Available via license: CC BY-NC 4.0
Content may be subject to copyright.
356
An Bras Dermatol. 2017;92(3):356-62.
review
Antioxidants in dermatology*
FlaviaAlvimSant´annaAddor1
s
Received on 15.02.2016
ApprovedbytheAdvisoryBoardandacceptedforpublicationon03.05.2016
* Studyconductedatprivateclinic–SãoPaulo(SP),Brazil.
Financial support: none.
Conictofinterest:none.
1 Privateclinic–SãoPaulo(SP),Brazil.
©2017byAnaisBrasileirosdeDermatologia
INTRODUCTION
Skin and mucous membranes have a contact and defense
barrier role against chemical, physical and biological aggressions
continuously.1
Maintenanceof cellularintegrity,aswellasofallimmune
mechanisms,whetherinborn (cutaneous lipidsandplasma mem-
branes,forexample)orspecic(cytokinesynthesis,enzymesorcell
proliferation),involvesaseriesofchemicalreactionsthatgenerate
reactive oxygen species - highly reactive molecules that can rapidly
altermoleculesfundamentaltocutaneoushomeostasis,suchaspro-
teins,lipids,orDNA.2 Endogenous or exogenous antioxidant mech-
anismsactbyneutralizingthesereactivemolecules.Theimbalance
ofthisneutralization has multiple consequences:freeradicals are
implicatedintheetiopathogenesis of variousdermatoses,as well
as in the aging process and in the onset of cutaneous neoplasias.3
Proper use of antioxidants should be considered in these sit-
uationswhereevidencesoftheirbenetshavebeenaccumulatingin
the last decades.
OXIDATIVE MECHANISMS AND SKIN PHYSIOLOGY
Themainreactiveoxygen species (ROS)arethe hydroxyl
radicals(HO•)andsuperoxide(O2•-),peroxylandalkoxylradicals
(RO2•andRO•),thesingletoxygen(1O2)3-5,aswellashydrogenper-
oxide (H2O2)and organicperoxides(ROOH).4 In addition to direct
damagetomoleculessuch as lipids, aminoacidsand DNA, ROS
canactivateenzymaticandnon-enzymaticcellularresponses,with
the potential to modify other processes that end up interfering with
gene expression. 5
Antioxidantsare substancesthat combineto neutralizere-
active oxygen species preventing oxidative damage to cells and tis-
sues.6 Thecutaneousantioxidantsystemconsistsofenzymatic and
non-enzymaticsubstances.Among enzymatic antioxidants, gluta-
thioneperoxidase(GPx),catalase(CAT)andsuperoxidedismutase
(SOD)canbehighlighted. 7
Non-enzymaticor lowmolecular weightantioxidantsalso
contribute to the maintenance of cellular redox balance. Here some
hormonesaregroupedsuchasestradioland,melatonin,aswellas
somevitamins,suchasEandC.8
Figure1 summarizesthe mainoxidative sourcesandtheir
antioxidant systems; participating.9
THE PARADOX OF ANTIOXIDANTS EXCESS
GenerationofROSinphysiologicalconditions,suchasres-
pirationorevenphysicalexercise,isimportantinthemaintenance
of cellular functional integrity. These molecules generally induce
intracellular enzymatic processes via transcription factors (FoxO)
thatinducethe expressionof antioxidant enzymes,suchas SOD.9
Increased levels of FoxO reduce cell proliferation and induce apop-
tosis.Thesefactorsareinvolvedincellgrowth,proliferation,differ-
entiation and longevity.10
Balance of antioxidant systems and the endogenous genera-
tion of ROS is dynamic and tenuous.
Thereisevidencethatsituationsofmildstress,suchasca-
loricrestrictionorphysicalactivity,canmodulatetheagingprocess,
DOI: http://dx.doi.org/10.1590/abd1806-4841.20175697
Abstract: Theskincellscontinuouslyproduce,throughcellularrespiration,metabolicprocessesorunderexternalaggres-
sions,highlyreactivemoleculesoxidationproducts,generallycalledfreeradicals.Thesemoleculesareimmediatelyneu-
tralizedbyenzymaticandnon-enzymaticsystemsinaphysiologicalanddynamicbalance.Insituationswherethisbalance
isbroken,variouscellularstructures,such as the cell membrane, nuclear or mitochondrialDNAmay suffer structural
modications,triggeringorworseningskindiseases.severalsubstanceswithallegedantioxidanteffectshasbeenoffered
fortopicalororaluse,butlittleisknownabouttheirsafety,possibleassociationsandespeciallytheirmechanismofaction.
The management of topical and oral antioxidants can help dermatologist to intervene in the oxidative processes safely and
effectively,sincetheyknowthemechanisms,limitationsandpotentialrisksofusingthesemoleculesaswellasthepotential
benetsofavailableassociations.
Keywords: Antioxidants;Carotenoids;Dermatitis;DNAdamage;Freeradicals;Polypodium;Skinaging
Antioxidants in dermatology 357
An Bras Dermatol. 2017;92(3):356-62.
sincetheyincreasemitochondrialactivity,alsoincreasingthegener-
ationofROS–whichwouldprovokeanadaptiveresponse,withim-
provementofdefensemechanismsandconsequentbetterresponse
and resistance to stress.11
Althoughthisquestionisnotyetstudiedforskinphysiolo-
gyandpathology,itmaybevalid,especiallyforchronologicalaging
in healthy individuals.
Therefore,theingestionorapplicationofantioxidantmole-
cules is indicated in situations in which there is an inability to neu-
tralize,bothbytheROS excessandby thedeclineofendogenous
systems,asoccursinagingandinsomediseases.
However,not all moleculesofantioxidantpotential, from
thephysiologicalpointofview,actlinearlyincutaneousoxidative
stress; an important example of this is the oral use of beta-carotene.
A randomized, controlled trial to determine whether the
impactofthe useofbeta-carotene supplementation,associatedor
notto sunscreens,coulddelaythesignsofphotoagingwas devel-
opedbetween1992and 1996; no signicanteffectof 30 mg daily
supplementationofbeta-carotenewasidentied.12 Likewise,anoth-
ercarotenoid,lycopene, does not presentaphotoprotective effect
wheningestedorally,bothinnaturaandinsupplementation.13
However,there is evidence that these molecules can also
lead to deleterious effects when used indiscriminately. The risk of
hypervitaminosisin olderpatients,inwhomrenalexcretoryfunc-
tionisreduced,isanexample.14
Most emblematic, however, is the issue of vitamin E: to-
copherol and its esters are some of the most documented antiox-
idants and they are commonly used for their proven action on
induced ultraviolet damage. Its indiscriminate use, however, can
inhibitglutathione-S-transferase,responsiblefortheremovalofcy-
totoxic compounds related to tumorigenesis in the skin.15,16
Resveratrolitself,with its recognizedantioxidantandan-
ti-inammatoryactivities, hasconictingdataregardingitsdoses:
recent data demonstrate its bioactivity in nanometric doses when
derived from phytochemicals in food – and this demonstrates how
itcanbedifculttoevaluatethesynergy,orevenantagonism,ofthe
association between dietary components.17
Theadministrationofantioxidantsinsmaller doses,butin
combination,hasbeenassertingasthesafestalternativeforitsuse.
VitaminE acts in synergy withvitaminC,which regenerates the
radicaltocopheryl,aproductofalpha-tocopheroloxidation. 18
Supplementation with beta-carotene, this time associated
with lycopene and a probiotic, promoted the preventionof poly-
morphiclighteruptioninastudyalsorandomized.19Similarly,an-
otherrandomizedstudy,conductedwithanassociationofvitamins
A,C,E,selenium,pomegranateextract,quercetin,greentea, coen-
zymeq10andcarotenoids,suchaslutein,lycopeneandzeaxanthin,
led to an improvement in the erythematous dose and absorption
levels of free radicals after 4 weeks of use.20
Thesendingssuggestthattheuseofcombinationsofmul-
tiple antioxidant molecules allows not only to amplify the antioxi-
dantactionin severalsitesbut alsotoobtain anampliedaction,
comparableto amonotherapy inhigh doses.For thisreason, each
association should be ideally evaluated for its clinical effects.21
MAIN INDICATIONS IN DERMATOLOGY
Photodamage
Currently,there isenough evidencetoassert thatallsolar
spectrum favors the generation of free radicals; this generation pos-
siblyfavors,toagreaterorlesserextent,photoaging,photoimunio-
suppression and photocarcinogenesis. 22
Ultraviolet (UV) radiation, in its UVB range (290-320 nm),
isresponsiblefor theimmediatedamages of solarradiation,acting
mainlyonkeratinocytes;UVAband(320-400nm),whichinducescel-
lularchanges,particularlycompromisesmelanocytesandbroblasts.
Inadditiontoconsumingantioxidantsystems,UVdamage
leadstoinammation,andneutrophilinltrateactivatesNAD(P)H
oxidase,generatingROSthatalter theproductionofkeratinocytic
cytokines.23,24
Use of antioxidants in the prevention and repair of ultravio-
letphotodamageiswidelystudied,beingthemostknownandused
indication.Association ofantioxidant molecules,fromvitamins to
phytoextracts, in photoprotectors and moisturizers with appeal
againstaging,isfrequent. 25-27
Astudywiththeobjectiveofprovingtheefcacyofanas-
sociation of antioxidants with trace elements and glycosaminogly-
cansinarandomizedcontrolstudyshowedclinicalimprovementof
signs of photoaging after 3 months of use. 28
Oral use of antioxidants does not dispense the use of sun-
screensandisthereforeasecondlineofprotectionagainstUVpho-
todamageevenwhentheyreducetheappearanceofsolarerythema,
such as Polypodium leucotomos. 29
Antioxidantaction ofthisphytoextractnotonlyoccursby
theneutralizingeffectofROS,blockinglipidperoxidation,butalso
by activating natural antioxidant systems.
AlthoughtheindicationofPolypodium leucotomos in our sce-
narioisforpolymorphiclighteruption,thereisconsistentevidence
of its use in other dermatoses as well as in photoaging.30
The combination of oral antioxidants at physiological doses
recommendeddailyintake(RDI)isalsoableto increaseminimum
erythemaldoselevels(MED).31
Regardingvisiblelight(400-720nm),itproducesabout50%
Cell damage
Cell death
Change in proliferative response
Change in immune response
Mitochondria
Peroxisomes
Cycle/ lipoxygenases
NAPDHoxidase
Nitric oxide synthase
Etc.
Sunlight(UV,Visible,IR)
Ionizingradiation
Pollutants
Xenobiotics
Etc.
Enzymaticsystems:SOD,CAT,etc.
Non-enzymaticsystems:glutathione,
vitamins,elatonin,etc.
Source: Pastore et al, 2010.9
ROS:reactiveoxygenspecies(oxygen-freespecies);RNS:reactivenitrogenspecies(nitro-
gen-freespecies);SOD:superoxidedismutase;CAT:catalase
ROS
RNS
FIgure 1: Diagram of the redox balance in the skin
358 Addor FAS
An Bras Dermatol. 2017;92(3):356-62.
of the total oxidative stress caused by sunlight. Reactive species
such as O2- * and * * OH CHR are generated by visible light.32
Althoughthereisevidenceofcutaneouscarotenedepletion
inducedbyvisiblelight,useoftopicalororalantioxidants,toreduce
freeradicalsgeneratedbythisrange,hasnotyetbeenelucidated. 33
Lutein,acarotenoidalreadyusedinophthalmologyin the
treatmentofmaculardegeneration,hasbeenassociatedwithapro-
tectiveeffectofoxidativedamagefromsunlight,particularlybyvis-
iblelight,byabsorbingbluelight.34
A double blind, placebo-controlled study compared the
efcacyoforal supplementationwithtopical applicationof lutein
combinedwithzeaxanthintoveparameters:epidermallipids,hy-
dration,photoprotectiveactivity,skinelasticityandlipidperoxida-
tionunderUVradiation.After12weeks,bothtreatmentsimproved
thesemeasures,andoraladministrationwassuperior,butthecom-
bination(oralandtopical)providedthegreatestprotection.35
Morerecently,studieshaveshownthatthermogenicinfra-
red radiation is also capable of generating free radicals in human
skin;its ambiguouseffect,sinceitisalsoused therapeutically,de-
pends on two distinct mechanisms: the NF-kB signaling pathway is
responsibleforthetherapeuticeffects,whereastheAP-1pathwayis
responsible for the pathological effects.29AP-1isresponsibleforthe
productionofmetalloproteinases thatpromotecollagen breakage,
clinically inducing wrinkles.36,37
The ability of infrared radiation to deeply penetrate favors
thegenerationoffreeradicals,asitcancausemutationinmitochon-
drialDNA.38
Some studies have been conducted with the objective of
investigatingwhichantioxidants would bethemost adequate for
inhibitingtheeffectofthisradiation,usingcombinationsoftopical
use of known molecules; a topical combination of vitamins C, E,
ubiquinoneandgrapeextractshowedpositiveresultsinacompar-
ative study. 39
Aging
Concomitant with solar radiation and other environmental
factorsresponsibleforoxidativephenomena,skinaging,aswellas
ofallorgans,isaccompaniedbythedeclineoftheendogenousan-
tioxidant mechanisms.
Clinically,thendingsofphotoagingarethepredominant,
anditisdifcult–andoftenunnecessaryinpractice–todistinguish
theimpactofexogenousfactorsonthechronologicalprocess,butit
isknownthatthemainndingofintrinsicagingiscutaneousatro-
phy,bythereductionofepidermis,but,mainly,bythe decreasein
the collagen content and other dermal elements.40
Intheintrinsicagingprocess,progressivedamagetomito-
chondrialDNAoccurs,withincreasedROSproduction,whichcaus-
es cell aging and impairs protein proliferation.41
The theory of aging from free radicals was developed in the
1950s;later,it wasobserved thatthe cellularorganelleresponsible
forthecellularmetabolism,themitochondria,wasthemaingener-
ator of free radicals due to the cellular respiration that occurs in it.42
Initsreducedform,ubiquinol(coenzymeQ10)preventsthis
oxidativeactivityandalsoregeneratesalpha-tocopherol.Coenzyme
Q10 is the only soluble lipid antioxidant that animal cells can syn-
thesizeandforwhichthereisanappropriateenzymaticmechanism
to regenerate it – which also declines over time.43 Finally,coenzyme
Q10hasbeenshowntoinuence(bymechanismofgeneinduction)
the synthesis of key cutaneous proteins and to inhibit the expression
ofsomemetalloproteinases,suchascollagenase,bypreservingthe
collagen content of the skin.44
Inskinaging,there isaprogressiveaccumulation ofpro-
teins,DNAandmodiedlipids,reinforcingtheassociationbetween
ROS and intrinsic aging.45
Amongthemultipleantioxidantmechanisms,SODplaysa
centralrolein the variety ofreactivemolecules it neutralizes.Al-
though there is still no direct correlation, animal models suggest
that the lack of SOD leads to degenerative changes with reduced
collagen.Possibly,vitaminCwouldhaveapositiveimpactonSOD
reduction states preventing atrophy due to collagen degradation.46
The most physiological protective effect against oxidative
stress seems to be the support to the endogenous system, using
antioxidantsnormallypresent intheskin. This strategy,however,
should not be confused with the permanent use of high non-physio-
logicaldosesofisolatedantioxidants,norconsideredasasubstitute
foradequatefood.47
Melasma
InducedUV melanogenesisthatoccursinmelasmaisam-
plied by increasing the oxidation of dopaquinone; antioxidants
suchasvitaminC,whichreducedopaquinone(DOPA),preventthe
formation of free radicals.48
TheinducedUV inammatory processalsofavors thein-
crease of melanogenesis.49
AclinicalAclinicaltrialtostudytheendogenoustheendog-
enous antioxidant systems in patients with melasma demonstrat-
inga signicantconsumption ofsuperoxidedismutase(SOD)and
glutathione peroxidase. This result demonstrates the rupture of the
redoxequilibrium.50
Oxidationisaprocessthatmayfavormelasma,buttheex-
clusive use of antioxidants in its treatment does not seem to have a
relevanteffect.Antioxidant moleculesemployedthathaveproven
utility also have whitening action by inhibition of tyrosinase (for
example,ascorbicacid and ellagicacid)or anti-inammatory (for
example,pycnogenol).51-53
Non-melanoma skin cancer
GenerationofUVinducedfreeradicalsintheskindevelops
oxidative stress when it exceeds the ability of natural defense: the
onlyskinprotectionsystemsareantioxidantenzymesandmelanin,
therstlineofdefenseagainstDNAdamage.54
DNAabsorbsultravioletlight,whoseenergycanbreakits
molecular bonds; most of these breaks are repaired by enzymes
presentinthenucleusitself,howevertheremainingdamagesgen-
erate mutations that lead to neoplasia.55
The two main actions of defenses that antioxidants can pro-
vide are in relation to preventing the formation of free radicals or
neutralizingtheradicalsalreadygenerated.56
Epidermal antioxidant capacity is much higher than the
dermal:catalase,glutathioneperoxidaseandglutathionereductase
systems were higher in the epidermis than in the dermis – both the
lipophilicantioxidants(tocopherol,ubiquinol9,etc.)andthehydro-
philicones(ascorbicacid and glutathione). Thestratumcorneum
Antioxidants in dermatology 359
An Bras Dermatol. 2017;92(3):356-62.
containsbothhydrophilic andlipophilicantioxidants. VitaminsC
andE,aswellasglutathione(GSH)anduricacid,werefound.Sur-
prisingly,theyarenotevenlydistributed,butingradientform,with
lower concentrations in the outer layers and higher concentrations
toward the deeper layers of the stratum corneum. 57
Itisalsoconrmedthattheacute exposureofhumanskin
to solar radiation leading to oxidation can be prevented by previous
treatmentswithantioxidants,reducingtheriskofcarcinogenesis.58
In contrast, there is evidence that treatment with topical
antioxidantsafterUVdamage can interfere with thecellcycleor
apoptosisofdamagedcells,notbringingbenetorevenpotentiat-
ing the damage.59
Therefore, endogenous photoprotection with antioxidants
iscomplementaryto photoprotectionwith sunscreens,andis cur-
rentlythe mostadequateformofphotocarcinogenesisprevention,
in addition to, of course, the photoprotection behavior (seeking
shadows,avoidinghoursofgreatersunshine,etc.). 60
Psoriasis
There are consistent systemic signs of oxidative stress in
patients with active psoriasis: plasma levels of malonyldialdehyde
(MDA)aresignicantlyelevated,suggestingthedepletionofnatu-
ralenzymaticandnon-enzymatic antioxidant systemsandconse-
quentlytheprevalenceofperoxidationprocessesincellmembranes
and plasma lipid processes of circulating cells.61Similarly,SOD is
reduced in erythrocytes of psoriatic patients.62
Theinammatoryprocessitselfinthelesionareasinduces
the formation of reactive oxygen and nitrogen species.63
Ontheotherhand,classictreatmentssuchasphototherapy
or methotrexate are also capable of generating ROS and RNS.
However,the eventual use of antioxidants should aim to
recovertheredox balance,leadingtoan anti-inammatory effect,
possibly by the activation of antiproliferative and proapoptotic
pathways,bothinthelocalandintheinammatorycells.9
Alopecia
Thepossiblebenetoftheuseofantioxidantsintelogenef-
uviumwillbeaccordingtotheunderlyingcause,especiallywhen
linked to systemic inammatory processes, but there is no direct
evidence of any oxidative mechanism directly linked to this tricose.
In alopecia areata, there is evidence of increased plasma
SODactivityandintheaffectedtissue,howeverthestudiesarestill
controversial. 64
Other dermatoses
Many inammation conditions demonstrate redox imbal-
ance and signicant consumption of their antioxidant systems in
localcells,such as atopicdermatitisor burned skin,aswell as in
thescarringprocess,inwhichtheexcessofROShindersdermaland
epidermalrepair,especiallyinthemomentofacuteinammation.65
Observational studies of melanoma patients demonstrate a
correlation between the lower incidence of the disease and the daily
consumptionof carotenoidandvitaminC-richtea andvegetables,
aswellasthehigh consumption(atleast threeportions/week) of
darkgreenvegetablesrichinlutein;however,thereisnoelucidation
whether the antitumor mechanism involved would be antioxidant.66
Polypodium leucotomos extract has demonstrated a com-
plementaryeffecton the limitation of melanomacellgrowth,but
the impact of the antioxidant mechanism on this effect is unclear.67
There is also evidence of oxidative stress in dermatoses such as vit-
iligo,lichen planus,acne vulgaris,seborrheicdermatitisand pem-
phigusfoliaceus,buttherearenoclinicalstudiesdemonstratingthe
impactoftheuse of antioxidantsinthecontrol of thesediseases,
both oral and topically.68-72
PRACTICAL ASPECTS ON THE USE OF ANTIOXIDANTS
Use of oral or topical antioxidants in the treatment of derma-
tosesbasically seekstoneutralizeexcessfreeradicals,reducingor
preventingtheattackoncellularstructures.Asthepreservationor
reestablishmentoftheredoxbalanceisthegoalinthesesituations,
the use of antioxidants should always be in line with treatments or
otherpreventivemeasures,asinthecaseofphotoprotection.73
Inthiscontext,theuseofconcentrationsclosetothephysi-
ologicalonesispreferential,sincetheyadjustmoreeasilytothecel-
lularphysiology,inadditiontoreducingrisksoftoxicityorevenof
drug interaction with any drugs that the patient uses. Effects of an-
tioxidants can vary considerably depending on the concentrations.74
It is important to note that the use of oral or topical antioxi-
dantsdoesnotreplaceadietwithfruitandvegetableconsumption,
inwhichthecombinationoftheactiveelementsexpandsitseffects,
anddoesnotinvolveanyrisk.Lycopene,forexample,readilyfound
intomatopaste,ingested on theorderof 55 g/dayfor12weeks,
ledtoasignicantreductionofMMP-1expressioninarandomized
controlled study.75
Rich and varied diet should be encouraged in normal in-
dividuals;however,groupssuchaspatientsafterbariatricsurgery,
elderly,andpeoplewithdietary restrictionsmayhave vitaminde-
ciencies,in whichrepositioninphysiological doseswouldbein-
dicated.
Use of antioxidants in long-term pharmacological concen-
trations should only be considered in situations where there is a di-
agnosed need under strict medical supervision.76,77
Association of antioxidants with complementary mecha-
nisms allows a broader neutralizing action, with adequate safety
of use during the period of oxidative stress – which can be from a
simple sun exposure to extensive and acute phase dermatosis.78,79
Useofsupplementswithoutindication,oringestedinhigh
doses, or even for a prolonged time can, in thesis, cause adverse
events precisely in the physiological antioxidative balance. Hence
the importance of medical monitoring.11
Itisimportanttohighlightthat,amongtheexogenousanti-
oxidantsavailableonthemarket,thescienticevidenceregarding
the actual effect on skin cell lines is varied.
Likewise, the proposed associations may have varied re-
sponses according to the concentrations and molecules involved.
The evaluation of clinical response should be made in order to better
understand the effects in relation to the proposed indication.
Anotherimportantpointisthattheinvitroeffectdoesnot
necessarilycorrespondtotheclinicaleffect,inuencedbyrouteof
administration,level ofconcentrationinadministrationandtarget
cell, level of degradation etc. Chart 1 lists the major antioxidants
with action on the skin by oral or topical administration and their
mechanisms of action.
CONCLUSION
Theskinisthesiteofmultipleoxidativereactions,neutral-
ized by exogenous or endogenous enzymatic and non-enzymatic
systems,inacomplexbutefcient,equilibrium.Interactionwiththe
environment(characteristicof theintegumentarysystem),as well
asthepeculiarities of itscells,especially epidermal cells(ofgreat
metabolicand proliferativeactivity), islargelyresponsiblefor this
generationof reactivespecies.Anychangeinthisbalancemayin-
duce or aggravate dermatoses and the use of antioxidants may be of
greatvalue,iftheyareadministered,orallyand/ortopically,ratio-
nally. Each molecule with antioxidant action has actions in certain
sitesand,therefore,theassociationof these molecules,insmaller
doses,seemstobemoreefcient.Inaddition,associationsallowad-
ministeringconcentrationsclosertothe physiologicalones,which
reduces toxicological risks and even of aggravation of imbalance of
the antioxidant systems. q
REFERENCES
1. Contassot E, Beer HD, French LE. Interleukin-1, inflammasomes, autoinflammation
and the skin. Swiss Med Wkly. 2012;142:w13590.
2. Pelle E, Mammone T, Maes D, Frenkel K. Keratinocytes act as a source of reactive
oxygen species by transferring hydrogen peroxide to melanocytes. J Invest
Dermatol. 2005;124:793-7.
3. Ryan AS, Goldsmith LA. Nutrition and the skin. Clin Dermatol. 1996;14:389-406.
4. Droge, W. Free radicals in the physiological control of cell function. Physiol Rev.
2002;82:47-95.
5. Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S. The chemistry of
cellsignaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch
Biochem Biophys. 2008;477:183-95
6. Preedy VR, editor. Handbook of diet, nutrition and the skin. Wageningen:
Wageningen Academic Publishers; 2012.
7. Kohen R, Fanberstein D, Tirosh O. Reducing equivalents in the aging process. Arch
Gerontol Geriatr. 1997;24:103-23.
8. Kvam E, Dahle J. Pigmented melanocytes are protected against ultraviolet-A-
induced membrane damage. J Invest Dermatol. 2003;121:564-9.
9. Pastore S, Korkina L. Redox Imbalance in T Cell-Mediated Skin Diseases.
Mediators Inflamm. 2010;2010:861949.
10. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci.
2007;120:2479-87.
11. Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free
Radic Biol Med. 2011;51:327-36.
12. Hughes MC, Williams GM, Baker P, Green AC. Sunscreen and prevention of skin
aging: a randomized trial. Ann Intern Med. 2013;158:781-90.
*Informationonthemechanismofactionisrestrictedonlytotheantioxidanteffect,althoughmanyofthecitedmoleculeshaveothereffectsdescribed.
360 Addor FAS
An Bras Dermatol. 2017;92(3):356-62.
Molecule Mechanism of antioxidant action
VitaminE Neutralizationofsingletoxygeninthecellmembrane;involvementwithmembranestabilization,
preventinglipidperoxidation-oxidationofunsaturatedfattyacids,suchasarachidonicacid
frommembranephospholipids,whichmayleadtoruptureofthecellmembrane80,81
VitaminC ExtensiveremovaloffreeradicalsandrepairofoxidizedvitaminEboundtothecellmembrane82
Polypodiumleucotomos InhibitionofUVinducedROSgeneration,includingsuperoxideanion30,83
Lycopene Carotenoidofgreaterbiologicalactionintheneutralizationofsingletoxygen84
Lutein CarotenoidthatprotectsthebroblastsfromUVA-inducedoxidativeaction,alsopreventingthe
decreaseoftheantioxidantenzymescatalaseandsuperoxidedismutase(SOD)85,86
Resveratrol InhibitionofUV-inducedoxidativeandmutagenicactiontoDNA87,88
Epigallocatechingallate(greentea) Flavonoidwithbroadscavengingactionoffreeradicals,inhibitingtheproductionofROSand
lipidperoxidationproducts,inadditiontoprotectingtheendogenousantioxidativesystems89,90
Lipoicacid Repairofendogenousantioxidantsystems,freeradicalneutralizer91
Delphinidin Inhibitionoflipidperoxidationandformationof8-hydroxy-2’-deoxyguanosine(8-OHdG),mark-
erofoxidativestresstoDNAandcarcinogenesis92
CoenzymeQ10 ReductionoftheproductionoffreeradicalsandregenerationofvitaminE;reductionofkeratino-
cyteDNAdamageandUVA-inducedmetalloproteinaseproductioninthebroblasts;reduction
of mitochondrial oxidative damage43,93
charT 1: Main molecules with antioxidant action, both topical and oral, of prescription in Dermatology
13. Sokoloski L, Borges M, Bagatin E. Lycopene not in pill, nor in natura has
photoprotective systemic effect. Arch Dermatol Res. 2015;307:545-9.
14. Rutkowski M, Grzegorczyk K. Adverse effects of antioxidative vitamins. Int J
Occup Med Environ Health. 2012;25:105-21.
15. Van Haaften RI, Evelo CT, Penders J, Eijnwachter MP, Haenen GR, Bast A. Inhibition
of human glutathione S-transferase P1-1 by tocopherols and alpha-tocopherol
derivatives. Biochim Biophys Acta. 2001;1548:23-8.
16. Mitchel RE, McCann R. Vitamin E is a complete tumor promoter in mouse skin.
Carcinogenesis. 1993;14:659-62.
17. Chachay VS, Kirkpatrick CM, Hickman IJ, Ferguson M, Prins JB, Martin JH.
Resveratrol--pills to replace a healthy diet? Br J Clin Pharmacol. 2011;72:27-38.
18. Keller KL, Fenske NA. Uses of vitamins A, C, and E and related compounds in
dermatology: a review. J Am Acad Dermatol. 1998;39:611-25.
19. Marini A, Jaenicke T, Grether-Beck S, Le Floc’h C, Cheniti A, Piccardi N.
Prevention of polymorphic light eruption by oral administration of a nutritional
supplement containing lycopene, β-carotene, and Lactobacillus johnsonii: results
from a randomized, placebo-controlled, double-blinded study. Photodermatol
Photoimmunol Photomed. 2014;30:189-94
20. Lima XT, Alora-Palli MB, Beck S, Kimball AB. A double-blinded,
randomized,controlled trial to quantitate photoprotective effects of an antioxidante
combination product. J Clin Aesthet Dermatol. 2012;5:29-32.
21. Addor, FAS . Camarano P; Agelune, CP. Increase in the minimum erythema dose
level based on the intake of a vitamin supplement containing antioxidants. Surg
Cosmet Dermatol 2013;5:212-¬5.
22. Krutmann J, Grewe M. Involvement of cytokines, DNA damage, and reactive
oxygen intermediates in ultraviolet radiation-induced modulation of intercelular
adhesion molecule-1 expression. J Invest Dermatol. 1995;105:67S-70S.
23. Oresajo C, Yatskayer M, Galdi A, Foltis P, Pillai S. Complementary effects of
antioxidants and sunscreens in reducing UV-induced skin damage as demonstrated
by skin biomarker expression. J Cosmet Laser Ther. 2010;12:157-62.
24. Freitas JV, Praça FS, Bentley MV, Gaspar LR. Trans-resveratrol and beta-carotene
from sunscreens penetrate viable skin layers and reduce cutaneous penetration of
UV-filters. Int J Pharm. 2015;484:131-7.
25. Burns EM, Tober KL, Riggenbach JA, Kusewitt DF, Young GS, Oberyszyn TM.
Differential effects of topical vitamin E and C E Ferulic® treatments on ultraviolet
light B-induced cutaneous tumor development in Skh-1 mice. PLoS One.
2013;8:e63809.
26. Poljsak B, Dahmane R, Godic A. Skin and antioxidants. J Cosmet Laser Ther.
2013;15:107-13.
27. Schroeder P, Krutmann J. What is needed for a sunscreen to provide complete
protection. Skin Therapy Lett. 2010;15:4-5.
28. Udompataikul M, Sripiroj P, Palungwachira P. An oral nutraceutical containing
antioxidants, minerals and glycosaminoglycans improves skin roughness and fine
wrinkles. Int J Cosmet Sci. 2009;31:427-35.
29. Gonzalez S, Gilaberte Y, Philips N, Juarranz A. Fernblock, a nutriceutical with
photoprotective properties and potential preventive agent for skin photoaging and
photoinduced skin cancers. Int J Mol Sci. 2011;12:8466-75.
30. Garcia F, Pivel JP, Guerrero A, Brieva A, Martinez-Alcazar MP, Caamano-Somoza
M, et al . Phenolic components and antioxidant activity of Fernblock, an aqueous
extract of the aerial parts of the fern Polypodium leucotomos. Methods Find Exp
Clin Pharmacol. 2006;28:157-60.
31. Zastrow L, Groth N, Klein F, Kockott D, Lademann J, Ferrero L. [UV, visible and
infrared light. Which wavelengths produce oxidative stress in human skin?].
Hautarzt. 2009;60:310-7.
32. Vandersee S, Beyer M, Lademann J, Darvin ME. Blue-violet light irradiation dose
dependently decreases carotenoids in human skin, which indicates the generation
of free radicals. Oxid Med Cell Longev. 2015;2015:579675.
33. Alaluf S, Heinrich U, Stahl W, Tronnier H, Wiseman S. Dietar y carotenoids contribute
to normal human skin color and UV photosensitivity. J Nutr. 2002;132:399-403.
34. Palombo P, Fabrizi G, Ruocco V, Ruocco E, Fluhr J, Roberts R, et al. Beneficial
long-term effects of combined oral/topical antioxidant treatment with the
carotenoids lutein and zeaxanthin on human skin: a double-blind, placebo-control
study. Skin Pharmacol Physiol. 2007;20:199-210.
35. Younis Mel-B, Hasaneen MN, Abdel-Aziz HM. An enhancing effect of visible light
and UV radiation on phenolic compounds and various antioxidants in broad bean
seedlings. Plant Signal Behav. 2010;5:1197-203.
36. Akhalaya MY, Maksimov GV, Rubin AB, Lademann J, Darvin ME. Molecular action
mechanisms of solar infrared radiation and heat on human skin. Ageing Res Rev.
2014;16:1-11.
37. Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention
by retinoic acid: ultravioleta irradiation induces MAP kinase signal transduction
cascades that induce AP-1 regulated matrix metalloproteinases that degrade
human skin in vitro. J Investig Dermatol Symp Proc. 1998;3:61-8.
38. Schroeder P, Lademann J, Darvin ME, Stege H, Marks C, Bruhnke S. Infrared
Radiation-inducedmatrix metalloproteinase in human skin: implications for
protection. J Invest Dermatol. 2008;128:2491-7.
39. Grether-Beck S, Marini A, Jaenicke T, Krutmann JEffective photoprotection of
human skin against infrared A radiation by topically applied antioxidants: results
from a vehicle controlled, double-blind, randomized study. Photochem Photobiol.
2015;91:248-50.
40. Horta C. Muller H. Histologia do envelhecimento do sistema tegumentar. In:
Steiner D, Addor FAZ. Envelhecimento cutâneo. Rio de Janeiro: AC Farmacêutica;
2014. p.14-20
41. Naylor EC, Watson RE, Sherratt MJ. Molecular aspects of skin aging. Maturitas.
2011;69:249-56.
42. Gadaleta MN, Cormio A, Pesce V, Lezza AM, Cantatore P. Aging and mithocondria.
Biochimie. 1998;80:863-70.
43. Beyer RE. The participation of coenzyme Q in free radical production and
antioxidation. Free Radic Biol Med. 1990;8:545-65.
44. Blisnakov EG. Aging, mitochondria, and coenzyme QlO: the neglected relationship
Biochimie. 1999;81:1131-2.
45. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation
of the mouse klotho gene leads to a syndrome resembling ageing. Nature.
1997;390:45-51.
46. Shibuya S; Kinoshita K; Shimizu T. Protective effects of vitamin C derivatives on
skin atrophy caused by Sod1 deficiency. In: Preedy VR, editor. Handbook of diet,
nutrition and the skin. Wageningen: Wageningen Academic Publishers; 2012.
47. Schagen SK, Zampeli VA, Makrantonaki E, Zouboulis CC. Discovering the link
between nutrition and skin aging.” Dermatoendocrinol. 2012;4:298-307.
48. Picardo M, Carrera M. New and experimental treatments of cloasma and other
hypermelanoses. Dermatol Clin. 2007;25:353-62, ix.
49. Sarkar R, Arora P, Garg VK, Sonthalia S, Gokhale N. Melasma update. Indian
Dermatol Online J. 2014;5:426-35.
50. Seçkin HY, Kalkan G, Baş Y, Akbaş A, Önder Y, Özyurt H, Sahin M. Oxidative stress
status in patients with melasma. Cutan Ocul Toxicol. 2014;33:212-7.
51. Azulay MM, Lacerda CAM, Perez MA, Filgueira AL, Cuzzi T. Vitamina C. An Bras
Dermatol. 2003;78:265-74.
52. Yoshimura M, Watanabe Y, Kasai K, Yamakoshi J, Koga T. Inhibitory effect of an
ellagic acid-rich pomegranate extract on tyrosinase activity and ultraviolet-induced
pigmentation. Biosci Biotechnol Biochem. 2005;69:2368-73.
53. Ni Z, Mu Y, Gulati O.. Treatment of melasma with Pycnogenol. Phytother Res.
2002;16:567-71.
54. Fuchs J, Huflejt ME, Rothfuss LM, Wilson DS, Carcamo G, Packer L. Acute efects
of near ultraviolet and visible light on the cutaneous antioxidant defense system
Photochem Photobiol. 1989;50:739-44.
55. Katiyar SK, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate
treatment to mouse skin prevents UVB-induced iniltration of leukocytes, depletion
of antigen-presenting cells, and oxidative stress. J Leukoc Biol. 2001;69:719-26.
56. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med
Bull. 1993;49:481-93.
57. Weber SU, Thiele JJ, Cross CE, Packer L. “Vitamin C, uric acid, and glutathione
gradients in murine stratum corneum and their susceptibility to ozone exposure,”
J Invest Dermatol. 1999;113:1128-32.
58. Godic A, Poljsak B, Adamic M, Dahmane R. The Role of Antioxidants in Skin
Cancer:Prevention and Treatment. Hindawi Publishing Corporation. Oxidative
Medicine and Cellular Longevity. 2014:860479.
59. Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, et al, HIF-dependent
antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230-8.
60. Stahl W, Krutmann J. Systemic photoprotection through carotenoids. Hautarzt.
2006;57:281-5.
61. Vanizor Kural B, Orem A, Cimşit G, Yandi YE, Calapoglu M. Evaluation of the
atherogenic tendency of lipids and lipoprotein content and their relationships
with oxidant-antioxidant system in patients with psoriasis. Clin Chim Acta.
2003;328:71-82.
62. Yildirim M, Inaloz HS, Baysal V, Delibas N. The role of oxidants and antioxidants in
psoriasis. J Eur Acad Dermatol Venereol. 2003;17:34-6.
63. Ormerod AD, Weller R, Copeland P, Benjamin N, Ralston SH, Grabowksi P, et al.
Detection of nitric oxide and nitric oxide synthases in psoriasis. Arch Dermatol
Res. 1998;290:3-8.
64. Motor S, Ozturk S, Ozcan O, Gurpinar AB, Can Y, Yuksel R, et al. Evaluation of total
antioxidant status, total oxidant status and oxidative stress index in patients with
alopecia areata. Int J Clin Exp Med. 2014;7:1089-93.
65. Wagener FA, Carels CE, Lundvig DM. Targeting the redox balance in inflammatory
skin conditions. Int J Mol Sci. 2013;14:9126-67.
66. Fortes C, Mastroeni S, Melchi F, Pilla MA, Antonelli G, Camaioni D, et al. A
protective effect of the Mediterranean diet for cutaneous melanoma. Int J
Epidemiol. 2008;37:1018-29.
67. Philips N, Dulaj L, Upadhya T. Cancer cell growth and extracellular matrix
Antioxidants in dermatology 361
An Bras Dermatol. 2017;92(3):356-62.
362 Addor FAS
An Bras Dermatol. 2017;92(3):356-62.
Mailing address:
Flavia Alvim Sant´anna Addor
R. Attilio Delanina, 187
Osasco
06023-000 São Paulo, SP
Email: avia@medcinonline.com.br
How to cite this article: AddorFAS.Antioxidantsindermatology.AnBrasDermatol.2017;92(3):356-62.
remodeling mechanism of ascorbate; beneficial modulation by P. leucotomos.
Anticancer Res. 2009;29:3233-8.
68. Akoglu G, Emre S, Metin A, Akbas A, Yorulmaz A, Isikoglu S, et al. Evaluation of
total oxidant and antioxidant status in localized and generalized vitiligo. Clin Exp
Dermatol. 2013;38:701-6.
69. Sapuntsova SG, Lebed’ko OA, Shchetkina MV, Fleyshman MY, Kozulin EA , Timoshin
SS. Status of free-radical oxidation and proliferation processes in patients with
atopic dermatitis and lichen planus. Bull Exp Biol Med. 2011;150:690-2.
70. Grange PA, Weill B, Dupin N, Batteux F. Does inflammatory acne result from
imbalance in the keratinocyte innate immune response?Microbes Infect.
2010;12:1085-90.
71. Emre S, Metin A, Demirseren DD, Akoglu G, Oztekin A, Neselioglu S, et al. The
association of oxidative stress and disease activity in seborrheic dermatitis. Arch
Dermatol Res. 2012;304:683-7.
72. Yesilova Y, Ucmak D, Selek S, Dertlioğlu SB, Sula B, Bozkus F, et al. Oxidative
stress index may play a key role in patients with pemphigus vulgaris. J Eur Acad
Dermatol Venereol. 2013;27:465-7.
73. Guaratini T. Medeiros M HG;Colepicolo P. Antioxidantes na manutenção do equilibrio
redox cutâneo: uso e avaliação de sua eficácia. Quim. Nova. 2007;30:206-13.
74. Sadowska-Bartosz I, Bartosz G. Effect of antioxidants supplementation on aging
and longevity. Biomed Res Int. 2014;2014:404680.
75. Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes
LE. Tomato paste rich in lycopene protects against cutaneous photodamage in
humans in vivo: a randomized controlled trial. Br J Dermatol. 2011;164:154-62
76. Shao A, Hathcock JN. Risk assessment for the carotenoids lutein and lycopene.
Regul Toxicol Pharmacol. 2006;45:289-98.
77. Martínez ME, Jacobs ET, Baron JA, Marshall JR, Byers T. Dietary supplements
and cancer prevention: balancing potential benefits against proven harms. J Natl
Cancer Inst. 2012;104:732-9.
78. Matsui MS, Hsia A, Miller JD, Hanneman K, Scull H, Cooper KD, et al. Non-
sunscreen photoprotection: antioxidants add value to a sunscreen. J Investig
Dermatol Symp Proc. 2009;14:56-9.
79. Lademann J, Vergou T, Darvin ME, Patzelt A, Meinke MC, Voit C, et al. Influence
of Topical, Systemic and Combined Application of Antioxidants on the Barrier
Properties of the Human Skin. Skin Pharmacol Physiol. 2016;29:41-6.
80. Krol ES, Kramer-Stickland KA, Liebler DC. Photoprotective actions of topically
applied vitamin E. Drug Metab Rev. 2000;32:413-20.
81. L. Packer L, Valacchi G. Antioxidants and the response of skin to oxidative stress:
vitamin E as a key indicator,” Skin Pharmacol Appl Skin Physiol. 2002;15:282-90.
82. McArdle F, Rhodes LE, Parslew R, Jack CI, Friedmann PS, Jackson MJ. UVR-
induced oxidative stress in human skin in vivo: effects of oral vitamin C
supplementation. Free Radic Biol Med. 2002;33:1355-62.
83. Gombau L, García F, Lahoz A, Fabre M, Roda-Navarro P, Majano P, et al.
Polypodium leucotomos extract: Antioxidant activity and disposition. Toxicol In
Vitro. 2006;20:464-71.
84. Ascenso A, Pedrosa T, Pinho S, Pinho F, de Oliveira JM, Cabral Marques H, et
al. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes.
Oxid Med Cell Longev. 2016;2016:8214631
85. O’Connor I, O’Brien N. Modulation of UVA light-induced oxidative stress by
beta-carotene, lutein and astaxanthin in culturedfibroblasts. J Dermatol Sci.
1998;16:226-30.
86. Astner S, Wu A, Chen J, Philips N, Rius-Diaz F, Parrado C, et al. Dietary lutein/
zeaxanthin partially reduces photoaging and photocarcinogenesis in chronically
UVB-irradiated Skh-1 hairless mice. Skin Pharmacol Physiol. 2007;20:283-91.
87. Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The Grape Antioxidant Resveratrol
for Skin Disorders: Promise,Prospects, and Challenges. Arch Biochem Biophys.
2011;508:164-70.
88. Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, et al. Resveratrol
modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer
study. Cancer Prev Res (Phila). 2010;3:1168-75
89. Katiyar SK. Skin photoprotection by green tea: antioxidant and immunomodulatory
efects. Curr Drug Targets Immune Endocr Metabol Disord. 2003;3:234-42.
90. Gensler HL, Timmermann BN, Valcic S, Wächter GA, Dorr R, Dvorakova K,
et al. Prevention of photocarcinogenesis by topical administration of pure
epigallocatechin gallate isolated from green tea. Nutr Cancer. 1996;26:325-35.
91. Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid.
Gen Pharmacol. 1997;29:315-31.
92. Watson RR, Schönlau F. Nutraceutical and antioxidant effects of a delphinidin-rich
maqui berry extract Delphinol®: a review. Minerva Cardioangiol. 2015;63:1-12.
93. Inui M, Ooe M, Fujii K, Matsunaka H, Yoshida M, Ichihashi M., Mechanisms of
inhibitory efects of CoQ10 onUVB- induced wrinkle formation in vitro and in vivo,
Biofactors. 2008;32:237-43.