Content uploaded by Maximo Torero
Author content
All content in this area was uploaded by Maximo Torero on Dec 09, 2017
Content may be subject to copyright.
Content uploaded by Maximo Torero
Author content
All content in this area was uploaded by Maximo Torero on Aug 22, 2017
Content may be subject to copyright.
Content uploaded by Maximo Torero
Author content
All content in this area was uploaded by Maximo Torero on Jul 25, 2017
Content may be subject to copyright.
1
TheRealityofFoodLosses:ANewMeasurementMethodology1
LucianaDelgado2,MonicaSchuster3,andMaximoTorero4
Abstract
Measuringfoodloss,identifyingwhereinthefoodsystemthatlossoccurs,anddevelopingeffective
loss‐reductionpoliciesalongeverystageofthevaluechainareessentialfirststepsinaddressingthe
problemoffoodlossandwasteindevelopingcountries.Foodlosshasbeendefinedinmanyways,and
disagreementremainsregardingproperterminologyandmeasurementmethodology.Consequently,
and despite the presumed importance of food loss, figures regarding food loss remain highly
inconsistent,precisecausesoffoodlossremainundetected,andsuccessstories ofdecreasing food
lossremainfew.Weaimtofillthismeasurementgapbydevelopingthreenewmethodologiesthat
aimtoreducethemeasurementerrorandthatallowustoassessthemagnitudeoffoodloss;wealso
testtheseagainstthemethodologytraditionallyused.Ournewmethodsaccountforlossesfromthe
pre‐harvest stage through product distribution and include both quantity loss and quality
deterioration.Weapplytheinstrumenttoproducers,middlemen,andprocessorsineightstaplefood
valuechains insixdeveloping countries.Lossfiguresacrossallvaluechainsfluctuatebetween 6and
25percentoftotalproductionandofthetotalproducedvalue;thesefiguresareconsistentlylargest
attheproducerlevelandsmallestatthemiddlemanlevel.Theidentifiedlossesareinadditiontothe
existingyieldgapsidentifiedacrossthedifferentcommoditiesstudied,whichareintherangeof50to
80percent.Throughoutthedifferentestimationmethodologies,lossesattheproducerlevelrepresent
between60and80percentoftotalvaluechainlosses,whiletheaveragelossatthemiddlemanand
processorlevelslies ataround7and19 percent,respectively. Differences acrossmethodologiesare
salient,especially at the producerlevel. While theestimation results from thethreenew methods
implementedarecloseandthedifferencesaremostlynotstatisticallysignificant,theaggregateself‐
reportedmethodreportssystematicallylowerlossfigures.Finally,ourresultsshowthemajorreasons
behind the losses identified for each commodity and country; these reasons included pests and
diseasesandlackofrainfall.Whenlookingattheproduceleftinthefield,themajorreasonfortheloss
isalackofappropriateharvestingtechniques.Finally,thelossreportedatthepost‐harvestlevelisdue
mostly to damage done during selection, as a result of workers’ lack of training and experience in
selecting the produce. Therefore, improved techno logy, improvedseeds,propersoilmanagement
techniques,andbettermarketaccess,couldsubstantiallyreducelossesattheproducerlevel.
1ThisworkwasundertakenaspartoftheCGIARResearchProgramonPolicies,Institutions,andMarkets,which
isledbyIFPRIandfundedbytheCGIARFundDonors.ThispaperhasnotundergoneIFPRI’sstandardpeer‐review
process.WearethankfultoFranciscoOlivet forhisincrediblesupportontheimplementationofthesurveysin
GuatemalaandHondurasaswellastotheTeamsoftheCIPandICARDAfortheirsupportinPeru,Ecuadorand
Ethiopia.Theopinionsexpressed herebelong tothe authorsandnotnecessarilyreflectthoseofPIM,IFPRI,or
CGIAR.Anyremainingerrorsarethesoleresponsibilityoftheauthors.
2InternationalFoodPolicyResearch,Luciana.Delgado@cgiar.org
3InstituteofDevelopmentPolicy(IOB)UniversityofAntwerpMonica.Schuster@uantwerpen.be
4ExecutiveDirector,WorldBank,mtorero@worldbank.org
2
1. Introduction
Food loss and food waste have become an increasingly important topic in the development
community.Infact, theUnitedNationsincludedthe issue of foodlossandwasteintheSustainable
DevelopmentGoaltarget12.3,whichaimsto “halve per capita global foodwaste at the retailand
consumerlevels and reducefoodlossesalong production and supplychains, includingpost‐harvest
losses” by 2030. Food loss and food waste have caught the attention of both researchers and
policymakersforseveralreasons.First,growingpopulationsandchangingdietsassociatedwithgreater
wealthareincreasingthe pressureontheworld’savailableland,constitutingseriousthreatstofood
security, especially in developing co untries. Policies to reverse this situation have mainly aimed at
increasingagricultural yields and productivity, butthese efforts are often cost‐ and time‐intensive.
Second,thelossofmarketablefoodcanreduceproducers’incomeandincreaseconsumers’expenses,
likelyhavinglargerimpactsondisadvantagedsegmentsofthepopulation.Third,foodlossandwaste
entailunnecessarygreenhousegasemissionsandexcessiveuseofscarceresources.
Foodlossandwasteoccuratdifferentstagesofthefoodvaluechain(VC):production,post‐production
procedures,processing,distribution,andconsumption(FAO,2011;HLPE,2014;Lipinskietal.,2013).
Figure1showsthestagesofthevaluechainatwhichfoodlossoccurs,aswellasthedimensionsthat
arepotentially responsible for lossat eachstage.Thedistributionof lossandwastealongthe food
chainisdifferentdependingonthecommodityandthegeographicallocationinquestion,butfood
loss and waste are commonly the result of underlying inefficien t, unequal, and unsustainable food
systems.
Byreducingfoodlossandwaste,wecanimprovefoodavailabilityandfoodaccesswithoutincreasing
theuseofagriculturalinputs, scarcenaturalresources,or improvedtechnologiesontheproduction
side.Recent reports,however,highlightthat successstoriesofdecreasingfoodwaste(WRAP,2009)
andfoodloss(WorldBank,2011)arenotmany,andfiguresonfoodlossandfoodwasteremainhighly
inconsistent.Thus,whilevariousgovernmental,research,andcivilsocietyinitiativeshavebeen
launchedtoaddressthisimportantissue,largeresultsareyettobeseen.
The implementation of a strategy to reduce food loss faces three important challenges. First, no
accurateinformationexistsabouttheextentoftheproblem(especiallyindevelopingcountries).The
availableestimatessuggestthatfoodlossisalarminglyhighandmayaccountforatleastone‐thirdof
total global food production. For the most part, calculations of food loss hinge upon accounting
exercisesthatuseaggregatedatafromfoodbalancesheetsprovidedbynationalorlocalauthorities.
These“macro”estimationsaresubjecttoconsiderablemeasurementerror,relyonpoorqualitydata,
orarenotbasedonrepresentativesamples.Moreover,theyonlyquantifythevolumeoffoodthatis
lostand do nottakeintoaccountpotentialdeteriorationofqualityorreductionsofeconomicvalue
thatalsoaffectfarmersandconsumers.
Morerecently,effortshavebeenmadetousemicrodatatoestimatefoodloss.Theseestimationsrely
onsurveyscollectedamongdifferentactorsacrossthefoodvaluechain.However,theytend to be
basedoncasestudiesthatarenotrepresentativeofacountry’slargerpopulations.Additionally,these
studiesusedifferentdefinitionsoffoodloss,hamperingcomparisonsacrossdifferentareasandcrops.
Duetotheirlackofrepresentativeness and differences in their methodologies, the available micro‐
basedestimatesarewidelyvariableandyieldinconclusiveevidenceabouttheextentoffoodloss.
Thesecondchallengeisthescarceevidenceregardingthesourceoffoodloss.Foodlossisassociated
with a wide array of factors (e.g., poor agricultural management skills and techniques, inadequ ate
3
storage,deficientinfrastructure,inefficientprocessing,lackofcoordinationinmarketingsystems,etc.)
and can occur in different stages of the value chain (i.e., production, harvesting, po st‐production,
processing,distribution,orconsumption).Becauseoftheaggregatenatureoftheirdata,macrostudies
areunabletocapturethecriticalstagesatwhichfoodlossoccurs.Arguablyduetothecostofprimary
datacollection,most microstudieshavenot incorporateddetailedinformationregardingsourcesof
foodloss intheirsurveyinstruments.Mostofthesestudiesaimtocapturetotal food lossbasedon
farmers’self‐reportedestimatesbutdonotaimtodisentangletherelevantproductionphasesinwhich
losses are generated. For example, studies using the nationally representative Living Standard
Measurement Surveys – Integrated S urveys on Agriculture (LSMS –ISA)askfarmerstoassessthe
proportionoftheircropslosttorodents,pests,insects,flooding,rotting,theft,orotherreasons;these
studiescanonlyprovideglobalestimates.Afewstudieshavecollected more comprehensive
informationabouttheparticularstagesin whichlossesoccur;however,thesestudiesarebasedon
smallsamplesinparticularlocations,makingtheirresultsdifficulttoextrapolate.
Third,thereislittleevidenceregardinghowtosuccessfullyreducefoodlossacrossthevaluechain.
Therehavebeeneffortsto introduceparticulartechnologiesalongspecificstagesofthevaluechain
(e.g.,silosforgrainstorage,triplebaggingforcowpeastorage,ormechanizedharvestingandcleaning
equipment for wheat and maize). However, little evidence exists regarding adoption rates or the
economicsustainabilityof these efforts. Inparticular,there is a needtobetterunderstand how to
introduce economic incentives for actors from farm‐to‐fork, taking into account the upstream and
downstreamlinkagesacrossthevaluechain.
Thispaperaimstoresolvethefirsttwoaforementionedchallenges.Ourobjectiveistoimprovehow
foodlossisquantified5andtocharacterizethenatureoffoodlossacrossthevaluechainfordifferent
commoditiesinawidearrayofcountries6.Forthispurpose,wedesignedasetofsurveystomeasure
theextentoffoodloss.Whilethe surveys were tailored to specificcountries and commoditiesand
commodityvarieties(forexample,whilemaizeinHondurasandGuatemalahavethesameattributes,
wheatinChinahasdifferentattributesthanwheatinMexico),theyprovideaconsistentmeasurement
offoodlossacrossdifferentagentsinthevaluechain(i.e.,farmers,middlemen,andprocessors).The
surveyscapturedetailedinformationaboutthese agents’ different processesandquantify foodloss
alongeachproductionstagebycollectingself‐reportedmeasuresofthevolumesandvaluesoffood
lossesincurredduringdifferentprocesses(harvesting,threshing,milling,shelling,winnowing,drying,
packaging,transporting,sorting,picking,transforming,etc.).Inaddition,weestimatelossesbasedon
commoditydamageby collectingdetailed data from farmers, middlemen,andprocessorsregarding
thequality (based ondamage coefficients) ofagricultural commodities that theyuseasinputsand
outputs.Thisallowsustoquantifyfoodlossintermsofthequalityattributabletoeachagentacross
the value chain. Finally, we also estimate food loss based on commodity attributes by capturing
informationaboutdifferenttypesofcommodityattributes(e.g.,size,impurities,brokengrain,etc.)
andascertainingthepricepenaltythateachofthesetypesofcropdamageentails.Inthisline,weare
abletoidentifyparticularfactorsthatdiminishcommodities’valuesandthusareabletoquantifyfood
qualitylossbasedonmarketconditions.
Thesurveys implemented allowus to quantifythe extent of foodloss across thevalue chain using
consistentapproachesthatarecomparableacrosscommoditiesandregions. Theyalsoenableusto
characterizethenatureoffoodloss;specifically,weareabletoascertaintheproductionstagesacross
5WefollowthedeMelet.al(2009)frameworkbyexploringdifferentwaystomeasurefoodlossesinorderto
reconcilehowfarwecanreconcileself‐reportedfoodlossesthroughmoredetailquestionsacrossthedifferent
stagesofthevaluechain.
6ItisimportanttomentionthatthispaperdoesnotmeasurefoodwasteasperBellemareet.al(2017).
4
thevalue chain andtheparticularprocesses in which lossesareincurred.Theresultswilltherefore
informusabouttheparticularareasthatrequireinvestmentstoreducefoodloss.
Thepaperisdividedasfollows.Thefirstsectionlooksat differentissuesregardingthedefinitionof
foodlossacrossthevaluechain.Wethenconductareviewoftheexistingworkonvaluechainsand
identify the major problems and gaps in the literature. In the third section, we present our
methodological approach, followed by our key findings for China, Ethiopia, Ecuador, Honduras,
Guatemala,andPeru.Finally,weexaminethemajorreasonsfortheidentifiedlosses,usingdetailed
regressionanalysis.Thepaperendswithconclusionsandpolicyrecommendations.
2. Divergenceinterminologyanddefinitions
Theliteraturecommonlyagreesaboutvaluechainstages(Figure1),aswellasaboutthefactthatfood
loss occurs at each stage (e.g., FAO, 2011; Lipinski et al., 201 3; Parfitt, Barthel, and Macnaughton,
2010).However,noagreementexistsregardingfurtherclassificationoffoodlossandfoodwaste.The
terms‘Post‐HarvestLosses’(PHL),‘FoodLoss’(FL),‘FoodWaste’ (FW), and ‘Food Loss and Waste’
(FLW) are frequently used interchangeably, but they hardly everreferconsistentlytothesame
concept.Forsomeauthors,thedistinctionislinkedtothestagesatwhichthelossoccurs.Forothers,
thedistinctionisbasedonthecause of the food loss and whether itwasintentional. Some recent
publicationshavetriedtocreatemoreclarity(FAO,2014;HLPE,2014;Lipinski etal.,2013).Inthese
studies,FL refers tounintentionalreductionsinfoodquantityorqualitybeforeconsumption;these
lossesusuallyoccurintheearlierstagesofthefoodvaluechain,fromproductiontodistribution.PHL
is a sub‐section of FL, excluding losses at the production level (although losses during harvest ar e
sometimesmisleadinglyincludedintheconcept;e.g.Affognon,2014;APHLIS,2014).FWreferstofood
thatisfitforhumanconsumptionbutthatisdeliberatelydiscarded;thisismostcommonattheend
ofthevaluechain.Thetotalityoflossesandwastealongthevaluechainwithrespecttototalharvested
productionareencompassedinFLW(FAO,2014);however,thisdefinitiondoesnotincludecropslost
before harvest because of pests and diseases or left in the field, crops lost dueto poor harvesting
techniquesorsharppricedrops,orfoodthatwasnotproducedbecauseofalackofproperagricultural
inputs.Toincludethesepre‐harvestlosses,weproposeamoreexpansivedefinitionthatwillcapture
alllossesacrossthevaluechain(seeFigure1).Itisimportanttonotethatinthispaper,wedonotlook
atwasteattheend of the value chain.Thisis because, from an integrated valuechainperspective,
pre‐harvest conditions have direct imp acts on eventual losses at later stages of the chain, due to
products’differentquality,storage‐andshelf‐life,andtransportsuitability.
ThereisalsonoagreementintheliteratureregardingthedefinitionoffoodlosswithineachVCstage.
To give just one example of differing definitions: losses across the value chain can originate from
reductions in both food quantity and food quality and can thus describe either weight, caloric,
nutritional,and/oreconomiclosses.Duetoestimationdifficulties,productseasonality,andmarkets’
sensitivitytofoodquality,moststudiesanalyzequantitativelosses,descr ibinglo ssesint ermsofweight
reductions(e.g.,APHLIS,2014;HLPE, 2014);thesereductions sometimestranslateintocaloricterms
(e.g.Kummuetal.,2012;Lipinskietal.,2013),buttheystilldonotcapturequalitativedimensionssuch
asnutritionalcontentandphysicalappearance(seeAffognonetal.(2014)foraliteraturereview).The
choice of definition used dependson a stakeholders’ priorities, as well as on the data available;
however,thatchoicehasimportantimplicationsfortheestimationmethodologyusedtoexaminefood
loss,aswellasontheinterpretationofresults.
5
Figure1:Levelsatwhichfoodlossoccurs
Production
Quantitativeloss:
Production‘leftinthefield’
Qualitativeloss:
Qualitydeteriorationof
harvestedproduction
Post–harvest,onfarm
Quantitativeloss:Production
totallylostduringon‐farmpost‐
harvestactivities
Qualitativeloss:Quality
deteriorationduringon‐farm
post‐harvestactivities
PRODUCER‘ON–FARM’LOSS MIDDLEMAN
Sales
Post–harvest,offfarm
Quantitativeloss:Production
totallylostduringoff‐farmpost‐
harvestactivities
Qualitativeloss:Quality
deteriorationduringoff‐farm
post‐harvestactivities
PROCESSOR
Transformation
Sales
Quantitativeloss:Production
totallylostduringproduct
transformationactivities
Qualitativeloss:Quality
deteriorationduringproduct
transformationactivities
3. Howlosshasbeenmeasured
Twomainestimationmethodologieshavebeenusedtostudyfoodlossacrossthevaluechain:amacro
approach, using aggregated data from national or local authorities and large companies, and a micr o
approach,usingdataregardingspecificactorsinthedifferentvaluechain stages (Figure 2). Themacro
approachreliesonmassorenergybalancesinwhichrawmaterialinputs,ineitherweightorcaloricterms,
arecomparedtoproduceoutputs.Thismethodprovidesacost‐effectiveindicationoftheoveralllosses
alongtheentirevaluechainandwasusedbyGustavssonetal.(FAO,2011),thestudythathasbeenmost
quotedandusedasareferenceforfoodlossatthegloballevel.ByusingFAOStat’sFoodBalanceSheets,
thisstudyestimates that around 32 percent of global foodproduction, across allproductionsectors,is
lostalongtheentirefoodvaluechain.Kummuetal(2012)andLipinskietal.(2013)usethesamerawdata
andfindthatthistranslatesintoa24percentdecreaseincaloricterms.Incountry‐specificstudies,macro
energybalancesshowthat48 percentofthetotalcaloriesproducedarelostacrossthewholefoodVC
(Beretta et al. 2013; Switzerland), while mass balance data series from USDA data, using alternative
assumptions, show that 28.7 percent of the harvested product is lost between post‐production and
consumption (Venkat et al., 2011; US) and that 31 percent of the available food supply is lost at
distributionandconsumption(Buzbyetal.2014,US).Onedisadvantageofthismethodisthedemand
forrepresentativeandgoodqualityproduction,loss,andwastedata.Datagapsareparticularlyapparent
forcertainregionsoftheworld,suchaslow‐andmiddle‐incomecountries,andspecificstagesoftheVC,
suchasprimaryproduction,processing,andretail(Stuart,2009).Themethodisalsonotrepresentative
ofsmallerregional units, preventing identificationofthevaluechainstagesatwhichthelossesoccur;
thesechallengesthe appropriatetargeting oflossreductioninterventions.Finally,the aggregated data
usedformassbalancesareoftenincapableof differentiatingbetweennaturalloss(e.g.,moistureloss)
andunnaturalweightloss(forexample,duetospoilage),aswellasedibleandinedibleloss.
Themicroapproach,ontheotherhand,usessampledataregardingspecificvaluechainactors.Dataare
obtained through different methods: structured questionnaires andinterviews,foodlossandwaste
diaries compiled directly by the VC actor, direct measurements by the researcher, and food scanning
methods,whichcanbeusedindevelopedretailmarkets.Thesemethodsarehighlyregion‐andcontext‐
specific,aremoreusefulindisentanglingtheoriginoflossalongthevaluechain,andtendtoprovidemore
insightsintocausesandpreventionpossibilities.Themostfamousestimatefordevelopingcountriesis
given by the African Postharvest Losses Information System, which provides post‐harvest weight loss
estimates for cereal crops in Africasouth of the Sahara (APHLIS, 2014). According to APHLIS, FL from
productionandpost‐productionforcerealsliesbetween14.3and15.8percentoftotalproduction.Kader
(2009) reviews previous estimates of losses in both developingand developed countries and finds an
averageof32percentlossforfruitsandvegetables.OfficialEurostatdataareusedinthestudybyMonier
etal.(2010)toquantifylossalongdifferentstagesoftheVCfor27EUmemberstates;byexcludingwaste
attheagriculturalproductionlevel,Eurostatestimatesanannualaverageof89milliontonsofwaste(i.e.
179Kgpercapita).AstudybyWRAP(2010)analyzeswastefromtheUKfoodanddrinksupplychainand
findsthatacross processing, distribution, andconsumption, 18.4Miotonsoftotalfoodanddrinkare
wastedannuallyintheUK;householdsareresponsibleforthelargestshare,wasting22percentoftheir
purchases(WRAP,2009).
The main challenges for the use of these micro methods to estimatefoodlossiscostandtimeto
implement the studies, as well as the difficulty in getting a large enough proportion of responses to
representanentireVCorregion.Inaddition,resultsarehardtocomparebecausestudiesareadaptedto
their specific objective, focus only on specific stages of the VC, and use different data collection and
estimationmethodologies.
Figure 2 summarizes the two approaches to PFLW estimation, highlighting their advantages and
drawbacks.Figure3providesanoverviewofglobalPFLWmagnitudesfromrecentstudies,distinguishing
thetwoestimationapproaches.
7
Figure2:PFWLestimationmethodologies
7
Thisdoesnotintendtobeacompleteliteraturereview,butmerelyprovidesreferenceonestimatesfromprevious
research. We selected studies encompassingmorethanoneleveland/orcommodityofthevaluechain.Fora
completeliteraturereview,pleaseseeAffognon,2015;Fusions,2013;orKader,2009
Macro
approach
Figure3:OverviewofglobalPFLWmagnitudesfromrecentstudies
4. Proposedapproach
One main barrier to dealing with food loss and waste is the lack of clear knowledge regarding the
magnitudeoftheproblem(Lipinskietal.,2013).Uniformestimationmethodstoprovideconsistentloss
figures are necessary, but they alone will not be sufficient to identify the underlying causes of and
potentialsolutionstofoodlossortooutlineprioritiesforactionandmonitorspecificprogressonloss
reductiontargets.
First,astandarddefinitionandterminologyforfoodlossandwasteiscruciallyneeded.Thisdefinition
mustadoptavalue‐chainapproach,accountingforthefactthatconditionsatonestageofthechainlikely
affect losses and waste at later chain st ages. Specifically, this definition need s to include pre‐harvest
losses,astheirexclusioncouldleadtofoodlossreductioninterventionsthatdonottacklethesourceof
theproblem.Thisnewdefinitionmustincludebothquantitativeandqualitativereductioncriteria,exclude
natural, inedible, and unavoidable loss, and be able t o be measured in economic, caloric, or quality‐
adjustedweightterms.
Second,lossassessmentmustprioritizeanalysesthatidentifytheVCstagesatwhichlossesarecreated,
ratherthananalysesthatidentifyanexactoverallfigure.Lossmeasurementmustalsotakeintoaccount
theoriginoffoodreductionsalongthevaluechain,aswellastheirgeographicaldistribution.
Weproposeadevelopingcountrymethodologythatcanmeasurelossesatdifferentstagesofthevalue
chain and that can be applied across crops and regions. Specifically, we propose three alternative
methodologiesratherthanthetraditionally usedmethodologyofaggregate self‐reported measuresof
loss.Theanalysiswillbelimitedtolossesbetweentheproductionandprocessingstages,asthisiswhere
inefficiencies are largest in developing countries.Information willbe collectedthrough representative
surveysoffarmers,middlemen,andprocessors.Thesesurveyswillallowforthecharacterizationofinputs,
harvesting, storage, handling, and processing practices for each of these agents and will estimate the
quantities,quality,andpricesoftheproductionasittravelsalongthevaluechain.
Ourmethodologycapturesbothquantitativeandqualitativelosses,aswellasdiscretionarylossesamong
the processing, large distribution,andretailsectors.Foodwaste and household waste are more
challengingto capture, and dataneedto be collected onrepresentativesamples. This will require the
developmentofawidely`acceptedsamplingandmeasurementframework,whichwilllikelybecomposed
ofamixture ofmethods(e.g. wastecomposition analysis,questionnaires,interviews,orwaste diaries;
seeWRAP,2013).Thispaperdoesnotlookatfoodwaste.
5. Methodology
Wetestdifferentmethodologiestoestimatefoodlossalongthevaluechainbydrawingontheliterature
andeconomictheory.Ourmethodologiesareappliedtotheproducer,middleman,andprocessorlevelof
thevaluechaintocoverthemainstagesatwhichlossmightoccur.Duetotheheterogeneityofthecrop
transformationprocessesatlaterstagesinthevaluechain,atthewholesalelevel,onlytheaggregate‘self‐
reported’foodlossmeasurementmethodmightbeused.Allmethodologiesestimateboththetotalfood
thatislost(quantitativeloss)andtheproductthat,albeitnotbeingcompletelylost,isaffectedbyquality
deterioration(qualitativeloss).Thereferenceperiodisthelastcroppingseasonattheproducerlevel;for
themiddlemenandtheprocessors,itisadefinedtimeperiod(dependingonthecountry).
Self‐reportedmethod
Theaggregate‘self‐reportedmethod’(S‐method)isbasedonreportingbytheproducers,middlemen,and
processorsregardingthefoodlossesthey eachincurred.Self‐reportinghas beenwidelyusedinrecent
studiesonfoodloss(e.g.,KaminskiandChristiansen,2014;Mintenetal.,2016a;Mintenetal.,2016b).
Directsurveyquestionsinquireeachactorabouttheirquantitativeandqualitativelosses.Attheproducer
level,the survey instrumentincludesquestions about pre‐harvestandpost‐harvestlosses. Middlemen
andprocessorsareasked about losses atdifferentstagesofpost‐harvestactivities and transformation
processes.TableA1intheAppendixprovidesinsightsabouttheexactsurveyquestionsusedinthethree
surveyinstruments.Theresponsestothequestionsareaddeduptoobtainthetotallossfiguresinweight
andvaluesatthelevelofthethreevaluechainactors.
Categorymethod
The‘categorymethod’(C‐method)isbasedontheevaluationofacropandtheclassificationofthatcrop
intoqualitycategories.Themethodbuildsonthe‘VisualScale Method’, developed by Compton and
Sherington(1999)torapidlyestimatequantitativeandqualitativegrainloss.TheC‐methodclassifieseach
productintoitsenduse,i.e.suitableforexport,theformalmarket,theinformalmarket,animalfeed,etc.
Eachcategoryisassociatedwithacropdamagecoefficient,indicatingthepercentageofthecropthatis
damagedwithineach category. The categoriesareestablished prior to datacollection in collaboration
withcommodityspecialists,localexperts,andvaluechainactorsandvarybetweenfourandsix,according
tothecommodityandcountry.Inaddition,anextensivepilotwasconductedtovalidatethecategories.
By means of the described categories and damage coefficients, farmersareaskedtoevaluatetheir
production at harvest and after post‐harvest activities, while middlemen are asked to evaluate their
productatpurchaseandsales.Bothfarmersandmiddlemenindicateatwhichpricetheyselltheproduce
inthedifferentcategories,aswellasasalespricefor ideal produce inthehighandlowseason.At the
producer level, the quantitative and qualitative loss in weightandinvaluearegivenbyeq.1and2,
respectively:
(1)
(2)
whereciisthedamagecoefficientforcategoryI(wherethetotalnumberofcategoriesareI),
isthe
sampleaveragesalespriceforanidealproduct8,
isthesampleaveragesalespriceforaproductin
categoryi, andisthequantityineachcategoryafterpost‐harvest.andarerespectively
thequantityandvalueofallproduceafterpost‐harvest,whileandarethequantityandvalue
ofallproduceafterproduction.Thedifferenceinquantitiesorvalues(thesecondtermsofequation1and
2)provideuswiththetotalquantityorvaluelostbetweenproductionandpost‐harvestactivities.
8Averageacrossthelowandhighseason
∗
∗
Atthemiddlemanlevel,thequantitativeandqualitativelossinweightandinvaluearegivenbyeq.3and
4,respectively:
(3)
(4)
whereciisthesamedamagecoefficientasintheproducers’survey,
and
aretheaveragesale
priceforanidealproductandsalepriceforaproductincategoryiatthemiddlemenlevel,and
andarethequantitiesineachcategoryatpurchaseandatsale.Togetthefullquantitative
and qualitative loss measure, we add the weight (or value) of thequantitythatwastotallylost,i.e.
disappearedfromthevalue chain. This figure isideallyobtainedfromthedifferencebetween thetotal
purchaseandtotalsaleswithinagivenperiodoftime.Practically,middlemenareoftenunabletoindicate
theseexact quantities,as the purchasedcropismixedwithproductin storage.We therefore usethe
informationfromthedirectsurveyquestionregardingtheweightandvaluetotallylostatthemiddleman
level,i.e.productthatcompletelydisappearedfromthevaluechain.
Attributemethod
The‘attributemethod’(A‐method)isbasedontheevaluationofacropaccordingtoinferiorvisual,tactile,
andolfactoryproductcharacteristics.Theseattributesareidentifiedpriortothesurveyimplementation
and in collaboration with commodity experts, local experts, and value chain actors. In addition, an
extensivepilotwasimplementedtovalidatetheattributes9.Thenumberofattributesvariesbetween10
and14,accordingtothecommodityandcountry.Atthetimeofthesurvey,theproducerevaluateshisor
herproductionandestablishestheshareoftotalproductionthatisaffectedbytheattributes,bothafter
harvest and after post‐harvest. Middlemen evaluate their product from the previous month at both
purchaseandsale.Theproducerandthemiddlemendeclarehowmuchtheirrespectivebuyerspunish
themforinferiorproductattributesbypayingalowerprice.Thepricepunishmentinformationforeach
productattributeisusedtoestimatethevalueloss.Attheproducerlevel,thequantitativeandqualitative
lossinweightandinvaluearegivenbyeq.5and6,respectively:
(5)
(6)
whereistheshare ofproductaffectedbyattributejand
istheaveragepricepunishment foran
inferiorproductattributeatsale.Asbefore,andarerespectivelythequantityandvalueofall
9It isimportanttomention thatincertain countries;theattributesare definedaslegalstandards forthespecific
commodity.
∗
∗
∗
∗
produce after post‐harvest, while andare the quantity and value of all produce after
production.Whilethefirsttermsofeq.5and6provideuswiththequantityaffectedbyaloss(qualitative
loss), the second terms provide us with the total quantity or value lost (quantitative loss) between
productionandpost‐harvestactivities.
Atthemiddlemanlevel,thequantitativeandqualitativelossinweightandinvaluearegivenbyeq.7and
8,respectively:
(7)
(8)
where, and,arethequantitiesineachattributesold andpurchasedwithacertain
damageattribute,,and,arethevaluesatsalesandpurchasethatarelostdueto
a damage attribute (these are obtained by multiplying the previous quantities by the average price
punishment).Theweight(orvalue)ofthequantitythatwastotallylost(i.e. disappearedfromthevalue
chain)providesuswiththefullquantitativeandqualitativelossmeasure.
Pricemethod
The‘pricemethod’(P‐method)isbasedonthereasoningthathigher(lower)v aluesofacommo dityr eflect
higher(lower)quality.Adecreaseinprice,allelseequal,isthusaproxyforadeteriorationinquality.Data
regardingproducers’andmiddlemen’sidealsalevalueareusedandcomparedtothevalueoftheiractual
production,purchase, andsales.Thefollowingequationsprovide uswiththetotalloss attheproducer
level:
(9)
whereisobtainedbymultiplyingfarmers’productionbytheaverageidealsales’priceandis
thetotalvalueofthefarmers’productionafterpost‐harvest,asassessedbythefarmerhimself.Thevalue
losscanbetranslatedintoaweightlossbydividingitbytheidealsalesprice:
(10)
Forthe middlemen, wetakethedifferencebetweenthe value (orweight)affectedbylossatsalesand
thevalue(orweight)affectedbylossatpurchasetoestimatethetotalvalue(weight)affectedbylossat
thislevelofthechain.Thevalue(orweight)affectedbythelossatpurchaseorsaleisestimatedbytaking
thedifferencebetweenthesale(purchase)valueofanidealproductandtheactualsale(purchase)value.
,
,
WeightLost
,
,
ValueTotLost
Weaddtheweight(orvalue)ofthequantitythatwastotallylost(i.e.disappearedfromthevaluechain)
togetthefullquantitativeandqualitativelossmeasure.Thistranslatesintothefollowingtwoequations:
;;
;
; (11)
6. Data
Asmentionedinourliteraturereview,therehaverecentlybeeneffortstousemicrodatatoestimatefood
loss. These estimations rely on surveys collected among different actors along the food value chain;
however,theyarebasedoncasestudiesthatarenotrepresentativeofacountry’sbroaderpopulation.
Additionally, these studies use different definitions of food loss,whichhamperscomparisonsacross
different areas and crops. Due to this lack of representativeness, as well as to differences in their
methodologies, available micro‐based food loss estimates are widely variable and yield inconclusive
evidenceregardingtheextentoffoodloss.
Wehavedevelopeddetailedsurveysacrossthedifferentcomponentsofthefoodvaluechainandspecific
todifferentcommodities.Thesesurveysallowustoquantifytheextentoffoodlossacrossthevaluechain
usingconsistentapproachesthatarecomparableacrosscommoditiesandregions.Theyalsoenableusto
characterizethe nature offood loss, specifically theproduction stages and theparticular processes at
whichlossisincurred.
Our survey instruments quantify food loss along the value chain before consumption (food waste by
consumersis excluded fromthe calculations). The richnessof thedataallowsustoprovideestimates
using alternative methodologies. We first calculate aggregate self‐reported measuresofloss:weask
farmers,middlemen, and processorsaboutthe quantities (andthe corresponding monetaryvalues)of
cropsdiscardedduringtheprocessesthattheyperform(e.g.,winnowing,threshing,grading,transporting,
packaging, etc.). This methodologyis,ingeneral,consistentwith the basic elements in the available
literature on the measurement of food loss. Our surveys, however, include a more disaggregated
descriptionofthestagesandprocesses at whichlossoccurs.Theproducer,middlemen,andprocessor
surveysweredesignedtohavedifferentmodulestomeasurelossacrossthevaluechain.
Theproducersurveyhasthreemodules.Thefirstmoduleasksaboutthequantityofthecropleftinthe
field,thetotalproductionharvested,andthequalities,attributes,andpricesoftheharvest.Thesecond
moduleasks about the post‐harvestactivities conductedbytheproducers(e.g., winnowing, threshing,
grading,transporting,packaging,etc.);foreachoftheseactivities,theproducerisaskedforthequantity
ofaffected product 10 andthequantity totally lost.11 The third modulerecordsthe destinationof the
product(i.eforconsumption,forsale,fordonation,etc.),aswellastheattributesandcategoriesforthe
quantityforsale.
10Affectedproduct:Productthatlowersqualitybutcanstillbeused.
11Totallylost:Productthatiscompletelylostandcannotbeused.
;
;
;
; )(12)
The middlemen survey has three modules. The first module asks about the quantity, quality, and
attributesofthetotalproductpurchasedinadefinedtimeperiod(dependingonthecountry).Thesecond
moduleasksmiddlementoreportthequantity,quality,andotherattributesofthetotalproductsoldina
definedtimeperiod(dependingonthecountry).Thethirdmoduleasksquestionsaboutthepost‐harvest
processing activities conducted by the middlemen (e.g., winnowing, threshing, grading, transporting,
packaging,etc.);ineachoftheseactivities,thequantityofaffectedproductandthequantityoftotalloss
arereportedforeachcrop.
Theprocessorsurveyhastwomodules.Thefirstmoduleasksforthequantity,quality,andattributesof
thetotalproductpurchasedinaspecifictime‐period(dependingonthecountry).Thesecondmoduleasks
aboutthespecificstepsrequiredtoobtainthefinalproductforconsumerconsumption.
Withineach survey,we categorize thecrop damageand crop attributesforeachcropandcountry.In
ordertocategorizethedamageforeachcrop,wecreatedadamagecoefficient,measuredbycategorizing
thetotalamountofeachcropintodegreesofquality.Inoursurveys, each crop has its own damage
coefficient,whichwasdeterminedusingtheinternationalclassificationincollaborationwithlocalexperts.
FormaizeandbeansinHondurasandGuatemala,therearefivecategories,withcategory1classifiedas
having1‐2percentofdamagedgrain(grainwithnoproblems)andcategory5classifiedashavingmore
than25percentofdamagedgrain(grainthatisunusable).InEthiopia, the fivecategories range from
category1(undamagedgrain)tocategory5(morethan80percentofdamagedgrain).InEcuadorand
Peru,thecategoriesarerelatedtothecaliber12oft hetuber; crops cate gori zedascali ber1 havea diam eter
biggerthan10cm(CategoryExtra),whilecategory5consistsoftuberswithadiameteraround6cm,which
isusedtofeedanimals.InChina,eightcategoriesareconstructedbasedonthecrops’degreeofimpurity
(≤1percent and >1 percent)and degree ofsoundness of thekernel (<=6 percent;>6 percent and <=8
percent;>8percentand<=10percent;>10percent).
Theattributessectionofthesurveyevaluatesthecropsaccordingtophysicalorchemicalcharacteristics
tosee whether they have inferior visual, tactile,andolfactorycharacteristics.Thesecharacteristicsare
specifictoeachcountryandcrop.Inoursurveys,wemeasurethedamagetoeachcropbytexture,size,
moisture,and the presence of fungus or insects,etc.Theseattributecategorieswerecreatedwiththe
collaborationoflocalexperts.
One drawback to the aggregateself‐reported method is that it is reported by the farmers in a more
‘aggregate way’ through a direct question (see Appendix Table A1), which does not allow for the
identificationofwherealongthevaluechainthelossesoccurandthedifferentiationofwhichlossesare
ofqualityandwhichareofquantity.Whilefoodisnotnecessarilydiscardedcompletelyalongdifferent
processes,qualitydowngradesatdifferentstagesofthevaluechaincanaffectfood’seconomicvalue.Our
surveyinstrumentsimproveupon thesetraditionalmeasuresbyallowingustoquantifyqualitativeloss
usingtwoalternativemethods.First,weestimatethesharesoftotalfoodproductionateachstageofthe
valuechainthatwasdamagedandissubjecttoqualitativeloss(basedondamagecoefficients).Second,
12Caliber:Sizeofinternaldiameterofthetuber
wecollectinformationaboutdifferenttypesofcommodityattributes(e.g.,size,impurities,discoloration,
etc.) and ascertain the price penalty that each of these types of crop damage entails (i.e., attribute
penalties).Wearethusabletoidentifyspecificfactorsthatdiminishcommodities’valuesandtoquantify
foodqualitylossesbasedonmarketconditions.
Valuechainsanddescriptivestatistics
Forallcountries,wechoseoursamplebasedonapre‐censusoftheproducersofthespecificcropof
interest;thisformsourbaseline.Selectedproducersmusthaveproducedcropsinthelastseason.
PotatoesareessentialtotheEcuadoriandiet,witheachpersonconsumingaround30kgperyear
(MAGAP,2014).Thecropisthetenthmostconsumedproductsinthecountryandisoneofthetopeight
produced crops. Ecuador produces 397,521 tons of potatoes annually, with the province of Carchi
producing36.48 percentofthenationalvolume (ESPAC,2015).OursurveysinEcuadorwere organized
betweenJuneandOctober2016foreachsegmentofthepotatovaluechain.Allproducersinthesurvey
camefromtheprovinceofElCarch i,whilethemiddlemenwerefromtheprovincesofElCarchi,Imbabura,
andPichinchaandtheprocessorswerefromtheprovinceofPichincha.
Potatoeshavealsobeenessentialto the diet of Peruvians formillennia.Peru’sannualconsumptionof
potatoesisaround89kgperperson(MINAGRI,2016).Thecroprankssecondforthemostcultivatedcrop
areainPeru,with318,380hectaresplantedtopotatoand4,704,987metrictonsofpotatoesproducedin
2014(FAOSTAT).ThetwoprincipalprovidersofpotatoestotheLimamarketarethedepartmentsofJunín
and Ayacucho, which provide around 60 percent of the potatoes that go to the wholesale market
(EMMSA).OursurveysinPeruwereorganizedbetweenSeptemberandDecember2016foreachsegment
ofthepotatovaluechain.TheproducersinthesurveywerefromthedepartmentsofJunínandAyacucho,
whilethemiddlemenandprocessorswerefromthedepartmentofLima.
FortheCentralAmericanregion,maizeand beancropscomposestaplesforavarietyofreasons.These
cropsformthefundamentalbasisoffoodsecurityformuchofthepopulation,and they contribute to
householdandnationaleconomiesthroughemploymentgenerationandincomegeneration.
InHonduras,maizeisoneofthemostimportantbasicgrains,butthedomesticmaizesupplyonlycovers
42percentofthecountry’sdemand(SAG/UPEG,2015).TheannualconsumptionofmaizeinHondurasin
2013wasaround77.96kgper person, while the production of maizein2014was609,312metrictons
overanareaof263,343hectares(FAOSTAT).Thethreeprincipalproductiondepartmentsofwhitemaize
inHondurasareOlancho,ElParaíso,andComayagua.
BeansarethesecondmostimportantbasicgraininHonduras,bothinareaplantedandinproductionfor
consumption.In2014,the annual consumption of beans inHonduras was12.05kgper person and an
averageof132,659hectareswereplantedwithbeans.Beanproductionin2014was105,812metrictons
(FAOSTAT).ThethreeprincipalproductiondepartmentsforbeansinHondurasareOlancho,El Paraíso,
andYoro.
Oursurveys for Honduraswereorganized between JulyandSeptember 2016 foreachsegmentofthe
maizeandbeanvaluechains. The producers, middlemen, and processorsinthesurvey were from the
departmentsofCholuteca,Copan,ElParaiso,FranciscoMorazán,Intibucá,LaPaz,Lempira,Ocotepeque,
Olancho,SantaBarbara,andValle.
InGuatemala ,ma izeisthemo stw ide lyc ultivatedc ropandisoneofthemostvaluableandrootedsymbols
ofGuatemalanculture.In2014,theareacultivatedtomaizewas871,593hectares,withaproductionof
1,847,214 metric tons. Per capita consumption for 2013 was around 87.25 kg per person per year
(FAOSTAT). The three principal production departments of white maize in Guatemala are Petén (18.5
percent),AltaVerapaz(9.4percent),andJutiapa(7.3percent)(MAGA,2016).
BeansarethesecondmostimportantbasicgraininGuatemala,both inareaplantedand inproduction
forconsumption.In2014,theconsumptionofbeansinGuatemalawas12.12kgperpersonperyear;area
planted to beans covered an average of 250,414 hectares, with production at 235,029 metric tons
(FAOSTAT).ThethreeprincipalproductiondepartmentsforbeansinGuatemalaarePetén(27percent),
Jutiapa (13 percent), and Chiquimula (10 percent) (MAGA, 2016). Our surveys in Guatemala were
organizedbetweenSeptemberandDecember2016foreachsegmentofthemaizeandbeanvaluechains.
The producers, middlemen, and processors were from the departments of Chimaltenango, Escuintla,
Guatemala,Quetzaltenango,Sacatepéquez,SanMarcos,Sololá,andTotonicapán.
TeffconstitutesamajorcropinEthiopia,intermsofbothproduction and consumption. Teff is the
dominantcerealcropfortotalareaplanted(3,760,000hectaresin2012/2013;FAS,2014)andsecondin
production and consumption, with 3,769,000 metric tons (Berhane, Paulos, Tafere and Tamru, 2011;
EthiopianAgriculturalTransformationAgency[EATA], 2013).AccordingtoBerhane,et al.(2011),based
on national data fro m the Household Income, Consumption and Expenditure Survey (HICES, 2011), in
2001‐2007,urbanconsumptionofteffpercapitawasashighas61kgperyear,whileruralconsumption
was20kgpercapitaperyear.TeffisgrownmainlyinAmharaandOromia,whichtogetheraccountedfor
84 and 86 percent of the total cultivated area and production in 2011. Our surveys in Ethiopia were
organizedbetweenAugustandOctober2016inthezonesofOromiaandAmhara;however,thesesurveys
forcoveredtheproducerchainonly,giventhatinthecaseofteff,therearenoimportantintermediaries
andprocessors.
WheatisthesecondmostimportantfoodcropinChinafollowingrice.Itisthedominantstaplefoodin
the northern part of the country, where it is used mainly to produce noodles and steamed bread.
(CIMMYT).In2014,Chinaproducedabout120millionmetrictonsofwheateachyearonapproximately
24millionhectaresofland(FAOSTAT).AccordingtoFAOSTATin2013,theannualconsumptionofwheat
percapitainChinawasaround63.1kgpercapita.MostofChina’swheatproductioncomesfromNorth
China;threenorthernprovinces–specificallyHenan,Shandong,andHebei‐collectivelyaccountforover
50percentofChina’swheatoutput(China'sStateStatisticalYearbook,2001).OursurveysinChinawere
organized between August and October 2016 for each segment of the value chain. The producers,
middlemen,andprocessorswerefromtheprovincesofHenanandShandong.
Weadaptedourinstrumentforthespecificationsofeachcropandcountry.Forexample,inEcuadorand
Peru,weworkwithpotatovaluechains;inthesecases,theinstrumenthassixdifferentcategoriesand
ninedifferentattributes.InGuatemalaandHonduras,wherewework with themaize and beanvalue
chains,theinstrumenthasfivedifferentcategoriesand12differentattributes.InEthiopia,weworkwith
the teff value chain, in which the instrument has five different categories and 12 different attributes.
Finally,inChina,weworkwithwheatvaluechain,andtheinstrumentshaseightdifferentcategoriesand
sixdifferentattributes.
Theformulausedforcalculatingtherepresentativerandomsampleforallthecountriesis:
(13)
wheren=thesamplesizerequiredandwhichisstatisticallyrepresentative,N=thetargetpopulation
size,e=toleratedmarginoferror(forexample,wewanttoknowtherealproportionwithin5percent),
Z=levelofconfidenceaccordingtothestandardnormaldistribution(foralevelofconfidenceof95
percent,z=1.96,foralevelofconfidenceof99percent,z=2.575),andp=estimatedproportionofthe
populationthatpresentsthecharacteristic(whenunknownweusep=0.5)
Inastratifiedrandomset‐up,wesampledamoderatenumberofactorspersegmentineachcountry.At
theend,thesampleconsistedof:
Table1:Samplesize
Ecuador Peru Honduras Guatemala Ethiopia China
Producer 302 411 1209 1155 1203 1114
Middlemen 182 85 325 365 ‐‐‐ 140
Processor 147 139 224 245 ‐‐‐ 53
Total 631 594 1758 1765 1203 1307
Specifically,inthecaseofteffinEthiopia,weonlysurveyproducersbecausemostoftheproducerswill
bringtheirtefftomillerswhoworkmostlyon a fee‐for‐servicebasis,returning milled teff flour tothe
producerswithoutanymajorintermediationofmiddlemen.
Tables2‐4pro videdescriptivestatisticsofthesamp leofeach differentcropineachcountryforproducers,
middlemen,andprocessors,respectively.
InTable2,wecanseethatforallcountries,themajorityofproducersaremaleandhavereachedatleast
aprimarylevelofeducation.TeffproducersfromEthiopiaaretheyoungestonaverage,whileChinese
wheatproducersaretheoldestandhavethemostyearsofexperienceworkingwiththeircrop.Morethan
70percentofproducersfromEthiopiaandChinausedimprovedseedsinthelastcropseason(forteffand
wheat,respectively);43percentof producers usedimproved seedsinPeru,whiletheuseofimproved
seedsislessthan20percentinEcuador,Honduras,andGuatemala.PotatoesinPeruandEcuadorwere
storedforshorterperiodsoftimecomparedtograinsinalloftheotherstudycountries.
InTable3,wecanseethatforallcountries,around60percentofmiddlemenaremale,withanaverage
agebetween 40 and 50years.The average numberofyears that middlemenhave beeninbusiness is
higherfor middlemenbuyingandsellingpotatoesinEcuadorandPeruthanformiddlemen buyingand
sellingmaizeandbeansinGuatemala,Honduras,andChina
Across all countries, middlemen purchased more commodities from producers than from other
middlemen.Thiscouldbeduetothefactthatpricesfromproducersmaybecheaperandproducersmay
bemorelikelytoseekoutmiddlemeninthebigcities.
InTable4,we canseethatthemajorityofpro cessorsinPeru andEcuadoraremale,andthemainproducts
tradedareFrenchfries.InChina,almostallprocessorsaremale,andthemainproductsarenoodlesand
steamedbread.InHondurasandGuatemala,themajorityofprocessorsarefemale,andthemainproducts
tradedaremaizetortillasandpackagedbeans.Forallcountries,theaverageageofprocessorsis40years.
In Peru and Ecuador, all of the potato processors’ businesses are formal (legal) and in China, a large
majorityareformal;however,formaizeandbeanprocessorsfromGuatemalaandHonduras,somewhat
lessthan40and60percent,respectively,areinformal.
Table2:Producercharacteristics
Note:aThisincludesfertilizers,insecticides,herbicides,andfungicides;bThisincludesactivitiessuchasirrigation,trimming,andpruning;cMachine‐driven,insteadofmanual,
includeactivitiessuchassoil preparation, sowing, pest control, fertilizer application, weeding, mulching, cutting and harvest;d Thisincludes activitiessuch asselection,
classification, drying, etc. e This includes activities such as chemical fumigation, natural fumigation, and ventilation; f storage summary statistics are obtainedfrom the
restrictedsample offarmersstoring grains;gThesevariablesarenot mutually exclusive,asfarmers canhavemorethanonesaleslocation andtypeof buyer.Theofficial
exchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan(www.oanda.com)
Table3:Middlemancharacteristics
Note:Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan
(www.oanda.com)
Table4:Processorcharacteristics
Note:Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan
(www.oanda.com)
7. Results
AsshowninTable5,weestimate loss levels at the producer, middlemen, and processor levels
separatelyandalternativelyapplythefourestimationmethodologies,i.e.subjective(S),category(C),
attributes(A),andpricemethod(P).Weusethelossfiguresestimatedwiththeattributemethod(A‐
measure)asourdependentvariableandadduplossesateachlevelt oobtainlossfigure sfort heentire
valuechain.13Someobservationsarelostduetomissingvalues and outliers.14 Loss figuresinclude
both the quantitative loss, i.e. the product entirely disappeared from the value chain, and the
qualitativeloss,i.e.theproductaffectedbyqualitydeteriorations.Lossesarealternativelyexpressed
inweightandvalues,withthelatterprovidinginformationregardingtheeconomicdamagecausedby
theloss.AppendixApresentsadetaileddecompositionofallthemethodsbycommodityandcountry
attheproducerlevel.
Lossfiguresacrossallvaluechainsfluctuatebetween6and25percentoftotalproductionandofthe
totalproducedvalue.Loss figures areconsistentlylargestattheproducerlevelandsmallest at the
middlemanlevel.Acrossthedifferentestimationmethodologies,lossattheproducerlevelrepresents
between60and80percentofthetotalvaluechainloss,whiletheaveragelossatthemiddlemanand
processorlevelsliesaround7and19percent,respectively.Itisimportanttomentionthattheselosses
donot include yieldgaps,whichcouldvarybetween 50and80percent.Theseyield gapsrepresent
thedistance to the production possibilityfrontier, defined asthedistanceofthe sale quantities or
pricesandthefrontier(seeDelgadoet.al2017forfurtherdetails).
Differencesacrossmethodologiesare salient,especiallyattheproducerlevel.Whiletheestimation
resultsfromtheC‐,A‐,andP‐methodsarecloseanddifferencesaremostlynotstatisticallysignificant,
theaggregateself‐reportedmethodreports systematically lower lossfigures.As shown in Table5,
thesegapsare largest in thebeansvalue chain in Hondurasand the potato value chaininPeru,in
which self‐reported loss estimates are between 10 and 15 percentage points lower than those
estimatedwithanyoftheothermethods.DifferencesacrossmethodsaresmallestintheEthiopian
teffvaluechain,butestimatesfromtheC‐,A‐,andP‐methodsremainsignificantlylargerthanthose
estimatedwiththeS‐method.
Percentagelossesexpressed invaluetendtobe slightly smaller thanthoseexpressedinweightfor
theS‐method;however,thisdifferenceis found particularlyintheA‐method,indicatingthatsome
quality degradations at the farm‐level do not seem to be punished by the market. The category‐
methodleadstoresultswhicharemoresimilarintermsofweightandvalueloss.
TablesA2–A9intheAppendixsplitlossfiguresattheproducerlevelintoquantitiesleftinthefield,
(i.e., good quality product which is not harvested), quantities affected by quality deterioration
previous to harvest, and quantitiestotallylostoraffectedby quality deteriorations during post‐
harvestactivitiesonthefarm.Thelattercanincludecleaning,winnowing,threshing,drying,storage,
transportactivities,etc.,dependingonthevaluechainandcountry.Thequantitiesleftinthefieldare
fairlysmall,ataround1percentoftotalproduction,orareeven negligible in the caseof teff and
wheat.Thepercentagevalueoftheunharvestedproductintermsofthetotalproducedvalueiseven
smaller,indicatingthattheproductleftinthefieldtendstobeoflowerqualitythantheharvested
product.Overall,thequantityaffectedbylossatpre‐harvestisconsiderablylargerthanthequantities
13Forthemiddlemenandprocessors,weassumethatthepercentagelostontheirpurchaseinthemonthprior
tothesurveycorrespondstotheaveragemiddlemanandprocessorlossinthevaluechain
14Weusea‘‘winsorizing”technique,replacingextremeoutliersbeyondthe99thpercentilewithmissingvalues
undertheassumptionthatallextremevaluesareduetomeasurementerror
totallylostoraffectedby a loss during post‐harvest activities. This indicatesthatthe largest losses
occurinthefieldorduringharvestactivities.
WiththeexceptionofthebeanvaluechaininHonduras,lossfiguresacrossmethodologiesaresimilar
andnotstatisticallydifferentformiddlemen.Atthewholesalelevel,lossesfluctuatebetween2and3
percent.
Causesbehindtheloss
Figure4(a‐h)presentsthemajorreasonsreportedbyfarmersastheexplanationfortheirpre‐harvest
loss,theircropleftinthefield,andtheirpost‐harvestloss.Inthespecificcaseofpre‐harvestloss,the
major reasons reported by farmers included pests and diseases andlackofrainfall;teffwasthe
exception,withlackofrainfallbeingthemajorreportedreasonforpre‐harvestloss.Whenlookingat
the produce left in the field, the major reason for the loss is a lack of appropriate harvesting
techniques.Finally,thelossreportedatthepost‐harvestlevelisduemostlyto damagedoneduring
selection,asaresultofworkers’lackoftrainingandexperienceinselectingtheproduce.
Tables 6‐10 try to control for the heterogeneity among farmer characteristics through regression
analysis.Theresultsshow that education and experiencetendtobecorrelatedwith areductionin
losses.Inparticular,educationissignificantforthepotatovaluechaininEcuadorandPeru,themaize
valuechaininHonduras,andthewheatvaluechaininChina.Thenumberofyearsinwhichaproducer
hasbeeninvolvedintheproductionofaspecificcropsignificantlycorrelateswithareductioninlosses
inthepotatovaluechaininEcuadorandPeru,themaizevaluechaininGuatemala,andtheteffvalue
chaininEthiopia.Whileweonlyhavefarmers’incomedataforPeruandEcuador,wefindthatwhen
a producer’s main income stems from an agricultural activity, it is correlated with a statistically
significantlowerloss;thisresultisinlinewiththeeffectswefindforcropcultivationexperience.
The large majority of farmers are men, but there is no clear gender pattern in food loss across
countries.Forexample,beingamalefarmertendstobecorrelatedwithadecreaseinbeansloss,but
itincreasesmaizelossinGuatemala.Nogendereffectisdetectedintheothercommoditychains.
Costs to reach markets are significantly correlated with increased losses in Peru, Guatemala, and
Ethiopia,indicatingthattheabsenceofmarketscanrepresentimportantlimitationsforfarmers.This
directlysupportspreviouswork,whichshowstheimportanceofaccesstobetterroadstoreducefood
lossacrossthevaluechain(see,forexample,Rosegrantet.al,2015).
Technology and improved seeds also matter. The more resistant pests andweather‘unica’ potato
varietyreducelossinEcuadorcomparedtothe‘capiro’and‘superchola’varieties.Similarly,theuse
of improved seeds is correlated with a decrease in losses in the maize and bean value chains in
Honduras.In potato valuechains,the harvesting toolusedconsiderably impactsloss;for example,
traditionalhoesbreakthe potato during theharvest.InPeru, new (mechanized) toolsareusedto
reducethisdamage.Boththetractorandthe‘lampa’arecorrelatedwithasignificantreductionofthe
shareof potatothatislost duringharvest.Thepotatovalue chaininEcuador,ontheotherhand,is
moretraditional,withveryfewmechanicaltoolsused.InEcuador,noalternativetoolstothehoewere
mentionedbythesurveyedfarmers.InEcuador,anincreasednumberofactivitiesto‘takecareofthe
crop’(suchasirrigationandplanttrimming)andalargerlaborforceareshowntoreducethelikelihood
oflossinthismoretraditionalpotatovaluechain.
Inthemaize,bean,andteffvaluechainsunderanalysis,productionactivitiesareshowntohavelittle
impact on food loss. The exception is the bean value chain in Guatemala, where mechanical
productionactivitiesareshowntobepositivelycorrelatedwithincreasedloss;mechanicalharvesting
techniqueslikelydamagethe crop and/or leavecropsinthefield(especiallyif the machinesareof
poorquality).
Whenanalyzinghowthetypeandnumberofpost‐harvestactivitiescarriedoutbythefarmersaffect
loss, we found that both the overall number of post‐harvest activities and the increased
mechanizationinsomecommoditychainscanhaveoppositeeffects.Thetotalnumberofpost‐harvest
activities,includingactivitiessuchaswinnowing,threshing,drying,puttinginbags,transporting,etc.,
decreaseslossintheGuatemalanbeanandtheChinesewheatvaluechains,butincreaseslossinthe
Guatemalan maize value chain and the Ethiopian teff value chain. In both the latter cases, the
increasedlossoriginatesmainlyfrompost‐harvestwinnowingandpackagingactivities.
Mechanicalpost‐harvestactivitiesarenotverywidespread,withmechanicaldrying,winnowing,and
threshing activities only being observed in the maize and bean value chains in Honduras and
Guatemala. Post‐harvest mechanization has no effecton maize valuechains in either Hondurasor
Guatemala. In the bean value chain, on the other hand, increased mechanization of drying and
winnowingactivitiesreduceslossinGuatemala,butmechanicalthreshingincreaseslossinHonduras.
Farmers likely cause grain damage, cracks, and lesions when mechanically (instead of manually)
stripping the grain fromthe plant; thismakes the grainmore vulnerable to insects, aswell as less
visuallyappealing.Onlyaveryfewfarmers(6percentofoursample)engageinmechanicalthreshing
in Honduras (and no pr oducers do so in Guatemala). Mechan ical transport with a car significantly
increaseslossinGuatemalaandEcuador,pointingtoimportantlossesduringtransport,especially if
largerdistancesaretraveled.
PotatofarmersinPeruandEcuadorrarelystoretheirproduct,buttheoppositeistruefortheother
commoditychains.Storagesignificantlyincreaseslossinthebean value chains in Honduras and
Guatemala,aswellasinthemaizevaluechain inHondurasandthewheatvaluechaininChina.For
beansinHondurasandwheatinChina,storagedurationissignificantly correlated withincreasesin
losses. These storage losses are shown t o be mitigated by improved storage techniques (silos) in
Honduras,Guatemala, andChina,the use of ‘pits’ratherthan othertraditionalstoragefacilitiesin
Ethiopia(nomodernstoragetechniquesareusedforteffinEthiopia),and‘bag’versus‘bulk’storage
in China. Storage conservation activiti es, such as chemical or natural fumigation and/or increased
ventilation,arecorrelatedwithdecreasedstoragelossesinHonduras.
Finally,unfavorableclimaticconditionsandpestanddiseasesarementionedmostoftenasproblems
facedbyfarmersduringproduction.Farmersmostoftenmentionedlimitedknowledgeandaccessto
equipment,credit,andmarketsasachallengetoincreasedproductionofhigherqualityproducts.All
ofthesefactorsarealsoshowntoaffectfoodlosses.
8. Conclusions
Improvingthemethodologyusedtomeasurefoodlossacrossfoodvaluechains,aswellasidentifying
the causes and costs of loss across value chains, is critical to promoting food loss reduction
interventionsandsettingprioritiesforaction.
Weaddresstheexistingmeasurementgapbydevelopingandtestingthreenewmethodologiesthat
aimtoreducemeasurementerrorandthatallowustoassessthemagnitudeoffoodloss.The methods
accountfor lossfrompre‐harvesttoproduct distributionandincludebothquantitylossand quality
deterioration.Weapplytheinstrumenttoproducers,middlemen,andprocessorsinsevenstaplefood
valuechainsinfivedevelopingcountries.Comparativeresultssuggestthatlosses arehighestatthe
producerlevelandthatmostproductdeteriorationoccurspriortoharvest.Self‐reportedmeasures,
whichhavebeenfrequentlyusedintheliterature,seemtoconsistentlyunderestimatefoodloss.Loss
figuresacrossallvaluechainsfluctuatebetween6and25percentoftotalproductionandofthetotal
produced value. Loss figures are consistently largest at the producerlevelandsmallestatthe
middleman level. Across the different estimation methodologies, losses at the producer level
representbetween60and80percentofthetotalvalue chain losses, while the average loss at the
middlemanandprocessorlevelsliesaround7and19percent,respectively.
Differencesacrossmethodologiesare salient,especiallyattheproducerlevel.Whiletheestimation
resultsfromthethreenewmethodsweimplementarecloseandthe differences are mostly not
statisticallysignificant,theaggregateself‐reportedmethodreportssystematicallylowerlossfigures.
Inaddition,ourfiguresarelargerthanthoserecentlyobtained byKaminskiandChristiansen(2014)
andMintenetal.(2016aandb). These differences are due to the inclusionof qualitative loss(not
previouslyconsidered)andtothefactthatwealsoincludequalityandquantityeffects.
Addressingfoodlossacrossthevaluechainfirstrequiresacommonunderstandingoftheconceptby
allactors,15aswellasacollaborativeefforttocollectbettermicro‐dataacrossdifferentcommodities
andcontexts.Thepresenceofpests,lackofrainfall,andlackofappropriatepost‐harvesttechnologies
seemtobethemajorfactorsbehindthelossesidentifiedinourstudy.Alackofappropriatestorage
facilities(FAO,2011;Liu,2014)andefficienttransportsystems(Rolle,2006)arealsoconsideredtobe
importantmicro‐causesoffoodloss;however,othercauses,rangingfromcropvarietychoices,pre‐
harvestpests,andprocessingandretaildecisions,arealsoimportant.Micro‐causescanbelinkedto
broadermeso‐causes,overarchingdifferentstagesofthevaluechain;forexample,theHLPE report
(2013) sees credit constraints as one of the main bottlenecks to the successful adoption of
technologiestoreducefoodlossandwaste.LikeKaminskiandChristiaensen(2014),wealsoidentify
alackofeducationasanimportantbottleneck.
Finally,policymakersandvaluechainactorsneedtotranslatetheseinsightsintoaction.International
organizations have the power to bring the important topic of foodlosstothetableandcreate
platformsforinformation exchange;atthesame time,individualstatesplaya keyroleincreating a
successfulenablingenvironment.Allpublicandprivatevaluechain actorsneedtoworktogetherto
transformtheoryintoconcretePWLFreductioninterventions.
15A good step in this directionhasbeenmadebythe multi‐stakeholder“FoodLossandWasteStandardand
Protocol”initiative,althoughthisinitiativedoesexcludepre‐harvestlossfromitsdefinition.
Figure4:Self‐ReportedCausesofofPre‐HarvestLosses
Figure4.a:PotatoEcuador
Figure4.b:PotatoPeru
55.87%
25.7%
11.17%
7.263%
Other pest ; disease; anima ls Little ra in
Lack or ex cess of inputs Freeze
Source:own data collecti on from 302 producers in 2016
Ecuador, Potato - Reason for Pre-Harvest Loss
22.45%
36.73%
24.49%
16.33%
Bad harvest technique Small or bad quality potato
Lack or cos tly labor Low price
Source:own d ata collection from 302 produc ers in 2016
Ecuador, Potato - Reason for product left in the field
62.78%
9.444%
14.44%
10%
3.33%
Laborer da mages at harvest Laborer damages at selection/cla
Climate, too much sun or r ain Transpor t
Plagues, rodents, animals
Source:own data collecti on from 302 producers in 2016
Ecuador, Potato - Reason for loss at Post-Harvest
34.82%
32.09%
10.07%
23.02%
Other pest , disease, anima ls Little r ain
Lack or ex cess of inputs Freeze
Source:own data collecti on from 411 producers in 2016
Perú, Potato - Reason for Pre-Harvest Loss
43.63%
10.78%
35.29%
10.29%
Bad harvest technique Small or bad quality potato
Lack or cos tly labor Low price
Source:own d ata collection from 411 produc ers in 2016
Perú, Potato - Reason for product left in the field
34.02%
12.2%
13.23%
25.43%
12.2%
2.921%
Laborer da mages at harvest Laborer damages a t selection/cla
Climate, too much sun or r ain Transpo rt
Plagues, rodents, animals Lack of labor
Source:own data collecti on from 302 producers in 2016
Perú, Potato - Reason for loss at Post-Harvest
Figure4.c:BeansGuatemala
Figure4.d:BeansHonduras
21.59%
27.58%
48.89%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Stolen
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for Pre-Harvest Loss
81.45%
18.55%
Bad harvest technique Lack or costly labor
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for product left in the field
22.56%
44.78%
18.86%
8.75%
5.05%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for loss at Post-Harvest
14.83%
35.24%
48.75%
Excess rain Little rain
Other pest; disease; an imals Exce ss chemicals
Wind
Freeze
Stolen
Source:own d ata collection from 685 produc ers in 2016
Honduras, Beans - Reason for Pre-Harvest Loss
98.86%
1.14%
bad harve st technique lack or costly labo r
Source:own data collecti on from 685 producers in 2016
Honduras, beans - Reason for product left in the field
7.03%
65.69%
21.41%
2.93%
2.93%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage
Source:own data collecti on from 685 producers in 2016
Honduras, Beans - Reason for loss at Post-Harvest
Figure4.e:MaizeGuatemala
Figure4.f:MaizeHonduras
19.61%
27.65%
43.09%
7.87%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Freeze
Stolen
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for Pre-Harvest Loss
81.9%
17.65%
Bad harvest technique Lack or costly labor
Low price
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for product left in the field
36.06%
35.62%
12.85%
9.19%
5.10%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage Transport
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for loss at Post-Harvest
9.51%
40.52%
46.62%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Stolen
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for Pre-Harvest Loss
95.33%
4.67%
Bad harvest technique Lack or costly labor
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for product left in the field
10.13%
64.35%
9.56%
4.69%
9.38%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage Transport
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for loss at Post-Harvest
Figure4.g:TeffEthiopia
10.14%
50.29%
13.63%
2.23%
19.36%
Excess rain Little rain
Other pest; disease; animals Crop lodging
Crop shattering Weeds
Excess of chemicals Freeze
Source:own data collection from 1203 producers in 2016
Ethiopia, Teff - Reason for Pre-Harvest Loss
3.08%
16.01%
27.05%
53.86%
Laborer damages at harvest Climate, too much sun or rain
Storage Blow out
Source:own data collection from 1203 producers in 2016
Ethiopia, Teff - Reason for loss at Post-Harvest
Figure4.h:WheatChina
2.93%
35.15%
37.93%
10.45%
3.08%
5.78%
4.67%
Excess rain Little rain
Other pest; disease; animals Crop lodging
Weeds Freeze
Crop shattering
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for Pre-Harvest Loss
55.56%
44.44%
Bad harvest technique Wheater
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for product left in the field
29.48%
6.07%
2.18%
7.72%
40.57%
4.30%
8.60%
Laborer da mages at harvest Laborer dam ages at hulling
Climate, too much sun or rain Storage
Plagues, rodents, animals Machine damage
Transport Blow away / spilled
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for loss at Post-Harvest
Table5:Quantitativeandqualitativefoodlossesalongthevaluechain,estimatedwithfourmethodologies
Note:S=Self‐reportedmethod,C=Categorymethod;A=Attributemethod;P=Pricemethod;^Dataareimputedfromthe'Self‐reportedmethod’
QuantitativeLoss==Totalloss(productdisappeared);QualitativeLoss=Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan(www.oanda.com)
SCAPSCAP SCAPS CAPSCAP SCAPSCAP SCAP
Nbofobs ervati ons
Kglost 1,498 5,926 4,982 4,146 3,548 9,216 11,523 7,998 7.47 16.01 24.79 26.59 55.67 137.74 194.93 191.24 26.47 66.96 114.16 129.69 78.61 186.08 198.19 284.26 27. 44 57.02 127.90 47.59 303 934 1,092 1,033
%oftotalproductionthat
islost 8.11% 12.82% 12.17% 11.84% 9.38% 15.99% 19.62% 19.84% 9.77% 12.80% 19.67% 16.72% 9.84% 14.58% 20.46% 15.27% 6.25% 13.27% 19.77% 17.39% 9.95% 16.69% 15.95% 17.41% 6.88% 8.67% 19.76% 8.69% 6.56% 10.96% 11.89% 11.48%
Value lost( USD) 269 1,543 1,007 990 454 2,116 2,202 1,805 8.24 26.31 32.64 38.42 18.37 60.20 55.68 82.88 18.56 73.73 90.01 116.53 23.30 65.43 65.19 99.12 40.24 97.98 91.03 73.91 104 316 360 349
%ofvalueoftotal
productionthatislost 6.22% 13.78% 10.03% 11.84% 5.58% 16.73% 16.13% 19.84% 7.72% 12.95% 17.97% 16.72% 7.57% 15.04% 13.42% 15.27% 5.23% 15.34% 17.56% 17.39% 8.87% 16.64% 15.41% 17.41% 6.26% 9.49% 9.02% 8.69% 6.11% 10.96% 12.37% 11.48%
Nbo
f
observations
Kglost 952 541 2,893 1,222 2,048 1,392 5,777 5,575 2.44 2.59 2.48 2.28 9.15 8.47 6.90 6.46 12.64 8.63 19.32 19.31 14.04 19.30 23.92 21.07 35,155 33,363 32,434 35,290
%oftotalpurchasethatis
lost 1.70% 0.91% 1.77% 1.52% 1.22% 1.60% 3.72% 2.05% 0.63% 0.66% 0.58% 0.57% 0.80% 0.54% 0.50% 0.55% 0.74% 0.55% 0.93% 1.57% 0.60% 0.59% 0.29% 0.65% 1.93% 2.09% 1.75% 1.92%
Value lost (USD) 232 284 685 518 517 49 2 1,266 2,704 3.99 3.64 3.69 3. 15 3.77 3.20 2.28 2.40 8.75 12.93 20.10 20.86 7.16 5.31 8.27 8.13 5,726 5,167 5,269 5,228
%ofvalueoftotal
purchaseth atislo st 1.36% 1.65% 1.55% 1.91% 1.34% 1.49% 2.89% 2.83% 0.78% 0.67% 0.67% 0.62% 0.83% 0.50% 0.45% 0.60% 0.45% 1.08% 1.58% 1.83% 0.63% 0.41% 0.31% 0.72% 1.62% 1.79% 1.54% 1.42%
Nbofobs ervati ons
K
g
lost 0.83 0.83^ 0.83^ 0.83^ 59.31 59.31^ 59.31^ 59.31^ 2.44 2.44^ 2.44^ 2.44^ 24.76 24.76^ 24.76^ 24.76^ 2.43 2.43^ 2.43^ 2.43^ 21.40 21.40^ 21.40^ 21.40^ 128
,
889 128
,
889^128
,
889^128
,
889^
%oftotalpurchasethatis
lost 2.45% 2.45%^ 2.45%^ 2.45%^ 2.27% 2.27%^ 2.27%^ 2.27% ^ 2.94% 2.94% ^ 2.94%^ 2.94%^ 3.50% 3.50%^ 3.50%^ 3.50%^ 3.67% 3.67%^ 3.67%^ 3.67%^ 3.82% 3.82%^ 3.82%^ 3.82% ^ 3.15% 3.15%^ 3.15%^ 3.15% ^
Value lost (USD) 14.59 14.59^ 14.59^ 14.59^ 41.22 41.22^ 41. 22^ 41.22^ 3.62 3.62^ 3.62^ 3.62^ 9.38 9.38^ 9.38^ 9.38^ 1.09 1.09^ 1.09^ 1.09^ 6.84 6.84^ 6.84^ 6.84^ 42,133 42,133^ 42,133^ 42,133^
%ofvalueoftotal
purchaseth atislo st 2.27% 2.27%^ 2.27% ^ 2.27%^ 3.31% 3.31%^ 3.31%^ 3.31%^ 3.42% 3.42%^ 3.42%^ 3.42%^ 2.88% 2.88%^ 2.88%^ 2.88%^ 1.96% 1.96%^ 1.96%^ 1.96% ^ 3.75% 3.75% ^ 3.75%^ 3.75%^ 3.06% 3.06%^ 3.06% ^ 3.06%^
%oftotalproductionthat
islost 11.50% 16.18% 16.39% 15.80% 12.87% 19.86% 25.62% 24.17% 13.34% 16.40% 23.19% 20.23% 13.53% 17.99% 23.84% 18.70% 8.95% 17.49% 24.37% 22.63% 14.37% 21.10% 20.06% 21.88% 6.88% 8.67% 19.76% 8.69% 11.64% 16.21% 16.79% 16.55%
%ofvalueoftotal
productionthatislost 9.86% 17.71% 13.85% 16.02% 10.23% 21.53% 22.32% 25.97% 11.93% 17.05% 22.06% 20.76% 11.88% 19.07% 17.42% 19.32% 7.65% 18.39% 21.11% 21.18% 13.24% 20.81% 19.47% 21.88% 6.26% 9.49% 9.02% 8.69% 10.79% 15.82% 16.97% 15.96%
Entirevalue
chain
Ethiopia:teffGuatemala:maizeGuatemala:beans
Producer
Midd lemen
Processor
Ecuador:potato
287
176
146
225
121
988
121
118
Honduras:beansPeru:potato
355
81
152
431 884
150162
120 104
650
China:wheat
1,099
137
47
Honduras:maize
‐
‐
1,186
Table6:DeterminantsoflossesinthepotatovaluechainsinEcuadorandPeru(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsare reported.Standard errorsinparenthesisclusteredattheprovince levelforPeru
andatthecantonlevelforEcuador.aThisincludesfertilizers,insecticides,herbicidesandfungicides;bThisincludesirrigation,
'aporque' and corte del yuyo;cMachinedriven,insteadofmanual,activitiesinclude:soilpreparation,sowing, pestcontrol,
fertilizerapplication,weeding,'aporque','cortedelyuyo',harvest;dThisreferstoselection,classification,drying,andtransport
afterdrying
Maleproducer
0.000 0.002 0.002 0.005 0.011 0.012
(0.039) (0.026) (0.023) (0.033) (0.023) (0.025)
Ageofproducer(in10years)
0.021* 0.020 0.019 0.002 0.004 ‐0.001
(0.012) (0.014) (0.014) (0.025) (0.026) (0.027)
Education:Primary(vsnoEducation)
‐0.102** ‐0.076* ‐0.068* ‐0.032*** ‐0.007 ‐0.018
(0.044) (0.045) (0.042) (0.007) (0.017) (0.016)
‐0.057 ‐0.031 ‐0.022 ‐0.061 ‐0.011 ‐0.03
(0.037) (0.035) (0.046) (0.077) (0.057) (0.045)
‐0.088*** ‐0.115*** ‐0.102*** ‐0.015 ‐0.01 ‐0.006
(0.013) (0.036) (0.030) (0.034) (0.032) (0.030)
‐0.015*** ‐0.007* ‐0.009** ‐0.089** ‐ 0.048 ‐0.049
(0.005) (0.004) (0.004) (0.042) (0.035) (0.037)
‐0.004 ‐0.006 ‐0.007 1.448* * 1.150** 0.983
(0.005) (0.005) (0.005) (0.568) (0.537) (0.628)
log(Totalproductionpotato)
‐0.009 ‐0.008 ‐0.021 ‐0.022*
(0.006) 0.006 (0.013) (0.012)
Improvedseeds(dummy)
0.037 0.031 0.008 0.000
(0.065) 0.07 (0.030) (0.025)
Resistantpotatovariety
‐0.039** ‐0.038** ‐0.001 0.004
(0.018) 0.017 (0.041) (0.039)
Numberofdifferentinputsapplied
a
0.007 ‐0.005 ‐0.03 ‐0.01
(0.032) 0.026 (0.070) (0.080)
‐0.010** ‐0.010* 0.003 0.003
(0.005) 0.006 ( 0.013) (0.014)
0.014 0.017 ‐0.029* ‐0.026**
(0.045) 0.038 ( 0.016) (0.012)
Harvesttechnique:tractorvsazadon
‐0.165*** ‐0.166***
(0.017) (0.018)
Harvesttechnique:lampavsazadon
‐0.177*** ‐0.173***
(0.014) (0.017)
Hiredlaborforharvest
‐0.071*** ‐0.072*** ‐0.037 ‐0.012
(0.007) (0.009) (0.026) (0.032)
Storagedummy
0.019 0.013 ‐0.002 ‐0.003
(0.015) (0.015) (0.034) (0.037)
Nbofpost‐harvestactivities
d
‐0.046 ‐0.045 ‐0.002 ‐0.01
(0.063) (0.050) (0.003) (0.007)
0.017** 0.023** 0.011 0.025
(0.007) 0.012 ( 0.042) (0.022)
Climate
0.033** (0.020)
(0.016) (0.026)
Pests
‐0.005 0.063**
(0.015) (0.029)
Limitedknowledge
0.032*** ‐0.019
(0.007) (0.026)
Limitedequipment
‐0.012 0.118***
(0.013) (0.036)
Limitedmarketaccess
0.035 ‐0.011
(0.042) (0.040)
Limited creditaccess
‐0.019 0.055*
(0.025) (0.032)
parroqui a parroqui a parroqui a di stri ct dis tri ct dis tric t
yes yes yes yes yes yes
No.ofObs. 287 287 287 369 369 369
Production
problems&
limitationsto
producehigh
quality(as
perceivedby
thep rodu cer)
PeruEcuado
r
Mainincomefromagriculture(vsnon‐agric)
Production
Numberofproductionactivitiesdonemechanically
c
Numberofdifferentfieldmaintenanceactivities
b
Socio‐
economic
variables Education:Secondaryorhigher(vsnoEdu)
Experienceincultivationofpotato(in10years)
Market Costtoreachmarket(USD/Kg)
Locationfixedeffects
Post‐harvest
Agroecologicalzonedummies
Mechanicaltransport(notsoldonplot)
Table7:DeterminantsoflossesinthebeanvaluechainsinGuatemalaandHonduras(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsare reported.Standarderrorsinparenthesisclusteredat thedepartmentlevelfor
Honduras and Guatemala.
a
This includes fertilizers, insecticides, herbicides and fungic ides;
b
Thisincludesirrigationand
'chapeo';
c
Machine driven, instead of manual, production activities i nclude: cleaning, sowing, herbicide application, pest
control,fertilizerapplication,andharvest;
d
Thisreferstowinnowing(sopla),threshing(desgrane),drying,puttinginbags,and
transport;eThisincludeschemicalfumigation,naturalfumigation,andventilation
Table8:DeterminantsoflossesinthemaizevaluechainsinGuatemalaandHonduras(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsarereported.Standarderrorsinparenthesisclusteredatthedepartment
levelforHondurasandGuatemala.
a
Thisincludesfertilizers,insecticides,herbicidesandfungicides;
b
Thisincludes
irrigation and 'chapeo';
c
Machine driven, instead of manual, production activities include: cleaning, sowing,
herbicideapplication,pestcontrol,fertilizerapplication,andharvest;
d
Thisreferstowinnowing(sopla),threshing
(desgrane), drying, putting in bags, and transport;
e
This includeschemical fumigation, natural fumigation, and
ventilation
Table9:DeterminantsoflossesintheteffvaluechaininEthiopia(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsarereported.Standarderrorsinparenthesisclusteredatthedistrictlevel.
a
Thisincludesfertilizers,insecticides,herbicidesandfungicides;
b
Thisincludesmechanicalherbicideandpesticide
application,andplowing;
c
Thisreferstocutting,drying,piling,threshing,winnowing,packaging,andtransportto
piling,threshing,and/orstorage;
d
Thisincludescleaningprevioustostorageandpreparationofstoragesite
Table10:DeterminantsoflossesinthewheatvaluechaininChina(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note: Marginal effects from GLM models are reported. Standar d errors in parenthesis clustered at the
countylevel.
a
Thisincludes fertilizers, insecticides, herbicidesand fungicides;
b
This includesmechanical
land preparation, planting, fertilizer application, chemical application and harvesting;
c
Thisrefersto
cutting,bundling,strewing,hulling,packing,transport,dryingandcleaning
References
Affognon,H., Mutungia C.,Sangingac, P. and C.Borgemeistera. 2014. “UnpackingPostharvest Losses in
Sub‐SaharanAfrica:AMeta‐Analysis”.WorldDevelopment.66:49‐68.doi:10.1016/j.worlddev.2014.08.002
APHLIS.2014.“UnderstandingAphlis‐ TheAfricanPostharvestLossesInformationSystem.”Availableat:
http://www.aphlis.net/downloads/Understanding%20APHLIS%20ver%20%202.2%20May%2014.pdf
Bellemare, Marc; Cakir, Meting; Peterson, Hikaru Hanawa; Novak, Lindsey; Rudi, Jeta; (2017). On the
MeasurementofFoodWaste.Amer.J.Agr.Econ.0(0):1–20.
Beretta,C., Stoessel, F., Baier,U.,andS.Hellweg.2013. “Quantifying Food Losses and the Potential for
ReductioninSwitzerland.”WasteManagement.33(3):764–73.doi:10.1016/j.wasman.2012.11.007.
Buzby,J.C.,Wells,H.F.andHyman,J.2014."Theestimatedamount,value,andcaloriesofpostharvestfood
losses at the retail and consumer levels in the United States". EIB‐121, US Department of Agriculture,
EconomicResearchService
CalRecycle‐CaliforniaDepartmentofResourcesRecyclingandRecovery.2009."FoodWasteComposting
Regulations White Paper California Integrated Waste Management Board"
http://www.calrecycle.ca.gov/LEA/Regs/Review/FoodWastComp/FoodWastcomp.pdf
Compton, J. A. F. and J. Sherington. (1999). “Rapid assessment methods forstored maizecobs: Weight
lossesduetoinsectpests.”JournalofStoredProductsResearch35(1):77–87.
Consultation,PublicElectronic.2014.“HLPEReportonFoodLossesand Wasteinthe Conte xtofS ustainable
FoodSystems.”No.April2013:1–6.
DeMel,Suresh;McKenzie,David;andWoodruff,Crhistopher;(2009).Measuringmicroenterpriseprofits:
Mustweaskhowthesausageismade?JournalofDevelopmentEconomics88(2009)19‐31.
Delgado,L;Schuster,M; and Torero, M; (2017).Including thepotential lossesacrossthevaluechainsas
partofthedefinitionoffoodlosses.IFPRI,Mimeo.
EMMSA.EmpresaMunicipaldeMercadosS.A.http://www.emmsa.com.pe/.Lima.Peru.
ESPAC. 2015. Encuesta de Superficie y Produccion Agropecuaria C ontinua.Dirección Responsable de la
información estadística y contenidos: Dirección de estadísticas agropecuarias y ambientales. Quito,
Ecuador.
FAO.2011."GlobalFoodLossesandFoodWaste.Extent,CausesandPrevention".Rome:UNFAO.
______.2013."Toolkit:reducingthefoodwastagefootprint".Rome:UNFAO.
______.2014.“WorkingPaperDefinitional Framework ofFoodLoss‐GlobalInitiativeonFoodLossand
WasteReduction.”Rome:UNFAO.
FAOSTAT.FoodandAgricultureData.http://www.fao.org/faostat/en/#home.FAO.Rome.
Fonseca, J. and D. Njie. 2009. "Addressing food losses due to non‐compliance with quality and safety
requirementsinexportmarkets:thecaseoffruitsandvegetablesfromtheLatinAmericaandtheCaribbean
region".Rome:UNFAO
Fusions.2013."Reportonreviewof(food)wastereportingmethodologyandpractice".FusionsEUProject.
Availableat:http://www.eu‐fusions.org/index.php/publications
G20AgricultureMinistersMeeting.2015.FinalCommuniqué.7‐8
th May, Istanbul. Available at:
https://g20.org/wp‐content/uploads/2015/05/G20‐Agriculture‐Ministers‐Final‐Communique.pdf
HLPE.2013."Biofuelsandfoodsecurity.AreportbytheHighLevelPanelofExpertsonFoodSecurityand
NutritionoftheCommitteeonWorldFoodSecurity".Rome.
HLPE.2014."Foodlossesandwasteinthecontextofsustainablefoodsystems.AreportbytheHighLevel
PanelofExpertsonFoodSecurityandNutrition".CFS‐CommitteeonWorldFoodSecurity.
Hodges,R.2010."Postharvestweightlossestimates for cereal supply calculationsin East andSouthern
Africa".NaturalResourcesInstitute:Chatham,UK.
Kader, A. 2005. "Increasing food availability by reducing postharvest losses of fresh produce". Acta
Horticulturae682:2169–2175.
Kader, A. 2009. "Postharvest Losses of Fruits and Vegetables inDevelopingCountries:AReviewofthe
Literature".PresentationatUCDavis(November10th).
Kaminski,J., & Christiaensen,L.(2014). Post‐Harvest Loss in Sub‐SaharanAfrica:WhatDoFarmersSay?
GlobalFoodSecurity3:149–158.
Kummu,M.,H.deMoel,M.Porkka,S.Siebert,O.Varis,andPJ.Ward.2012."Lostfood,wastedresources:
Globalfoodsupplychainlossesandtheirimpactsonfreshwater,croplandandfertilizeruse".Scienceofthe
totalenvironment438:477‐489.
Lipinski,B.,C.Hanson,J.Lomax,L.Kitinoja,R.Waite,andT.Searchinger.2013.“ReducingFoodLossand
Waste.”WorkingPaper,Installment2ofCreatingaSustainableFood Future. Washington, DC: World
ResourcesInstitute.Availableathttp://www.worldresourcesreport.org.
Liu,G.2014."FoodlossesandfoodwasteinChina:afirstestimate".OECDFood,AgricultureandFisheries
Papers.No.66.OECDPublishing(http://dx.doi.org/10.1787/5jz5sq5173lq‐en)
Lundqvist,J.,C.deFraiture,andD. Molden. 2008. "Savingwater:fromfieldtofork—curbinglossesand
wastageinthefoodchain".InSIWIPolicyBrief.Stockholm,Sweden:SIWI.
Ministerio de Agricultura y Ganaderia (MAGAP). 2014. Boletin Situacional Papa.
http://sinagap.agricultura.gob.ec/phocadownloadpap/cultivo/2014/kboletin‐situacional‐de‐papa‐2014‐
actualizado.pdf.
MINAGRI 2016. http://minagri.gob.pe/portal/monitoreo‐agroclimatico/papa‐2016.The Ministry of
AgricultureandIrrigation(MINAGRI).Lima.Peru
Minten,B,T.Reardon,S.DasGupta,H.Dinghuan,andK.Murshid.2016a.“WastageinFoodValueChains
inDevelopingCountries: Evidence from thePotatoSectorinAsia.”In Food Securityina Food Abundant
World.http://dx.doi.org/10.1108/S1574‐871520150000016010
Minten,B,E.Engida,andT.Seneshaw.2016b.“Howbigarepost‐harvestlossesinEthiopia?Evidencefrom
teff.”ESSPWORKINGPAPER93.WashingtonDC:IFPRI.
Monier,V., M. Shailendra, V.Escalon,C.O’Connor,T.Gibon,G. Anderson, M.Hortense,ndH.Reisinger.
2010."PreparatoryStudyonFoodWasteacrossEU27".European Commission (DG ENV) DirectorateC‐
Industry.2010.FinalReport.ISBN:978‐92‐79‐22138‐5
Parfitt,J.,M.Barthel,andS.Macnaughton.2010.“FoodWastewithinFoodSupplyChains:Quantification
and Potential for Change to 2050.” Philosophical Transactions of the Royal Society of London. Series B,
BiologicalSciences365(1554):3065–81.doi:10.1098/rstb.2010.0126.
Rolle,R.S.ed.2006."ImprovingpostharvestmanagementandmarketingintheAsia‐Pacificregion:issues
andchallengestrends".InPostharvestmanagementoffruitandvegetablesintheAsia‐Pacificregion,23–
31.R.S.Rolle,ed.Tokyo,AsianProductivityOrganization.
Rosegrant,M.,E.Magalhaes,R.almonte‐Santos,andD.Mason.2015."ReturnstoInvestmentinReducing
Postharvest Food Losses and Increasing Agricultural Productivity Growth ‐ Post‐2015 Consensus".
CopenhagenConsensusCenter
SAG/UPEG 2015. http://sisem.sag.gob.hn/. Secretaria de Agricultura y Ganaderia y la Unidad de
PlaneamientoyEvaluacióndelaGestion.Tegucigalpa,Honduras.
Stuart,T.2009.Waste:UncoveringtheGlobalFoodScandal.London:W.W.NortonCo.
Tefera,T.,F.Kanampiu,H.DeGroote,J.Hellin,S.Mugo,S.Kimenju,Y.Beyene ,P. M.B odd upa lli,B. Shi feraw,
andM.Banziger.2011.“TheMetalSilo:AnEffectiveGrainStorageTechnologyforReducingPost‐Harvest
InsectandPathogen Losses inMaizewhileImproving SmallholderFarmers’FoodSecurity in Developing
Countries.”CropProtection30:240‐245.
Venkat, K. 2011. “The Climate Change and Economic Impacts of Food Waste in the United States”.
InternationalJournalonFoodSystemDynamics2:431‐446.
Waarts,Y.,M.Eppink,E.Oosterkamp,S.Hiller,A.VanDerSluis,andA.Timmermans.2011."Reducingfood
waste:obstaclesandexperiencesinlegislationandregulations".RapportLEI2011‐059.128
WorldBank.2011."Missingfood:ThecaseofpostharvestgrainlossesinSub‐SaharanAfrica".Washington,
DC:TheWorldBank.
WRAP. 2009. "Household Food and Drink Waste in the UK". Banbury: WRAP. Available at:
http://www.wrap.org.uk/sites/files/wrap/Household_food_and_drink_waste_in_the_UK_‐_report.pdf
______. 2010. "Waste arisings in the supply of food and drink to households in the UK". Av ailable at:
http://www.wrap.org.uk/sites/files/wrap/Waste%20arisings%20in%20the%20supply%20of%20food%20a
nd%20drink%20toUK%20households,%20Nov%202011.pdf
______.2013."MethodsUsedforHouseholdFoodandDrinkWasteintheUK2012."
AppendixA
TableA1:Surveyquestionstoestimatefoodlosseswiththe‘Self‐reportedmethod’
TableA2:ProducerlossesalongthepotatovaluechaininEcuador
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA3:ProducerlossesalongthepotatovaluechaininPeru
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA4:ProducerlossesalongthebeanvaluechaininGuatemala
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA5:ProducerlossesalongthemaizevaluechaininGuatemala
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA6:ProducerlossesalongthebeanvaluechaininHonduras
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA7:ProducerlossesalongthemaizevaluechaininHonduras
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA8:ProducerlossesalongtheteffvaluechaininEthiopia
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA9:ProducerlossesalongthewheatvaluechaininChina
AppendixB
Thecountriesinwhichweworkandthedistributionofthesurveyswere:
1. Ecuador:Wecollected631surveys(302farmers,182middlemen,and147wholesalebuyers)inthe
provincesofCarchi,ImbaburaandPichincha;thefollowingmapshowsdistribution.
2. Peru: We collected 534 surveys (411 farmers, 77 middlemen, and 139 wholesale buyers) in the
departmentsofAyacucho,JunínandLima;thefollowingmapshowsthedistribution.
3.Honduras:Wecollected1777surveys(1155 farmers,377 middlemen,and245wholesalebuyers)inthe
departmentsof Choluteca,ElParaiso,FranciscoMorazán,Intibucá,LaPaz, Lempira,Ocotepeque,Olancho,
SantaBarbara,Valle,Cortes,CopanandYoro;thefollowingmapshowsthedistribution.
4.Guatemala:Wecollected1758surveys(1209farmers,325middlemen,and224wholesalebuyers)inthe
departments of Solola, Quetzaltenango, Totonicapan, San Marcos, Guatemala, Sacatepequez,
ChimaltenangoandEscuintla;thefollowingmapshowsthedistribution.
5. Ethiopia: We collected data from 1203 surveys for farmers intheregionsofOromiaandAmhara;the
followingmapshowsthedistribution.
6.China:Wecollecteddatafrom1307surveys(1114farmers,140middlemen,and53wholesalebuyers)in
theprovincesofHenanandShandong;thefollowingmapshowsthedistribution