Conference PaperPDF Available

Reality of Food Losses: A New Measurement Methodology

Authors:

Abstract and Figures

Measuring food loss, identifying where in the food system it occurs, and developing effective policies along every stage of the value chain are essential first steps in addressing the problem of food loss and waste in developing countries. Food loss has been defined in many ways, and disagreement remains regarding proper terminology and measurement methodology. Although the terms " post‐harvest loss, " " food loss, " " food waste, " and " food loss and waste " are frequently used interchangeably, they do not refer consistently to the same aspects of the problem. In addition, none of these classifications includes pre‐harvest losses. Consequently, and despite the presumed importance of food loss, figures regarding food loss remain highly inconsistent, precise causes of food loss remain undetected, and success stories of decreasing food loss remain few. We improve over this measurement gap on food losses by developing and testing the methodology traditionally used with three new methodologies that aim to reduce the measurement error and that allow us to assess the magnitude of food loss. The methods account for losses from the pre‐harvest stage through product distribution and include both quantity loss and quality deterioration. We apply the instrument to producers, middlemen, and processors in seven staple food value chains in five developing countries. Loss figures across all value chains fluctuate between 6 and 25 percent of total production and of the total produced value; these figures are consistently largest at the producer level and smallest at the middleman level. The identified losses are in addition to the existing yield gaps identified across the different commodities studied which are in the range of 50 to 80%. Throughout the different estimation methodologies, losses at the producer level represent between 60 and 80 percent of total value chain losses, while the average loss at the middleman and processor level lies around 7 and 19 percent, respectively. Differences across methodologies are salient, especially at the producer level. While the estimation results from the three new methods implemented are close and the differences are mostly not statistically significant, the aggregate self‐reported method reports systematically lower loss figures. Finally, our results show the major reasons behind the losses identified for each commodity and country. Specifically, we find that they included pests and diseases and lack of rainfall. When looking at the produce left in the field, the major reason for the loss is a lack of appropriate harvesting techniques. Finally, the loss reported at the post‐harvest level is due mostly to damage done during selection, as a result of workers' lack of training and experience in selecting the produce. Therefore, technology, improved seeds and the proper soil management techniques together with better market access could help to substantially reduce the losses at the producer level.
Content may be subject to copyright.
1
TheRealityofFoodLosses:ANewMeasurementMethodology1
LucianaDelgado2,MonicaSchuster3,andMaximoTorero4
Abstract
Measuringfoodloss,identifyingwhereinthefoodsystemthatlossoccurs,anddevelopingeffective
loss‐reductionpoliciesalongeverystageofthevaluechainareessentialfirststepsinaddressingthe
problemoffoodlossandwasteindevelopingcountries.Foodlosshasbeendefinedinmanyways,and
disagreementremainsregardingproperterminologyandmeasurementmethodology.Consequently,
and despite the presumed importance of food loss, figures regarding food loss remain highly
inconsistent,precisecausesoffoodlossremainundetected,andsuccessstories ofdecreasing food
lossremainfew.Weaimtofillthismeasurementgapbydevelopingthreenewmethodologiesthat
aimtoreducethemeasurementerrorandthatallowustoassessthemagnitudeoffoodloss;wealso
testtheseagainstthemethodologytraditionallyused.Ournewmethodsaccountforlossesfromthe
pre‐harvest stage through product distribution and include both quantity loss and quality
deterioration.Weapplytheinstrumenttoproducers,middlemen,andprocessorsineightstaplefood
valuechains insixdeveloping countries.Lossfiguresacrossallvaluechainsfluctuatebetween 6and
25percentoftotalproductionandofthetotalproducedvalue;thesefiguresareconsistentlylargest
attheproducerlevelandsmallestatthemiddlemanlevel.Theidentifiedlossesareinadditiontothe
existingyieldgapsidentifiedacrossthedifferentcommoditiesstudied,whichareintherangeof50to
80percent.Throughoutthedifferentestimationmethodologies,lossesattheproducerlevelrepresent
between60and80percentoftotalvaluechainlosses,whiletheaveragelossatthemiddlemanand
processorlevelslies ataround7and19 percent,respectively. Differences acrossmethodologiesare
salient,especially at the producerlevel. While theestimation results from thethreenew methods
implementedarecloseandthedifferencesaremostlynotstatisticallysignificant,theaggregateself‐
reportedmethodreportssystematicallylowerlossfigures.Finally,ourresultsshowthemajorreasons
behind the losses identified for each commodity and country; these reasons included pests and
diseasesandlackofrainfall.Whenlookingattheproduceleftinthefield,themajorreasonfortheloss
isalackofappropriateharvestingtechniques.Finally,thelossreportedatthepost‐harvestlevelisdue
mostly to damage done during selection, as a result of workers’ lack of training and experience in
selecting the produce. Therefore, improved techno logy, improvedseeds,propersoilmanagement
techniques,andbettermarketaccess,couldsubstantiallyreducelossesattheproducerlevel.


1ThisworkwasundertakenaspartoftheCGIARResearchProgramonPolicies,Institutions,andMarkets,which
isledbyIFPRIandfundedbytheCGIARFundDonors.ThispaperhasnotundergoneIFPRI’sstandardpeer‐review
process.WearethankfultoFranciscoOlivet forhisincrediblesupportontheimplementationofthesurveysin
GuatemalaandHondurasaswellastotheTeamsoftheCIPandICARDAfortheirsupportinPeru,Ecuadorand
Ethiopia.Theopinionsexpressed herebelong tothe authorsandnotnecessarilyreflectthoseofPIM,IFPRI,or
CGIAR.Anyremainingerrorsarethesoleresponsibilityoftheauthors.
2InternationalFoodPolicyResearch,Luciana.Delgado@cgiar.org
3InstituteofDevelopmentPolicy(IOB)UniversityofAntwerpMonica.Schuster@uantwerpen.be
4ExecutiveDirector,WorldBank,mtorero@worldbank.org
2
1. Introduction
Food loss and food waste have become an increasingly important topic in the development
community.Infact, theUnitedNationsincludedthe issue of foodlossandwasteintheSustainable
DevelopmentGoaltarget12.3,whichaimsto “halve per capita global foodwaste at the retailand
consumerlevels and reducefoodlossesalong production and supplychains, includingpost‐harvest
losses” by 2030. Food loss and food waste have caught the attention of both researchers and
policymakersforseveralreasons.First,growingpopulationsandchangingdietsassociatedwithgreater
wealthareincreasingthe pressureontheworld’savailableland,constitutingseriousthreatstofood
security, especially in developing co untries. Policies to reverse this situation have mainly aimed at
increasingagricultural yields and productivity, butthese efforts are often cost‐ and time‐intensive.
Second,thelossofmarketablefoodcanreduceproducers’incomeandincreaseconsumers’expenses,
likelyhavinglargerimpactsondisadvantagedsegmentsofthepopulation.Third,foodlossandwaste
entailunnecessarygreenhousegasemissionsandexcessiveuseofscarceresources.
Foodlossandwasteoccuratdifferentstagesofthefoodvaluechain(VC):production,post‐production
procedures,processing,distribution,andconsumption(FAO,2011;HLPE,2014;Lipinskietal.,2013).
Figure1showsthestagesofthevaluechainatwhichfoodlossoccurs,aswellasthedimensionsthat
arepotentially responsible for lossat eachstage.Thedistributionof lossandwastealongthe food
chainisdifferentdependingonthecommodityandthegeographicallocationinquestion,butfood
loss and waste are commonly the result of underlying inefficien t, unequal, and unsustainable food
systems.
Byreducingfoodlossandwaste,wecanimprovefoodavailabilityandfoodaccesswithoutincreasing
theuseofagriculturalinputs, scarcenaturalresources,or improvedtechnologiesontheproduction
side.Recent reports,however,highlightthat successstoriesofdecreasingfoodwaste(WRAP,2009)
andfoodloss(WorldBank,2011)arenotmany,andfiguresonfoodlossandfoodwasteremainhighly
inconsistent.Thus,whilevariousgovernmental,research,andcivilsocietyinitiativeshavebeen
launchedtoaddressthisimportantissue,largeresultsareyettobeseen.
The implementation of a strategy to reduce food loss faces three important challenges. First, no
accurateinformationexistsabouttheextentoftheproblem(especiallyindevelopingcountries).The
availableestimatessuggestthatfoodlossisalarminglyhighandmayaccountforatleastone‐thirdof
total global food production. For the most part, calculations of food loss hinge upon accounting
exercisesthatuseaggregatedatafromfoodbalancesheetsprovidedbynationalorlocalauthorities.
These“macro”estimationsaresubjecttoconsiderablemeasurementerror,relyonpoorqualitydata,
orarenotbasedonrepresentativesamples.Moreover,theyonlyquantifythevolumeoffoodthatis
lostand do nottakeintoaccountpotentialdeteriorationofqualityorreductionsofeconomicvalue
thatalsoaffectfarmersandconsumers.
Morerecently,effortshavebeenmadetousemicrodatatoestimatefoodloss.Theseestimationsrely
onsurveyscollectedamongdifferentactorsacrossthefoodvaluechain.However,theytend to be
basedoncasestudiesthatarenotrepresentativeofacountry’slargerpopulations.Additionally,these
studiesusedifferentdefinitionsoffoodloss,hamperingcomparisonsacrossdifferentareasandcrops.
Duetotheirlackofrepresentativeness and differences in their methodologies, the available micro‐
basedestimatesarewidelyvariableandyieldinconclusiveevidenceabouttheextentoffoodloss.
Thesecondchallengeisthescarceevidenceregardingthesourceoffoodloss.Foodlossisassociated
with a wide array of factors (e.g., poor agricultural management skills and techniques, inadequ ate
3
storage,deficientinfrastructure,inefficientprocessing,lackofcoordinationinmarketingsystems,etc.)
and can occur in different stages of the value chain (i.e., production, harvesting, po st‐production,
processing,distribution,orconsumption).Becauseoftheaggregatenatureoftheirdata,macrostudies
areunabletocapturethecriticalstagesatwhichfoodlossoccurs.Arguablyduetothecostofprimary
datacollection,most microstudieshavenot incorporateddetailedinformationregardingsourcesof
foodloss intheirsurveyinstruments.Mostofthesestudiesaimtocapturetotal food lossbasedon
farmers’self‐reportedestimatesbutdonotaimtodisentangletherelevantproductionphasesinwhich
losses are generated. For example, studies using the nationally representative Living Standard
Measurement Surveys – Integrated S urveys on Agriculture (LSMS –ISA)askfarmerstoassessthe
proportionoftheircropslosttorodents,pests,insects,flooding,rotting,theft,orotherreasons;these
studiescanonlyprovideglobalestimates.Afewstudieshavecollected more comprehensive
informationabouttheparticularstagesin whichlossesoccur;however,thesestudiesarebasedon
smallsamplesinparticularlocations,makingtheirresultsdifficulttoextrapolate.
Third,thereislittleevidenceregardinghowtosuccessfullyreducefoodlossacrossthevaluechain.
Therehavebeeneffortsto introduceparticulartechnologiesalongspecificstagesofthevaluechain
(e.g.,silosforgrainstorage,triplebaggingforcowpeastorage,ormechanizedharvestingandcleaning
equipment for wheat and maize). However, little evidence exists regarding adoption rates or the
economicsustainabilityof these efforts. Inparticular,there is a needtobetterunderstand how to
introduce economic incentives for actors from farm‐to‐fork, taking into account the upstream and
downstreamlinkagesacrossthevaluechain.
Thispaperaimstoresolvethefirsttwoaforementionedchallenges.Ourobjectiveistoimprovehow
foodlossisquantified5andtocharacterizethenatureoffoodlossacrossthevaluechainfordifferent
commoditiesinawidearrayofcountries6.Forthispurpose,wedesignedasetofsurveystomeasure
theextentoffoodloss.Whilethe surveys were tailored to specificcountries and commoditiesand
commodityvarieties(forexample,whilemaizeinHondurasandGuatemalahavethesameattributes,
wheatinChinahasdifferentattributesthanwheatinMexico),theyprovideaconsistentmeasurement
offoodlossacrossdifferentagentsinthevaluechain(i.e.,farmers,middlemen,andprocessors).The
surveyscapturedetailedinformationaboutthese agents’ different processesandquantify foodloss
alongeachproductionstagebycollectingself‐reportedmeasuresofthevolumesandvaluesoffood
lossesincurredduringdifferentprocesses(harvesting,threshing,milling,shelling,winnowing,drying,
packaging,transporting,sorting,picking,transforming,etc.).Inaddition,weestimatelossesbasedon
commoditydamageby collectingdetailed data from farmers, middlemen,andprocessorsregarding
thequality (based ondamage coefficients) ofagricultural commodities that theyuseasinputsand
outputs.Thisallowsustoquantifyfoodlossintermsofthequalityattributabletoeachagentacross
the value chain. Finally, we also estimate food loss based on commodity attributes by capturing
informationaboutdifferenttypesofcommodityattributes(e.g.,size,impurities,brokengrain,etc.)
andascertainingthepricepenaltythateachofthesetypesofcropdamageentails.Inthisline,weare
abletoidentifyparticularfactorsthatdiminishcommodities’valuesandthusareabletoquantifyfood
qualitylossbasedonmarketconditions.
Thesurveys implemented allowus to quantifythe extent of foodloss across thevalue chain using
consistentapproachesthatarecomparableacrosscommoditiesandregions. Theyalsoenableusto
characterizethenatureoffoodloss;specifically,weareabletoascertaintheproductionstagesacross

5WefollowthedeMelet.al(2009)frameworkbyexploringdifferentwaystomeasurefoodlossesinorderto
reconcilehowfarwecanreconcileself‐reportedfoodlossesthroughmoredetailquestionsacrossthedifferent
stagesofthevaluechain.
6ItisimportanttomentionthatthispaperdoesnotmeasurefoodwasteasperBellemareet.al(2017).
4
thevalue chain andtheparticularprocesses in which lossesareincurred.Theresultswilltherefore
informusabouttheparticularareasthatrequireinvestmentstoreducefoodloss.
Thepaperisdividedasfollows.Thefirstsectionlooksat differentissuesregardingthedefinitionof
foodlossacrossthevaluechain.Wethenconductareviewoftheexistingworkonvaluechainsand
identify the major problems and gaps in the literature. In the third section, we present our
methodological approach, followed by our key findings for China, Ethiopia, Ecuador, Honduras,
Guatemala,andPeru.Finally,weexaminethemajorreasonsfortheidentifiedlosses,usingdetailed
regressionanalysis.Thepaperendswithconclusionsandpolicyrecommendations.
2. Divergenceinterminologyanddefinitions
Theliteraturecommonlyagreesaboutvaluechainstages(Figure1),aswellasaboutthefactthatfood
loss occurs at each stage (e.g., FAO, 2011; Lipinski et al., 201 3; Parfitt, Barthel, and Macnaughton,
2010).However,noagreementexistsregardingfurtherclassificationoffoodlossandfoodwaste.The
terms‘Post‐HarvestLosses’(PHL),‘FoodLoss’(FL),‘FoodWaste’ (FW), and ‘Food Loss and Waste’
(FLW) are frequently used interchangeably, but they hardly everreferconsistentlytothesame
concept.Forsomeauthors,thedistinctionislinkedtothestagesatwhichthelossoccurs.Forothers,
thedistinctionisbasedonthecause of the food loss and whether itwasintentional. Some recent
publicationshavetriedtocreatemoreclarity(FAO,2014;HLPE,2014;Lipinski etal.,2013).Inthese
studies,FL refers tounintentionalreductionsinfoodquantityorqualitybeforeconsumption;these
lossesusuallyoccurintheearlierstagesofthefoodvaluechain,fromproductiontodistribution.PHL
is a sub‐section of FL, excluding losses at the production level (although losses during harvest ar e
sometimesmisleadinglyincludedintheconcept;e.g.Affognon,2014;APHLIS,2014).FWreferstofood
thatisfitforhumanconsumptionbutthatisdeliberatelydiscarded;thisismostcommonattheend
ofthevaluechain.Thetotalityoflossesandwastealongthevaluechainwithrespecttototalharvested
productionareencompassedinFLW(FAO,2014);however,thisdefinitiondoesnotincludecropslost
before harvest because of pests and diseases or left in the field, crops lost dueto poor harvesting
techniquesorsharppricedrops,orfoodthatwasnotproducedbecauseofalackofproperagricultural
inputs.Toincludethesepre‐harvestlosses,weproposeamoreexpansivedefinitionthatwillcapture
alllossesacrossthevaluechain(seeFigure1).Itisimportanttonotethatinthispaper,wedonotlook
atwasteattheend of the value chain.Thisis because, from an integrated valuechainperspective,
pre‐harvest conditions have direct imp acts on eventual losses at later stages of the chain, due to
products’differentquality,storage‐andshelf‐life,andtransportsuitability.
ThereisalsonoagreementintheliteratureregardingthedefinitionoffoodlosswithineachVCstage.
To give just one example of differing definitions: losses across the value chain can originate from
reductions in both food quantity and food quality and can thus describe either weight, caloric,
nutritional,and/oreconomiclosses.Duetoestimationdifficulties,productseasonality,andmarkets’
sensitivitytofoodquality,moststudiesanalyzequantitativelosses,descr ibinglo ssesint ermsofweight
reductions(e.g.,APHLIS,2014;HLPE, 2014);thesereductions sometimestranslateintocaloricterms
(e.g.Kummuetal.,2012;Lipinskietal.,2013),buttheystilldonotcapturequalitativedimensionssuch
asnutritionalcontentandphysicalappearance(seeAffognonetal.(2014)foraliteraturereview).The
choice of definition used dependson a stakeholders’ priorities, as well as on the data available;
however,thatchoicehasimportantimplicationsfortheestimationmethodologyusedtoexaminefood
loss,aswellasontheinterpretationofresults.
5
Figure1:Levelsatwhichfoodlossoccurs
Production
Quantitativeloss:
Production‘leftinthefield’
Qualitativeloss:
Qualitydeteriorationof
harvestedproduction
Post–harvest,onfarm
Quantitativeloss:Production
totallylostduringon‐farmpost‐
harvestactivities
Qualitativeloss:Quality
deteriorationduringon‐farm
post‐harvestactivities
PRODUCER‘ON–FARM’LOSS MIDDLEMAN
Sales
Post–harvest,offfarm
Quantitativeloss:Production
totallylostduringoff‐farmpost‐
harvestactivities
Qualitativeloss:Quality
deteriorationduringoff‐farm
post‐harvestactivities
PROCESSOR
Transformation
Sales
Quantitativeloss:Production
totallylostduringproduct
transformationactivities
Qualitativeloss:Quality
deteriorationduringproduct
transformationactivities
3. Howlosshasbeenmeasured
Twomainestimationmethodologieshavebeenusedtostudyfoodlossacrossthevaluechain:amacro
approach, using aggregated data from national or local authorities and large companies, and a micr o
approach,usingdataregardingspecificactorsinthedifferentvaluechain stages (Figure 2). Themacro
approachreliesonmassorenergybalancesinwhichrawmaterialinputs,ineitherweightorcaloricterms,
arecomparedtoproduceoutputs.Thismethodprovidesacost‐effectiveindicationoftheoveralllosses
alongtheentirevaluechainandwasusedbyGustavssonetal.(FAO,2011),thestudythathasbeenmost
quotedandusedasareferenceforfoodlossatthegloballevel.ByusingFAOStat’sFoodBalanceSheets,
thisstudyestimates that around 32 percent of global foodproduction, across allproductionsectors,is
lostalongtheentirefoodvaluechain.Kummuetal(2012)andLipinskietal.(2013)usethesamerawdata
andfindthatthistranslatesintoa24percentdecreaseincaloricterms.Incountry‐specificstudies,macro
energybalancesshowthat48 percentofthetotalcaloriesproducedarelostacrossthewholefoodVC
(Beretta et al. 2013; Switzerland), while mass balance data series from USDA data, using alternative
assumptions, show that 28.7 percent of the harvested product is lost between post‐production and
consumption (Venkat et al., 2011; US) and that  31 percent of the available food supply is lost at
distributionandconsumption(Buzbyetal.2014,US).Onedisadvantageofthismethodisthedemand
forrepresentativeandgoodqualityproduction,loss,andwastedata.Datagapsareparticularlyapparent
forcertainregionsoftheworld,suchaslow‐andmiddle‐incomecountries,andspecificstagesoftheVC,
suchasprimaryproduction,processing,andretail(Stuart,2009).Themethodisalsonotrepresentative
ofsmallerregional units, preventing identificationofthevaluechainstagesatwhichthelossesoccur;
thesechallengesthe appropriatetargeting oflossreductioninterventions.Finally,the aggregated data
usedformassbalancesareoftenincapableof differentiatingbetweennaturalloss(e.g.,moistureloss)
andunnaturalweightloss(forexample,duetospoilage),aswellasedibleandinedibleloss.
Themicroapproach,ontheotherhand,usessampledataregardingspecificvaluechainactors.Dataare
obtained through different methods: structured questionnaires andinterviews,foodlossandwaste
diaries compiled directly by the VC actor, direct measurements by the researcher, and food scanning
methods,whichcanbeusedindevelopedretailmarkets.Thesemethodsarehighlyregion‐andcontext‐
specific,aremoreusefulindisentanglingtheoriginoflossalongthevaluechain,andtendtoprovidemore
insightsintocausesandpreventionpossibilities.Themostfamousestimatefordevelopingcountriesis
given by the African Postharvest  Losses Information System, which provides post‐harvest weight loss
estimates for cereal crops in Africasouth of the Sahara (APHLIS, 2014). According to APHLIS, FL from
productionandpost‐productionforcerealsliesbetween14.3and15.8percentoftotalproduction.Kader
(2009) reviews previous estimates of losses in both developingand developed countries and finds an
averageof32percentlossforfruitsandvegetables.OfficialEurostatdataareusedinthestudybyMonier
etal.(2010)toquantifylossalongdifferentstagesoftheVCfor27EUmemberstates;byexcludingwaste
attheagriculturalproductionlevel,Eurostatestimatesanannualaverageof89milliontonsofwaste(i.e.
179Kgpercapita).AstudybyWRAP(2010)analyzeswastefromtheUKfoodanddrinksupplychainand
findsthatacross processing, distribution, andconsumption, 18.4Miotonsoftotalfoodanddrinkare
wastedannuallyintheUK;householdsareresponsibleforthelargestshare,wasting22percentoftheir
purchases(WRAP,2009).
The main challenges for the use of these micro methods to estimatefoodlossiscostandtimeto
implement the studies, as well as the difficulty in getting a large enough proportion of responses to
representanentireVCorregion.Inaddition,resultsarehardtocomparebecausestudiesareadaptedto
their specific objective, focus only on specific stages of the VC, and use different data collection and
estimationmethodologies.
Figure 2 summarizes the two approaches to PFLW estimation, highlighting their advantages and
drawbacks.Figure3providesanoverviewofglobalPFLWmagnitudesfromrecentstudies,distinguishing
thetwoestimationapproaches.
7

Figure2:PFWLestimationmethodologies


7
Thisdoesnotintendtobeacompleteliteraturereview,butmerelyprovidesreferenceonestimatesfromprevious
research. We selected studies encompassingmorethanoneleveland/orcommodityofthevaluechain.Fora
completeliteraturereview,pleaseseeAffognon,2015;Fusions,2013;orKader,2009
Macro
approach
Figure3:OverviewofglobalPFLWmagnitudesfromrecentstudies
4. Proposedapproach
One main barrier to dealing with food loss and waste is the lack of clear knowledge regarding the
magnitudeoftheproblem(Lipinskietal.,2013).Uniformestimationmethodstoprovideconsistentloss
figures are necessary, but they alone will not be sufficient to identify the underlying causes of and
potentialsolutionstofoodlossortooutlineprioritiesforactionandmonitorspecificprogressonloss
reductiontargets.
First,astandarddefinitionandterminologyforfoodlossandwasteiscruciallyneeded.Thisdefinition
mustadoptavalue‐chainapproach,accountingforthefactthatconditionsatonestageofthechainlikely
affect losses and waste at later chain st ages. Specifically, this definition need s to include pre‐harvest
losses,astheirexclusioncouldleadtofoodlossreductioninterventionsthatdonottacklethesourceof
theproblem.Thisnewdefinitionmustincludebothquantitativeandqualitativereductioncriteria,exclude
natural, inedible, and unavoidable loss, and be able t o be measured in economic, caloric, or quality‐
adjustedweightterms.
Second,lossassessmentmustprioritizeanalysesthatidentifytheVCstagesatwhichlossesarecreated,
ratherthananalysesthatidentifyanexactoverallfigure.Lossmeasurementmustalsotakeintoaccount
theoriginoffoodreductionsalongthevaluechain,aswellastheirgeographicaldistribution.
Weproposeadevelopingcountrymethodologythatcanmeasurelossesatdifferentstagesofthevalue
chain and that can be applied across crops and regions. Specifically, we propose three alternative
methodologiesratherthanthetraditionally usedmethodologyofaggregate self‐reported measuresof
loss.Theanalysiswillbelimitedtolossesbetweentheproductionandprocessingstages,asthisiswhere
inefficiencies are largest in developing countries.Information willbe collectedthrough representative
surveysoffarmers,middlemen,andprocessors.Thesesurveyswillallowforthecharacterizationofinputs,
harvesting, storage, handling, and processing practices for each of these agents and will estimate the
quantities,quality,andpricesoftheproductionasittravelsalongthevaluechain.
Ourmethodologycapturesbothquantitativeandqualitativelosses,aswellasdiscretionarylossesamong
the processing, large distribution,andretailsectors.Foodwaste and household waste are more
challengingto capture, and dataneedto be collected onrepresentativesamples. This will require the
developmentofawidely`acceptedsamplingandmeasurementframework,whichwilllikelybecomposed
ofamixture ofmethods(e.g. wastecomposition analysis,questionnaires,interviews,orwaste diaries;
seeWRAP,2013).Thispaperdoesnotlookatfoodwaste.
5. Methodology
Wetestdifferentmethodologiestoestimatefoodlossalongthevaluechainbydrawingontheliterature
andeconomictheory.Ourmethodologiesareappliedtotheproducer,middleman,andprocessorlevelof
thevaluechaintocoverthemainstagesatwhichlossmightoccur.Duetotheheterogeneityofthecrop
transformationprocessesatlaterstagesinthevaluechain,atthewholesalelevel,onlytheaggregate‘self‐
reported’foodlossmeasurementmethodmightbeused.Allmethodologiesestimateboththetotalfood
thatislost(quantitativeloss)andtheproductthat,albeitnotbeingcompletelylost,isaffectedbyquality
deterioration(qualitativeloss).Thereferenceperiodisthelastcroppingseasonattheproducerlevel;for
themiddlemenandtheprocessors,itisadefinedtimeperiod(dependingonthecountry).
Self‐reportedmethod
Theaggregate‘self‐reportedmethod’(S‐method)isbasedonreportingbytheproducers,middlemen,and
processorsregardingthefoodlossesthey eachincurred.Self‐reportinghas beenwidelyusedinrecent
studiesonfoodloss(e.g.,KaminskiandChristiansen,2014;Mintenetal.,2016a;Mintenetal.,2016b).
Directsurveyquestionsinquireeachactorabouttheirquantitativeandqualitativelosses.Attheproducer
level,the survey instrumentincludesquestions about pre‐harvestandpost‐harvestlosses. Middlemen
andprocessorsareasked about losses atdifferentstagesofpost‐harvestactivities and transformation
processes.TableA1intheAppendixprovidesinsightsabouttheexactsurveyquestionsusedinthethree
surveyinstruments.Theresponsestothequestionsareaddeduptoobtainthetotallossfiguresinweight
andvaluesatthelevelofthethreevaluechainactors.
Categorymethod
The‘categorymethod’(C‐method)isbasedontheevaluationofacropandtheclassificationofthatcrop
intoqualitycategories.Themethodbuildsonthe‘VisualScale Method’, developed by Compton and
Sherington(1999)torapidlyestimatequantitativeandqualitativegrainloss.TheC‐methodclassifieseach
productintoitsenduse,i.e.suitableforexport,theformalmarket,theinformalmarket,animalfeed,etc.
Eachcategoryisassociatedwithacropdamagecoefficient,indicatingthepercentageofthecropthatis
damagedwithineach category. The categoriesareestablished prior to datacollection in collaboration
withcommodityspecialists,localexperts,andvaluechainactorsandvarybetweenfourandsix,according
tothecommodityandcountry.Inaddition,anextensivepilotwasconductedtovalidatethecategories.
By means of the described categories and damage coefficients, farmersareaskedtoevaluatetheir
production at harvest and after post‐harvest activities, while middlemen are asked to evaluate their
productatpurchaseandsales.Bothfarmersandmiddlemenindicateatwhichpricetheyselltheproduce
inthedifferentcategories,aswellasasalespricefor ideal produce inthehighandlowseason.At the
producer level, the quantitative and qualitative loss in weightandinvaluearegivenbyeq.1and2,
respectively:
(1)

(2)
whereciisthedamagecoefficientforcategoryI(wherethetotalnumberofcategoriesareI),
isthe
sampleaveragesalespriceforanidealproduct8,
isthesampleaveragesalespriceforaproductin
categoryi, andisthequantityineachcategoryafterpost‐harvest.andarerespectively
thequantityandvalueofallproduceafterpost‐harvest,whileandarethequantityandvalue
ofallproduceafterproduction.Thedifferenceinquantitiesorvalues(thesecondtermsofequation1and
2)provideuswiththetotalquantityorvaluelostbetweenproductionandpost‐harvestactivities.

8Averageacrossthelowandhighseason

 ∗
 
 


 
 
 
Atthemiddlemanlevel,thequantitativeandqualitativelossinweightandinvaluearegivenbyeq.3and
4,respectively:

(3)
(4)
whereciisthesamedamagecoefficientasintheproducers’survey,
and
aretheaveragesale
priceforanidealproductandsalepriceforaproductincategoryiatthemiddlemenlevel,and
andarethequantitiesineachcategoryatpurchaseandatsale.Togetthefullquantitative
and qualitative loss measure, we add the weight (or value) of thequantitythatwastotallylost,i.e.
disappearedfromthevalue chain. This figure isideallyobtainedfromthedifferencebetween thetotal
purchaseandtotalsaleswithinagivenperiodoftime.Practically,middlemenareoftenunabletoindicate
theseexact quantities,as the purchasedcropismixedwithproductin storage.We therefore usethe
informationfromthedirectsurveyquestionregardingtheweightandvaluetotallylostatthemiddleman
level,i.e.productthatcompletelydisappearedfromthevaluechain.
Attributemethod
The‘attributemethod’(A‐method)isbasedontheevaluationofacropaccordingtoinferiorvisual,tactile,
andolfactoryproductcharacteristics.Theseattributesareidentifiedpriortothesurveyimplementation
and in collaboration with commodity experts, local experts, and value chain actors. In addition, an
extensivepilotwasimplementedtovalidatetheattributes9.Thenumberofattributesvariesbetween10
and14,accordingtothecommodityandcountry.Atthetimeofthesurvey,theproducerevaluateshisor
herproductionandestablishestheshareoftotalproductionthatisaffectedbytheattributes,bothafter
harvest and after post‐harvest. Middlemen evaluate their product from the previous month at both
purchaseandsale.Theproducerandthemiddlemendeclarehowmuchtheirrespectivebuyerspunish
themforinferiorproductattributesbypayingalowerprice.Thepricepunishmentinformationforeach
productattributeisusedtoestimatethevalueloss.Attheproducerlevel,thequantitativeandqualitative
lossinweightandinvaluearegivenbyeq.5and6,respectively:
(5)

(6)
whereistheshare ofproductaffectedbyattributejand
istheaveragepricepunishment foran
inferiorproductattributeatsale.Asbefore,andarerespectivelythequantityandvalueofall

9It isimportanttomention thatincertain countries;theattributesare definedaslegalstandards forthespecific
commodity.

∗
 
 

 

∗
 

 ∗
 



 ∗ 
 
produce after post‐harvest, while andare the quantity and value of all produce after
production.Whilethefirsttermsofeq.5and6provideuswiththequantityaffectedbyaloss(qualitative
loss), the second terms provide us with the total quantity or value lost (quantitative loss) between
productionandpost‐harvestactivities.
Atthemiddlemanlevel,thequantitativeandqualitativelossinweightandinvaluearegivenbyeq.7and
8,respectively:
(7)

(8)
where, and,arethequantitiesineachattributesold andpurchasedwithacertain
damageattribute,,and,arethevaluesatsalesandpurchasethatarelostdueto
a damage attribute (these are obtained by multiplying the previous quantities by the average price
punishment).Theweight(orvalue)ofthequantitythatwastotallylost(i.e. disappearedfromthevalue
chain)providesuswiththefullquantitativeandqualitativelossmeasure.
Pricemethod
The‘pricemethod’(P‐method)isbasedonthereasoningthathigher(lower)v aluesofacommo dityr eflect
higher(lower)quality.Adecreaseinprice,allelseequal,isthusaproxyforadeteriorationinquality.Data
regardingproducers’andmiddlemen’sidealsalevalueareusedandcomparedtothevalueoftheiractual
production,purchase, andsales.Thefollowingequationsprovide uswiththetotalloss attheproducer
level:
(9)
whereisobtainedbymultiplyingfarmers’productionbytheaverageidealsales’priceandis
thetotalvalueofthefarmers’productionafterpost‐harvest,asassessedbythefarmerhimself.Thevalue
losscanbetranslatedintoaweightlossbydividingitbytheidealsalesprice:

(10)
Forthe middlemen, wetakethedifferencebetweenthe value (orweight)affectedbylossatsalesand
thevalue(orweight)affectedbylossatpurchasetoestimatethetotalvalue(weight)affectedbylossat
thislevelofthechain.Thevalue(orweight)affectedbythelossatpurchaseorsaleisestimatedbytaking
thedifferencebetweenthesale(purchase)valueofanidealproductandtheactualsale(purchase)value.

 



, 
,
 WeightLost

, 
,
 ValueTotLost
Weaddtheweight(orvalue)ofthequantitythatwastotallylost(i.e.disappearedfromthevaluechain)
togetthefullquantitativeandqualitativelossmeasure.Thistranslatesintothefollowingtwoequations:

;;
; 
; (11)
6. Data
Asmentionedinourliteraturereview,therehaverecentlybeeneffortstousemicrodatatoestimatefood
loss. These estimations rely on surveys collected among different actors along the food value chain;
however,theyarebasedoncasestudiesthatarenotrepresentativeofacountry’sbroaderpopulation.
Additionally, these studies use different definitions of food loss,whichhamperscomparisonsacross
different areas and crops. Due to this lack of representativeness, as well as to differences in their
methodologies, available micro‐based food loss estimates are widely variable and yield inconclusive
evidenceregardingtheextentoffoodloss.
Wehavedevelopeddetailedsurveysacrossthedifferentcomponentsofthefoodvaluechainandspecific
todifferentcommodities.Thesesurveysallowustoquantifytheextentoffoodlossacrossthevaluechain
usingconsistentapproachesthatarecomparableacrosscommoditiesandregions.Theyalsoenableusto
characterizethe nature offood loss, specifically theproduction stages and theparticular processes at
whichlossisincurred.
Our survey instruments quantify food loss along the value chain before consumption (food waste by
consumersis excluded fromthe calculations). The richnessof thedataallowsustoprovideestimates
using alternative methodologies. We first calculate aggregate self‐reported measuresofloss:weask
farmers,middlemen, and processorsaboutthe quantities (andthe corresponding monetaryvalues)of
cropsdiscardedduringtheprocessesthattheyperform(e.g.,winnowing,threshing,grading,transporting,
packaging, etc.). This methodologyis,ingeneral,consistentwith the basic elements in the available
literature on the measurement of food loss. Our surveys, however, include a more disaggregated
descriptionofthestagesandprocesses at whichlossoccurs.Theproducer,middlemen,andprocessor
surveysweredesignedtohavedifferentmodulestomeasurelossacrossthevaluechain.
Theproducersurveyhasthreemodules.Thefirstmoduleasksaboutthequantityofthecropleftinthe
field,thetotalproductionharvested,andthequalities,attributes,andpricesoftheharvest.Thesecond
moduleasks about the post‐harvestactivities conductedbytheproducers(e.g., winnowing, threshing,
grading,transporting,packaging,etc.);foreachoftheseactivities,theproducerisaskedforthequantity
ofaffected product 10 andthequantity totally lost.11 The third modulerecordsthe destinationof the
product(i.eforconsumption,forsale,fordonation,etc.),aswellastheattributesandcategoriesforthe
quantityforsale.

10Affectedproduct:Productthatlowersqualitybutcanstillbeused.
11Totallylost:Productthatiscompletelylostandcannotbeused.

; 
;
; 
; )(12)
The middlemen survey has three modules. The first module asks about the quantity, quality, and
attributesofthetotalproductpurchasedinadefinedtimeperiod(dependingonthecountry).Thesecond
moduleasksmiddlementoreportthequantity,quality,andotherattributesofthetotalproductsoldina
definedtimeperiod(dependingonthecountry).Thethirdmoduleasksquestionsaboutthepost‐harvest
processing activities conducted by the middlemen (e.g., winnowing, threshing, grading, transporting,
packaging,etc.);ineachoftheseactivities,thequantityofaffectedproductandthequantityoftotalloss
arereportedforeachcrop.
Theprocessorsurveyhastwomodules.Thefirstmoduleasksforthequantity,quality,andattributesof
thetotalproductpurchasedinaspecifictime‐period(dependingonthecountry).Thesecondmoduleasks
aboutthespecificstepsrequiredtoobtainthefinalproductforconsumerconsumption.
Withineach survey,we categorize thecrop damageand crop attributesforeachcropandcountry.In
ordertocategorizethedamageforeachcrop,wecreatedadamagecoefficient,measuredbycategorizing
thetotalamountofeachcropintodegreesofquality.Inoursurveys, each crop has its own damage
coefficient,whichwasdeterminedusingtheinternationalclassificationincollaborationwithlocalexperts.
FormaizeandbeansinHondurasandGuatemala,therearefivecategories,withcategory1classifiedas
having1‐2percentofdamagedgrain(grainwithnoproblems)andcategory5classifiedashavingmore
than25percentofdamagedgrain(grainthatisunusable).InEthiopia, the fivecategories range from
category1(undamagedgrain)tocategory5(morethan80percentofdamagedgrain).InEcuadorand
Peru,thecategoriesarerelatedtothecaliber12oft hetuber; crops cate gori zedascali ber1 havea diam eter
biggerthan10cm(CategoryExtra),whilecategory5consistsoftuberswithadiameteraround6cm,which
isusedtofeedanimals.InChina,eightcategoriesareconstructedbasedonthecrops’degreeofimpurity
(≤1percent and >1 percent)and degree ofsoundness of thekernel (<=6 percent;>6 percent and <=8
percent;>8percentand<=10percent;>10percent).
Theattributessectionofthesurveyevaluatesthecropsaccordingtophysicalorchemicalcharacteristics
tosee whether they have inferior visual, tactile,andolfactorycharacteristics.Thesecharacteristicsare
specifictoeachcountryandcrop.Inoursurveys,wemeasurethedamagetoeachcropbytexture,size,
moisture,and the presence of fungus or insects,etc.Theseattributecategorieswerecreatedwiththe
collaborationoflocalexperts.
One drawback to the aggregateself‐reported method is that it is reported by the farmers in a more
‘aggregate way’ through a direct question (see Appendix Table A1), which does not allow for the
identificationofwherealongthevaluechainthelossesoccurandthedifferentiationofwhichlossesare
ofqualityandwhichareofquantity.Whilefoodisnotnecessarilydiscardedcompletelyalongdifferent
processes,qualitydowngradesatdifferentstagesofthevaluechaincanaffectfood’seconomicvalue.Our
surveyinstrumentsimproveupon thesetraditionalmeasuresbyallowingustoquantifyqualitativeloss
usingtwoalternativemethods.First,weestimatethesharesoftotalfoodproductionateachstageofthe
valuechainthatwasdamagedandissubjecttoqualitativeloss(basedondamagecoefficients).Second,

12Caliber:Sizeofinternaldiameterofthetuber
wecollectinformationaboutdifferenttypesofcommodityattributes(e.g.,size,impurities,discoloration,
etc.) and ascertain the price penalty that each of these types of crop damage entails (i.e., attribute
penalties).Wearethusabletoidentifyspecificfactorsthatdiminishcommodities’valuesandtoquantify
foodqualitylossesbasedonmarketconditions.
Valuechainsanddescriptivestatistics
Forallcountries,wechoseoursamplebasedonapre‐censusoftheproducersofthespecificcropof
interest;thisformsourbaseline.Selectedproducersmusthaveproducedcropsinthelastseason.
PotatoesareessentialtotheEcuadoriandiet,witheachpersonconsumingaround30kgperyear
(MAGAP,2014).Thecropisthetenthmostconsumedproductsinthecountryandisoneofthetopeight
produced crops. Ecuador produces 397,521 tons of potatoes annually, with the province of Carchi
producing36.48 percentofthenationalvolume (ESPAC,2015).OursurveysinEcuadorwere organized
betweenJuneandOctober2016foreachsegmentofthepotatovaluechain.Allproducersinthesurvey
camefromtheprovinceofElCarch i,whilethemiddlemenwerefromtheprovincesofElCarchi,Imbabura,
andPichinchaandtheprocessorswerefromtheprovinceofPichincha.
Potatoeshavealsobeenessentialto the diet of Peruvians formillennia.Peru’sannualconsumptionof
potatoesisaround89kgperperson(MINAGRI,2016).Thecroprankssecondforthemostcultivatedcrop
areainPeru,with318,380hectaresplantedtopotatoand4,704,987metrictonsofpotatoesproducedin
2014(FAOSTAT).ThetwoprincipalprovidersofpotatoestotheLimamarketarethedepartmentsofJunín
and Ayacucho, which provide around 60 percent of the potatoes that go to the wholesale market
(EMMSA).OursurveysinPeruwereorganizedbetweenSeptemberandDecember2016foreachsegment
ofthepotatovaluechain.TheproducersinthesurveywerefromthedepartmentsofJunínandAyacucho,
whilethemiddlemenandprocessorswerefromthedepartmentofLima.
FortheCentralAmericanregion,maizeand beancropscomposestaplesforavarietyofreasons.These
cropsformthefundamentalbasisoffoodsecurityformuchofthepopulation,and they contribute to
householdandnationaleconomiesthroughemploymentgenerationandincomegeneration.
InHonduras,maizeisoneofthemostimportantbasicgrains,butthedomesticmaizesupplyonlycovers
42percentofthecountry’sdemand(SAG/UPEG,2015).TheannualconsumptionofmaizeinHondurasin
2013wasaround77.96kgper person, while the production of maizein2014was609,312metrictons
overanareaof263,343hectares(FAOSTAT).Thethreeprincipalproductiondepartmentsofwhitemaize
inHondurasareOlancho,ElParaíso,andComayagua.
BeansarethesecondmostimportantbasicgraininHonduras,bothinareaplantedandinproductionfor
consumption.In2014,the annual consumption of beans inHonduras was12.05kgper person and an
averageof132,659hectareswereplantedwithbeans.Beanproductionin2014was105,812metrictons
(FAOSTAT).ThethreeprincipalproductiondepartmentsforbeansinHondurasareOlancho,El Paraíso,
andYoro.
Oursurveys for Honduraswereorganized between JulyandSeptember 2016 foreachsegmentofthe
maizeandbeanvaluechains. The producers, middlemen, and processorsinthesurvey were from the
departmentsofCholuteca,Copan,ElParaiso,FranciscoMorazán,Intibucá,LaPaz,Lempira,Ocotepeque,
Olancho,SantaBarbara,andValle.
InGuatemala ,ma izeisthemo stw ide lyc ultivatedc ropandisoneofthemostvaluableandrootedsymbols
ofGuatemalanculture.In2014,theareacultivatedtomaizewas871,593hectares,withaproductionof
1,847,214 metric tons. Per capita consumption for 2013 was around 87.25 kg per person per year
(FAOSTAT). The three principal production departments of white  maize in Guatemala are Petén (18.5
percent),AltaVerapaz(9.4percent),andJutiapa(7.3percent)(MAGA,2016).
BeansarethesecondmostimportantbasicgraininGuatemala,both inareaplantedand inproduction
forconsumption.In2014,theconsumptionofbeansinGuatemalawas12.12kgperpersonperyear;area
planted to beans covered an average of 250,414 hectares, with production at 235,029 metric tons
(FAOSTAT).ThethreeprincipalproductiondepartmentsforbeansinGuatemalaarePetén(27percent),
Jutiapa (13 percent), and Chiquimula (10 percent) (MAGA, 2016). Our surveys in Guatemala were
organizedbetweenSeptemberandDecember2016foreachsegmentofthemaizeandbeanvaluechains.
The producers, middlemen, and processors were from the departments of Chimaltenango, Escuintla,
Guatemala,Quetzaltenango,Sacatepéquez,SanMarcos,Sololá,andTotonicapán.
TeffconstitutesamajorcropinEthiopia,intermsofbothproduction and consumption. Teff is the
dominantcerealcropfortotalareaplanted(3,760,000hectaresin2012/2013;FAS,2014)andsecondin
production and consumption, with 3,769,000 metric tons (Berhane, Paulos, Tafere and Tamru, 2011;
EthiopianAgriculturalTransformationAgency[EATA], 2013).AccordingtoBerhane,et al.(2011),based
on national data fro m the Household Income, Consumption and Expenditure Survey (HICES, 2011), in
2001‐2007,urbanconsumptionofteffpercapitawasashighas61kgperyear,whileruralconsumption
was20kgpercapitaperyear.TeffisgrownmainlyinAmharaandOromia,whichtogetheraccountedfor
84 and 86 percent of the total cultivated area and production in 2011. Our surveys in Ethiopia were
organizedbetweenAugustandOctober2016inthezonesofOromiaandAmhara;however,thesesurveys
forcoveredtheproducerchainonly,giventhatinthecaseofteff,therearenoimportantintermediaries
andprocessors.
WheatisthesecondmostimportantfoodcropinChinafollowingrice.Itisthedominantstaplefoodin
the northern part of the country, where it is used mainly to produce noodles and steamed bread.
(CIMMYT).In2014,Chinaproducedabout120millionmetrictonsofwheateachyearonapproximately
24millionhectaresofland(FAOSTAT).AccordingtoFAOSTATin2013,theannualconsumptionofwheat
percapitainChinawasaround63.1kgpercapita.MostofChina’swheatproductioncomesfromNorth
China;threenorthernprovinces–specificallyHenan,Shandong,andHebei‐collectivelyaccountforover
50percentofChina’swheatoutput(China'sStateStatisticalYearbook,2001).OursurveysinChinawere
organized between August and October 2016 for each segment of the value chain. The producers,
middlemen,andprocessorswerefromtheprovincesofHenanandShandong.
Weadaptedourinstrumentforthespecificationsofeachcropandcountry.Forexample,inEcuadorand
Peru,weworkwithpotatovaluechains;inthesecases,theinstrumenthassixdifferentcategoriesand
ninedifferentattributes.InGuatemalaandHonduras,wherewework with themaize and beanvalue
chains,theinstrumenthasfivedifferentcategoriesand12differentattributes.InEthiopia,weworkwith
the teff value chain, in which the instrument has five different categories and 12 different attributes.
Finally,inChina,weworkwithwheatvaluechain,andtheinstrumentshaseightdifferentcategoriesand
sixdifferentattributes.
Theformulausedforcalculatingtherepresentativerandomsampleforallthecountriesis:
 (13)
wheren=thesamplesizerequiredandwhichisstatisticallyrepresentative,N=thetargetpopulation
size,e=toleratedmarginoferror(forexample,wewanttoknowtherealproportionwithin5percent),
Z=levelofconfidenceaccordingtothestandardnormaldistribution(foralevelofconfidenceof95
percent,z=1.96,foralevelofconfidenceof99percent,z=2.575),andp=estimatedproportionofthe
populationthatpresentsthecharacteristic(whenunknownweusep=0.5)
Inastratifiedrandomset‐up,wesampledamoderatenumberofactorspersegmentineachcountry.At
theend,thesampleconsistedof:
Table1:Samplesize

  Ecuador  Peru  Honduras  Guatemala  Ethiopia China

  
Producer 302 411 1209 1155 1203 1114
Middlemen 182 85 325 365 ‐‐‐ 140
Processor 147 139 224 245 ‐‐‐ 53

Total  631  594  1758  1765  1203 1307
Specifically,inthecaseofteffinEthiopia,weonlysurveyproducersbecausemostoftheproducerswill
bringtheirtefftomillerswhoworkmostlyon a fee‐for‐servicebasis,returning milled teff flour tothe
producerswithoutanymajorintermediationofmiddlemen.
Tables24pro videdescriptivestatisticsofthesamp leofeach differentcropineachcountryforproducers,
middlemen,andprocessors,respectively.
InTable2,wecanseethatforallcountries,themajorityofproducersaremaleandhavereachedatleast
aprimarylevelofeducation.TeffproducersfromEthiopiaaretheyoungestonaverage,whileChinese
wheatproducersaretheoldestandhavethemostyearsofexperienceworkingwiththeircrop.Morethan
70percentofproducersfromEthiopiaandChinausedimprovedseedsinthelastcropseason(forteffand
wheat,respectively);43percentof producers usedimproved seedsinPeru,whiletheuseofimproved
seedsislessthan20percentinEcuador,Honduras,andGuatemala.PotatoesinPeruandEcuadorwere
storedforshorterperiodsoftimecomparedtograinsinalloftheotherstudycountries.
InTable3,wecanseethatforallcountries,around60percentofmiddlemenaremale,withanaverage
agebetween 40 and 50years.The average numberofyears that middlemenhave beeninbusiness is
higherfor middlemenbuyingandsellingpotatoesinEcuadorandPeruthanformiddlemen buyingand
sellingmaizeandbeansinGuatemala,Honduras,andChina
Across all countries, middlemen purchased more commodities from producers than from other
middlemen.Thiscouldbeduetothefactthatpricesfromproducersmaybecheaperandproducersmay
bemorelikelytoseekoutmiddlemeninthebigcities.
InTable4,we canseethatthemajorityofpro cessorsinPeru andEcuadoraremale,andthemainproducts
tradedareFrenchfries.InChina,almostallprocessorsaremale,andthemainproductsarenoodlesand
steamedbread.InHondurasandGuatemala,themajorityofprocessorsarefemale,andthemainproducts
tradedaremaizetortillasandpackagedbeans.Forallcountries,theaverageageofprocessorsis40years.
In Peru and Ecuador, all of the potato processors’ businesses are formal (legal) and in China, a large
majorityareformal;however,formaizeandbeanprocessorsfromGuatemalaandHonduras,somewhat
lessthan40and60percent,respectively,areinformal.
Table2:Producercharacteristics
Note:aThisincludesfertilizers,insecticides,herbicides,andfungicides;bThisincludesactivitiessuchasirrigation,trimming,andpruning;cMachine‐driven,insteadofmanual,
includeactivitiessuchassoil preparation, sowing, pest control, fertilizer application, weeding, mulching, cutting and harvest;d Thisincludes activitiessuch asselection,
classification, drying, etc. e This includes activities such as chemical fumigation, natural fumigation, and ventilation; f storage summary statistics are obtainedfrom the
restrictedsample offarmersstoring grains;gThesevariablesarenot mutually exclusive,asfarmers canhavemorethanonesaleslocation andtypeof buyer.Theofficial
exchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan(www.oanda.com)
Table3:Middlemancharacteristics
Note:Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan
(www.oanda.com)
Table4:Processorcharacteristics
Note:Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan
(www.oanda.com)
7. Results
AsshowninTable5,weestimate loss levels at the producer, middlemen, and processor levels
separatelyandalternativelyapplythefourestimationmethodologies,i.e.subjective(S),category(C),
attributes(A),andpricemethod(P).Weusethelossfiguresestimatedwiththeattributemethod(A‐
measure)asourdependentvariableandadduplossesateachlevelt oobtainlossfigure sfort heentire
valuechain.13Someobservationsarelostduetomissingvalues and outliers.14 Loss figuresinclude
both the quantitative loss, i.e. the product entirely disappeared from the value chain, and the
qualitativeloss,i.e.theproductaffectedbyqualitydeteriorations.Lossesarealternativelyexpressed
inweightandvalues,withthelatterprovidinginformationregardingtheeconomicdamagecausedby
theloss.AppendixApresentsadetaileddecompositionofallthemethodsbycommodityandcountry
attheproducerlevel.
Lossfiguresacrossallvaluechainsfluctuatebetween6and25percentoftotalproductionandofthe
totalproducedvalue.Loss figures areconsistentlylargestattheproducerlevelandsmallest at the
middlemanlevel.Acrossthedifferentestimationmethodologies,lossattheproducerlevelrepresents
between60and80percentofthetotalvaluechainloss,whiletheaveragelossatthemiddlemanand
processorlevelsliesaround7and19percent,respectively.Itisimportanttomentionthattheselosses
donot include yieldgaps,whichcouldvarybetween 50and80percent.Theseyield gapsrepresent
thedistance to the production possibilityfrontier, defined asthedistanceofthe sale quantities or
pricesandthefrontier(seeDelgadoet.al2017forfurtherdetails).
Differencesacrossmethodologiesare salient,especiallyattheproducerlevel.Whiletheestimation
resultsfromtheC‐,A‐,andP‐methodsarecloseanddifferencesaremostlynotstatisticallysignificant,
theaggregateself‐reportedmethodreports systematically lower lossfigures.As shown in Table5,
thesegapsare largest in thebeansvalue chain in Hondurasand the potato value chaininPeru,in
which self‐reported loss estimates are between 10 and 15 percentage points lower than those
estimatedwithanyoftheothermethods.DifferencesacrossmethodsaresmallestintheEthiopian
teffvaluechain,butestimatesfromtheC‐,A‐,andP‐methodsremainsignificantlylargerthanthose
estimatedwiththeS‐method.
Percentagelossesexpressed invaluetendtobe slightly smaller thanthoseexpressedinweightfor
theS‐method;however,thisdifferenceis found particularlyintheA‐method,indicatingthatsome
quality degradations at the farm‐level do not seem to be punished by the market. The category‐
methodleadstoresultswhicharemoresimilarintermsofweightandvalueloss.
TablesA2–A9intheAppendixsplitlossfiguresattheproducerlevelintoquantitiesleftinthefield,
(i.e., good quality product which is not harvested), quantities affected by quality deterioration
previous to harvest, and quantitiestotallylostoraffectedby quality deteriorations during post‐
harvestactivitiesonthefarm.Thelattercanincludecleaning,winnowing,threshing,drying,storage,
transportactivities,etc.,dependingonthevaluechainandcountry.Thequantitiesleftinthefieldare
fairlysmall,ataround1percentoftotalproduction,orareeven negligible in the caseof teff and
wheat.Thepercentagevalueoftheunharvestedproductintermsofthetotalproducedvalueiseven
smaller,indicatingthattheproductleftinthefieldtendstobeoflowerqualitythantheharvested
product.Overall,thequantityaffectedbylossatpre‐harvestisconsiderablylargerthanthequantities

13Forthemiddlemenandprocessors,weassumethatthepercentagelostontheirpurchaseinthemonthprior
tothesurveycorrespondstotheaveragemiddlemanandprocessorlossinthevaluechain
14Weusea‘‘winsorizing”technique,replacingextremeoutliersbeyondthe99thpercentilewithmissingvalues
undertheassumptionthatallextremevaluesareduetomeasurementerror
totallylostoraffectedby a loss during post‐harvest activities. This indicatesthatthe largest losses
occurinthefieldorduringharvestactivities.
WiththeexceptionofthebeanvaluechaininHonduras,lossfiguresacrossmethodologiesaresimilar
andnotstatisticallydifferentformiddlemen.Atthewholesalelevel,lossesfluctuatebetween2and3
percent.
Causesbehindtheloss
Figure4(a‐h)presentsthemajorreasonsreportedbyfarmersastheexplanationfortheirpre‐harvest
loss,theircropleftinthefield,andtheirpost‐harvestloss.Inthespecificcaseofpre‐harvestloss,the
major reasons reported by farmers included pests and diseases andlackofrainfall;teffwasthe
exception,withlackofrainfallbeingthemajorreportedreasonforpre‐harvestloss.Whenlookingat
the produce left in the field, the major reason for the loss is a lack of appropriate harvesting
techniques.Finally,thelossreportedatthepost‐harvestlevelisduemostlyto damagedoneduring
selection,asaresultofworkers’lackoftrainingandexperienceinselectingtheproduce.
Tables 6‐10 try to control for the heterogeneity among farmer characteristics through regression
analysis.Theresultsshow that education and experiencetendtobecorrelatedwith areductionin
losses.Inparticular,educationissignificantforthepotatovaluechaininEcuadorandPeru,themaize
valuechaininHonduras,andthewheatvaluechaininChina.Thenumberofyearsinwhichaproducer
hasbeeninvolvedintheproductionofaspecificcropsignificantlycorrelateswithareductioninlosses
inthepotatovaluechaininEcuadorandPeru,themaizevaluechaininGuatemala,andtheteffvalue
chaininEthiopia.Whileweonlyhavefarmers’incomedataforPeruandEcuador,wefindthatwhen
a producer’s main income stems from an agricultural activity, it is correlated with a statistically
significantlowerloss;thisresultisinlinewiththeeffectswefindforcropcultivationexperience.
The large majority of farmers are men, but there is no clear gender pattern in food loss across
countries.Forexample,beingamalefarmertendstobecorrelatedwithadecreaseinbeansloss,but
itincreasesmaizelossinGuatemala.Nogendereffectisdetectedintheothercommoditychains.
Costs to reach markets are significantly correlated with increased losses in Peru, Guatemala, and
Ethiopia,indicatingthattheabsenceofmarketscanrepresentimportantlimitationsforfarmers.This
directlysupportspreviouswork,whichshowstheimportanceofaccesstobetterroadstoreducefood
lossacrossthevaluechain(see,forexample,Rosegrantet.al,2015).
Technology and improved seeds also matter. The more resistant pests andweather‘unica’ potato
varietyreducelossinEcuadorcomparedtothe‘capiro’and‘superchola’varieties.Similarly,theuse
of improved seeds is correlated with a decrease in losses in the maize and bean value chains in
Honduras.In potato valuechains,the harvesting toolusedconsiderably impactsloss;for example,
traditionalhoesbreakthe potato during theharvest.InPeru, new (mechanized) toolsareusedto
reducethisdamage.Boththetractorandthe‘lampa’arecorrelatedwithasignificantreductionofthe
shareof potatothatislost duringharvest.Thepotatovalue chaininEcuador,ontheotherhand,is
moretraditional,withveryfewmechanicaltoolsused.InEcuador,noalternativetoolstothehoewere
mentionedbythesurveyedfarmers.InEcuador,anincreasednumberofactivitiesto‘takecareofthe
crop’(suchasirrigationandplanttrimming)andalargerlaborforceareshowntoreducethelikelihood
oflossinthismoretraditionalpotatovaluechain.
Inthemaize,bean,andteffvaluechainsunderanalysis,productionactivitiesareshowntohavelittle
impact on food loss. The exception is the bean value chain in Guatemala, where mechanical
productionactivitiesareshowntobepositivelycorrelatedwithincreasedloss;mechanicalharvesting
techniqueslikelydamagethe crop and/or leavecropsinthefield(especiallyif the machinesareof
poorquality).
Whenanalyzinghowthetypeandnumberofpost‐harvestactivitiescarriedoutbythefarmersaffect
loss, we found that both the overall number of post‐harvest activities and the increased
mechanizationinsomecommoditychainscanhaveoppositeeffects.Thetotalnumberofpost‐harvest
activities,includingactivitiessuchaswinnowing,threshing,drying,puttinginbags,transporting,etc.,
decreaseslossintheGuatemalanbeanandtheChinesewheatvaluechains,butincreaseslossinthe
Guatemalan maize value chain and the Ethiopian teff value chain. In both the latter cases, the
increasedlossoriginatesmainlyfrompost‐harvestwinnowingandpackagingactivities.
Mechanicalpost‐harvestactivitiesarenotverywidespread,withmechanicaldrying,winnowing,and
threshing activities only being observed in the maize and bean value chains in Honduras and
Guatemala. Post‐harvest mechanization has no effecton maize valuechains in either Hondurasor
Guatemala. In the bean value chain, on the other hand, increased mechanization of drying and
winnowingactivitiesreduceslossinGuatemala,butmechanicalthreshingincreaseslossinHonduras.
Farmers likely cause grain damage, cracks, and lesions when mechanically (instead of manually)
stripping the grain fromthe plant; thismakes the grainmore vulnerable to insects, aswell as less
visuallyappealing.Onlyaveryfewfarmers(6percentofoursample)engageinmechanicalthreshing
in Honduras (and no pr oducers do so in Guatemala). Mechan ical transport with a car significantly
increaseslossinGuatemalaandEcuador,pointingtoimportantlossesduringtransport,especially if
largerdistancesaretraveled.
PotatofarmersinPeruandEcuadorrarelystoretheirproduct,buttheoppositeistruefortheother
commoditychains.Storagesignificantlyincreaseslossinthebean value chains in Honduras and
Guatemala,aswellasinthemaizevaluechain inHondurasandthewheatvaluechaininChina.For
beansinHondurasandwheatinChina,storagedurationissignificantly correlated withincreasesin
losses. These storage losses are shown t o be mitigated by improved storage techniques (silos) in
Honduras,Guatemala, andChina,the use of ‘pits’ratherthan othertraditionalstoragefacilitiesin
Ethiopia(nomodernstoragetechniquesareusedforteffinEthiopia),and‘bag’versus‘bulk’storage
in China. Storage conservation activiti es, such as chemical or natural fumigation and/or increased
ventilation,arecorrelatedwithdecreasedstoragelossesinHonduras.
Finally,unfavorableclimaticconditionsandpestanddiseasesarementionedmostoftenasproblems
facedbyfarmersduringproduction.Farmersmostoftenmentionedlimitedknowledgeandaccessto
equipment,credit,andmarketsasachallengetoincreasedproductionofhigherqualityproducts.All
ofthesefactorsarealsoshowntoaffectfoodlosses.
8. Conclusions
Improvingthemethodologyusedtomeasurefoodlossacrossfoodvaluechains,aswellasidentifying
the causes and costs of loss across value chains, is critical to promoting food loss reduction
interventionsandsettingprioritiesforaction.
Weaddresstheexistingmeasurementgapbydevelopingandtestingthreenewmethodologiesthat
aimtoreducemeasurementerrorandthatallowustoassessthemagnitudeoffoodloss.The methods
accountfor lossfrompre‐harvesttoproduct distributionandincludebothquantitylossand quality
deterioration.Weapplytheinstrumenttoproducers,middlemen,andprocessorsinsevenstaplefood
valuechainsinfivedevelopingcountries.Comparativeresultssuggestthatlosses arehighestatthe
producerlevelandthatmostproductdeteriorationoccurspriortoharvest.Self‐reportedmeasures,
whichhavebeenfrequentlyusedintheliterature,seemtoconsistentlyunderestimatefoodloss.Loss
figuresacrossallvaluechainsfluctuatebetween6and25percentoftotalproductionandofthetotal
produced value. Loss figures are consistently largest at the producerlevelandsmallestatthe
middleman level. Across the different estimation methodologies, losses at the producer level
representbetween60and80percentofthetotalvalue chain losses, while the average loss at the
middlemanandprocessorlevelsliesaround7and19percent,respectively.
Differencesacrossmethodologiesare salient,especiallyattheproducerlevel.Whiletheestimation
resultsfromthethreenewmethodsweimplementarecloseandthe differences are mostly not
statisticallysignificant,theaggregateself‐reportedmethodreportssystematicallylowerlossfigures.
Inaddition,ourfiguresarelargerthanthoserecentlyobtained byKaminskiandChristiansen(2014)
andMintenetal.(2016aandb). These differences are due to the inclusionof qualitative loss(not
previouslyconsidered)andtothefactthatwealsoincludequalityandquantityeffects.
Addressingfoodlossacrossthevaluechainfirstrequiresacommonunderstandingoftheconceptby
allactors,15aswellasacollaborativeefforttocollectbettermicro‐dataacrossdifferentcommodities
andcontexts.Thepresenceofpests,lackofrainfall,andlackofappropriatepost‐harvesttechnologies
seemtobethemajorfactorsbehindthelossesidentifiedinourstudy.Alackofappropriatestorage
facilities(FAO,2011;Liu,2014)andefficienttransportsystems(Rolle,2006)arealsoconsideredtobe
importantmicro‐causesoffoodloss;however,othercauses,rangingfromcropvarietychoices,pre‐
harvestpests,andprocessingandretaildecisions,arealsoimportant.Micro‐causescanbelinkedto
broadermeso‐causes,overarchingdifferentstagesofthevaluechain;forexample,theHLPE report
(2013) sees credit constraints as one of the main bottlenecks to the successful adoption of
technologiestoreducefoodlossandwaste.LikeKaminskiandChristiaensen(2014),wealsoidentify
alackofeducationasanimportantbottleneck.
Finally,policymakersandvaluechainactorsneedtotranslatetheseinsightsintoaction.International
organizations have the power to bring the important topic of foodlosstothetableandcreate
platformsforinformation exchange;atthesame time,individualstatesplaya keyroleincreating a
successfulenablingenvironment.Allpublicandprivatevaluechain actorsneedtoworktogetherto
transformtheoryintoconcretePWLFreductioninterventions.


15A good step in this directionhasbeenmadebythe multi‐stakeholder“FoodLossandWasteStandardand
Protocol”initiative,althoughthisinitiativedoesexcludepre‐harvestlossfromitsdefinition.
Figure4:Self‐ReportedCausesofofPre‐HarvestLosses
Figure4.a:PotatoEcuador
Figure4.b:PotatoPeru
55.87%
25.7%
11.17%
7.263%
Other pest ; disease; anima ls Little ra in
Lack or ex cess of inputs Freeze
Source:own data collecti on from 302 producers in 2016
Ecuador, Potato - Reason for Pre-Harvest Loss
22.45%
36.73%
24.49%
16.33%
Bad harvest technique Small or bad quality potato
Lack or cos tly labor Low price
Source:own d ata collection from 302 produc ers in 2016
Ecuador, Potato - Reason for product left in the field
62.78%
9.444%
14.44%
10%
3.33%
Laborer da mages at harvest Laborer damages at selection/cla
Climate, too much sun or r ain Transpor t
Plagues, rodents, animals
Source:own data collecti on from 302 producers in 2016
Ecuador, Potato - Reason for loss at Post-Harvest
34.82%
32.09%
10.07%
23.02%
Other pest , disease, anima ls Little r ain
Lack or ex cess of inputs Freeze
Source:own data collecti on from 411 producers in 2016
Perú, Potato - Reason for Pre-Harvest Loss
43.63%
10.78%
35.29%
10.29%
Bad harvest technique Small or bad quality potato
Lack or cos tly labor Low price
Source:own d ata collection from 411 produc ers in 2016
Perú, Potato - Reason for product left in the field
34.02%
12.2%
13.23%
25.43%
12.2%
2.921%
Laborer da mages at harvest Laborer damages a t selection/cla
Climate, too much sun or r ain Transpo rt
Plagues, rodents, animals Lack of labor
Source:own data collecti on from 302 producers in 2016
Perú, Potato - Reason for loss at Post-Harvest
Figure4.c:BeansGuatemala
Figure4.d:BeansHonduras
21.59%
27.58%
48.89%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Stolen
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for Pre-Harvest Loss
81.45%
18.55%
Bad harvest technique Lack or costly labor
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for product left in the field
22.56%
44.78%
18.86%
8.75%
5.05%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage
Source:own data collecti on from 450 producers in 2016
Guatemala, Beans - Reason for loss at Post-Harvest
14.83%
35.24%
48.75%
Excess rain Little rain
Other pest; disease; an imals Exce ss chemicals
Wind
Freeze
Stolen
Source:own d ata collection from 685 produc ers in 2016
Honduras, Beans - Reason for Pre-Harvest Loss
98.86%
1.14%
bad harve st technique lack or costly labo r
Source:own data collecti on from 685 producers in 2016
Honduras, beans - Reason for product left in the field
7.03%
65.69%
21.41%
2.93%
2.93%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage
Source:own data collecti on from 685 producers in 2016
Honduras, Beans - Reason for loss at Post-Harvest
Figure4.e:MaizeGuatemala
Figure4.f:MaizeHonduras
19.61%
27.65%
43.09%
7.87%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Freeze
Stolen
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for Pre-Harvest Loss
81.9%
17.65%
Bad harvest technique Lack or costly labor
Low price
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for product left in the field
36.06%
35.62%
12.85%
9.19%
5.10%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage Transport
Source:own data collecti on from 922 producers in 2016
Guatemala, Maize - Reason for loss at Post-Harvest
9.51%
40.52%
46.62%
Excess rain Little rain
Other pest; disease; animals Excess chemicals
Wind Stolen
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for Pre-Harvest Loss
95.33%
4.67%
Bad harvest technique Lack or costly labor
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for product left in the field
10.13%
64.35%
9.56%
4.69%
9.38%
Plagues, rodents, animals Laborer damages at selection/cla
Laborer da mages at harvest Climate, too much sun or ra in
Storage Transport
Source:own data collection from 1024 producers in 2016
Honduras, Maize - Reason for loss at Post-Harvest
Figure4.g:TeffEthiopia
10.14%
50.29%
13.63%
2.23%
19.36%
Excess rain Little rain
Other pest; disease; animals Crop lodging
Crop shattering Weeds
Excess of chemicals Freeze
Source:own data collection from 1203 producers in 2016
Ethiopia, Teff - Reason for Pre-Harvest Loss
3.08%
16.01%
27.05%
53.86%
Laborer damages at harvest Climate, too much sun or rain
Storage Blow out
Source:own data collection from 1203 producers in 2016
Ethiopia, Teff - Reason for loss at Post-Harvest
Figure4.h:WheatChina
2.93%
35.15%
37.93%
10.45%
3.08%
5.78%
4.67%
Excess rain Little rain
Other pest; disease; animals Crop lodging
Weeds Freeze
Crop shattering
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for Pre-Harvest Loss
55.56%
44.44%
Bad harvest technique Wheater
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for product left in the field
29.48%
6.07%
2.18%
7.72%
40.57%
4.30%
8.60%
Laborer da mages at harvest Laborer dam ages at hulling
Climate, too much sun or rain Storage
Plagues, rodents, animals Machine damage
Transport Blow away / spilled
Source:own data collection from 1114 producers in 2016
China, Wheat - Reason for loss at Post-Harvest
Table5:Quantitativeandqualitativefoodlossesalongthevaluechain,estimatedwithfourmethodologies
Note:S=Self‐reportedmethod,C=Categorymethod;A=Attributemethod;P=Pricemethod;^Dataareimputedfromthe'Self‐reportedmethod’
QuantitativeLoss==Totalloss(productdisappeared);QualitativeLoss=Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
Theofficialexchangerateintheyearofthesurveyare0.04492USD/Birr;0.1305USD/Quetzal;0.0411USD/Lempiras;0.297USD/Soles;0.155USD/Yuan(www.oanda.com)
SCAPSCAP SCAPS CAPSCAP SCAPSCAP SCAP
Nbofobs ervati ons
Kglost 1,498 5,926 4,982 4,146 3,548 9,216 11,523 7,998 7.47 16.01 24.79 26.59 55.67 137.74 194.93 191.24 26.47 66.96 114.16 129.69 78.61 186.08 198.19 284.26 27. 44 57.02 127.90 47.59 303 934 1,092 1,033
%oftotalproductionthat
islost 8.11% 12.82% 12.17% 11.84% 9.38% 15.99% 19.62% 19.84% 9.77% 12.80% 19.67% 16.72% 9.84% 14.58% 20.46% 15.27% 6.25% 13.27% 19.77% 17.39% 9.95% 16.69% 15.95% 17.41% 6.88% 8.67% 19.76% 8.69% 6.56% 10.96% 11.89% 11.48%
Value lost( USD) 269 1,543 1,007 990 454 2,116 2,202 1,805 8.24 26.31 32.64 38.42 18.37 60.20 55.68 82.88 18.56 73.73 90.01 116.53 23.30 65.43 65.19 99.12 40.24 97.98 91.03 73.91 104 316 360 349
%ofvalueoftotal
productionthatislost 6.22% 13.78% 10.03% 11.84% 5.58% 16.73% 16.13% 19.84% 7.72% 12.95% 17.97% 16.72% 7.57% 15.04% 13.42% 15.27% 5.23% 15.34% 17.56% 17.39% 8.87% 16.64% 15.41% 17.41% 6.26% 9.49% 9.02% 8.69% 6.11% 10.96% 12.37% 11.48%
Nbo
f
observations
Kglost 952 541 2,893 1,222 2,048 1,392 5,777 5,575 2.44 2.59 2.48 2.28 9.15 8.47 6.90 6.46 12.64 8.63 19.32 19.31 14.04 19.30 23.92 21.07 35,155 33,363 32,434 35,290
%oftotalpurchasethatis
lost 1.70% 0.91% 1.77% 1.52% 1.22% 1.60% 3.72% 2.05% 0.63% 0.66% 0.58% 0.57% 0.80% 0.54% 0.50% 0.55% 0.74% 0.55% 0.93% 1.57% 0.60% 0.59% 0.29% 0.65% 1.93% 2.09% 1.75% 1.92%
Value lost (USD) 232 284 685 518 517 49 2 1,266 2,704 3.99 3.64 3.69 3. 15 3.77 3.20 2.28 2.40 8.75 12.93 20.10 20.86 7.16 5.31 8.27 8.13 5,726 5,167 5,269 5,228
%ofvalueoftotal
purchaseth atislo st 1.36% 1.65% 1.55% 1.91% 1.34% 1.49% 2.89% 2.83% 0.78% 0.67% 0.67% 0.62% 0.83% 0.50% 0.45% 0.60% 0.45% 1.08% 1.58% 1.83% 0.63% 0.41% 0.31% 0.72% 1.62% 1.79% 1.54% 1.42%
Nbofobs ervati ons
K
g
lost 0.83 0.83^ 0.83^ 0.83^ 59.31 59.31^ 59.31^ 59.31^ 2.44 2.44^ 2.44^ 2.44^ 24.76 24.76^ 24.76^ 24.76^ 2.43 2.43^ 2.43^ 2.43^ 21.40 21.40^ 21.40^ 21.40^ 128
,
889 128
,
889^128
,
889^128
,
889^
%oftotalpurchasethatis
lost 2.45% 2.45%^ 2.45%^ 2.45%^ 2.27% 2.27%^ 2.27%^ 2.27% ^ 2.94% 2.94% ^ 2.94%^ 2.94%^ 3.50% 3.50%^ 3.50%^ 3.50%^ 3.67% 3.67%^ 3.67%^ 3.67%^ 3.82% 3.82%^ 3.82%^ 3.82% ^ 3.15% 3.15%^ 3.15%^ 3.15% ^
Value lost (USD) 14.59 14.59^ 14.59^ 14.59^ 41.22 41.22^ 41. 22^ 41.22^ 3.62 3.62^ 3.62^ 3.62^ 9.38 9.38^ 9.38^ 9.38^ 1.09 1.09^ 1.09^ 1.09^ 6.84 6.84^ 6.84^ 6.84^ 42,133 42,133^ 42,133^ 42,133^
%ofvalueoftotal
purchaseth atislo st 2.27% 2.27%^ 2.27% ^ 2.27%^ 3.31% 3.31%^ 3.31%^ 3.31%^ 3.42% 3.42%^ 3.42%^ 3.42%^ 2.88% 2.88%^ 2.88%^ 2.88%^ 1.96% 1.96%^ 1.96%^ 1.96% ^ 3.75% 3.75% ^ 3.75%^ 3.75%^ 3.06% 3.06%^ 3.06% ^ 3.06%^
%oftotalproductionthat
islost 11.50% 16.18% 16.39% 15.80% 12.87% 19.86% 25.62% 24.17% 13.34% 16.40% 23.19% 20.23% 13.53% 17.99% 23.84% 18.70% 8.95% 17.49% 24.37% 22.63% 14.37% 21.10% 20.06% 21.88% 6.88% 8.67% 19.76% 8.69% 11.64% 16.21% 16.79% 16.55%
%ofvalueoftotal
productionthatislost 9.86% 17.71% 13.85% 16.02% 10.23% 21.53% 22.32% 25.97% 11.93% 17.05% 22.06% 20.76% 11.88% 19.07% 17.42% 19.32% 7.65% 18.39% 21.11% 21.18% 13.24% 20.81% 19.47% 21.88% 6.26% 9.49% 9.02% 8.69% 10.79% 15.82% 16.97% 15.96%
Entirevalue
chain
Ethiopia:teffGuatemala:maizeGuatemala:beans
Producer
Midd lemen
Processor
Ecuador:potato
287
176
146
225
121
988
121
118
Honduras:beansPeru:potato
355
81
152
431 884
150162
120 104
650
China:wheat
1,099
137
47
Honduras:maize
1,186
Table6:DeterminantsoflossesinthepotatovaluechainsinEcuadorandPeru(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsare reported.Standard errorsinparenthesisclusteredattheprovince levelforPeru
andatthecantonlevelforEcuador.aThisincludesfertilizers,insecticides,herbicidesandfungicides;bThisincludesirrigation,
'aporque' and corte del yuyo;cMachinedriven,insteadofmanual,activitiesinclude:soilpreparation,sowing, pestcontrol,
fertilizerapplication,weeding,'aporque','cortedelyuyo',harvest;dThisreferstoselection,classification,drying,andtransport
afterdrying
Maleproducer
0.000 0.002 0.002 0.005 0.011 0.012
(0.039) (0.026) (0.023) (0.033) (0.023) (0.025)
Ageofproducer(in10years)
0.021* 0.020 0.019 0.002 0.004 ‐0.001
(0.012) (0.014) (0.014) (0.025) (0.026) (0.027)
Education:Primary(vsnoEducation)
‐0.102** ‐0.076* ‐0.068* ‐0.032*** ‐0.007 ‐0.018
(0.044) (0.045) (0.042) (0.007) (0.017) (0.016)
‐0.057 ‐0.031 ‐0.022 ‐0.061 ‐0.011 ‐0.03
(0.037) (0.035) (0.046) (0.077) (0.057) (0.045)
‐0.088*** ‐0.115*** ‐0.102*** ‐0.015 ‐0.01 ‐0.006
(0.013) (0.036) (0.030) (0.034) (0.032) (0.030)
‐0.015*** ‐0.007* ‐0.009** ‐0.089** 0.048 ‐0.049
(0.005) (0.004) (0.004) (0.042) (0.035) (0.037)
‐0.004 ‐0.006 ‐0.007 1.448* * 1.150** 0.983
(0.005) (0.005) (0.005) (0.568) (0.537) (0.628)
log(Totalproductionpotato)
‐0.009 ‐0.008 ‐0.021 ‐0.022*
(0.006) 0.006 (0.013) (0.012)
Improvedseeds(dummy)
0.037 0.031 0.008 0.000
(0.065) 0.07 (0.030) (0.025)
Resistantpotatovariety
‐0.039** ‐0.038** ‐0.001 0.004
(0.018) 0.017 (0.041) (0.039)
Numberofdifferentinputsapplied
a
0.007 ‐0.005 ‐0.03 ‐0.01
(0.032) 0.026 (0.070) (0.080)
‐0.010** ‐0.010* 0.003 0.003
(0.005) 0.006 ( 0.013) (0.014)
0.014 0.017 ‐0.029* ‐0.026**
(0.045) 0.038 ( 0.016) (0.012)
Harvesttechnique:tractorvsazadon
‐0.165*** ‐0.166***
(0.017) (0.018)
Harvesttechnique:lampavsazadon
‐0.177*** ‐0.173***
(0.014) (0.017)
Hiredlaborforharvest
‐0.071*** ‐0.072*** ‐0.037 ‐0.012
(0.007) (0.009) (0.026) (0.032)
Storagedummy
0.019 0.013 ‐0.002 ‐0.003
(0.015) (0.015) (0.034) (0.037)
Nbofpost‐harvestactivities
d
‐0.046 ‐0.045 ‐0.002 ‐0.01
(0.063) (0.050) (0.003) (0.007)
0.017** 0.023** 0.011 0.025
(0.007) 0.012 ( 0.042) (0.022)
Climate
0.033** (0.020)
(0.016) (0.026)
Pests
‐0.005 0.063**
(0.015) (0.029)
Limitedknowledge
0.032*** ‐0.019
(0.007) (0.026)
Limitedequipment
‐0.012 0.118***
(0.013) (0.036)
Limitedmarketaccess
0.035 ‐0.011
(0.042) (0.040)
Limited creditaccess
‐0.019 0.055*
(0.025) (0.032)
parroqui a parroqui a parroqui a di stri ct dis tri ct dis tric t
yes yes yes yes yes yes
No.ofObs. 287 287 287 369 369 369
Production
problems&
limitationsto
producehigh
quality(as
perceivedby
thep rodu cer)
PeruEcuado
r
Mainincomefromagriculture(vsnon‐agric)
Production
Numberofproductionactivitiesdonemechanically
c
Numberofdifferentfieldmaintenanceactivities
b
Socio‐
economic
variables Education:Secondaryorhigher(vsnoEdu)
Experienceincultivationofpotato(in10years)
Market Costtoreachmarket(USD/Kg)
Locationfixedeffects
Post‐harvest
Agroecologicalzonedummies
Mechanicaltransport(notsoldonplot)
Table7:DeterminantsoflossesinthebeanvaluechainsinGuatemalaandHonduras(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsare reported.Standarderrorsinparenthesisclusteredat thedepartmentlevelfor
Honduras and Guatemala.
a
 This includes fertilizers, insecticides, herbicides and fungic ides;
b
Thisincludesirrigationand
'chapeo';
c
 Machine driven, instead of manual, production activities i nclude: cleaning, sowing, herbicide application, pest
control,fertilizerapplication,andharvest;
d
Thisreferstowinnowing(sopla),threshing(desgrane),drying,puttinginbags,and
transport;eThisincludeschemicalfumigation,naturalfumigation,andventilation
Table8:DeterminantsoflossesinthemaizevaluechainsinGuatemalaandHonduras(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsarereported.Standarderrorsinparenthesisclusteredatthedepartment
levelforHondurasandGuatemala.
a
Thisincludesfertilizers,insecticides,herbicidesandfungicides;
b
Thisincludes
irrigation and 'chapeo';
c
 Machine driven, instead of manual, production activities include: cleaning, sowing,
herbicideapplication,pestcontrol,fertilizerapplication,andharvest;
d
Thisreferstowinnowing(sopla),threshing
(desgrane), drying, putting in bags, and transport;
e
 This includeschemical fumigation, natural fumigation, and
ventilation

Table9:DeterminantsoflossesintheteffvaluechaininEthiopia(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note:MarginaleffectsfromGLMmodelsarereported.Standarderrorsinparenthesisclusteredatthedistrictlevel.
a
Thisincludesfertilizers,insecticides,herbicidesandfungicides;
b
Thisincludesmechanicalherbicideandpesticide
application,andplowing;
c
Thisreferstocutting,drying,piling,threshing,winnowing,packaging,andtransportto
piling,threshing,and/orstorage;
d
Thisincludescleaningprevioustostorageandpreparationofstoragesite
Table10:DeterminantsoflossesinthewheatvaluechaininChina(GLMmodel);
Dependentvariable:shareofproductlostatpre‐harvestandpost‐harvest(A‐measure)
Note: Marginal effects from GLM models are reported. Standar d errors in parenthesis clustered at the
countylevel.
a
Thisincludes fertilizers, insecticides, herbicidesand fungicides;
b
This includesmechanical
land preparation, planting, fertilizer application, chemical application and harvesting;
c
Thisrefersto
cutting,bundling,strewing,hulling,packing,transport,dryingandcleaning
References
Affognon,H., Mutungia C.,Sangingac, P. and C.Borgemeistera. 2014. “UnpackingPostharvest Losses in
Sub‐SaharanAfrica:AMeta‐Analysis”.WorldDevelopment.66:49‐68.doi:10.1016/j.worlddev.2014.08.002
APHLIS.2014.“UnderstandingAphlis‐ TheAfricanPostharvestLossesInformationSystem.”Availableat:
http://www.aphlis.net/downloads/Understanding%20APHLIS%20ver%20%202.2%20May%2014.pdf
Bellemare, Marc; Cakir, Meting; Peterson, Hikaru Hanawa; Novak, Lindsey; Rudi, Jeta; (2017). On the
MeasurementofFoodWaste.Amer.J.Agr.Econ.0(0):1–20.
Beretta,C., Stoessel, F., Baier,U.,andS.Hellweg.2013. “Quantifying Food Losses and the Potential for
ReductioninSwitzerland.”WasteManagement.33(3):764–73.doi:10.1016/j.wasman.2012.11.007.
Buzby,J.C.,Wells,H.F.andHyman,J.2014."Theestimatedamount,value,andcaloriesofpostharvestfood
losses at the retail and consumer levels in the United States". EIB‐121, US Department of Agriculture,
EconomicResearchService
CalRecycle‐CaliforniaDepartmentofResourcesRecyclingandRecovery.2009."FoodWasteComposting
Regulations White Paper California Integrated Waste Management Board"
http://www.calrecycle.ca.gov/LEA/Regs/Review/FoodWastComp/FoodWastcomp.pdf
Compton, J. A. F. and J. Sherington. (1999). “Rapid assessment methods forstored maizecobs: Weight
lossesduetoinsectpests.”JournalofStoredProductsResearch35(1):77–87.
Consultation,PublicElectronic.2014.“HLPEReportonFoodLossesand Wasteinthe Conte xtofS ustainable
FoodSystems.”No.April2013:1–6.
DeMel,Suresh;McKenzie,David;andWoodruff,Crhistopher;(2009).Measuringmicroenterpriseprofits:
Mustweaskhowthesausageismade?JournalofDevelopmentEconomics88(2009)19‐31.
Delgado,L;Schuster,M; and Torero, M; (2017).Including thepotential lossesacrossthevaluechainsas
partofthedefinitionoffoodlosses.IFPRI,Mimeo.
EMMSA.EmpresaMunicipaldeMercadosS.A.http://www.emmsa.com.pe/.Lima.Peru.
ESPAC. 2015. Encuesta de Superficie y Produccion Agropecuaria C ontinua.Dirección Responsable de la
información estadística y contenidos: Dirección de estadísticas agropecuarias y ambientales. Quito,
Ecuador.
FAO.2011."GlobalFoodLossesandFoodWaste.Extent,CausesandPrevention".Rome:UNFAO.
______.2013."Toolkit:reducingthefoodwastagefootprint".Rome:UNFAO.
______.2014.“WorkingPaperDefinitional Framework ofFoodLoss‐GlobalInitiativeonFoodLossand
WasteReduction.”Rome:UNFAO.
FAOSTAT.FoodandAgricultureData.http://www.fao.org/faostat/en/#home.FAO.Rome.
Fonseca, J. and D. Njie. 2009. "Addressing food losses due to non‐compliance with quality and safety
requirementsinexportmarkets:thecaseoffruitsandvegetablesfromtheLatinAmericaandtheCaribbean
region".Rome:UNFAO
Fusions.2013."Reportonreviewof(food)wastereportingmethodologyandpractice".FusionsEUProject.
Availableat:http://www.eu‐fusions.org/index.php/publications
G20AgricultureMinistersMeeting.2015.FinalCommuniqué.78
th May, Istanbul. Available at:
https://g20.org/wp‐content/uploads/2015/05/G20‐Agriculture‐Ministers‐Final‐Communique.pdf
HLPE.2013."Biofuelsandfoodsecurity.AreportbytheHighLevelPanelofExpertsonFoodSecurityand
NutritionoftheCommitteeonWorldFoodSecurity".Rome.
HLPE.2014."Foodlossesandwasteinthecontextofsustainablefoodsystems.AreportbytheHighLevel
PanelofExpertsonFoodSecurityandNutrition".CFS‐CommitteeonWorldFoodSecurity.
Hodges,R.2010."Postharvestweightlossestimates for cereal supply calculationsin East andSouthern
Africa".NaturalResourcesInstitute:Chatham,UK.
Kader, A. 2005. "Increasing food availability by reducing postharvest losses of fresh produce". Acta
Horticulturae682:2169–2175.
Kader, A. 2009. "Postharvest Losses of Fruits and Vegetables inDevelopingCountries:AReviewofthe
Literature".PresentationatUCDavis(November10th).
Kaminski,J., & Christiaensen,L.(2014). Post‐Harvest Loss in Sub‐SaharanAfrica:WhatDoFarmersSay?
GlobalFoodSecurity3:149–158.
Kummu,M.,H.deMoel,M.Porkka,S.Siebert,O.Varis,andPJ.Ward.2012."Lostfood,wastedresources:
Globalfoodsupplychainlossesandtheirimpactsonfreshwater,croplandandfertilizeruse".Scienceofthe
totalenvironment438:477‐489.
Lipinski,B.,C.Hanson,J.Lomax,L.Kitinoja,R.Waite,andT.Searchinger.2013.“ReducingFoodLossand
Waste.WorkingPaper,Installment2ofCreatingaSustainableFood Future. Washington, DC: World
ResourcesInstitute.Availableathttp://www.worldresourcesreport.org.
Liu,G.2014."FoodlossesandfoodwasteinChina:afirstestimate".OECDFood,AgricultureandFisheries
Papers.No.66.OECDPublishing(http://dx.doi.org/10.1787/5jz5sq5173lq‐en)
Lundqvist,J.,C.deFraiture,andD. Molden. 2008. "Savingwater:fromfieldtofork—curbinglossesand
wastageinthefoodchain".InSIWIPolicyBrief.Stockholm,Sweden:SIWI.
Ministerio de Agricultura y Ganaderia (MAGAP). 2014. Boletin Situacional Papa.
http://sinagap.agricultura.gob.ec/phocadownloadpap/cultivo/2014/kboletin‐situacional‐de‐papa‐2014‐
actualizado.pdf.
MINAGRI 2016. http://minagri.gob.pe/portal/monitoreo‐agroclimatico/papa‐2016.The Ministry of
AgricultureandIrrigation(MINAGRI).Lima.Peru
Minten,B,T.Reardon,S.DasGupta,H.Dinghuan,andK.Murshid.2016a.“WastageinFoodValueChains
inDevelopingCountries: Evidence from thePotatoSectorinAsia.”In Food Securityina Food Abundant
World.http://dx.doi.org/10.1108/S1574‐871520150000016010
Minten,B,E.Engida,andT.Seneshaw.2016b.“Howbigarepost‐harvestlossesinEthiopia?Evidencefrom
teff.”ESSPWORKINGPAPER93.WashingtonDC:IFPRI.
Monier,V., M. Shailendra, V.Escalon,C.O’Connor,T.Gibon,G. Anderson, M.Hortense,ndH.Reisinger.
2010."PreparatoryStudyonFoodWasteacrossEU27".European Commission (DG ENV) DirectorateC‐
Industry.2010.FinalReport.ISBN:978‐92‐79‐22138‐5
Parfitt,J.,M.Barthel,andS.Macnaughton.2010.“FoodWastewithinFoodSupplyChains:Quantification
and Potential for Change to 2050.” Philosophical Transactions of the Royal Society of London. Series B,
BiologicalSciences365(1554):3065–81.doi:10.1098/rstb.2010.0126.
Rolle,R.S.ed.2006."ImprovingpostharvestmanagementandmarketingintheAsia‐Pacificregion:issues
andchallengestrends".InPostharvestmanagementoffruitandvegetablesintheAsia‐Pacificregion,23–
31.R.S.Rolle,ed.Tokyo,AsianProductivityOrganization.
Rosegrant,M.,E.Magalhaes,R.almonte‐Santos,andD.Mason.2015."ReturnstoInvestmentinReducing
Postharvest Food Losses and Increasing Agricultural Productivity Growth ‐ Post‐2015 Consensus".
CopenhagenConsensusCenter
SAG/UPEG 2015. http://sisem.sag.gob.hn/. Secretaria de Agricultura y Ganaderia y la Unidad de
PlaneamientoyEvaluacióndelaGestion.Tegucigalpa,Honduras.
Stuart,T.2009.Waste:UncoveringtheGlobalFoodScandal.London:W.W.NortonCo.
Tefera,T.,F.Kanampiu,H.DeGroote,J.Hellin,S.Mugo,S.Kimenju,Y.Beyene ,P. M.B odd upa lli,B. Shi feraw,
andM.Banziger.2011.“TheMetalSilo:AnEffectiveGrainStorageTechnologyforReducingPost‐Harvest
InsectandPathogen Losses inMaizewhileImproving SmallholderFarmers’FoodSecurity in Developing
Countries.”CropProtection30:240‐245.
Venkat, K. 2011. “The Climate Change and Economic Impacts of Food Waste in the United States”.
InternationalJournalonFoodSystemDynamics2:431‐446.
Waarts,Y.,M.Eppink,E.Oosterkamp,S.Hiller,A.VanDerSluis,andA.Timmermans.2011."Reducingfood
waste:obstaclesandexperiencesinlegislationandregulations".RapportLEI2011‐059.128
WorldBank.2011."Missingfood:ThecaseofpostharvestgrainlossesinSub‐SaharanAfrica".Washington,
DC:TheWorldBank.
WRAP. 2009. "Household Food and Drink Waste in the UK". Banbury: WRAP. Available at:
http://www.wrap.org.uk/sites/files/wrap/Household_food_and_drink_waste_in_the_UK_‐_report.pdf
______. 2010. "Waste arisings in the supply of food and drink to households in the UK". Av ailable at:
http://www.wrap.org.uk/sites/files/wrap/Waste%20arisings%20in%20the%20supply%20of%20food%20a
nd%20drink%20toUK%20households,%20Nov%202011.pdf
______.2013."MethodsUsedforHouseholdFoodandDrinkWasteintheUK2012."

AppendixA
TableA1:Surveyquestionstoestimatefoodlosseswiththe‘Self‐reportedmethod’

TableA2:ProducerlossesalongthepotatovaluechaininEcuador
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA3:ProducerlossesalongthepotatovaluechaininPeru
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA4:ProducerlossesalongthebeanvaluechaininGuatemala
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA5:ProducerlossesalongthemaizevaluechaininGuatemala
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA6:ProducerlossesalongthebeanvaluechaininHonduras
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA7:ProducerlossesalongthemaizevaluechaininHonduras
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)
TableA8:ProducerlossesalongtheteffvaluechaininEthiopia
Note:P=Pricemethod;S=Self‐reportedmethod,C=Categorymethod;A= Attributemethod;^ Dataare
imputedfromthe'Smeasurement';QuantitativeLoss=Totalloss(productdisappeared);QualitativeLoss=
Productaffectedbyqualitydeteriorations(productdidnotentirelydisappearbutqualityisreduced)

TableA9:ProducerlossesalongthewheatvaluechaininChina
AppendixB
Thecountriesinwhichweworkandthedistributionofthesurveyswere:
1. Ecuador:Wecollected631surveys(302farmers,182middlemen,and147wholesalebuyers)inthe
provincesofCarchi,ImbaburaandPichincha;thefollowingmapshowsdistribution.
2. Peru: We collected 534 surveys (411 farmers, 77 middlemen, and 139 wholesale buyers) in the
departmentsofAyacucho,JunínandLima;thefollowingmapshowsthedistribution.
3.Honduras:Wecollected1777surveys(1155 farmers,377 middlemen,and245wholesalebuyers)inthe
departmentsof Choluteca,ElParaiso,FranciscoMorazán,Intibucá,LaPaz, Lempira,Ocotepeque,Olancho,
SantaBarbara,Valle,Cortes,CopanandYoro;thefollowingmapshowsthedistribution.
4.Guatemala:Wecollected1758surveys(1209farmers,325middlemen,and224wholesalebuyers)inthe
departments of Solola, Quetzaltenango, Totonicapan, San Marcos, Guatemala, Sacatepequez,
ChimaltenangoandEscuintla;thefollowingmapshowsthedistribution.
5. Ethiopia: We collected data from 1203 surveys for farmers intheregionsofOromiaandAmhara;the
followingmapshowsthedistribution.
6.China:Wecollecteddatafrom1307surveys(1114farmers,140middlemen,and53wholesalebuyers)in
theprovincesofHenanandShandong;thefollowingmapshowsthedistribution
... Currently, an international agreement on a single definition of FL and FW is still lacking (Teuber and Jensen, 2020). According to Delgado et al. (2017), even though the terms "FL" "Post-Harvest Loss" (PHL), "FW", and "FLW differ from each other, they can be used as equivalents in the literature. FAO definitions are the most regularly used due to the organization's initial effort in 2014 to summarize the existent terminology and definitions (Corrado et al., 2017). ...
... Quantification methods can be classified as "macro" or "micro" approaches given the variability of FLW (Delgado et al., 2017). The former describes methods that analyze a broad perspective of FLW at the global or regional level, and it can be achieved by contrasting non-processed inputs to final production, using records of mass balances measured by weight or caloric content. ...
... While the study of Gustavsson et al. (2011) provides a broad perspective of the FLW with "regional" estimates and suggests general guidelines, it is still crucial that each country creates its own database. Several country-specific reports have been published, mainly in the United States and European countries that fit into the "macro" approach category, using mass balance data and specific assumptions about production yields to understand the current scenario (Delgado et al., 2017). The "macro" approach is limited by the lack of representativeness that results from using incomplete and obsolete data, which reduces its utility for planning actions to prevent and reduce the FLW (Thyberg and Tonjes, 2016;Delgado et al., 2017). ...
Article
Full-text available
During the last decade, food loss and waste (FLW) has been gaining more attention due to its negative effect on food security. However, the lack of information about FLW quantification and characterization remains a problem, especially from the perspectives of local citizens and farmers. There is limited literature examining food losses (FL) in primary production of the food supply chain (FSC) and specific policies are needed to improve the FLW measurement. The aim of this research is to analyze how much FL is generated at the farm level using a micro-approach methodology from harvest to primary commercialization stages among farmers located in Central Chile. Additionally, we explore factors affecting FL using a fractional regression model with special emphasis on the harvest stage. Data were collected using phone interviews, conducted in 2019, with 177 small-scale producers of vegetables and berries. FL generated by the sample from harvest to primary commercialization was 14.5% on average. Farmers identified a considerable volume of FL during primary production, mostly during the harvest. The factors that increased FL among small-scale farmers were the production system and its harvest period, commercialization channels, labor shortage, and cosmetic standards. As a case study, the information collected here can be useful for encouraging further research emphasizing the harvest stage and the role of the production systems in generating FLW.
... With the "Agenda 2030 for Sustainable Development" [9]., the international community has committed to effectively combat hunger and malnutrition (SDG 2) by reducing FLW [10,11]. The current crisis in Ukraine underlines the role of reducing FLW. ...
... The current crisis in Ukraine underlines the role of reducing FLW. Since "The International Day Against Food Waste" in September 2020 the public attention has been drawn to the agenda's sub-goal 12.3, to "halve per capita global food waste at the retail and consumer levels and to reduce food losses along production and supply chains, including postharvest losses [by 2030]" [10,12]. ...
... The following four objectives are most often cited in the literature [1,10,13,[15][16][17]: ...
Article
Full-text available
According to FAO about one-third of the food worldwide is discarded. The economic, environmental, and social (ethical) impact of food loss and waste (FLW) is substantial. Food waste (FW) at the household level in high income countries makes a significant share of total FLW. Target 12.3 of the Sustainable Development Goals advocates a 50% reduction of the global per capita FW by 2030. The German government has agreed to this goal. Across all sectors, about half of the waste is avoidable. To achieve a reduction of FLW, information on the current level, its causes, and the economic costs of its reduction are necessary. Depending on the definitions and methodologies to measure FLW, studies have come to different results. This study estimates and analyses avoidable and total household FW and for the first time its determinants in Germany. On average, 59.6 kg per capita of food is wasted annually, of which 49% is avoidable FW. The main causes of household FW are eating habits, shopping behaviour, involvement in FW, and retail promotions.