Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin–orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
Quantum erasers with paths in the form of physical slits have been studied extensively and proven instrumental in probing wave-particle duality in quantum mechanics. Here we replace physical paths (slits) with abstract paths of orbital angular momentum (OAM). Using spin-orbit hybrid entanglement of photons we show that the OAM content of a photon can be erased with a complimentary polarization projection of one of the entangled pair. The result is the (dis)appearance of azimuthal fringes based on whether the \which-OAM" information was erased. We extend this concept to a delayed measurement scheme and show that the OAM information and fringe visibility are complimentary.
Article
Full-text available
Vector beams have the defining property of nonseparable spatial and polarization degrees of freedom and are now routinely generated in the laboratory and used in a myriad of applications. Here we exploit the nonseparability of such beams, akin to entanglement of quantum states, to apply tools traditionally associated with quantum measurements to these classical fields. We find that the entanglement entropy is a proxy for the average degree of polarization and thus provides a single number for the vector nature of such beams. In addition to providing tools for the analysis of vector beams, we also explore the concept of classical entanglement to explain why these tools are appropriate in the first place.
Article
Full-text available
Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states.
Article
Full-text available
Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. In this work, the spatially inhomogeneous states of polarization of vector modes are used to increase the transmission data rate of free-space optical communication via mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal q-plate is introduced. As a proof of principle, four vector modes each carrying a 20-Gbit/s quadrature phase shift keying signal (aggregate 80 Gbit/s) on a single wavelength channel (λ∼1550 nm) were transmitted ∼1 m over the lab table with <−16.4 dB mode crosstalk. Bit error rates for all vector modes were measured at the 7% forward error correction threshold with power penalties <3.41 dB.
Article
Full-text available
We demonstrate that a |q|=1/2 plate, in conjunction with appropriate polarization optics, can selectively and switchably excite all linear combinations of the first radial mode order |l|=1 orbital angular momentum (OAM) fiber modes. This enables full mapping of free-space polarization states onto fiber vector modes, including the radially (TM) and azimuthally polarized (TE) modes. The setup requires few optical components and can yield mode purities as high as ∼30 dB. Additionally, just as a conventional fiber polarization controller creates arbitrary elliptical polarization states to counteract fiber birefringence and yield desired polarizations at the output of a single-mode fiber, q-plates disentangle degenerate state mixing effects between fiber OAM states to yield pure states, even after long-length fiber propagation. We thus demonstrate the ability to switch dynamically, potentially at ∼GHz rates, between OAM modes, or create desired linear combinations of them. We envision applications in fiber-based lasers employing vector or OAM mode outputs, as well as communications networking schemes exploiting spatial modes for higher dimensional encoding.
Article
Full-text available
We report an experiment of which-way information and a quantum eraser based on polarization-controlled interference of two twisted light beams carrying high orbital angular momentum (OAM) up to ℓ=±50 and ±100, respectively. By changing the polarization plane of one OAM beam from 0° to 90° with respect to that of the other OAM beam, we observe the gradual disappearance of the interference petal-like patterns into the noninterference single bright rings. Subsequently, we use the eraser of a diagonal polarizer to retrieve the characteristic petal-like interference. The experimental results can be well explained in the frame of single-photon Greenberger–Horne–Zeilinger-like (GHZ-like) entanglement. Our work may be beneficial to understanding the wave-particle duality of light.
Article
Full-text available
We demonstrate a scheme to generate non-coherent and coherent correlations, i. e., a tunable degree of entanglement, between degrees of freedom of a single photon. Its nature is analogous to the tuning of the purity (first-order coherence) of a single photon forming part of a two-photon state by tailoring the correlations between the paired photons. Therefore, well-known tools such as the Clauser-Horn-Shimony-Holt (CHSH) Bell-like inequality can also be used to characterize entanglement between degrees of freedom. More specifically, we perform CHSH inequality tests between the polarization and the spatial shape (two modes with orbital angular momentum) of a single photon.
Article
Full-text available
In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.
Article
Full-text available
Quantum entanglement plays a vital role in many quantum information and communication tasks. Entangled states of higher dimensional systems are of great interest due to the extended possibilities they provide. For example, they allow the realisation of new types of quantum information schemes that can offer higher information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems. Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher dimensional entangled systems are used. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalised to d-dimensional systems with up to d = 12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum (OAM), generated through spontaneous parametric down-conversion (SPDC), and manipulated using computer controlled holograms.
Article
Full-text available
The interference of two widely separated coherent neutron beams produced by dynamical diffraction in a perfect Si-crystal has been observed. Phase shifting material inserted in the beams results in a marked intensity modulation behind the interferometer. Neutron interferometry introduces several new feasible experiments in nuclear and solid state physics.
Article
Full-text available
The authors report detailed experiments and comparison with first-principle theoretical calculation of the diffraction of cold neutrons (lambda~2 nm) at single- and double-slit assemblies of dimensions in the 20-100 mum range. Their experimental results show all predicted features of the diffraction patterns in great detail. Particularly, their double-slit diffraction experiment is its most precise realization hitherto for matter waves.
Article
Full-text available
We have implemented an optical quantum eraser with the aim of studying this phenomenon in the context of state discrimination. An interfering single photon is entangled with another one serving as a which-path marker. As a consequence, the visibility of the interference as well as the which-path information are constrained by the overlap (measured by the inner product) between the which-path marker states, which in a more general situation are non-orthogonal. In order to perform which-path or quantum eraser measurements while analyzing non-orthogonal states, we resort to a probabilistic method for the unambiguous modification of the inner product between the two states of the which-path marker in a discrimination-like process.
Article
Full-text available
We show that the quantum disentanglement eraser implemented on a two-photon system from parametric down-conversion is a general method to create hybrid photonic entanglement, namely the entanglement between different degrees of freedom of the photon pair. To demonstrate this, we generate and characterize a source with tunable degree of hybrid entanglement between two qubits, one encoded in the transverse momentum and position of a photon, and the other in the polarization of its partner. In addition, we show that a simple extension of our setup enables the generation of two-photon qubit-qudit hybrid entangled states. Finally, we discuss the advantages that this type of entanglement can bring for an optical quantum network.
Article
Full-text available
The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.
Article
Full-text available
Orbital angular momentum (OAM) entanglement is investigated in the Bessel-Gaussian (BG) basis. Having a readily adjustable radial scale, BG modes provide an alternative basis for OAM entanglement over Laguerre-Gaussian modes. We show that the OAM bandwidth in terms of BG modes can be increased by selection of particular radial wavevectors and leads to a flattening of the spectrum, which allows for higher dimensionality in the entangled state. We demonstrate entanglement in terms of BG modes by performing a Bell-type experiment and showing a violation of the Clauser-Horne-Shimony-Holt inequality for the ℓ = ±1 subspace. In addition, we use quantum state tomography to indicate higher-dimensional entanglement in terms of BG modes.
Article
Full-text available
Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.
Article
Full-text available
A few years ago the possibility of coupling and inter-converting the spin and orbital angular momentum (SAM and OAM) of paraxial light beams in inhomogeneous anisotropic media was demonstrated. An important case is provided by waveplates having a singular transverse pattern of the birefringent optical axis, with a topological singularity of charge q at the plate center, hence named 'q-plates'. The introduction of q-plates has given rise in recent years to a number of new results and to significant progress in the field of orbital angular momentum of light. Particularly promising are the quantum photonic applications, because the polarization control of OAM allows the transfer of quantum information from the SAM qubit space to an OAM subspace of a photon and vice versa. In this paper, we review the development of the q-plate idea and some of the most significant results that have originated from it, and we will briefly touch on many other related findings concerning the interaction of the SAM and OAM of light.
Article
Full-text available
We demonstrate electromagnetic quantum states of single photons and of correlated photon pairs exhibiting "hybrid" entanglement between spin and orbital angular momentum. These states are obtained from entangled photon pairs emitted by spontaneous parametric down conversion by employing a q plate for coupling the spin and orbital degrees of freedom of a photon. Entanglement and contextual quantum behavior (that is also nonlocal, in the case of photon pairs) is demonstrated by the reported violation of the Clauser-Horne-Shimony-Holt inequality. In addition, a classical analog of the hybrid spin-orbit photonic entanglement is reported and discussed.
Article
Full-text available
We present a violation of the Clauser–Horne–Shimony–Holt and the Clauser–Horne inequalities using heralded single photons entangled in momentum and polarization modes. A Mach–Zehnder interferometer and polarization optics are used to rotate the spatial and polarization bases, respectively. With this setup we were able to test quantum mechanics with the original formulation of the Clauser–Horne inequality. The results rule out a wide class of realistic non-contextual hidden-variable theories.
Article
Full-text available
We report an experimental test of quantum complementarity with single-photon pulses sent into a Mach-Zehnder interferometer with an output beam splitter of adjustable reflection coefficient R. In addition, the experiment is realized in Wheeler's delayed-choice regime. Each randomly set value of R allows us to observe interference with visibility V and to obtain incomplete which-path information characterized by the distinguishability parameter D. Measured values of V and D are found to fulfill the complementarity relation V2+D2 < or =1.
Article
Full-text available
The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. Our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 Å, masses up to m=6,910 AMU and de Broglie wavelengths down to λ(dB)=h/mv≃1 pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.
Article
Full-text available
High-dimensional quantum states, or qudits, represent a promising resource in the quantum information field. Here we present the experimental generation of four-dimensional quantum states, or ququarts, encoded in the polarization and orbital angular momentum of a single photon. Our novel technique, based on the q-plate device, allows to prepare and measure the ququart in all five mutually unbiased bases. We report the reconstruction of the four dimensional density matrix through the tomographic procedure for different ququart states. Comment: 7 pages, 5 figures
Article
Full-text available
We observe entanglement between photons in controlled super-position states of orbital angular momentum (OAM). By drawing a direct analogy between OAM and polarization states of light, we demonstrate the entangled nature of high order OAM states generated by spontaneous downconversion through violation of a suitable Clauser Horne Shimony Holt (CHSH)-Bell inequality. We demonstrate this violation in a number of two-dimensional subspaces of the higher dimensional OAM Hilbert space. (C) 2009 Optical Society of America
Article
Full-text available
We have observed an effect known as a quantum eraser, using a setup similar to one previously employed to demonstrate a violation of Bell's inequalities. In this effect, an interfering system is first rendered incoherent by making the alternate Feynman paths which contribute to the overall process distinguishable; with our apparatus this is achieved by placing a half wave plate in one arm of a Hong-Ou-Mandel interferometer so as to rotate the polarization of the light in that arm by 90°. This adds information to the system, in that polarization is a new parameter which serves to label the path of a given photon, even after a recombining beam splitter. The quantum ``eraser'' removes this information from the state vector, after the output port of the interferometer, but in time to cause interference effects to reappear upon coincidence detection. For this purpose, we use two polarizers in front of our detectors. We present experimental results showing how the degree of erasure (which determines the visibility of the interference) depends on the relative orientation of the polarizers, along with theoretical curves. In addition, we show how this procedure may do more than merely erase, in that the act of ``pasting together'' two previously distinguishable paths can introduce a new relative phase between them.
Article
Full-text available
Two interferometric complementarities are formulated and demonstrated, and relations between them are analyzed. The first relates the distinguishability D(scrP) of the path of propagation of a particle (where scrP is the preparation of an ensemble) to the fringe visibility v1 when amplitudes from two paths are combined. It is shown that [maxD(scrP)]2+v21=1, where the maximum is taken over all preparations compatible with a fixed density operator. The second complementarity relates the visibility of one-particle interference fringes to the visibility v12 of two-particle fringes: v212+v21
Article
Full-text available
We report a delayed "choice" quantum eraser experiment of the type proposed by Scully and Druhl (where the "choice" is made randomly by a photon at a beam splitter). The experimental results demonstrate the possibility of delayed determination of particlelike or wavelike behavior via quantum entanglement. The which-path or both-path information of a quantum can be marked or erased by its entangled twin even after the registration of the quantum.
Article
Full-text available
We demonstrate experimentally an optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization. This phenomenon requires the interaction of light with matter that is both optically inhomogeneous and anisotropic. The underlying physics is also associated with the so-called Pancharatnam-Berry geometrical phases involved in any inhomogeneous transformation of the optical polarization.
Article
Full-text available
We report a quantum eraser experiment which actually uses a Young double-slit to create interference. The experiment can be considered an optical analogy of an experiment proposed by Scully, Englert and Walther. One photon of an entangled pair is incident on a Young double-slit of appropriate dimensions to create an interference pattern in a distant detection region. Quarter-wave plates, oriented so that their fast axes are orthogonal, are placed in front of each slit to serve as which-path markers. The quarter-wave plates mark the polarization of the interfering photon and thus destroy the interference pattern. To recover interference, we measure the polarization of the other entangled photon. In addition, we perform the experiment under delayed erasure circumstances. Comment: 7 pages, 9 figures, Submitted to Phys. Rev. A
Article
Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams.
Article
Doc. ID 254992) Modal decomposition of light has been known for a long time, applied mostly to pattern recognition. With the commercialization of liquid-crystal devices, digital holography as an enabling tool has become accessible to all, and with it all-digital tools for the decomposition of light have finally come of age. We review recent advances in unravelling the properties of light, from the modal structure of laser beams to decoding the information stored in orbital angular momentum (OAM)-carrying fields. We show application of these tools to fiber lasers, solid-state lasers, and structured light created in the laboratory by holographic laser beam shaping. We show by experimental implementation how digital holograms may be used to infer the intensity, phase, wavefront, Poynting vector, polarization, and OAM density of some unknown optical field. In particular, we outline how virtually all the previous ISO-standard beam diagnostic techniques may be readily replaced with all-digital equivalents, thus paving the way for unravelling of light in real time. Such tools are highly relevant to the in situ analysis of laser systems, to mode division multiplexing as an emerging tool in optical communication, and for quantum information processing with entangled photons.
Article
The wave-particle duality dates back to Einstein's explanation of the photoelectric effect through quanta of light and de Broglie's hypothesis of matter waves. Quantum mechanics uses an abstract description for the behavior of physical systems such as photons, electrons, or atoms. Whether quantum predictions for single systems in an interferometric experiment allow an intuitive understanding in terms of the particle or wave picture, depends on the specific configuration which is being used. In principle, this leaves open the possibility that quantum systems always either behave definitely as a particle or definitely as a wave in every experimental run by a priori adapting to the specific experimental situation. This is precisely what is tried to be excluded by delayed-choice experiments, in which the observer chooses to reveal the particle or wave character -- or even a continuous transformation between the two -- of a quantum system at a late stage of the experiment. We review the history of delayed-choice gedanken experiments, which can be traced back to the early days of quantum mechanics. Then we discuss their experimental realizations, in particular Wheeler's delayed choice in interferometric setups as well as delayed-choice quantum erasure and entanglement swapping. The latter is particularly interesting, because it elevates the wave-particle duality of a single quantum system to an entanglement-separability duality of multiple systems.
Article
Employing the technique of low energy electron diffraction (LEED) in combination with density functional theory (DFT) calculations, we determined the atomic geometry of the oxygen-rich Ru(0001) surface, which was recently shown to be extraordinarily active in the conversion of CO towards CO2. The oxygen-rich Ru(0001) surface consists of areas (some 10 μm wide) covered by a (1×1)O overlayer in coexistence with ultrathin (10–20 Å) patches of ruthenium dioxide RuO2 in (110) orientation. The oxide surface structure is characterized by a bulk-truncated RuO2(110) surface which is terminated by bridging oxygen rows.
Article
The statistical description of optical fields in classical coherence theory is the foundation for many applications in metrology, microscopy, lithography and astronomy. Partial coherence is commonly attributed to underlying fluctuations originating at the source or arising upon passage through a random medium. A less acknowledged source of uncertainty (partial coherence) stems from the act of ignoring a degree of freedom of a beam when observing another degree of freedom coupled to (or classically entangled with) it. We demonstrate here that Bell's measure, which is commonly used in tests of quantum non-locality, may be used as a quantitative tool in classical optical coherence to delineate native incoherence associated with statistical fluctuations from correlation- (or, entanglement-) based incoherence. Our results demonstrate the applicability of the concepts recently developed in quantum information science to classical optical coherence theory and optical signal processing.
Article
We propose and analyze an experiment designed to probe the extent to which information accessible to an observer and the "eraser" of this information affects measured results. The proposed experiment could also be operated in a "delayed-choice" mode.
Article
A detailed analysis of Einstein's version of the double-slit experiment, in which one tries to observe both wave and particle properties of light, is performed. Quantum nonseparability appears in the derivation of the interference pattern, which proves to be surprisingly sharp even when the trajectories of the photons have been determined with fairly high accuracy. An information-theoretic approach to this problem leads to a quantitative formulation of Bohr's complementarity principle for the case of the double-slit experiment. A practically realizable version of this experiment, to which the above analysis applies, is proposed.
Article
Simultaneous observations of wave and particle behavior is prohibited, usually by the position-momentum uncertainty relation. It is reported here, however, that a way has been found, based on matter-wave interferometry and recent advances in quantum optics, to obtain which-path or particlelike information without scattering or otherwise introducing large uncontrolled phase factors into the interfering beams. It is the information contained in a functioning measuring apparatus, rather than controllable alterations of the spatial wave function, that changes the outcome of the experiment to enforce complementarity.
Article
We report on two experiments using an atomic cascade as a light source, and a triggered detection scheme for the second photon of the cascade. The first experiment shows a strong anticorrelation between the triggered detections on both sides of a beam splitter. This result is in contradiction with any classical wave model of light, but in agreement with a quantum description involving single-photon states. The same source and detection scheme were used in a second experiment, where we have observed interferences with a visibility over 98%.
Experimental demonstration of the general law of the interference of light. In making some experiments on the fringes of colours accompanying shadows, I have found so simple and so demonstrative a proof of the general law of the interference of two portions of light, which I have already endeavoured to establish, that I think it right to lay before the Royal Society, a short statement of the facts which appear to me so decisive.
Article
We give a measure of particle knowledge in a neutron interferometer that reflects one's ability to predict in which beam a neutron is located. We can measure wave knowledge by contrast of the interference pattern. Then one's simultaneous knowledge of both is determined by a single parameter (not an uncertainty relation), running from full particle to full wave knowledge. We extend the discussion to partially coherent beams. Our measure of information is much simpler than the conventional one.
Article
Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered infeasible with optical fibers.
Article
Second-order interference is observed in the superposition of signal photons from two coherently pumped parametric down-converters, when the paths of the idler photons are aligned. The interference exhibits certain nonclassical features; it disappears when the idlers are misaligned or separated by a beam stop. The interpretation of this effect is discussed in terms of the intrinsic indistinguishability of the photon paths.
Article
We present various experiments demonstrating the mutual exclusivity of observing interference and which-path information, as demanded by Bohr's complementarity principle. Using photon pairs created in parametric down-conversion, no which-path measurements need to be performed on the interfering photon itself. Instead the other photon can be used to introduce distinguishability, which consequently destroys interference. However, a suitable measurement erases this distinguishability and interference can be recovered.
Article
An inequality is derived according to which the fringe visibility in a two-way interferometer sets an absolute upper bound on the amount of which-way information that is potentially stored in a which-way detector. In some sense, this inequality can be regarded as quantifying the notion of wave-particle duality. The derivation of the inequality does not make use of Heisenberg's uncertainty relation in any form.
Article
Some future gravitational-wave antennas will be cylinders of mass ∼100 kilograms, whose end-to-end vibrations must be measured so accurately (10–19 centimeter) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics, where one usually makes measurements on an ensemble of identical objects and does not care whether any single object is perturbed or destroyed by the measurement. This article describes the new electronic techniques required for quantum nondemolition measurements and the theory underlying them. Quantum nondemolition measurements may find application elsewhere in science and technology.
  • T Young
T. Young, Philos. Trans. R. Soc. Lond. 94 (1804) 1.
  • H Rauch
  • W Treimer
  • U Bonse
H. Rauch, W. Treimer, U. Bonse, Phys. Rev. A 47 (1974) 369.
  • P Grangier
  • G Roger
  • A Aspect
P. Grangier, G. Roger, A. Aspect, Europhys. Lett. EPL 1 (1986) 173.
  • A Zeilinger
  • R Gähler
  • C Shull
  • W Treimer
  • W Mampe
A. Zeilinger, R. Gähler, C. Shull, W. Treimer, W. Mampe, Rev. Modern Phys. 60 (1988) 1067.
  • G I Taylor
G.I. Taylor, Proc. Cambridge Philos. Soc. 15 (1909) 114-115.