia: MZUSP 59267 (four specimens,
20·5–30·2mm LS). Mylesinus paraschomburgkii: MZUSP 15890 (paratype, one
specimens, 170·5mm LS). Myxiops aphos: MZUSP 81025 (paratypes, 24 specimens,
27·6–56·1mm LS). Piabina argentea: MZUSP 85897 (34 specimens, 13·7–66mm
LS). Piabucus melanostomus: MZUSP 60005 (three specimens, 60·8–70·6mm LS).
Rhytiodus microlepis: MZUSP 101268 (one specimens, 150.2 mm LS). Serrapinus
zanatae: MZUSP 5133 (paratypes, 30 specimens, 34·3–41 mm LS). Schizodon knerii:
MZUSP 39737 (four specimens, 170·2–250·4mm LS). Tometes sp.: MZUSP 111334
(one specimens, 50·2mm LS). Utiaritichthys sennaebragai: MZUSP 107928 (three
specimens, 120·3–140·1mmLS).
The authors are grateful to A. Datovo, O. Oyakawa and M. Gianeti (MZUSP) for curatorial
assistance. We thank M. Pastana (MZUSP) and S. Thomson (MZUSP) for valuable suggestions
and corrections on the manuscript. The authors are grateful to O. Oyakawa, M. Pastana and
T. Teixeira (MZUSP) for help and assistance during the eldwork. Authors were supported by
FAPESP (WMO: grant # 2013/22473–8; VPA: grant # 2014/11397–1) and VCE by CAPES.
Part of the type series was collected during an expedition funded by thematic project ‘South
America Characiformes Inventory’ (grant # 2011/50282– 7).
References
Aranha, J. M. R., Takeuti, D. F. & Yoshimura, T. (1998). Habitat use and food partitioning of
the shes in the Mergulhão stream (coastal stream of Atlantic Forest, Brazil). Revista de
Biologia Tropical 46, 951 – 959.
Araújo, T. R. D., Ribeiro, A. C., Doria, C. R. C. & Torrente-Vilara, G. (2009). Composition
and trophic structure of the ichthyofauna from a stream downriver from Santo Antônio
falls in the Madeira River, Porto Velho, RO. Biota Neotropica 9, 21– 29. https://doi.org/
10.1590/S1676-06032009000300001
Barreto, A. P. & Aranha, J. M. R. (2006). Diet of four species of characiforms in an Atlantic for-
est stream, Guaraquecaba, Paraná, Brazil. Revista Brasileira de Zoologia 23, 779– 788.
https://doi.org/10.1590/S0101-81752006000300023
Bennemann, S. T., Gealh, A. M., Orsi, M. L. & de Souza, L. M. (2005). Occurrence and trophic
ecology of four species of Astyanax (Characidae) in different rivers of the Tibagi River
Basin, Parana, Brazil. Iheringia, Série Zoologia 95, 247– 254. https://doi.org/10.1590/
S0073-47212005000300004
Bennemann, S. T., Casatti, L. & Oliveira, D. C. (2006). Alimentação de peixes: proposta para
análise de itens registrados em conteúdos gástricos. Biota Neotropica 6, 1– 8. https://doi
.org/10.1590/S1676-06032006000200013
Birindelli, J. L. O., Zanata, A. M., Sousa, L. M. & Netto-Ferreira, A. L. (2009). New species of
Jupiaba Zanata (Characiformes: Characidae) from Serra do Cachimbo, with comments
on the endemism of upper Rio Curuá, Rio Xingu basin, Brazil. Neotropical Ichthyology
7, 11–18. https://doi.org/10.1590/S1679-62252009000100002
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 13
Bonato, K. O., Delaria, R. L. & Silva, J. C. (2012). Diet and trophic guilds of sh assemblages in
two streams with different anthropic impacts in the northwest of Paraná, Brazil. Zoologia
29, 27–38. https://doi.org/10.1590/S1984-46702012000100004
Brandão-Gonçalves, L., Lima-Junior, S. E. & Suarez, Y. R. (2009). Hábitos alimentares de
Bryconamericus stramineus Eigenmann, 1908 (Characidae), em diferentes riachos da
sub-bacia do Rio Guiraí, Mato Grosso do Sul, Brasil. Biota Neotropica 9, 135– 143.
https://doi.org/10.1590/S1676-06032009000100016
Britski, H. A. & Akama, A. (2011). New species of Trachycorystes Bleeker, with comments on
other species of the genus (Ostariophysi: Siluriformes: Auchenipteridae). Neotropical
Ichthyology 9, 273– 279. https://doi.org/10.1590/S1679- 62252011000200004
Camargo, M. & Giarrizzo, T. (2007). Fish, Marmelos conservation area (BX044), Madeira River
basin, states of Amazonas and Rondônia, Brazil. Check List 3, 291–296. https://doi.org/
10.15560/3.4.291
Casatti, L. (2002). Alimentação dos peixes em um riacho do Parque Estadual Morro do Diabo,
Bacia do Alto Rio Paraná, Sudeste do Brasil. Biota Neotropica 2, 1– 14. https://doi.org/
10.1590/S1676-06032002000200012
Casatti, L., Mendes, H. F. & Ferreira, K. M. (2003). Aquatic macrophytes as feeding site for
small shes in the Rosana reservoir, Paranapanema River, southeastern Brazil. Brazilian
Journal of Biology 63, 213– 222. https://doi.org/10.1590/S1519- 69842003000200006
Casatti, L., Pérez-Mayorga, M. A., Carvalho, F. R., Brejão, G. L. & Costa, I. D. (2013). The
stream sh fauna from the Rio Machado basin, Rondônia State, Brazil. Check list 9,
1496–1504.
Ceneviva-Bastos, M. & Casatti, L. (2007). Oportunismo alimentar de Knodus moenkhausii
(Teleostei, Characidae): uma espécie abundante em riachos do noroeste do Estado de
São Paulo, Brasil. Iheringia, Série Zoologia 97, 7– 15. https://doi.org/10.1590/S0073-
47212007000100002
Costa, I. D., Ohara, W. M. & Almeida, M. (2017). Fishes from the Jaru Biological Reserve,
Machado River drainage, Madeira River basin, Rondônia State, northern Brazil. Biota
Neotropica 17, 1–9.
Dias, M. S., Cornu, J.-F., Oberdorff, T., Lasso, C. A. & Tedesco, P. A. (2013). Natural frag-
mentation in river networks as a driver of speciation for freshwater shes. Ecography 36,
683–689. https://doi.org/10. 1111/j. 1600-0587.2012.07724.x
Dingerkus, G. & Uhler, L. D. (1977). Enzyme clearing of alcian blue stained whole small verte-
brates for demonstration of cartilage. Stain Technology 52, 229– 232. https://doi.org/10
.3109/10520297709116780
Eigenmann, C. H. (1917). The American Characidae – I. Memoirs of the Museum of Compar-
ative Zoology 43, 1–102.
Esteves, K. E. & Galetti, P. M. (1994). Feeding ecology of Moenkhausia intermedia (Pisces,
Characidae) in a small oxbow lake of Mogi-Guaçú River, São Paulo, Brazil. Verhandlun-
gen des Internationalen Verein Limnologie 25, 2198–2204.
Fink, W. L. & Weitzman, S. H. (1974). The so-called Cheirodontin shes of central America
with descriptions of two new species (Pisces: Characidae). Smithsonian Contributions to
Zoology 172, 1–46.
Gibson, S. Z. (2015). Evidence of a specialized feeding niche in a late Triassic ray-nned sh:
evolution of multidenticulate teeth and benthic scraping in †Hemicalypterus.The Science
of Nature 102, 1– 7. https://doi.org/10. 1007/s00114-015-1262-y
Gomiero, L. M. & Braga, F. M. S. (2008). Feeding habits of the ichthyofauna in a protected area
in the state of São Paulo, southeastern Brazil. Biota Neotropica 8, 1– 8. https://doi.org/
10.1590/S1676-06032008000100004
Gonçalves, A. F. G., Prudente, B. S., Filho, F. S. C. & Montag, L. F. A. (2013). Feeding ecology
of dash-dot tetra Hemigrammus bellottii (Steindachner 1882) (Characiformes: Characi-
dae) in the streams of the Urucu River basin, central Amazonia, Brazil. Biota Neotropica
13, 141–147. https://doi.org/10.1590/S1676-06032013000300018
Graciolli, G. M., Azevedo, M. A. & Melo, F. A. G. (2003). Comparative study of the diet of
Glandulocaudine and Tetragonopterinae (Ostariophysi: Characidae) in a small stream in
southern Brazil. Studies on Neotropical Fauna and Environment 38, 95–110. https://doi
.org/10.1076/snfe.38.2.95.15932
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
14 W. M. OHARA ET AL.
Hahn, N. S. & Loureiro-Crippa, V. E. (2006). Estudo comparativo da dieta, hábitos alimenta-
res e morfologia tróca de duas espécies simpátricas, de peixes de pequeno porte,
associados à macrótas aquáticas. Acta Scientiarum Biological Sciences 28, 359–364.
https://doi.org/10. 4025/actascibiolsci. 167
Hahn, N. S., Agostinho, A. A., Gomes, L. C. & Bini, L. M. (1998). Estrutura tróca da ictiofauna
do reservatório de Itaipu (Paraná-Brasil) nos primeiros anos de sua formação. Interciência
23, 299–307.
Ingenito, L. F. S., Lima, F. C. T. & Buckup, P. A. (2013). A new species of Hyphessobrycon
Durbin (Characiformes: Characidae) from the Rio Juruena basin, Central Brazil, with
notes on H. loweae Costa & Géry. Neotropical Ichthyology 11, 33–44. https://doi.org/10
.1590/S1679-62252013000100004
Kullander, S. O. (1995). Three new cichlid species from southern Amazonia: Aequidens gercil-
iae, A.epae and A.michaeli.Ichthyological Exploration of Freshwaters 6, 149–170.
Lima, F. C. T. & Flausino, N. Jr. (2016). Hyphessobrycon vanzolinii, a new species from Rio
Tapajós, Amazon basin, Brazil (Characiformes: Characidae). Aqua, International Jour-
nal of Ichthyology 22, 89– 95.
Lima, F. C. T., Malabarba, L. R., Buckup, P. A., Pezzi da Silva, J. F., Vari, R. P., Harold, A.,
Benine, R. C., Oyakawa, O. T., Pavanelli, C. S., Menezes, N. A., Lucena, C. A. S., Reis,
R. E., Langeani, F., Casatti, L., Bertaco, V. A., Moreira, C. R. & Lucinda, P. H. F. (2003).
Genera Incertae Sedis – Characidae. Check List of the Freshwater Fishes of South and
Central America (Reis, R. E., Kullander, S. O. & Ferraris, C. J., eds), pp. 106– 169. Porto
Alegre: Edipucrs.
Lima, F. C. T., Pires, T., Ohara, W. M., Jerep, F. C., Carvalho, F. R., Marinho, M. M. F. & Zuanon,
J. (2013). Characidae. Peixes do Rio Madeira, Vol. I (Queiroz, L. J., Torrente-Vilara, G.,
Ohara, W. M., Pires, T. S., Zuanon, J. & Doria, C. R. C., eds), pp. 213– 395. São Paulo:
Dialeto.
Luiz, E. A., Agostinho, A. A., Gomes, L. C. & Hahn, N. S. (1998). Ecologia tróca de peixes
em dois riachos da bacia do Rio Paraná. Revista Brasileira de Biologia 58, 273–285.
Malabarba, L. R. & Weitzman, S. H. (2003). Description of a new genus with six new species
from southern Brazil, Uruguay and Argentina, with a discussion of a putative characid
clade (Teleostei: Characiformes: Characidae). Comunicações do Museu de Ciências e
Tecnologia da PUCRS, Serie Zoológica 16, 67– 151.
Manna, L. R., Rezende, C. F. & Mazzoni, R. (2012). Plasticity in the diet of Astyanax taeniatus
in a coastal stream from southeast Brazil. Brazilian Journal of Biology 72, 919– 928.
https://doi.org/10.1590/S1519-69842012000500020
Mazzoni, R. & Rezende, C. F. (2003). Seasonal diet shift in a Tetragonopterinae (Osteichthyes,
Characidae) from the Ubatiba river, RJ, Brazil. Brazilian Journal of Biology 63, 69– 74.
https://doi.org/10.1590/S1519-69842003000100009
Mendonça, M. B., Montag, L. F. A., Oliveira-Raiol, R. D. & Wosiacki, W. B. (2012). Feeding
ecology of two sympatric species of the genus Jupiaba (Characiformes: Characidae) in
streams in the Urucu River basin, AM, Brazil. Uakari 8, 59– 67.
Mérona, B., Santos, G. M. & Almeida, R. G. (2001). Short term effects of Tucuruí dam (Ama-
zonia, Brazil) on the trophic organization of sh communities. Environmental Biology of
Fishes 60, 375–392. https://doi.org/10.1023/A:1011033025706
Moraes, M., Rezende, C. F. & Mazzoni, R. (2013). Feeding ecology of stream-dwelling Characi-
dae (Osteichthyes: Characiformes) from the upper Tocantins River, Brazil. Zoologia 30,
645–651. https://doi.org/10.1590/S1984-46702013005000003
Novakowski, G. C., Hahn, N. S. & Fugi, R. (2008). Diet seasonality and food overlap of the sh
assemblage in a pantanal pond. Neotropical Ichthyology 6, 567–576. https://doi.org/10
.1590/S1679-62252008000400004
Ohara, W. M. & Lima, F. C. T. (2015). Hyphessobrycon lucenorum (Characiformes: Characi-
dae), a new species from the Rio Madeira basin, Rondônia State, Brazil. Zootaxa 3972,
562–572. https://doi.org/10.11646/zootaxa.3972.4.7
Ohara, W. M., Lima, F. C. T. & Barros, F. S. (2017). Hyphessobrycon petricolus, a new species
of tetra (Characiformes: Characidae) from the Rio Madeira basin, Mato Grosso, Brazil.
Zootaxa 4221, 242–250. https://doi.org/10.11646/zootaxa.4221.2.8
Ortaz, M., Von Bach, P. B. & Candia, R. (2006). Alimentación del pez insectívoro neotropical
Creagrutus bolivari (Pisces: Characidae) según los métodos gráco y de importancia
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
NEW HYPHESSOBRYCON FROM THE RIO MADEIRA 15
relativa. Revista de Biología Tropical 54, 1227–1239. https://doi.org/10.15517/rbt.v54i4
.3100
Pastana, M. N. L. & Ohara, W. M. (2016). A new species of Hyphessobrycon Durbin (Characi-
formes: Characidae) from Rio Aripuanã, Rio Madeira basin, Brazil. Zootaxa 4161, 1–5.
https://doi.org/10.11646/zootaxa.4161.3.6
Pedroza, W. S., Ribeiro, F. R. V., Teixeira, T. F., Ohara, W. M. & Py-Daniel, L. H. R. (2012).
Ichthyofaunal survey of stretches of the Guariba and Roosevelt rivers, in Guariba State
Park and Guariba extractive reserve, Madeira River basin, Amazonas, Brazil. Check list
8, 8–15.
Pelicice, F.M. & Agostinho, A. A. (2006). Feeding ecology of shes associated with Egeria spp.
patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15, 10– 19. https://doi
.org/10.1111/j.1600-0633.2005.00121.x
Perin, L., Shibatta, O. A. & Bernarde, P. S. (2007). Fish, Machado River basin, Cacoal urban
area, state of Rondônia, Brazil. Check List 3, 94–97.
Queiroz, L. J., Torrente-Vilara, G., Vieira, F. G., Ohara, W. M., Zuanon, J. & Doria, C. R.
(2013a). Fishes of Cuniã Lake, Madeira River Basin, Brazil. Check List 9, 540– 548.
Queiroz, L. J., Torrente-Vilara, G., Ohara, W. M., Pires, T. H. S., Zuanon, J. & Doria, C. R. C.
(2013b). Peixes do Rio Madeira. São Paulo: Dialeto Latin American Documentary.
Rapp Py-Daniel, L. H., Deus, C. P., Ribeiro, O. M. & Sousa, L. M. (2007). Peixes. Biodi-
versidade do Médio Madeira: bases cientícas para proposta de conservação (Rapp
Py-Daniel, L. H., Deus, C. P., Henriques, A. L., Pimpão, D. M. & Ribeiro, O. M., eds),
pp. 89–125. Manaus: MMA/MCT.
Resende, E. .K. de; Pereira, R. A. C. & Almeida, V. L. L. (1998). Peixes herbívoros da Planície
Inundável do Rio Miranda, Pantanal, Mato Grosso do Sul, Brasil. Embrapa-CPAP,
Corumba. Boletim de Pesquisa 10. Available at https://core.ac.uk/download/pdf/
15437097.pdf
Rondineli, G., Gomiero, L. M., Carmassi, A. L. & Braga, F. M. S. (2011). Diet of shes in Passa
Cinco stream, Corumbataí River subbasin, São Paulo state, Brazil. Brazilian Journal of
Biology 71, 157–167.
Sabino, J. & Zuanon, J. (1998). A stream sh assemblage in Central Amazonia: distribution,
activity patterns and feeding behaviour. Ichthyological Exploration of Freshwaters 8,
201–210.
Santos, C. L., Santos, I. A. & Silva, C. J. (2009). Ecologia tróca de peixes ocorrentes em bancos
de macrótas aquáticas na baia Caiçara, Pantanal Mato-Grossense. Revista Brasileira de
Biosciências 7, 473–476.
Santos, G. M. (1996). Impactos da hidrelétrica Samuel sobre as comunidades de peixes do rio
Jamari (Rondônia, Brasil). Acta Amazônica 25, 247–280.
Silva, C. C., Ferreira, E. J. G. & Deus, C. P. (2008). Diet of Bryconops alburnoides and B.caudo-
maculatus (Osteichthyes: Characiformes) in the region affected by Balbina Hydroelectric
Dam (Amazon drainage, Brazil). Neotropical Ichthyology 6, 237–242. https://doi.org/10
.1590/S1679-62252008000200011
Taylor, W. R. & Van Dyke, G. C. (1985). Revised procedures for staining and clearing small
shes and other vertebrates for bone and cartilage study. Cybium 9, 107– 119.
Teixeira, T. F., Lima, F. C. T. & Zuanon, J. (2014). A new Hyphessobrycon Durbin from the Rio
Teles Pires, Rio Tapajós Basin, Mato Grosso state, Brazil (Characiformes: Characidae).
Copeia 2013, 612–621. https://doi.org/10.1643/CI-13- 026
Teixeira, T. F., Netto-Ferreira, A. L., Birindelli, J. L. O. & Sousa, L. M. (2016). Two new species
of Hyphessobrycon (Characiformes: Characidae) from the headwaters of the Tapajós and
Xingu River basins, Pará, Brazil. Journal of Fish Biology 88, 459 – 476. https://doi.org/
10.1111/jfb.12803
Tencatt, L. F. C. & Ohara, W. M. (2016). A new long-snouted species of Corydoras Lacépède,
1803 (Teleostei: Callichthyidae) from the Rio Madeira basin. Zootaxa 4133, 430–442.
https://doi.org/10.11646/zootaxa.4144.3.9
Torrente-Vilara, G., Zuanon, J., Leprieur, F., Oberdorff, T. & Tedesco, P. A. (2011). Effect of
natural rapids and waterfalls on sh assemblage structure in the Madeira River (Amazon
Basin). Ecology of Freshwater Fish 20, 588 – 597. https://doi.org/10.1111/j.1600-0633
.2011.00508.x
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383
16 W. M. OHARA ET AL.
Vieira, F. G., Matsuzaki, A. A., Barros, B. S. F., Ohara, W. M., Paixão, A. C., Torrente-Vilara,
G., Zuanon, J. & Doria, C. R. C. (2016). Catálogo de Peixes da Estação Ecológica de
Cuniã. Porto Velho: Edufro.
Vitule, J. R. S., Braga, M. R. & Aranha, J. M. R. (2008). Ontogenetic, spatial and temporal varia-
tions in the feeding ecology of Deuterodon langei Travassos 1957 (Teleostei: Characidae)
in a Neotropical stream from the Atlantic rainforest, southern Brazil. Neotropical Ichthy-
ology 6, 211–222. https://doi.org/10.1590/S1679-62252008000200008
Weitzman, S. H. (1962). The osteology of Brycon meeki, a generalized characid sh, with an
osteological denition of the family. Stanford Ichthyological Bulletin 8, 1–77.
Weitzman, S. H. & Palmer, L. (1997). A new species of Hyphessobrycon (Teleostei: Characidae)
from Neblina region of Venezuela and Brazil, with comments on the putative ′rosy tetra
clade′.Ichthyological Exploration of Freshwaters 7, 209– 242.
Winemiller, K. O. (1992). Ecomorphology of freshwater shes. National Geographic Research
& Exploration 8, 308– 327.
Wootton, R. J. (1990). Ecology of Teleost Fishes. London: Chapman & Hall.
Ximenes, L. Q. L., Mateus, L. A. F. & Penha, J. M. F. (2011). Variação temporal e espa-
cial na composição de guildas alimentares da ictiofauna em lagoas marginais do Rio
Cuiabá, Pantanal Norte. Biota Neotropica 11, 205– 215. https://doi.org/10.1590/S1676-
06032011000100022
Zanata, A. M. & Ohara, W. M. (2009). Jupiaba citrina, a new species from Rio Aripuanã,
Rio Madeira basin, Amazonas and Mato Grosso states, Brazil (Characiformes:
Characidae). Neotropical Ichthyology 7, 513–518. https://doi.org/10.1590/S1679-
62252009000400001
Zanata, A. M. & Akama, A. (2004). Myxiops aphos, a new characid genus and species (Characi-
formes: Characidae) from the Rio Lençóis, Bahia, Brazil. Neotropical Ichthyology 2,
45–54. https://doi.org/10.1590/S1679-62252004000200001
Zanata, A. M. & Lima, F. C. T. (2005). New species of Jupiaba (Characiformes: Characidae)
from Rio Tiquié, upper Rio Negro basin, Brazil. Copeia 2005, 272– 278. https://doi.org/
10.1643/CI-04-155R1
Electronic References
Hahn, N. S., Fugi, R., Peretti, D., Russo, M. R. & Loureiro-Crippa, V. E. (2002). Estrutura
tróca da ictiofauna da Planície de Inundação do alto do Rio Paraná. A Planície de
Inundação do Alto Rio Paraná (Agostinho, A. A. & Thomaz, S. M., eds), pp. 131– 135.
Maringá: Programa PELD/CNPq Available at www.imasul.ms.gov.br/wp- content/
uploads/sites/74/2015/06/2-A_Plan%C3%ADcie_de_Inunda%C3%A7%C3%A3o_do_
Alto_Rio_Paran%C3%A1.pdf
IBGE (2009). Manuais Técnicos em Geociências: Manual Técnico de Geomorfologia.Riode
janeiro: Instituto Brasileiro de Geograa e Estatística. Availble at http://biblioteca.ibge
.gov.br/visualizacao/livros/liv66620.pdf
IUCN (2014). Standards and Petitions Sub-Committee. Gland: International Union for the Con-
servation of Nature. Available at www.iucn.org/es/node/24834
© 2017 The Fisheries Society of the British Isles, Journal of Fish Biology 2017, doi:10.1111/jfb.13383