ArticlePDF Available

Abstract and Figures

Coronal mass ejections (CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope (MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.
Content may be subject to copyright.
©ScienceChinaPressandSpringer-VerlagBerlinHeidelberg2017earth.scichina.comlink.springer.com
SCIENCECHINA
EarthSciences
REVIEW
doi:10.1007/s11430-017-9074-6
OriginandstructuresofsolareruptionsI:Magneticuxrope
CHENGXin1,2*,GUOY ang1,2&DINGMingDe1,2
1SchoolofAstronomyandSpaceScience,NanjingUniversity ,Nanjing210093,China;
2KeyLaboratoryforModernAstronomyandAstrophysics(NanjingUniversity),MinistryofEducation,Nanjing210023,China
ReceivedFebruary17,2017;acceptedJune15,2017;publishedonlineJuly10,2017
AbstractCoronalmassejections(CMEs)andsolararesarethelarge-scaleandmostenergeticeruptivephenomenainoursolar
systemandabletoreleasealargequantityofplasmaandmagneticuxfromthesolaratmosphereintothesolarwind.Whenthese
high-speedmagnetizedplasmasalongwiththeenergeticparticlesarriveattheEarth,theymayinteractwiththemagnetosphere
andionosphere,andseriouslyaffectthesafetyofhumanhigh-techactivitiesinouterspace.ThetraveltimeofaCMEto1AUis
about1–3days,whileenergeticparticlesfromtheeruptionsarriveevenearlier.Anefcientforecastofthesephenomenatherefore
requiresacleardetectionofCMEs/aresatthestageasearlyaspossible.Toestimatethepossibilityofaneruptionleadingto
aCME/are,weneedtoelucidatesomefundamentalbutelusiveprocessesincludinginparticulartheoriginandstructuresof
CMEs/ares.UnderstandingtheseprocessescannotonlyimprovethepredictionoftheoccurrenceofCMEs/aresandtheireffects
ongeospaceandtheheliospherebutalsohelpunderstandthemassejectionsandaresonothersolar-typestars.Themainpurpose
ofthisreviewistoaddresstheoriginandearlystructuresofCMEs/ares,frommulti-wavelengthobservationalperspective.First
ofall,westartwiththeongoingdebateofwhetherthepre-eruptiveconguration,i.e.,ahelicalmagneticuxrope(MFR),of
CMEs/aresexistsbeforetheeruptionandthenemphaticallyintroduceobservationalmanifestationsoftheMFR.Secondly,we
elaborateonthepossibleformationmechanismsoftheMFRthroughdistinctways.Thirdly,wediscusstheinitiationoftheMFR
andassociateddynamicsduringitsevolutiontowardtheCME/are.Finally,wecometosomeconclusionsandputforwardsome
prospectsinthefuture.
KeywordsCoronalmassejections,Flares,Magneticuxropes,Magneticeld,EUV/UVemissions,Photosphere,Corona,
Particleacceleration
Citation:ChengX,GuoY ,DingMD.2017.OriginandstructuresofsolareruptionsI:Magneticuxrope.ScienceChinaEarthSciences,60,doi:10.1007/s11430-
017-9074-6
1.
Introduction
Solareruptionsrefertovariousphenomenathatinvolvean
outowofplasmaandmagneticuxfromthesolaratmos-
phereintothesolarwindsuchasspicules,jets,surges,coronal
massejections(CMEs),andaresetc..Amongthem,CMEs
andaresarethelarge-scaleeruptiveandenergeticprocesses
thatusuallyaccompanywitheachotherthoughnotalways
(SheeleyJr.etal.,1983;Kahler,1992;Yashiroetal.,2006).
Aftershotout,CMEsoftendisplayatypicalthree-compo-
*Correspondingauthor(email:xincheng@nju.edu.cn)
nentstructure:aleadingfrontfollowedbyanencloseddark
cavityandanembeddedbrightcore(IllingandHundhausen,
1983)asseeninwhite-lightcoronagraphs.Thedarkcavity
andbrightcorearebelievedtobemanifestationsofamag-
neticuxrope(MFR),whichisdenedasacoherentlyhe-
licalmagneticstructurewithalleldlineswrappingaround
thecentralaxisatleastoneturn.Thedarkcavitymaycorre-
spondtothecrosssectionoftheMFRandthebrightcoreto
thecoollament/prominencematerialslocatedatthebottom
oftheMFRwhenviewededge-on(Dereetal.,1999;Gibson
etal.,2007;Rileyetal.,2008).
Besidesbeinglledwithahelicalmagneticstructure,
CMEsalsoexperienceanaccelerationprocessofshortpe-
riod(~tensofminutes;Zhangetal.,2001;ZhangandDere,
2006),nallyreachinghighvelocitiesrangingfromhundreds
tothousandsofkms−1(Yashiroetal.,2004;Tianetal.,2012;
Fengetal.,2013).After1–3days,thesehigh-speedhelical
plasmoidsmayarriveattheEarth(Liuetal.,2011,2013,
2017;Shenetal.,2012a;HessandZhang,2015;Shietal.,
2015;Huetal.,2016;Temmeretal.,2017).Thetypical
featuresofCMEsintheinterplanetaryspace,suchasrotation
ofmagneticeld,increasedsolarwindspeed,depressed
protontemperature,andlowplasmabeta,canbeobserved
directlyviainsituinstruments(e.g.,Burlaga,1988;Lepping
etal.,1990).WhentheinterplanetaryCMEsinteractwith
themagnetosphereandionosphere,theyprobablygiverise
toseriousinuencesonthesafetyofhumanhigh-techac-
tivitiesinouterspace,suchasdisruptingcommunications,
overloadingpowergrids,presentingahazardtoastronauts,
andsoon(Gosling,1993;Webbetal.,1994;Shenetal.,
2013;Solankietal.,2004;Liuetal.,2014a;Shietal.,2015)
Inordertopredicttheproductsandtheirinuencesinduced
bysolareruptions,elucidatingsomefundamentalbutelu-
siveprocessesincludingtheiroriginandstructuresandsub-
sequentSun-to-Earthpropagationisamatterofgreatimpor-
tance.Inthepastdecades,manysignicantprogresseshave
beenmadeinthisaspect,thereadercanrefertomanyprevi-
ousreviews(e.g.,Forbesetal.,2006;Chen,2011;Schmieder
etal.,2015;Linetal.,2015;Wangetal.,2016a;Byrneet
al.,2010;Lugazetal.,2015;Möstletal.,2017).Inthecur-
rentreview,weelaborateonrecentprogressesonthestudy
oftheoriginandstructuresofCMEs/aresfrommulti-wave-
lengthobservationalperspective,whicharemostlyascribed
tothelaunchofSolarDynamicsObservatory(SDO;Pesnell
etal.,2012).W ealsointroducesomerelevantresultsfrom
SolarT errestrialRelationsObservatory(STEREO;Kaiseret
al.,2008),InterfaceRegionImagingSpectrograph(IRIS;De
Pontieuetal.,2014),andnewlyconstructedground-based
instrumentsliketheNewSolarT elescope(NST;Caoetal.,
2010)atBigBearSolarObservatoryandtheNewVacuum
SolarT elescope(NVST;Liuetal.,2014b)atYunnanObser-
vatory(FuxianLake).Firstofall,westartwiththequestions
ofwhetherahighlyhelicalMFRisnecessaryfortheerup-
tionandwhethertheMFRexistspriortotheeruption.We
thenemphaticallyintroducetheobservationalmanifestations
oftheMFR.Secondly,weelaborateonthepossibleforma-
tionmechanismsofthedifferentmanifestationsoftheMFR
inSection3.Thirdly,wediscusstheinitiationmechanismsof
theMFRandthedynamicsduringtheevolutionoftheMFR
towardtheCME/areinSection4.Intheend,wecometo
conclusionsandpresentsomeprospectsthatshouldbead-
dressedinthefuture.
Thisreviewisfocusedontheobservationalaspect.
Themagneticmodellingaspectoftheoriginandstruc-
turesofCMEs/aresisgiveninanotherreviewbyGuoetal.
(2017).
2.
Pre-eruptivecongurationsofsolarerup-
tions
Inthe2DstandardCME/aremodel(Carmichael,1964;Stur-
rock,1966;Hirayama,1974;KoppandPneuman,1976;Shi-
bataetal.,1995),thepre-eruptiveconguration,whichis
modelledtobeahelicalMFR(Shibataetal.,1995;Chen,
1996;TitovandDémoulin,1999;Vourlidasetal.,2013)or
shearedarcade(Sturrock,1966;Antiochosetal.,1999),is
constrainedbythebackgroundmagneticelds.Theeruption
ofthepre-eruptivecongurationstretchesthebackground
eldstoformamagneticdissipationregion,aso-calledcur-
rentsheet(CS),inbetweentheirtwolegs.Oncethethick-
nessoftheCSislessthanathreshold,magneticreconnection
willbeswitchedon(LinandForbes,2000).Ontheonehand,
thereconnectionacceleratestheeruptionviacontinuouslyin-
jectingpoloidaluxintotheeruptingstructure.Ontheother
hand,thereconnectionreleasesalargequantityofenergythat
inducesarapidlyenhancedradiationoverthewholeelectro-
magneticspectrumrangingfromdecameterradiowavestoγ
rays.
Atpresent,thenatureofthepre-eruptivecongurationis
stillelusive.Ontheonehand,observationsshowthatthe
pre-eruptivecongurationcouldbeshearedarcades,indicat-
ingthattheMFRcouldbeunnecessaryforinitiatingtheerup-
tion(e.g.,Songetal.,2014a;Ouyangetal.,2015).Onthe
otherhand,afewobservationsimplythatthepre-eruptive
congurationisahelicalMFR(e.g.,LowandHundhausen,
1995;Gibsonetal.,2006;GreenandKliem,2009;Zhanget
al.,2012;Chengetal.,2013a;Patsourakosetal.,2013).Con-
sideringthatthemagneticeldinthesolaratmospherecannot
bemeasuredaccuratelyexceptonthephotosphere,thecom-
munityusuallyresortstoindirectobservationsorextrapola-
tiontechniquessuchasnon-linearforce-freeeld(NLFFF)
modellingtosearchfortheevidenceoftheMFR.Forex-
ample,throughtheNLFFFmodelling,stronglytwistedeld
lineswithasubstantialmagnetichelicityareoftenfoundto
existalongthepolarityinversionline(PIL)ofactiveregions
beforetheeruption(e.g.,Yanetal.,2001;CanouandAmari,
2010;Guoetal.,2010b;Savchevaetal.,2012;Chengetal.,
2013b,2014b;Inoueetal.,2013;Jiangetal.,2014a;Jianget
al.,2016c;Y anetal.,2015).Inthefollowing,weintroduce
variousobservationalevidencesfortheexistenceoftheMFR
indetail.
2.1
Filamentsandlamentchannels
Filamentsareaphenomenonofrelativelycoolanddense
plasmaembeddedinthehotandtenuouscorona,commonly
observedinabsorptioninandtheExtremeUltraviolet
(EUV)passbandsonthesolardisk,whileappearinginemis-
sionasbrightfeatures,i.e.,prominences,againstthedark
backgroundwhenseenabovethesolarlimb(Hirayama,1985;
2ChengX,etal.SciChinaEarthSci
Mackayetal.,2010).
Themagneticstructureoflamentsisusuallythoughttobe
shearedarcades(Antiochosetal.,1994;Aulanieretal.,2006)
orhighlytwistedMFR(KuperusandRaadu,1974;vanBal-
legooijenandMartens,1989;Aulanieretal.,1998;Aulanier
etal.,1999),whichpossessmagneticdipsthatareableto
provideanupwardmagnetictensionagainstthegravityof
lamentmaterials(Martin,1998;Mackayetal.,2010).In
ordertovalidatesuchapicture,manyauthorsextrapolated
three-dimensional(3D)structuresofthelamentsourcere-
gionsbasedontheassumptionoflinear(e.g.,Aulanieretal.,
1998;Aulanieretal.,1999)ornon-linearFFF(e.g.,Guoet
al.,2010b;Savchevaetal.,2012;Chengetal.,2014b;Jiang
etal.,2016c;Y anetal.,2015).Inmanyevents,inparticular
activeregionlaments,thedipsoftheshearedarcades(Anti-
ochosetal.,1994;Aulanieretal.,2006)ortwistedelds(e.g.,
Chengetal.,2014b;Jiangetal.,2016c)aremostlyco-spa-
tialwiththelamentlocations.Sometimes,apartofthela-
mentlocationsareconsistentwiththedipsofshearedarcades,
whiletheotherpartwiththedipsoftwistedelds(Figure1a;
Guoetal.,2010b).Duringthelamenteruption,thetwistof
magneticeldlinesisalsoobservedtobereleasedbymag-
neticreconnection(Figure1b;Xueetal.,2016).
Insomeevents,itisverydifculttoreconstructthestrongly
twistedeldlinescomparablewiththelaments,inparticu-
larforthequiescentlaments,whichareprobablyduetothe
reasonthatthepreprocessingover-smoothesthevectoreld
beforedoingtheextrapolation.However,usingthenewlyde-
velopedCESE-MHD-NLFFFcodebyJiangandFeng(2012),
Jiangetal.(2014b)reproducedalarge-scalecoronalMFR
thatexistsinbetweenanactiveregionandaweakpolarityre-
gionandsupportsaquiescentlament.Itisevenfoundthat
thelargepolarcrownprominencelocatedattheweakmag-
neticeldregioncanalsobemodelledwithanMFRcong-
urationalthoughwithacertaindegreesoffreedom(e.g.,Su
andvanBallegooijen,2012;Suetal.,2015).
Itispossiblethattherearenocoolmaterialsdeposited
indipsofMFRs.Inthiscase,theMFRsmaymanifestas
lamentchannelsandusuallylieoverthePILofthelong
decayedactiveregions(e.g.,vanBallegooijenetal.,1998;
AulanierandSchmieder,2002;Chenetal.,2014c).Itisalso
observedthattheeruptingMFRdoesnotaccompanywith
apre-existinglament,suchasforadouble-deckercong-
urationthatconsistsofahigh-lyingMFRandavertically
separatedlament-associatedlow-lyinguxsystem(e.g.,
Liuetal.,2012;Chengetal.,2014b;Dudíketal.,2014;
Kliemetal.,2014b).Withtheeruptionbeginning,onlythe
high-lyingMFRuxeruptstogiverisetoaCMEandaare,
whilethelow-lyinglamentremainsinoriginalplace.
2.2
Coronalcavities
Whenquiescentlamentsandlamentchannelsrotatetothe
solarlimb,theyareprobablyseenasdark,semi-circularor
circularcavitiessurroundingprominencesandembeddedin
bipolarhelmetstreamer(Figure1c).Cavitiesinactivere-
Figure1 
(a)imageoverlaidbytheextrapolatedmagneticeldlines.TheMFRindicatedbymixedcolorsiscospatialwithasegmentofthelament
(adaptedfromGuoetal.,2010b.ReproducedbypermissionoftheAAS).(b)Twistreleasingbythereconnectionduringthelamenteruption(fordetailsplease
seeXueetal.,2016.ReproducedbypermissionoftheAAS).(c)CoronalcavitiesasseenintheAIA193Åpassband.(d)AsequenceofXRTimagesshowing
theevolutionofasigmoidpriortotheeruption(fromMcKenzieandCaneld,2008).
ChengX,etal.SciChinaEarthSci3
gionsareverydifculttoobserve,becausetheylierelatively
lowtothesolarsurfaceandaresignicantlyinuencedby
strongemissionfromtheforegroundandbackground.At
present,theyhavebeenobservedonlyinfeweventsasan
eruptinghotblob(e.g.,Songetal.,2014b).Itisalsoar-
guedthatthemagneticstructureofcavitiesisanMFR,i.e.,
thecrosssectionoftheMFRcorrespondstothewholeor
lowerpartofcavities(LowandHundhausen,1995).Prior
totheeruption,thecavitiestypicallyexistinthelowcorona
andareabletosurvivefordays,evenformonths(Gibson
etal.,2006,2007).Itcanbeobservedatarangeofwave-
lengths,mostlyinthewhite-lightpassbandofsuchasthe
ground-basedwhite-lightcoronagraphMarkIVcoronameter
installedattheMaunaLoaSolarObservatory,aswellinthe
EUVpassbandsofsuchastheAtmosphericImagingAssem-
bly(AIA;Lemenetal.,2012)onboardSDO.
Manyfeaturesofcoronalcavitiesindicatethattheirfunda-
mentalmagneticstructureisanMFR.Therstevidenceis
continuousspinningmotions,whicharefrequentlyseenin-
sidecavitiesandhaveaowspeedof5−10kms−1(Wang
andStenborg,2010).Moreover,thepolarizationringincav-
itiesobservedbyCoronalMulti-ChannelPolarimeteralso
supportstheMFRmodel,whichillustratesthatabrightring
oflinearpolarizationmayappearinadensitydepletedre-
gion(Doveetal.,2011).Inlinearpolarizationobservations,
Bak-Stęślickaetal.(2013)furtherfoundthatthecavitypos-
sessesacharacteristic“lagomorphic”signature,whichagain
indicatestheexistenceoftheMFRasapatternofconcentric
rings.
Solar“tornadoes”,anewphenomenondiscoveredrecently
andoftenappearingincavityassociatedprominences,are
alsoconsideredasapieceofevidenceoftheMFR.Thedi-
rectevidenceof‘tornadoes”havingahelicalstructureisthe
swirlingmotions(ZhangandLiu,2011;Lietal.,2012;Su
etal.,2012;Wedemeyer-Böhmetal.,2012).Spectroscopic
observationsalsodisclosedapatternwithblueshiftedand
redshiftedemissions,i.e.,oppositevelocities,existingatthe
twosidesofprominences,implyingthemagneticstructureof
“tornadoes”beinghelical(Suetal.,2014).However,spectro-
scopicobservationsincoollines(e.g.,and10830Å)re-
vealedthattheDopplershiftpatterndoesnotfollowthepat-
ternobservedincoronallines.Itismostlikelyoscillationsof
theplasmaalongtheeldlineslikecounterstreamingoroscil-
lationsofthewholemagneticstructure(MartínezGonzálezet
al.,2016;Schmiederetal.,2017).Tornadoescouldbejustthe
foopointsofprominences(Wedemeyeretal.,2013;Levenset
al.,2016)oramanifestationofspirallyejectedjetsdrivenby
torsionalAlfvénwaves(Pariatetal.,2009a).
2.3
Sigmoids
Sigmoids,forwardorreversedsigmoidalemissionpatterns
appearinginEUVandsoftX-ray(SXR)passbands(Figure
1d),havebeenfoundtobeanimportantpre-eruptivecong-
urationofCMEs/ares(Hudsonetal.,1998;RustandKu-
mar,1996;SterlingandHudson,1997;Gibsonetal.,2002),
whicharestatisticallymorelikelytobeeruptive(Caneld
etal.,1999).Basedonthedurationtime,sigmoidscanbe
classiedastransientorpersistentones.Theformertendto
besharperandbrighter,apparentlyassigmoidalloops,and
evolveintocuspsorarcadesofloopsmanytimes;thelatter
appearmorediffuseandcouldbeacollectionofsomesheared
loops(Pevtsov,2002;Gibsonetal.,2002;Greenetal.,2007).
Thesigmoidalemissionpatternisexpectedtobeduetothe
heatinginacurvedCSattheinterfacebetweenthehelical
coreeld(e.g.,MFR)andtheambienteld(Kliemetal.,
2004;Gibsonetal.,2006).Greenetal.(2007)evenfound
that,duringtheeruptionphaseofsigmoids,thehelicitysign
ofsigmoidsisconsistentwiththerotationdirectionofassoci-
atederuptinglaments(alsoseeYangetal.,2015b),showing
theconversionoftwistintowritheundertheassumptionof
helicityconservation,supportingtheexistenceofthetwisted
eldlinesinsigmoids.
Theappearanceofthesigmoidalemissionpatterndoes
notmeantheexistenceofcontinuoussigmoidaleldlines.
McKenzieandCaneld(2008)analyzedalong-lasting
coronalsigmoidandfoundthattheoverallSshapeofthe
sigmoiddenitelyconsistsoftwoseparateJ-shapedloops
withastraightsectionpossiblylyinginthemiddle.Green
andKliem(2009)andLiuetal.(2010)pointedoutthattwo
oppositeJ-shapedloopscanformthecontinuousS-shaped
loopsthroughthetether-cuttingreconnection.Usingan
MHDsimulation,Aulanieretal.(2010)reproducedsynthetic
SXRimagesfromthedistributionoftheelectriccurrentsand
revealedtheformationofasigmoidalactiveregion.They
foundthatabrightsigmoidalenvelopeisbuiltupgradually
bythebald-patch(BP,wheremagneticeldlinesarecurved
upwardandaretangenttothephotosphere)andtether-cutting
reconnectionbetweentwopairofJ-shapedeldlines.Using
theuxemergencemodel,Archontisetal.(2009)evendis-
closedthatoppositeJ-shapedloopsandS-shapedloopsexist
simultaneously,whichresultintheoverallmagneticstructure
ofsigmoids.Moreover,someauthorsalsoreconstructed3D
NLFFFcongurationofsourceregionsofsigmoidsanddid
ndthatthecoreeldconsistsofatwistedMFRembedded
inhighlyshearedelds(e.g.,Suetal.,2009;Savchevaand
vanBallegooijen,2009;Savchevaetal.,2012;Jiangetal.,
2013,2014a;Chengetal.,2014b).
2.4
Hotchannels
Hotchannelsorhotblobsareatypeofnewandpromisingev-
idenceoftheexistenceofMFRs.Throughanalysingalimb
event,Chengetal.(2011b)forthersttimeobservedthe
formationofanMFRduringtheimpulsivephase.Itinitially
appearsasaneruptinghotblobasseenintheAIA131and
4ChengX,etal.SciChinaEarthSci
94Åpassbands(T≥8MK).Whileintheotherlowtemper-
aturepassbands(1MK≤T≤5MK),itappearsasadarkcav-
ity.Combingwithsometypicalfeaturessuchastheinows,
stretchedoverlyingeld,andcusp-shapedareloopsthatare
expectedbytheMFReruptionmodelsofCME/ares,theau-
thorsstronglyarguedthatthehotblobisanunambiguousevi-
denceoftheMFRexistinginthecorona(alsosee;Songetal.,
2014b).FollowingtheworkofChengetal.(2011b),Zhang
etal.(2012)andChengetal.(2013a)startedtosearchfor
moreevidenceoftheMFRinthe131and94Åpassbands.
TheydiscoveredthattheMFRevenexistspriortotheerup-
tionasawrithedchannel-likestructurewithtwoelbowsin-
cliningtotheoppositedirectionsandthemiddlebeingcon-
cavedtowardthesurfacewhenseenoffthesolarlimb(Fig-
ure2a).Thevisibilityofthechannel-likestructureonlyat
theAIAhightemperaturepassbands(e.g.,131and94Å)but
notatothercoolerpassbandsshowsthatithasatempera-
tureof>6MK.Subsequently,moreandmorehotchannel
eventsthatexistpriortotheCME/arebeginningareiden-
tied(e.g.,Patsourakosetal.,2013;LiandZhang,2013a,
2013c;Tripathietal.,2013;VemareddyandZhang,2014;
Dudíketal.,2014;Chintzoglouetal.,2015;Joshietal.,2015;
Zhouetal.,2016).Interestingly,apre-existingMFRiseven
conrmedtoexistinthechromospherewithobservationsby
NSTatBBSO(Wangetal.,2015).Moreover,Chengetal.
(2012)quantiedthedifferentialemissionmeasure(DEM)of
thehotblobsandchannels,whichshowsthattheemissionof
thesehotMFRsareactuallyfromabroadtemperaturerange
of6.5≤logT≤7.3withaDEM-weightedaveragetemperature
largerthan~8MK.Thecorrespondingelectronnumberden-
sityvariesfrom5.0×108to3.0×109cm−3.
Zhangetal.(2012)andChengetal.(2013a)furtherfound
thatthehotchannelshowsaremarkablemorphologicalevo-
lutionduringtheearlyphaseoftheeruption.Initially,the
dippedcentralpartofthewrithedhotchannelrisesupslowly
andgraduallybecomesmorelinear.Thecontinuingriseofthe
centralparteventuallyturnsthesigmoidalshapeofthechan-
nelintoalooplikeshapedpartialtorus(Figure2a).Duringthe
transformationprocess,thetwofootpointsoftheevolvinghot
channelarenearlyxed.Afterwards,theloop-likestructure
quicklystretchestheoverlyingeldandbuildsupaCME,si-
multaneouslygivingrisetoaareunderneath.Furthermore,
Chengetal.(2014c)identiedthatthehotchanneliscapa-
bleofevolvingsmoothlyfromtheinnerintotheoutercorona
withalmostretainingitscoherence,morphologicallyconsis-
tentwiththeCMEcavityasseeninthewhite-lightimages
(Figure2b).ChengandDing(2016)studiedthefootpointsof
thehotchannelandfoundasubstantialdeviationofthehot
Figure2 
(a)AIA131Åimagesshowingthepre-existence(left)anderuption(right)ofahotchannel-likeMFR(fromZhangetal.,2012;Chengetal.,2013a.
ReproducedbypermissionoftheAAS).(b)Transformationofahotchannel-likeMFR,asseenintheAIA131Åpassband(left),totheCMEimagedbythe
LASCOC2white-lightcoronagraph(right).
ChengX,etal.SciChinaEarthSci5
channelaxisfromtheassociatedlament.Itshowsthatthe
hotchannelhasascendedtoahighaltitudeandlikelysepa-
ratedfromthatofthelamentwhenapproachingtheeruption.
InordertouncovertheappearancefrequencyofthehotMFR,
Nindosetal.(2015)madeastatisticalstudyanddocumented
thatalmosthalfofmajoreruptivearescontainahotblobor
channel-likeconguration.TheobservedMFRmorphology
mainlydependsontheorientationoftheMFRaxiswithre-
specttothelineofsight.Thatistosay,theMFRappearsas
ahotblobandahotchannelparallelandperpendiculartoits
axis,respectively.
Inaddition,somespectroscopicobservationsalsosupport
thepre-existenceoftheMFR.ByanalysingCoronalDiag-
nosticsSpectrometer(CDS)orEUVImagingSpectrometer
(EIS)data,Gibsonetal.(2002),Harraetal.(2009),and
Harraetal.(2013)foundasignicantpre-areenhancement
innon-thermalvelocity,thelocationsofwhichmaycorre-
spondtothefootpointsoftheMFR.CombiningEISandAIA
observations,Syntelisetal.(2016)evenfoundthattheen-
hancednon-thermalvelocities,aswellastheblueshifts,can
lastfor5hoursbeforetheeruptionofthehotchannel-like
MFR.
2.5
ReconcilingdistinctaspectsoftheMFR
Asdiscussedabove,laments,lamentchannels,cavities,
sigmoids,andhotchannelscanbewelluniedintheframe-
workoftheMFR;theymaybejustthedistinctmanifesta-
tionsoftheMFR,dependingondifferentobservationalwave-
lengthsandperspectives,aswellasmagneticenvironment.
Therehavebeenmanystudiesrevealingtherelationshipbe-
tweenanytwoofthem.
Throughobservingtheevolutionofaneruptinglament,Li
andZhang(2013b)foundthattheeruptingmaterialshavea
helicaltrajectorywhenmovingalongthethreadsofhotchan-
nels(alsoseeYangetal.,2014;Zhangetal.,2015a).During
theeruptionphaseofhotchannels,coollamentarymaterials
arealsoseentodescendspirallydowntothechromosphere
alongtheirlegs(Chengetal.,2014c).Furthermore,Chenget
al.(2014a)foundthatthehotchannelisinitiallyco-spatial
withtheprominenceintheearlyrisephase,whilewiththe
eruptionbeginningthehotchannelquicklyexpands,result-
inginaseparationofitstopfromtheprominence.Through
adetailedanalysisofthetemperaturestructureofanerupting
lament,Chenetal.(2014a)conrmedthattherelatively
coolplasmaalwaysstaysatthebottomofthehotchannel.
Theseresultsstronglysuggestthatthehotchannelisadirect
manifestationoftheheatedMFRwithlamentmaterialscol-
lectedatitsbottom.
AlthoughpreviousstudiesrevealedthatCME-productive
activeregionsoftentakeonasigmoidalshapeintheEUV
and/orSXRimagespriortotheeruption,itdoesnotmeanthat
thecorrespondingmagneticeldlinesmustbehighlytwisted.
Alternatively,theycouldconsistoftwogroupsofshearedar-
cades,makingupasigmoidalshapeapparently(Titovand
Démoulin,1999;Kliemetal.,2004;Schmiederetal.,2015;
ChengandDing,2016).However,westillcannotexcludethe
possibilitythatanexistingbutinvisibleMFR,probablyhav-
ingaveryweakemission,isembeddedinthemiddleofthe
sigmoidandoverlaidbyambientshearedarcades.Recently,
peoplehavestartedtorecognisethatthecontinuoussigmoidal
orhighlytwistedeldlinescanoriginateinthesigmoidalac-
tiveregions.UsingXRTdata,McKenzieandCaneld(2008)
observedadiffuselinearstructurethatappearsinthemiddle
ofthesigmoidpriortotheeruptionandliftsoffastheare
begins(alsoseeLiuetal.,2010;Greenetal.,2011;Zharkov
etal.,2011).Takingadvantageoftheunprecedentedhigh
cadence,highresolution,andmulti-wavelengthobservations
oftheAIA,Chengetal.(2014b)foundthatthelinearfeature
ismostlikelytobecontinuoussigmoidalhotthreads.They
evenfoundthatadouble-deckerMFRsystemthatconsists
ofahigh-lyingcontinuoussigmoidalthreads(hotchannel)
andaverticallyseparatedlament-associatedlow-lyingux
couldbeformedinthesigmoidalactiveregion.Closetothe
eruption,themorphologyofthehigh-lyinghotchannelvaries
fromanS-shapetoaloop-shape,similarlytothelinearfeature
intheeruptingsigmoids.Inaddition,itshouldbenotedthat
sigmoidsaremostlyamanifestationduetotheheatingina
sigmoidalCSbetweentheMFRanditsambienteld(Kliem
etal.,2004;Gibsonetal.,2006),whiletheydonotdelin-
eatethespecicmagneticeldcongurations.However,hot
channelsrefertocoherentmagneticstructures,whichcanbe
tracedcontinuouslyfromthesigmoidalactiveregionstothe
outercorona.Duringthewholeeruptionprocess,theevolu-
tionofhotchannelsismainlycontrolledbytheirowndy-
namics.Therefore,wecansaythathotchannelsandsig-
moidsaredistinctphenomena,morespecically,theformer
arewell-denedandspecicstructuresthatoriginateinthe
latter.
Thevisibilityofhotchannel-likeMFRsonlyinthe131and
94Åpassbandsshowsthattheyaresubstantiallyheatedbe-
foretheeruption.Interestingly,quiescentcavitiesarealso
foundtobeheatedwithahighertemperaturethantheback-
ground.Reevesetal.(2012)examinedthethermalproperties
ofaquiescentcavitythatcontainsstrongX-rayemissioninits
coreandfoundthatthereisanobvioustemperatureincrease
inthecavitycore,andthatthecoretemperaturevariesfrom
1.75to2.0MKwiththeevolutionofthemorphologyfrom
aring-shapedatthebeginningtoanelongatedstructuretwo
dayslater.Thereasonisconjecturedtobethatdifferentparts
ofthecavitycoreareheatedatdifferenttimes.Byconstruct-
inglimbsynopticmapsoftheAIA211,193,and171Åpass-
bands,Karnaetal.(2015)analyzedanumberofquiescent
cavityeventsandalsofoundthatquiescentcavitiesarehotter
thantheirsurroundingsalthoughonlyslightly .Theseresults
implythatactiveregionhotchannelsandquiescentcavities
6ChengX,etal.SciChinaEarthSci
mayhavethesame,atleastsimilar,heatingmechanismin
thepre-eruptivephase,thoughtheexactmechanismremains
mysteriousatpresent.Webelievethatmagneticstructures
ofboththeactiveregionhotchannelsandquiescentcavities
areanMFR,theonlydifferenceofthemisthedistinctsize;
theformerusuallyhasalengthof20–100Mm(thescaleof
theactiveregionPIL)andaheightof10–20Mm,whilethe
latterextendsalongthewholePILoflong-termdecayedac-
tiveregions,havingalengthof200–500Mmandaheightof
30–100Mm(e.g.,Liuetal.,2010;Suetal.,2015;Chengand
Ding,2016).
3.
Formationofpre-eruptivecongurations
3.1
BodilyemergenceoftheMFR
IfanMFRreallyexistsinthecorona,thequestionisthen
when,where,andhowtheMFRisbuiltup.Theoretically,two
possibilitieshavebeenproposed.Onepossibilityisthatthe
MFRintheconvectionzoneemergesintothecoronabybuoy-
ancy(Figure3a;Fan,2001;Magara,2004;Martínez-Sykora
etal.,2008;ArchontisandTörök,2008;Leakeetal.,2013).
However,Manchesteretal.(2004)foundthatwhenthepri-
maryaxisoftheMFRapproachesthephotosphere,theMFR
issplitintotwopartsbymagneticreconnectionwithsur-
roundingelds,whichonlyallowstheupperuxofthemid-
dlesectionwithveryweaktwist(lessthanoneturnabout
theaxis)toseparatefromthelowermass-ladenanddipped
ux(alsoseeMagara,2006).Evenso,thetotalrelativemag-
netichelicityofthewholesystemiswellconserved(Zhang
andLow,2003).Afterascendingtothecorona,thecenter
oftheMFRriseswithanincreasingvelocityaslongasthe
MFRfootpointsrotatecontinuously.Asaresult,signicant
twististransportedfromtheMFRinteriorparttowardthe
coronalpartthroughnonlineartorsionalAlfvénwaves(Fan,
2009;Leakeetal.,2013).Afteremergingintothecorona,the
reconnectionwiththepre-existingcoronaleldalsoplaysan
importantroleinformingtheMFRandevendrivingitserup-
tion(e.g.,ArchontisandTörök,2008;Leakeetal.,2014).
Fan(2012)foundthatinthequasi-staticrisephaseofthe
MFR,magneticreconnection,mostlikelytether-cuttingin
thesigmoidalhyperbolicuxtube(HFT,intersectionoftwo
quasi-separatrixlayers(QSLs),wherethelinkagesofmag-
neticeldlinesarecontinuousbutchangedrastically(Titov
etal.,2002)),effectivelyinjectstwisteduxtotheMFRso
astodriveitseruption.
Someobservationalstudiesalsostandfortheemergenceof
theMFRfrombelowthephotospheretothecorona.Through
analyzingthevectormagnetogramsobtainedbytheDunnSo-
larTelescopeoftheNationalSolarObservatory,Lites(2005)
foundaconcave-upgeometryinthephotospherebelowtwo
activeregionlaments.Okamotoetal.(2008)andOkamoto
etal.(2009)examinedasequenceofvectormagnetograms
ofAR10953observedwiththeSolarOpticalTelescopeon
boardHinodeandfoundthefollowingfeatures:theadjacent
opposite-polarityregionswithhorizontallystrongbutverti-
callyweakmagneticeldsgrowinglaterallyandthennar-
rowing,thereversalofthedirectionofthehorizontalmag-
neticeldsalongthePILfromanormalpolaritytoanin-
verseone,andtheappearanceoftheblueshiftanddiverging
owsinthehorizontalmagneticeldregion.Theseobser-
vationalfeatures,aswellastheconcave-upgeometry,imply
thattheMFRprobablymayemergefromthesolarinterior
tothecorona.However,V argasDomínguezetal.(2012)re-
centlyprovidedacontradictoryinterpretationforthoseobser-
vationalcharacteristicsinthephotosphere.Comparingwith
thenumericalresultsofMacTaggartandHood(2010),they
pointedoutthatmagneticcancellationisalsocapableofpro-
ducingthelateralgrowingandthennarrowingofthepositive
andnegativepolarities,aswellasthereversalofthedirection
ofthehorizontalmagneticelds.
Magneto-convectionhasasignicantinuenceonthe
emergenceoftheMFRfrombelowthephotospheretothe
corona.Becauseofconvectiveows,undulationsappearin
theemerginghorizontaleldtoformΩ-loopsandU-loops
(CheungandIsobe,2014).Thelaternaturallyhaveacon-
cave-upgeometry.Bernasconietal.(2002)andPariatetal.
(2004)studiedtheFlareGenesisTelescopedataandfound
thatserpentinestructuresand“U”-shapedloopsfrequently
appearedinemergingactiveregions.Ellermanbombsare
alsodetectedatthelocationswhereserpentinestructures
and“U”-shapedloopstouchthephotosphere(alsoseeLi
etal.,2015).Thisismainlyduetothebuildupofcurrents
alongtheserpentineand“U”-shapedmagneticeld,which
thenleadtothereconnectionintheloweratmosphere(e.g.,
Isobeetal.,2007;Pariatetal.,2009b;ArchontisandHood,
2009;W ang,2006).Formoredetailsconcerninghowthe
sub-photospheremagneticeldemergesintothecoronaand
producesvariousactives,thereadercanconsultthereviews
bySchmiederetal.(2014)andCheungandIsobe(2014).
3.2
MFRformationbymagneticreconnection
3.2.1
MFRformationpriortotheeruption
TheMFRcanalsobebuiltupdirectlyinthecoronaviamag-
neticreconnectionpriortotheeruption.Inthemodelofvan
BallegooijenandMartens(1989),itisproposedthatuxcan-
cellationtransfersshearedloopstohelicaleldlines,creat-
ingacoherentMFRconguration(Figure3b).Theuxcan-
cellationisusuallyinterpretedintermsoftransportofpos-
itiveandnegativeuxestowardthePIL,reminiscentofthe
well-knownmoatowaroundtwopolaritiesofanactivere-
gion(Amarietal.,2010,2011,2014).Throughimposing
convergingmotionstowardthePIL,Amarietal.(2003a)
successfullysimulatedthattwogroupsofsheareduxare
broughttogetherandreconnecttowardatwistedMFR(also
ChengX,etal.SciChinaEarthSci7
Figure3 
(a)Fluxemergencemodel,inwhichatwistedMFRbodilyemergesfrombelowthephotospheretothecorona.Thelinesinvioletshowbald-
patch–associatedseparatrixsurfaces.Theblacksegmentsdisplaymagneticdipswherethelamentmaterialscanbecollected(fordetailspleaseseeGibson
etal.,2004.ReproducedbypermissionoftheAAS).(b)Fluxcancellationmodel,inwhichtheMFRisformedbythereconnectionoftwogroupsofsheared
arcadesdrivenbytheshearingandconvergingmotions(fordetailspleaseseevanBallegooijenandMartens,1989.ReproducedbypermissionoftheAAS).
seeMackayandvanBallegooijen,2006).Amarietal.(1999,
2003b)showedtheimportanceofphotosphericturbulentdif-
fusiononpre-shearedmagneticeld(possiblyremnant)that
leadstotheformationofmagneticuxrope.Subsequently,
Aulanieretal.(2010)didamoredetailedMHDsimulation,
inwhichaninitiallypotentialbipolareldevolvesasdriven
bymagneticelddiffusionandshearingmotions.Similarto
theresultsofAmarietal.(2003a),ux-cancellation-driven
reconnectionappearsinaBPseparatrixandgraduallytrans-
formstheshearedarcadesintotheMFR.Inthewholeforma-
tionprocess,theMFRgraduallyrisesupbutinaquasi-static
manner.Then,theBPstructurechangestotheHFTtopology,
wherethereconnection,ofatether-cuttingtype,takesplace
tocontinuouslyinjectthepoloidaluxtotheMFR.Using
isothermalMHDsimulations,Xiaetal.(2014)evolvedalin-
earforce-freebipolarmagneticeldbymeansofintroducing
vortexowsaroundtheoppositepolaritiesandconverging
owstowardthePIL.Theyalsofoundthecreationofthehe-
licaleldlinesthroughthereconnectionanduxcancellation
atthePILdrivenbytheconvergingows.
Observationally,adirectviewoftheformationofanMFR
isimpossibleasmagneticeldmeasurementabovethepho-
tosphereistechnicallydifcultatpresent.Thus,forthesake
ofexploringtheformationoftheMFR,peopleusuallyinves-
tigatehowthevariousmanifestationsoftheMFR,including
laments,sigmoids,andhotchannels,areformed.
ThroughobservationsbytheMulti-channelSubtractive
DoublePassspectrograph,Schmiederetal.(2004)observed
thatdifferentsegmentsoflamentsmerge(reconnect)toform
alonglament.Atthemergencelocations,bothbrightenings
attheEUVpassbandsanduxcancellationsofsmallbipo-
lararefound.Thisisconsistentwiththelamentformation
modelintermsofmagneticreconnectionproposedbyvan
BallegooijenandMartens(1989)andAulanieretal.(1998).
Afterthereconnection,thecoolmaterialsareexpelledalong
thereconnectedeldlines,whichareconrmedbymeasured
horizontalvelocities(e.g.,Dengetal.,2002).
Recently,usingdatawithhigherresolutionandcadence
providedbytheNVST ,Yanetal.(2015)observedtheobvi-
ousshearingmotionoftheoppositepolaritiesandthesunspot
rotationduringtheformationprocessoftwoactive-regionl-
aments(Figure4a).Theysuggestedthattheshearingmotion
stretcheslament-associatedmagneticeldmorehorizontal
andthenthesunspotrotationinjectssometwisttoformala-
8ChengX,etal.SciChinaEarthSci
Figure4 
(a)NVSTTiOandimagesoverlaidbyline-of-sightmagnetogramswiththepositive(negative)inblue(red)showingtheformationofalament
drivenbythesunspotrotation(fromY anetal.,2015.ReproducedbypermissionoftheAAS).(b)NVSTimagesdisplayingtheformationofalamentby
thereconnection(fromY anetal.,2016.ReproducedbypermissionoftheAAS).
ment-hostinghelicalmagneticstructure.Besidesthesunspot
rotation,Y anetal.(2016)andV emareddyetal.(2016)also
addressedtheroleofthereconnectioninbuildingupthehe-
licalconguration,whichisevidencedbytheappearanceof
theEUV/UVbrighteningatthetouchpointofthedifferent
branches(Figure4b).Bymeansofstudyingtheinteraction
oftwosetsofdarkthreadsorlamentchannelsdrivenbyux
convergenceandcancellation,bothJoshietal.(2014a)and
Yangetal.(2016a)arguedthatthereconnectionisaneces-
saryconditionfortheformationofthelament.Moreover,
theyalsoobservedthatthereconnection-drivenhotplasma
undergoarollingmotionalongthelamentthreads.
Tripathietal.(2009)analyzedthetemperaturestructure
ofasigmoidanddiscoveredthattheplasmaintheJ-shaped
arcadeshasahighertemperaturethanthatintheS-shaped
uxifbotharesimultaneouslyvisible.Theyarguedthatthe
J-shapedarcadesaremostlikelyreconnectingtotheS-shaped
ux,thushavingahighertemperaturebutstartingtocool
downafterleavingthereconnectiondiffusionregion.Green
andKliem(2009)andGreenetal.(2011)supportedthepoint
thatthesigmoidisfromthereconnectionofshearedarcades
thatisdrivenbytheuxconvergenceandcancellationunder
thesigmoidalthoughonlypartofthecancelleduxbeing
injectedintothesigmoidaleldlines.
Chengetal.(2014b)studiedtheformationofthehotchan-
nel-likeMFRafterthatwasdiscovered.Throughanalyzing
thelong-termevolutionofanevolvingsigmoidalactivere-
gion,theyfoundthatthetwistedeld,indicatedbycontin-
uoussigmoidalhotthreads,isformedviathereconnection
oftwogroupsofshearedarcadesnearthePILhalfdaybe-
foretheeruption.Thetemperatureofthetwistedeldand
shearedarcadesderivedbytheDEMtechniqueishigherthan
thatoftheambientvolume(Figure5a),indicatingthatthe
reconnectiontakesplaceandheattheplasmatherein.They
alsoconrmedthatthereconnectionisdrivenbytheshearing
andconvergingmotionsnearthePIL.Throughconstructing
atimesequenceofNLFFFstructures,itisfurtherrevealed
thatthereconnectionhappenssimultaneouslyattheBPsep-
aratrixinthephotosphereandintheHFTinthecorona(the
tether-cutting).TheMFRcanevenbeformedinthelowerat-
mosphere(e.g.,Wangetal.,2015),via,forexample,aseries
ofmagneticreconnectioninthechromosphere,andsome-
timesbeheateduptothecoronaltemperatureasvisiblein
theAIA131and94Åpassbands(Kumaretal.,2015,2017;
LiandZhang,2015).Moreover,theconversionofmutualhe-
licitytoself-helicitythroughtheinterchangereconnectionof
twogroupsofloopsisalsoarguedtobestrongevidencefor
theformationofthehelicaleldpriortotheeruption(e.g.,
Tziotziouetal.,2013;Lietal.,2014).
Chengetal.(2015a)furtherperformedspectroscopicdi-
agnosticsontheformationofhotchannelsbasedontheAIA
andIRISjointobservations.Atthefootpointsofthehotchan-
nel,itisfoundthattheSiIV ,CII,andMgIIlinesexhibit
weaktomoderateredshiftsandnon-thermalvelocitiesinthe
pre-arephase.However,relativelylargeblueshiftsandex-
tremelystrongnon-thermalvelocitiesappearatthereconnec-
tionsiteoftwoshearedarcades,i.e.,theformationsiteofthe
hotchannel(Figure6aand6b).Thesespectralfeaturesim-
plythatthereconnectionplaysanimportantroleinthefor-
mationandheatingofhotchannels,andthatthelocationof
thereconnectionismostlikelyintheloweratmosphere(Fig-
ure6c),basedonthefactthattheSiIV ,CII,andMgIIlines,
forminginthechromosphereandtransitionregion,allexhibit
blueshiftsandnon-thermalvelocities.Theoutowsfromthe
ChengX,etal.SciChinaEarthSci9
Figure5 
Emissionmeasuremapsatdifferenttemperatureintervalsandinstantsshowingtheformationofasigmoidalhotchannel-likeMFRintheactive
region11520,whichcanbeclearlyseeninpanels(g)–(i)(adaptedfromChengetal.,2014b.ReproducedbypermissionoftheAAS).
reconnectionsitemaypropagatetowardthefootpointsofthe
hotchannelalongthenewlyreconnectedeldlines,produc-
ingweakredshiftsandnon-thermalvelocities.Notethat,red-
shiftsarealsoexpectedatthereconnectionsite(Innesetal.,
1997;Peteretal.,2014),which,however,couldbeabsent
intheobservedlinesbecauseofkineticallybeinglessobvi-
ousthanblueshifts.Weshouldalsomentionthat,therecon-
nectionisnotauniqueinterpretationfortheappearanceof
blueshifts,redshifts,andnon-thermalvelocities.Therota-
tionmotioncouldbeanalternativereason.
ItisworthnotingthattheMFRcanevenbeformedduring
aseriesofconnedarespriortotheeruption.Patsourakoset
al.(2013)studiedaconnedareandaneruptivearefrom
thesamesourceregionandbelievedthattherstconned
areformstheMFRbythereconnection.TheMFRthen
lossesitsequilibriumandproducestheseconderuptionabout
7hourslater.Thisdeductionisconsistentwiththeanalysisof
Guoetal.(2013),whofoundthattheQSLreconnectioninthe
interfacebetweenthecentraluxandthesurroundingelds,
manifestingasaseriesofconnedaresbeforetheeruptive
one,hasanimportantroleininjectingmagnetichelicityand
twisttotheMFR.WiththeeruptionoftheMFR,thetwist
numberandmagnetichelicityintheresidualuxthenquickly
decrease(Yangetal.,2016b;Liuetal.,2016a,2016d).
3.2.2
MFRformationduringtheeruption
IthasalsobeenproposedthattheMFRcanbequicklybuiltup
duringtheeruptionviathearereconnection.Inthetether-
cuttingmodelproposedbyMooreetal.(2001),twooppo-
sitelyshearedarcadesreconnecttoformatwistedloopdur-
ingtheonsetandearlyphaseoftheeruption.Inthebreakout
modeldevelopedbyAntiochosetal.(1999),theinitialcon-
gurationiscomprisedofcentralshearedarcadesandtwo
neighboringuxsystems.Withthecentraluxtakingoff,
aCSisformedbelowandthereconnectionthereinquickly
transformsthesheareduxestothecentraluxtoforman
eruptingMFR.Evidenceofbreakoutreconnectioninitiating
amajoreruptionisidentiedbyAulanieretal.(2000).Fol-
lowingsuchanidea,MacNeiceetal.(2004)performedan
MHDsimulationandreproducedthecompleteprocessofthe
MFReruptionincludingtheinitiation,formation,andaccel-
eration,aswellastheeventualrelaxationoftheshearedcen-
traleldtoamorepotentialstate(alsoseeLynchetal.,2008;
Karpenetal.,2012).
Correspondingly,someobservationalstudiessupportthat
theMFRevolvingsubsequentlytoaCMEisdirectlyformed
duringtheeruption.Theunambiguousevidenceisgivenby
Liuetal.(2010),whoobservedthatinthepre-arephase
twooppositeJ-shapedloopsreconnecttoformcontinuous
sigmoidalloopswiththecentralpartdippeddownand
alignedalongthePIL.Simultaneously,thecompactbright
loopscrossingthePILarealsoseen.Afterlastingformin-
utes,thesigmoidalloopsquicklyriseupandthenproduce
aCMEandaare.Throughobservingtheinteractionof
twopre-existingloopsorlamentsintheinitiationphaseof
twoeruptiveares,Chenetal.(2014b,2016a)alsonoticed
thatsomesmallbrightloopsappearedbelowtheinteraction
regionandsomenewhelicallinesconnectingthetwofar
endsofthepre-existingloopsareformedatthesametime.
Theypointedoutthattheformationprocessofthehelical
10ChengX,etal.SciChinaEarthSci
Figure6 
(a)SDO/AIA131Å,304Åimages,andSDO/HMIline-of-sightmagnetogramshowingtheformationofanMFRpriortotheeruption(top).Spec-
trogramsoftheSiIV ,CII,andMgIIlinesattheMFRformationsite(bottom).(b)Dopplervelocityandnon-thermalvelocitymapsoftheSiIVlineatthe
MFRformationsite.(c)AcartoonillustratingtheMFR(brown)formationthroughthereconnectionoftwoarcades(green)intheloweratmosphere(fordetails
pleaseseeChengetal.(2015a).ReproducedbypermissionoftheAAS).
ChengX,etal.SciChinaEarthSci11
structurebasicallyagreeswiththetether-cuttingscenario.
ObservationsrevealingtheformationoftheMFRduring
themainphaseofaresareveryrare.Songetal.(2014a)
reportedaninterestinglimberuptiveevent,whichshowsthat
theblob-likeMFRcouldbebuiltupduringtheCMEerup-
tionphase.Itisseenthattheexpansionofalow-lyingcoro-
nalarcadestretchestheoverlyingmagneticeld,whoselegs
arethencurvedin,forminganX-pointinbetween.Then,
thereconnectionneartheX-pointleadstotheformationand
eruptionofthehotbooblikeMFR.However,itisdifcultto
ensurethattheeruptingMFRisfullyfromthereconnection;it
ispossiblethatanascentMFR(e.g.,MFRseedwithastrong
twistbutasmallux)hasexistedbeforetheeruption.More-
over,agoodagreementisfoundbetweenthereconnection
uxcalculatedfromareribbonsandtheuxofmagnetic
cloudscomputedusinginsituobservationsat1AU,whichis
alsoregardedasastrongindicationofMFRformationduring
thearephase(e.g.,Linetal.,2004;Qiuetal.,2007;Huet
al.,2014;Gopalswamyetal.,2017).
4.
Initiationandearlydynamicsofsolarerup-
tions
OncetheMFReruptsoutward,itquicklyformsaCMEand
producesareemissionssimultaneously.Forare-associ-
atedCMEs,theyusuallyexperienceathree-phaseevolution:
theslowrisephase,impulsiveaccelerationphase,andprop-
agationphaseofanearlyconstantvelocity(Zhangetal.,
2001,2004).Thethreephasesroughlycorrespondtothe
threephasesofassociatedares:thepre-arephase,rise
phase,anddecayphase,respectively(Zhangetal.,2001,
2004;Qiuetal.,2004;Temmeretal.,2008,2010;Chenget
al.,2010),implyingthecouplingbetweentheCMEeruptions
andtheenergyreleaseofthearesthroughasamephysical
mechanism,mostlikelythemagneticreconnection(Linetal.,
2000;PriestandForbes,2002;ZhangandDere,2006;Linet
al.,2015).
Atpresent,weareonlyabletoforecastthelikelihoodofthe
productionofCMEs/aresempiricallyinthelightofdifferent
propertiesofactiveregionsincludingmagneticmorphology,
horizontalgradientofthemagneticeld,current,magnetic
helicity,magneticshear,non-potentiality,aswellasLorentz
forceetc.(e.g.,LekaandBarnes,2003a,2003b;Falconeret
al.,2008;Bobraetal.,2014;BobraandIlonidis,2016,Eu-
ropeanFLARECASTproject).Anaccuratedeterminationof
theonsetoferuptionsisstilldifcult,whichisprimarilydue
tothefollowingreasons:(1)theoretically,theinitiationof
CMEs/areshasnotbeenunderstoodthoroughly,(2)validat-
ingordistinguishingtheexactinitiationmechanismfromthe
possibleonesobservationallyisamatterofgreatdifculty.
Recently,SDOobservationsprovideunprecedentedhighca-
dence,highresolution,andmulti-wavelengthdata,whichal-
lowustostudytheinitiationofCMEs/aresindetail.More-
over,thenewobservationsalsoopenawindowtounderstand
thedetailedformationprocessofCMEs,inparticularthose
MFR-drivenCMEs.Inthefollowing,werstintroducevar-
ioustheoreticalmodelsthatarefrequentlyusedforinterpret-
ingtheonsetofCMEs/ares.Then,wepresentsomeobser-
vationaleffortstowardansweringtheabovequestions,inpar-
ticularsomenewknowledgeachievedontheearlydynamics
ofMFR-drivenCMEs.
4.1
Initiationofthepre-eruptiveconguration
4.1.1
Initiationbymagneticreconnection
Intermsofwhetherthereconnectionisinvolvedornot,the
existinginitiationmodelscanbedividedintotwocategories.
Therstcategoryisreconnection-basedmodelsincludingthe
tether-cuttingmodel(Mooreetal.,2001),breakoutmodel
(Antiochosetal.,1999;Karpenetal.,2012),anduxemer-
gencemodel(ChenandShibata,2000).Inthetether-cut-
tingmodel,thekeymechanismisthereconnectioninthe
sigmoidalcoreeldregion,whichtransformstwogroups
ofshearedarcadesintotwistedloops,thusprovidinganup-
wardLorentzforcetoinitiatetheeruption.Asmentionedin
Section3.2.2,thetether-cuttingreconnectioninthepre-are
phasehasbeenobservedinsomeevents(e.g.,Liuetal.,2010;
Chenetal.,2014b,2016a).
Thebreakoutmodelresortstothereconnectiontaking
placeatthenullpointthatexistsbetweenthecentralsheared
uxandoverlyingeld.Themostimportantfeatureisthat
thereconnectionsiteislocatedabovethecoreeld,rather
thaninthecoreeldasstatedinthetether-cuttingmodel.
Thereconnectionatthenullpointisabletoremovethe
constraintoftheoverlyingux,therebyreducingthedown-
wardtensionforceandallowingthecentraluxtoescape
away.Theoretically,aquadrupolarstructure,whichincludes
acentralshearedarcadeandtwoneighboringloopsystems
withanX-pointlocatedinbetweenisapromisingstructure
forbreakout-typeeruption.Observationally,abrighteningat
theX-shapedstructure,andsomeremotebrighteningsatthe
footpointsofthetwoneighboringuxes,aswellastheside-
waysmotionofthelateralloops,havebeenseentosupport
theoccurrenceofthebreakoutreconnection(Aulanieretal.,
2000;GaryandMoore,2004;Ugarte-Urraetal.,2007;Shen
etal.,2012b;Chenetal.,2016b;Revaetal.,2016).
IntheuxemergencemodelofChenandShibata(2000),
whentheemerginguxemergeswithinthelamentchannel,
itcanreconnectwiththemagneticeldbelowtheMFR.Ow-
ingtotheincreaseofmagneticpressure,theMFRmaylose
itsequilibriumandthenrisetoformaCSbelowit.Thisis
similartothetether-cuttingreconnection.Onetheotherhand,
whenreconnection-favoredemerginguxappearsandrecon-
nectswiththeouteredgeoftheMFR,thedownwardtension
forceisreduced,makingtheMFRriseup.Thiscaseissimi-
lartothelateralbreakoutreconnection.
12ChengX,etal.SciChinaEarthSci
4.1.2
MFRinitiationbyMHDinstabilities
Differentfromthereconnectionmodels,theothercategory
referstoMFR-basedidealMHDmodelsincludingcata-
strophicloss-of-equilibrium(ForbesandIsenberg,1991;
Isenbergetal.,1993;Lin,2001;LinandvanBallegooi-
jen,2002),kinkinstability(Töröketal.,2004),andtorus
instability(KliemandTörök,2006;OlmedoandZhang,
2010).ForbesandIsenberg(1991)andIsenbergetal.(1993)
documentedthatastraightMFRcanloseitsequilibrium
intheidealMHDprocesswhenthephotosphericsources
oftheconstrainingeldapproacheachother.Thetorus
instabilitymeansthattheexpansionoftheMFRtendsto
developnonlinearlyiftheconstrainingelddeclineswith
heightrapidlyenough.ForatoroidalMFRthatstartsto
becometorusunstable,thecriticaldecayindexoftheover-
lyingeldisfoundtobe1.5(KliemandTörök,2006).
OlmedoandZhang(2010)showedthatthecriticalvalueisa
functionofthefractionalnumberofthepartialMFRwiththe
footpointsanchoredinthephotosphere,i.e.,aratiobetween
thelengthofthepartialMFRabovethephotosphereand
thecircumferenceoftheMFR.Interestingly,Démoulinand
Aulanier(2010)andKliemetal.(2014a)provedthatthe
torusinstabilityisactuallyanequivalentdescriptionofthe
catastrophiclossofequilibriumoftheMFRintheMHD
framework.IfignoringtheminorradiusoftheMFR,the
criticaldecayindexis1.5and1forthecircularandstraight
MFR,respectively.However,whentheMFRisdeformable
andasthickastherealcase,theircriticalindicesvarybut
slowly,typicallyintherangeof1.1–1.3.
TheMFRwithenoughtwistcanalsobecomeunstable,an
MHDprocessknownasthekinkinstability.Itrequiresthat
thetwistnumberoftheMFRexceedsathresholdsuchas
3.5π(Töröketal.,2004;Wangetal.,2016b).Whenthe
kinkinstabilityhappens,thetopoftheMFRshouldslowly
ascendatrstiftheperturbationisupward.Then,theMFR
isquicklywrithedbytheconversionoftwistintowrithe,the
deformationoftheMFRaxis,forminganinverseγ-shaped
orΩ-shapedstructure(e.g.,Jietal.,2003;Williamsetal.,
2005;RustandLaBonte,2005;Gilbertetal.,2007;Guoet
al.,2010a;Y anetal.,2014;HassaninandKliem,2016).At
thesametime,theheightoftheMFRincreasesexponentially
(Schrijveretal.,2008a),whichthencausesthereconnection
atthecrosspointoftwoMFRlegs(e.g.,LiuandAlexander,
2009;Kliemetal.,2010;Tripathietal.,2013).Itisworth
noticingthattherapidrotationoftheMFRaxisisusuallyre-
gardedasaconditionbutnotasufcientoneforjudgingthe
occurrenceofkinkinstability(Lynchetal.,2009).
Recently,Aulanieretal.(2010)comparedthedistinct
mechanismsthroughazero-βMHDsimulation.They
disclosedthat,priortotheeruption,uxcancellationand
tether-cuttingreconnectioncontinuouslyworktobuildup
theMFRandmakeitascending.Whenrisingtothecritical
heightatwhichtheidealtorusinstabilityoccurs,theMFR
thenstartstoerupt.Aulanieretal.(2010)thusarguedthatthe
reconnection-involvedprocessesdonottriggertheeruption
butactasthekeymechanismsoftheMFRformationandits
slowrise.Themechanismthatinitiatestheeruptionofthe
MFRistheidealtorusinstability.
4.1.3
Validationoftorusinstability
Inthepastyears,manystudiesattemptedtovalidateanddis-
tinguishtherightmodelfromtheavailableinitiationmodels,
inparticularthetorusinstability,mainlybecausewhichcan
betestedfromobservationsquantitatively.Ageneralway
istocomparethedecayindexofthebackgroundeldatthe
criticalheightwiththetheoreticalvalue.Thecriticalheight
isestimatedroughlyastheheightoftheMFRjustbeforethe
eruption(e.g.,Chengetal.,2011a;Nindosetal.,2012;Jiang
etal.,2013;Chenetal.,2014b;Inoueetal.,2014;Zuccarello
etal.,2014;Chintzoglouetal.,2015;Wangetal.,2016c).
Thebackgroundmagneticeldisthencalculatedusingpo-
tentialeldmodel.Ifthedecayindexofthebackgroundeld
attheonsetheightislargerthanthethresholdof~1.5,itis
usuallysuggestedthatthetorusinstabilityplaysaroleintrig-
geringtheeruptions.
However,estimationofthecriticalheightoftheMFRerup-
tionusuallysuffersfromasignicantuncertainty.Inorderto
resolvethisissue,Chengetal.(2013b)devisedamathematic
modelthatassumestheheightevolutionoftheMFRinthe
lowercoronafollowingafunctionh(t)=c0e(tt0)/τ+c1(tt0)+c2,
whereh(t)isheight,tistime,andτ,t0,c0,c1,c2arevefree
coefcients.Themodelconsistsofalineartermandanexpo-
nentialterm,whichcorrespondtotheslowrisephasewitha
constantvelocityandtheimpulsiveaccelerationphasechar-
acterizedbyanexponentialincreaseofvelocity,respectively.
Physically,thisexponentialtermisreasonablebecauseitde-
scribestheimpulsiveaccelerationoftheMFR(Schrijveret
al.,2008b)whenitistriggeredeitherbythearereconnection
(e.g.,Antiochosetal.,1999;Mooreetal.,2001;Karpenetal.,
2012)orbyotherMHDinstabilities(e.g.,TörökandKliem,
2005;OlmedoandZhang,2010).Applyingthemathematic
modeltotwoMFReruptionevents,Chengetal.(2013b)
quantitativelydeterminedtheonsettimeoftheMFRimpul-
siveacceleration,andfoundthattheonsettimeis~2minutes
earlierthanthatoftheassociatedares(Figure7a).Simi-
larly,throughanalyzingthetemporalcorrelationbetweenthe
velocityofalamenteruptionandtheassociatedSXRemis-
sion,Songetal.(2015)alsofoundthatthebeginningofthe
lamentaccelerationoccursearlierthanthatoftheareSXR
emissionbyminutes.CombingthefactthattheMFRhasas-
cendedtoaheightattheonsettimewherethedecayindexof
theoverlyingeldislargerthanthethresholdof1.5(Figure
7b),itissuggestedthattheidealtorusinstabilityplaysakey
roleininitiatingtheimpulsiveaccelerationoftheMFR.
Studyingthemagneticenvironmentofconnedarescan
ChengX,etal.SciChinaEarthSci13
Figure7 
(a)Temporalevolutionoftheheight,velocity,andaccelerationoftheMFRduringtheearlyeruptionwiththeblacksolidlinesshowingthemodel
tting.TheredsolidlinesshowtheGOESSXR1–8Åuxandresultingtimederivation.Theverticalblue(horizontal)lineestimatestheonsettime(height)
oftheeruption.Theverticalredlinepointsouttheonsettimeoftheare.(b)Distributionsofthebackgroundmagneticelddecayindexwithheightoverthe
differentsegmentsofthePILofaCME-productiveactiveregion.TheverticallinesdisplaytheonsetheightsoftheMFReruptionwithblueandgreenbars
showingtheuncertainties.Thehorizontallineindicatesthethreshold1.5oftorusinstability(fromChengetal.,2013b.ReproducedbypermissionoftheAAS).
(c)Distributionsofthebackgroundmagneticeld(black)andtheresultingdecayindex(green)withheightoveraCME-pooractiveregion.Thehorizontal
dashedlinealsoshowsthethreshold1.5(adaptedfromSunetal.,2015b.ReproducedbypermissionoftheAAS).
alsohelptodistinguishthedistinctinitiationmechanisms.A
goodexamplethathasbeenwellanalysedistheare-produc-
tivebutCME-pooractiveregion12192,whichproduced32
M-classand6X-classareswithonlyoneassociatedwith
aCME.Throughcomparingthisactiveregionwithother
are-and-CME-productiveactiveregions,Sunetal.(2015b)
foundthatthebackgroundmagneticeldintheactiveregion
12192ismuchstrongerthanthatofothers(Figure7c).The
decayindexinthelowercorona(e.g.,30–100Mm)isalso
smallerthanthethresholdoftorusinstability(alsoseeWang
andZhang,2007;Chenetal.,2015;Thalmannetal.,2015;
Jiangetal.,2016b).Ofcourse,thedecayofthebackground
magneticeldbeingrapidenoughisnotauniquecondition
fortorusinstabilitytotakeplace.Anotherconditionisthe
pre-existenceofanMFRinthesourceactiveregion(Liuet
al.,2016b).Moreover,Zuccarelloetal.(2017b)noticedthat
thechangeofthearesfromeruptivetoconnedisalsoin-
uencedbythevariationintheorientationofthepre-eruptive
magneticcongurationwithrespecttotheoverlyingeld,
ratherthanmerelytheoverallchangeoftheMHDstability.
Inthepastyears,muchattentionhasalsobeenpaidtothe
onsetconditionoffailederuptions.Guoetal.(2010a)stud-
iedalamenteruptionthatrstlydisplaysafastrisingand
writhingmotionbutisnallyconnedinthelowercorona.
Throughexaminingtheheightdistributionofthedecayindex
ofthebackgroundmagneticeld,theyfoundthatthedecay
indexinthehighercoronadoesnotcontinuouslyincrease,
insteaditstartstodecreaseandstaysbelowthethresholdfor
thetorusinstability,thusleadingtotheconnementofthel-
amenteruption(alsoseeWangandZhang,2007;Liu,2008;
Chengetal.,2011a;Joshietal.,2014b;Liuetal.,2015).
Inaddition,throughalaboratoryexperiment,Myersetal.
(2015)foundthattheconnementoftheMFReruptionis
alsocontrolledbytheguidemagneticeld,thecomponentof
thebackgroundeldthatrunstoroidallyalongtheMFRaxis,
whichinteractswithelectriccurrentsintheMFRtogenerate
atoroidaleldtensionforcetorestricttheeruption.
Oneshouldbeverycarefulwhendeterminingthedecayin-
dexatthecriticalheight.WiththehelpofMHDsimulations,
Zuccarelloetal.(2016)foundthatthedecayindexatthe
14ChengX,etal.SciChinaEarthSci
heightoftheMFRaxisisdifferentfromthatattheheightof
theMFRtop.ItissuggestedthatthesizeoftheMFRshould
notbeignoredobservationallywhenestimatingtheheightof
theMFR.
Amarietal.(2000,2010,and2011)showedthatuxcan-
cellationisabletobringtheinitialequilibriumcontaininga
twisteduxropetonalnon-equilibriumstateassociatedto
theonsetoftheeruptiontoacriticalvalueoffreeenergy.
Theynallyuniedthisenergycriteriaandthetorusinstabil-
ityoneinthecaseoflargescaleeruption(Amarietal.,2014).
4.2
EarlydynamicsofMFR-drivenCME
4.2.1
FormationoftheCME
Althoughitisknownthattheeruptionofvariouspre-eruptive
structurescanproduceCMEs,howdotheybuildupCMEsis
stillaquestion.Themainobstaclesarethat(1)lackofthe
lowercoronaobservationsthathaveanenoughlargeeldof
view(e.g.,extendingto~1.5R)toguaranteethecomplete
CMEformationprocessobservableand(2)lackofhighca-
denceandhighresolutiondataasthedynamicaltimescaleof
theCMEformationisveryshort,usuallyoftheorderofmin-
utes.
AfterthelaunchofSTEREOandSDOsatellites,the
abovetwoobstaclesareovercometosomeextent.Usingthe
STEREO-EUVIdata,Patsourakosetal.(2010a)studieda
limbCMEandfoundthatitoriginatesfromtheexpansionof
aplasmabubble.Shortlyaftertheonsetoftheacceleration,
aneruptingbubbleshowsafastoverexpansion,whichis
roughlycoincidentwithitsimpulsiveacceleration,andit
isthenfollowedbyaself-similarexpansionprocess.The
authorsattributedtheoverexpansiontotheuxconservation
aroundarisingMFRofdecreasingaxialcurrentandtheux
injectiontoagrowingMFRbythereconnection.Withthe
highcadenceSDO-AIAdata,Patsourakosetal.(2010b)
foundthattheplasmabubbleevenexperiencesanevolution
ofthreephases:aslowself-similarexpansion,afastbut
short-livedperiodofstronglateraloverexpansion,anda
self-similarexpansion.Theyarguedthatitisthelateral
overexpansionoftheplasmabubblethatcreatestheCME.
However,theyalsofoundthattheoverexpansionhappens
duringthedecliningphaseoftheare,thusweakeningthe
roleofthearereconnectionininducingtheoverexpansion.
Sometimes,theoverexpansionisalsobelievedtobethe
originofcompressionregionswheretypeIIandIIIbursts
areproduced(e.g.,Démoulinetal.,2012).
Thediscoveryofthehotchannelfurtherimprovesourun-
derstandingoftheCMEformation.Chengetal.(2013a)in-
vestigatedindetailtwoCMEeventsandfoundthatthefor-
mationoftheCMEsiscompletelycontrolledbythedynamics
ofthehotchannels.IntheAIAhightemperaturepassbands,a
hotchannelappearsastheS-shapedstructurewithitsaxisal-
mostparallelwiththePIL.Afterexperiencingashortperiod
ofrisingmotion,thehotchanneldevelopsintothesemicircu-
larstructureandthenquicklyexpandsoutwardandspeedsup.
Atthesametime,intheAIAlowtemperaturepassbands,itis
clearlyseenthataplasmabubbleappearsandalsohasafast
expansionandascendingmotion,verysimilartotheevents
analyzedbyPatsourakosetal.(2010a)andPatsourakosetal.
(2010b).Grechnevetal.(2016)alsodisclosedthesimilar
formationprocessofalimbCMEthatisdrivenbytheerupt-
inghotMFR.Throughacarefulanalysis,itisfoundthatthe
speedofthehotchannelisalwaysfasterthanthatofthebub-
ble(Chengetal.,2013a).Moreover,thehotchannelnotonly
hasanoverexpansionbutalsocoincideswiththeoverexpan-
sionoftheplasmabubble.Therefore,itisarguedthatearly
dynamicsofaCMEessentiallydependsonthatofembedded
hotchannel,whichactsasacentralenginetodrivetheCME
formationandacceleration.
4.2.2
Emissioncausedbyenergeticparticles
Intheaccelerationphase,asexpectedbythestandard
CME/aremodel(Carmichael,1964;Sturrock,1966;Hi-
rayama,1974;KoppandPneuman,1976),theeruption
stretchestheoverlyingmagneticelds,formingaCSin
thewakeoftheeruptingMFR(e.g.,Linetal.,2005,2007;
CiaravellaandRaymond,2008;Chengetal.,2011b;Lietal.,
2016a;Zhuetal.,2016;Seatonetal.,2017).Thereconnec-
tionintheCSefcientlyinjectspoloidaluxestotheMFR
andthusacceleratesitseruption.Thereconnectiontypically
lastsforminutestohours,whichismainlymaintainedby
sinkowscausedbyinward-directedmagneticpressure
gradientatbothsidesoftheCS(Zuccarelloetal.,2017a).Si-
multaneously,thereconnectionaccelerateselectrons,which
thenquicklystreamdownalongthenewlyformedareloops
toheattheirfootpoints,mappingtwoparallelbrightribbons
inthechromosphere(ForbesandPriest,1995;Tianetal.,
2014;Chengetal.,2015b).
TodisclosetherelationshipbetweentheeruptingMFRand
particleaccelerationandfurtherdeterminethelocationofpar-
ticlesacceleration,oneusuallyneedstocomparetheHXR
emissionsourceswiththedynamicsofCMEs/ares.Liuet
al.(2013)analyzedtheCScausedbytheeruptingMFRand
foundthatbothbi-directionaloutowsinformsofplasmoids
andcontractingcusp-shapedloopsoriginateinbetweenthe
hotMFRandareloops(leftpanelofFigure8a).Moreover,
theseoutowsareco-spatialwithseparateddoublecoronal
X-raysources(alsoseeSunetal.,2014).Thecentroidsep-
arationofdoublecoronalsourcesdecreaseswithenergybut
increaseswithtime(rightpanelofFigure8a).Afterwards,in
thelaterphaseofthereconnection,manydarkvoidsarealso
seentomovetowardthearearcadeswithintheCS(McKen-
zie,2000;Innesetal.,2003;Liu,2013).Theseobservations
showacloserelationshipbetweentheeruptingMFRandthe
productionofenergeticparticles,suggestingthatthelatter
maymainlyoccurinthereconnectionoutowregionsrather
ChengX,etal.SciChinaEarthSci15
Figure8 
(a)ThecentroidlocationsandevolutionsofHXRemissionsinducedbytheeruptingMFR(fordetailspleaseseeLiuetal.,2013).(b)Thesource
ofmetrictypeIIradioburstproducedbytheCME-drivenshock(fordetailspleaseseeChenetal.,2014d).ReproducedbypermissionoftheAAS.
thanintheCS.
Observationsattheradiowavelengthalsoprovideanim-
portantperspectivetoexplorewhereparticlesareaccelerated
duringtheeruption.AstheMFRisacceleratedcontinuously,
acoronalshockmayappearatthefrontofCMEs,whichis
provedbytheappearanceofmetrictypeIIradiobursts(e.g.,
Shenetal.,2007;Liuetal.,2009,2017;Maetal.,2011;
Bainetal.,2012;Fengetal.,2012;Carleyetal.,2013).
TheformationoftheshockisdrivenbytheCMEexpansion
(Kouloumvakosetal.,2014;Cunha-Silvaetal.,2015;W an
etal.,2016).Theaverageheightofshocksattheonsettime
oftypeIIburstswasestimatedtobe0.5solarradius(Gopal-
swamyetal.,2009)withthesmallestvalueof0.2(W anet
al.,2016).ThetypeIIburstsourcesareusuallybelieved
tobelocatedatthetopoftheshockfront(Zimovetsetal.,
2012;Grechnevetal.,2015,2016).However,throughcom-
paringthephysicalparametersoftheshockfrontderivedby
theDEMmethodwiththatderivedfromtheband-splitting
ofthetypeIIburst,Suetal.(2016)foundthatthesources
ofthetypeIIradioburst,atleastfortheeventtheystudied,
arelocatedattheankoftheshock.Thisresultisconsistent
withthedirectcomparisonoftheNancayradioimageswith
reconstructed3Dmorphologyoftheshockwaveasdoneby
Chenetal.(2014d),whoforthersttimeidentiedthatthe
typeIIradiosourcesoriginateinaninteractionregionofthe
shockankandnearbycoronalray(Figure8b).
Radioimagingisalsoapowerfultooltotracethedynami-
calevolutionoftheMFRandassociatedfeatures(Picketal.,
2005;PickandVilmer,2008;Démoulinetal.,2012).V ery
recently,theeruptinghotMFRhasbeenobservedintheradio
wavelength.WiththeNobeyamaRadioheliographobserva-
tionat17GHz,Wuetal.(2016)presentedtherstmicrowave
observationscorrespondingtoahotMFRthatappearsasan
overallarcade-likecongurationconsistingofseveralinten-
sityenhancementsconnectedbyweakemissions.V asanthet
al.(2016)evenobservedanobviousMFRstructureinthe
metricwavelengthandfoundthattheassociatedradioemis-
sionmanifestsasamovingtype-IVburstwiththeirsources
co-movingwiththemotionofthehotMFR.Theseobserva-
tionsindicatethatelectronsarealsoprobablyacceleratedand
trappedwithintheMFRduringtheeruption.
4.2.3
3Dstructureandproperties
ThestandardCME/aremodelthatwellinterpretsmanyas-
pectsofthecharacteristicsofCMEs/aresisessentially2D.
Inreality,theCME/areprocessis3D(Aulanieretal.,2012;
Janvieretal.,2013).ChengandDing(2016)foundthatthe
axisofthepre-eruptiveMFRofCMEs/areshasasignicant
16ChengX,etal.SciChinaEarthSci
writhingevidencedbythebigratioofitsprojectedlengthto
footpointseparationdistance.Theorientationoftheaxisof
theMFRalsosignicantlydeviatesfromthatofthemainPIL
priortotheeruption.Moreover,theareloopsarestrongly
shearedinitially,butthesheargraduallybecomeweakwith
thedevelopmentofCMEs/ares(Suetal.,2007).Thesechar-
acteristicsshowthatboththepre-eruptiveMFRandtheback-
groundmagneticeldare3DinnatureandtheMFR-induced
CME/areprocessisalso3D.Inordertounderstandthe3D
processofCMEs/ares,Aulanieretal.(2012)andJanvier
etal.(2013)extendedthe2DstandardCME/aremodelto
3D,withwhichmanynewfeaturescanbeinterpreted.The
strong-to-weaktransitionoftheshearoftheareloopsis
foundtobearesultoftheshearofreconnectedoverlyingeld
graduallydecreasingwithincreasingheight(Schmiederetal.,
1996).
DuringtheMFReruption,theinducedareribbonsalso
displayparticularfeaturesintheirmorphologiesandevo-
lution.TheyinitiallyappearasEUV/UVbrighteningsat
thetwoendsoftheMFRandthenextendtotwosheared
J-shapedribbonswithtwohookssurroundingthefootpoints
oftheMFRs(ChengandDing,2016),probablycorrespond-
ingtothefootprintsofthecurvedQSLsinthechromosphere
(Savchevaetal.,2015).AtthefootpointsoftheMFR,both
theaverageinclinationangleandthedirectcurrentdecrease
withtimesuggestiveofastraighteninganduntwistingofthe
magneticeldoftheMFRlegs(ChengandDing,2016).
Theseobservationsarebasicallyconsistentwiththe3D
standardCME/aremodelofAulanieretal.(2012)and
Janvieretal.(2013).Notethat,however,thecurrentattwo
parallelareribbonscanbedoubledascomparedwiththe
prearevalue,contrarytothatatthefootpointsoftheMFR,
probablyasaconsequenceofthecollapseofthecoronal
currentlayerduringtheareassuggestedbyJanvieretal.
(2014)andJanvieretal.(2016).
Themorphologiesofareribbonsalsodependonthethree-
dimensionalityofthebackgroundeldabovethepre-eruptive
MFR.Sunetal.(2012)studiedanon-radialMFReruptionin
aquadrupolarcongurationwithanullpointlocatedabove.
Throughananalysisofmagnetictopology,theypointedout
thatthesimultaneousbrighteningofmultiplepairsofare
ribbonsisaresultofthereconnectionbetweenthedifferent
uxesinthequadrupolarsystem(alsoseeJiangetal.,2014a;
Joshietal.,2015;Zhangetal.,2015b).Inadifferentevent,
however,Y angetal.(2015a)foundthatthenullpointcanalso
beembeddedwithinthequadrupolarstructure.Inthiscase,
theeruptionofanMFRlocatedblowthenullpointleadstoa
three-ribbonarewithtwohighlyelongatedonesinsideand
outsideaquasi-circularone,respectively.Veryrecently,a
closeattentionisalsopaidtoX-shapedareribbons.Lietal.
(2016b)foundthatthearebrighteningspropagatealongthe
ribbonstowardthecenterofanX-structure,andthenspread
outwardinadirectionmoreperpendiculartotheribbons.Itis
interpretedastheevidenceof3Dreconnectionthathappens
betweentwosetsofnon-coplanarloopsthatapproachlater-
allyandproceedsdownwardalongasectionoftheCS.How-
ever,Liuetal.(2016c)attributedtheX-shapedribbonstothe
intersectionoftwoQSLlayers,i.e.,theHFT ,withinwhicha
separatorconnectingdoublenullsisembedded.Infact,even
formostofobservedareswithtwoparallelribbons,there-
connectionisalso3Dinnature.Usingthetwoperspectives
ofSTEREOandSDO,Sunetal.(2015a)reportedawellob-
servedlimbareandclearlyshowedthattwogroupsofeld
linesoverlyingtheeruptingMFRareoppositelydirectedand
non-coplanarwhentheyreconnect,indicatingthepresenceof
aquasiseparator.Afterthereconnection,thepoloidaluxes
newlyaddedtotheMFRarehighlyhelicalandtheirtwoends
arestillanchoredinthephotosphere(Figure9).
5.
Summaryandprospects
CMEs/aresarelarge-scaleandmostenergeticeruptivephe-
nomenainthesolarsystem.Theejectedhigh-speedmagne-
tizedplasmaandacceleratedparticlesmayhittheEarthand
thusseriouslyaffectthesafetyofhumanhigh-techactivities.
Inthepastdecades,anewinterdisciplinaryeldcalledspace
weatherthatreferstothesolaractivities,thesolarwindand
theirinuencesonthemagnetosphere,ionosphere,andther-
mosphereofourEarthhaveemerged.Inordertounderstand
theoriginofspaceweather,asignicantbutstillunsolvedis-
Figure9 
Reconstructed3Dtopologyoftwomagneticeldlines(cyanandgreencurves)before,duringandafterthereconnection.Thebottomboundaries
areprojectedEUVI304Åimagesdisplayingtheareribbons(fromSunetal.,2015a).
ChengX,etal.SciChinaEarthSci17
sueisunderstandingtheoriginandstructuresofCMEs/ares.
Inthepastyears,signicantprogressesinthisaspecthave
beenachieved.Fromobservationalperspective,wesumma-
rizethemajorndingsandnewunderstandingsasfollows:
(1)Thepre-eruptivecongurationofCMEs/aresismore
likelytobeanMFR,whichcanmanifestitselfasalament,
lamentchannel,cavity,sigmoid,andhotchanneletc.,inde-
pendenceonthesize,twist,andwritheoftheMFRcongu-
ration,theviewingangle,andthewavelengthatwhichobser-
vationisperformed.Inthefuture,weneedamoreadvanced
MHDsimulationthatcanreproducealltheseobservables.In
reality,thepre-eruptivecongurationofCMEs/aresmaynot
beassimpleasanisolatedhelicalMFR.Somespecicchar-
acteristicssuchasdouble-deckerstructuresandpartialerup-
tionsshouldalsobeconsidered.
(2)TheformationoftheMFRisproposedeitherduetoa
directemergenceoraslowreconnectioninthecoronaprior
totheeruption,orsometimesevenduetothefastreconnec-
tionduringtheare.Inmostobservations,thereconnection
scenarioseemsamorefavorableexplanationfortheMFRfor-
mation.MHDsimulationsshowthatthebodilyemergingof
awholeMFRistheoreticallydifcult.Thereconnectionis
thusneededtotransfersomeemergeduxesintoanewMFR
systeminthecoronapriortotheeruption.However,thefol-
lowingquestionsarestillunclearandneedtobeexploredfur-
ther:howdoesthereconnectionexactlybuildupanMFR?
WhatisthetimescaleoftheMFRformation?Whatarethe
indispensablefeatures?Howmuchuxesareneededtobuild
upanunstableMFR?CanwedistinguishtheunstableMFR
fromthestableoneobservationally?
(3)TheeruptionoftheMFRgenerallyexperiencesaslow
risephasefollowedbyanimpulsiveaccelerationphasechar-
acterisedbyanexponentialincreaseinheight.Theinitia-
tionmechanismsforthetwophasesaredifferentandneed
tobeclariedrespectively .Itisarguedthattheinitiationof
theslowrisephasecouldbeduetodiversereasonsincluding
magneticreconnection,MHDinstabilities,andwavepertur-
bationsaslongastheequilibriumoftheMFRisbroken.The
transformationoftheslowrisephasetothefastacceleration
oneismostlikelyaresultofMHDinstabilities.Shortlyaf-
terwards,themagneticreconnectionisthenignitedtocontin-
uouslyacceleratetheMFReruption.However,moreobser-
vationsareneededtoconrmthisargument.
(4)TheMFRis3Dinnature,e.g.,awrithedhotchan-
nel-likecongurationwithitstwoelbowsincliningtoop-
positedirectionsandthemiddlepartdippedtowardthesur-
face.TheMFReruptionandtheinducedareoftenshow
somenewpropertiessuchasJ-shapedandX-shapedarerib-
bons,strong-to-weakchangeofareloopshear,asymmetric
orpartialeruptions,sequentialreconnectionalongthePIL
etc.Therefore,arealMFReruptionprocesscouldbemuch
morecomplexthanthata2Dmodelpredicts.Inordertothor-
oughlyunderstandallobservables,3DMHDsimulationsthat
considersomespecicphysicalprocesses(e.g.,Törökand
Kliem,2005;Töröketal.,2011;Aulanieretal.,2010)and
3Ddata-drivenMHDsimulations(e.g.,CheungandDeRosa,
2012;Kliemetal.,2013;Fisheretal.,2015;Jiangetal.,
2016a),evenincludingtheradiativetransfer(e.g.,Rempel,
2017),areimminentlyneeded.Moreover,theeruptionofan
MFRin3Dmaycomplicatetheprocessofparticleaccelera-
tion,whichshouldbeconsideredinthefutureaswell.
Acknowledgements

Wear egratefultotheassociateeditorand
threeanonymousreferees,whosecommentsandsuggestsimprovedthe
manuscript.W ealsothankProf.FengXSandProf.WanWXforcordial
invitationtowritethereviewpaperandtherstISSIworkshopon“Decod-
ingthePre-EruptiveMagneticCongurationofCoronalMassEjections”
ledbyS.PatsourakosandA.V ourlidasforusefuldiscussions.ChenX,Guo
Y,andDingMDaresupportedbytheFundamentalResearchFundsfor
theCentralUniversities,theNationalNaturalScienceFoundationofChina
(GrantNos.1 1303016,11373023,11533005,1 1203014)andNationalKey
BasicResearchSpecialFoundation(GrantNo.2014CB744203).
References
AmariT ,CanouA,AlyJJ.2014.Characterizingandpredictingthemagnetic
environmentleadingtosolareruptions.Nature,514:465–469
AmariT,LucianiJF,MikicZ,LinkerJ.1999.Three-dimensionalsolu-
tionsofmagnetohydrodynamicequationsforprominencemagneticsup-
port:T wistedmagneticuxrope.AstrophysJ,518:L57–L60
AmariT,LucianiJF,MikicZ,LinkerJ.2000.Atwisteduxropemodel
forcoronalmassejectionsandtwo-ribbonares.AstrophysJ,529:
L49–L52
AmariT,LucianiJF ,AlyJJ,MikicZ,LinkerJ.2003a.Coronalmass
ejection:initiation,magnetichelicity,anduxropes.I.Boundarymo-
tion-drivenevolution.AstrophysJ,585:1073–1086
AmariT,LucianiJF,AlyJJ,MikicZ,LinkerJ.2003b.Coronalmassejec-
tion:initiation,magnetichelicity,anduxropes.II.Turbulentdiffu-
sion-drivenevolution.AstrophysJ,595:1231–1250
AmariT,AlyJJ,MikicZ,LinkerJ.2010.Coronalmassejectioninitiation:
Onthenatureoftheuxcancellationmodel.AstrophysJ,717:L26–L30
AmariT ,AlyJJ,LucianiJF ,MikicZ,LinkerJ.2011.Coronalmassejection
initiationbyconvergingphotosphericows:T owardarealisticmodel.
AstrophysJ,742:L27
AntiochosSK,DahlburgRB,KlimchukJA.1994.Themagneticeldof
solarprominences.AstrophysJ,420:L41–L44
AntiochosSK,DeV oreCR,KlimchukJA.1999.Amodelforsolarcoronal
massejections.AstrophysJ,510:485–493
ArchontisV ,HoodAW.2009.FormationofEllermanbombsdueto3Dux
emergence.AstronAstrophys,508:1469–1483
ArchontisV ,TörökT.2008.Eruptionofmagneticuxropesduringux
emergence.AstronAstrophys,492:L35–L38
ArchontisV ,HoodAW ,SavchevaA,GolubL,DelucaE.2009.Onthe
structureandevolutionofcomplexityinsigmoids:Auxemergence
model.AstrophysJ,691:1276–1291
AulanierG,SchmiederB.2002.ThemagneticnatureofwideEUVlament
channelsandtheirroleinthemassloadingofCMEs.AstronAstrophys,
386:1106–1122
AulanierG,DeV oreCR,AntiochosSK.2006.Solarprominencemerging.
AstrophysJ,646:1349–1357
AulanierG,JanvierM,SchmiederB.2012.Thestandardaremodelinthree
dimensions.AstronAstrophys,543:A110
AulanierG,DémoulinP ,vanDriel-GesztelyiL,MeinP,DeforestC.1998.
3-Dmagneticcongurationssupportingprominences.II.Thelateralfeet
asaperturbationofatwistedux-tube.AstronAstrophys,335:309332
18ChengX,etal.SciChinaEarthSci
AulanierG,DémoulinP,MeinN,vanDriel-GesztelyiL,MeinP,Schmieder
B.1999.3-Dmagneticcongurationssupportingprominences.III.Evo-
lutionofnestructuresobservedinalamentchannel.AstronAstro-
phys,342:867880
AulanierG,DeLucaEE,AntiochosSK,McMullenRA,GolubL.2000.
Thetopologyandevolutionofthebastilledayare.AstrophysJ,540:
1126–1142
AulanierG,TörökT,DémoulinP ,DeLucaEE.2010.Formationoftorus-
unstableuxropesandelectriccurrentsineruptingsigmoids.Astrophys
J,708:314–333
BainHM,KruckerS,GlesenerL,LinRP.2012.Radioimagingof
shock-acceleratedelectronsassociatedwithaneruptingplasmoidon
2010November3.AstrophysJ,750:44
Bak-StęślickaU,GibsonSE,FanY,BethgeC,ForlandB,RachmelerLA.
2013.Themagneticstructureofsolarprominencecavities:Newobser-
vationalsignaturerevealedbycoronalmagnetometry .AstrophysJ,770:
L28
BernasconiPN,RustDM,GeorgoulisMK,LabonteBJ.2002.Moving
dipolarfeaturesinanemerginguxregion.SolPhys,209:119–139
BobraMG,IlonidisS.2016.Predictingcoronalmassejectionsusingma-
chinelearningmethods.AstrophysJ,821:127
BobraMG,SunX,HoeksemaJT ,TurmonM,LiuY ,HayashiK,BarnesG,
LekaKD.2014.Thehelioseismicandmagneticimager(HMI)vector
magneticeldpipeline:SHARPs―Space-weatherHMIActiveRegion
Patches.SolPhys,289:3549–3578
BurlagaLF.1988.Magneticcloudsandforce-freeeldswithconstantalpha.
JGeophysRes,93:7217–7224
ByrneJP,MaloneySA,McAteerRTJ,RefojoJM,GallagherPT.2010.
PropagationofanEarth-directedcoronalmassejectioninthreedimen-
sions.NatCommun,1:1–8
CaneldRC,HudsonHS,McKenzieDE.1999.Sigmoidalmorphology
anderuptivesolaractivity.GeophysResLett,26:627–630
CanouA,AmariT.2010.Atwisteduxropeasthemagneticstructureofa
lamentinactiveregion10953observedbyHINODE.AstrophysJ,715:
1566–1574
CaoW ,GorceixN,CoulterR,AhnK,RimmeleTR,GoodePR.2010.
Scienticinstrumentationforthe1.6mNewSolarTelescopeinBigBear .
AstronNachr,331:636–639
CarleyEP,LongDM,ByrneJP ,ZuccaP,ShaunBloomeldD,McCauley
J,GallagherPT.2013.Quasiperiodicaccelerationofelectronsbyaplas-
moid-drivenshockinthesolaratmosphere.NatPhys,9:811–816
CarmichaelH.1964.Aprocessforares.NASASpecPubl,50:451
ChenB,BastianTS,GaryDE.2014a.Directevidenceofaneruptive,
lament-hostingmagneticuxropeleadingtoafastsolarcoronalmass
ejection.AstrophysJ,794:149
ChenH,ZhangJ,ChengX,MaS,YangS,LiT.2014b.Directobservations
oftether-cuttingreconnectionduringamajorsolareventfrom2014Feb-
ruary24to25.AstrophysJ,797:L15
ChenH,ZhangJ,MaS,Y angS,LiL,HuangX,XiaoJ.2015.Connedares
insolaractiveregion12192from2014October18to29.AstrophysJ,
808:L24
ChenH,ZhangJ,LiL,MaS.2016a.Tether-cuttingreconnectionbetween
twosolarlamentstriggeringoutowsandacoronalmassejection.As-
trophysJ,818:L27
ChenJ.1996.Theoryofprominenceeruptionandpropagation:Interplane-
taryconsequences.JGeophysRes,101:27499–27519
ChenPF.2011.Coronalmassejections:Modelsandtheirobservational
basis.LivingRevSolPhys,8:1
ChenPF ,ShibataK.2000.Anemerginguxtriggermechanismforcoronal
massejections.AstrophysJ,545:524–531
ChenPF ,HarraLK,FangC.2014c.Imagingandspectroscopicobserva-
tionsofalamentchannelandtheimplicationsforthenatureofcounter-
streamings.AstrophysJ,784:50
ChenY ,DuG,FengL,FengS,KongX,GuoF ,W angB,LiG.2014d.Asolar
typeiiradioburstfromcoronalmassejection-coronalrayinteraction:
simultaneousradioandextremeultravioletimaging.AstrophysJ,787:
59
ChenY,DuG,ZhaoD,WuZ,LiuW ,WangB,RuanG,FengS,SongH.
2016b.Imagingamagnetic-breakoutsolareruption.AstrophysJ,820:
L37
ChengX,DingMD.2016.Thecharacteristicsofthefootpointsofsolar
magneticuxropesduringeruptions.AstrophysJSupplSer,225:16
ChengX,DingMD,FangC.2015a.Imagingandspectroscopicdiagnostics
ontheformationoftwomagneticuxropesrevealedbySDO/AIAand
IRIS.AstrophysJ,804:82
ChengX,DingMD,ZhangJ.2010.Astudyofthebuild-up,initiation,
andaccelerationof2008April26coronalmassejectionobservedby
STEREO.AstrophysJ,712:1302–1310
ChengX,ZhangJ,DingMD,GuoY ,SuJT.2011a.Acomparativestudyof
connedanderuptivearesinNOAAAR10720.AstrophysJ,732:87
ChengX,ZhangJ,LiuY ,DingMD.2011b.Observinguxropeformation
duringtheimpulsivephaseofasolareruption.AstrophysJ,732:L25
ChengX,ZhangJ,SaarSH,DingMD.2012.Differentialemissionmeasure
analysisofmultiplestructuralcomponentsofcoronalmassejectionsin
theinnercorona.AstrophysJ,761:62
ChengX,ZhangJ,DingMD,OlmedoO,SunXD,GuoY,LiuY.2013a.
Investigatingtwosuccessiveuxropeeruptionsinasolaractiveregion.
AstrophysJ,769:L25
ChengX,ZhangJ,DingMD,LiuY,PoomvisesW.2013b.Thedriverof
coronalmassejectionsinthelowcorona:Auxrope.AstrophysJ,763:
43
ChengX,DingMD,ZhangJ,SunXD,GuoY ,WangYM,KliemB,Deng
YY.2014a.Formationofadouble-deckermagneticuxropeinthe
sigmoidalsolaractiveregion11520.AstrophysJ,789:93
ChengX,DingMD,ZhangJ,SrivastavaAK,GuoY,ChenPF,SunJQ.
2014b.Ontherelationshipbetweenahot-channel-likesolarmagnetic
uxropeanditsembeddedprominence.AstrophysJ,789:L35
ChengX,DingMD,GuoY ,ZhangJ,V ourlidasA,LiuYD,OlmedoO,Sun
JQ,LiC.2014c.Trackingtheevolutionofacoherentmagneticuxrope
continuouslyfromtheinnertotheoutercorona.AstrophysJ,780:28
ChengX,HaoQ,DingMD,LiuK,ChenPF,FangC,LiuYD.2015b.A
two-ribbonwhite-lightareassociatedwithafailedsolareruptionob-
servedbyONSET,SDO,andIRIS.AstrophysJ,809:46
CheungMCM,DeRosaML.2012.Amethodfordata-drivensimulations
ofevolvingsolaractiveregions.AstrophysJ,757:147
CheungMCM,IsobeH.2014.FluxEmergence(Theory).LivingRevSolar
Phys,11:3
ChintzoglouG,PatsourakosS,V ourlidasA.2015.Formationofmagnetic
uxropesduringconnedaringwellbeforetheonsetofapairofmajor
coronalmassejections.AstrophysJ,809:34
CiaravellaA,RaymondJC.2008.Thecurrentsheetassociatedwiththe2003
November4coronalmassejection:Density,temperature,thickness,and
linewidth.AstrophysJ,686:1372–1382
Cunha-SilvaRD,FernandesFCR,SelhorstCL.2015.SolartypeIIradio
burstsassociatedwithCMEexpansionsasshownbyEUVwaves.Astron
Astrophys,578:A38
DePontieuB,TitleAM,LemenJR,KushnerGD,AkinDJ,AllardB,
BergerT,BoernerP ,CheungM,ChouC,DrakeJF,DuncanDW,
FreelandS,HeymanGF,HoffmanC,HurlburtNE,LindgrenRW,
MathurD,RehseR,SabolishD,SeguinR,SchrijverCJ,TarbellTD,
WülserJP ,WolfsonCJ,Y anariC,MudgeJ,Nguyen-PhucN,Timmons
R,vanBezooijenR,WeingrodI,BrooknerR,ButcherG,DoughertyB,
EderJ,KnagenhjelmV ,LarsenS,MansirD,PhanL,BoyleP,Cheimets
PN,DeLucaEE,GolubL,GatesR,HertzE,McKillopS,ParkS,
PerryT,PodgorskiWA,ReevesK,SaarS,TestaP,TianH,WeberM,
DunnC,EcclesS,JaeggliSA,KankelborgCC,MashburnK,Pust
N,SpringerL,CarvalhoR,KleintL,MarmieJ,MazmanianE,Pereira
TMD,SawyerS,StrongJ,W ordenSP,CarlssonM,HansteenVH,
ChengX,etal.SciChinaEarthSci19
LeenaartsJ,WiesmannM,AloiseJ,ChuKC,BushRI,ScherrerPH,
BrekkeP,Martinez-SykoraJ,LitesBW,McIntoshSW,UitenbroekH,
OkamotoTJ,GumminMA,AukerG,JerramP ,PoolP,WalthamN.
2014.Theinterfaceregionimagingspectrograph(IRIS).SolPhys,289:
2733–2779
DémoulinP ,AulanierG.2010.Criteriaforuxropeeruption:Non-equilib-
riumversustorusinstability.AstrophysJ,718:1388–1399
DémoulinP,V ourlidasA,PickM,BouteilleA.2012.Initiationanddevel-
opmentofthewhite-lightandradiocoronalmassejectionon2001April
15.AstrophysJ,750:147
DengY,LinY ,SchmiederB,EngvoldOØ.2002.Filamentactivationand
magneticreconnection.SolPhys,209:153–170
DereKP ,BruecknerGE,HowardRA,MichelsDJ,DelaboudiniereJP.
1999.LASCOandEITobservationsofhelicalstructureincoronalmass
ejections.AstrophysJ,516:465–474
DoveJB,GibsonSE,RachmelerLA,TomczykS,JudgeP.2011.Aring
ofpolarizedlight:Evidencefortwistedcoronalmagnetismincavities.
AstrophysJ,731:L1
DudíkJ,JanvierM,AulanierG,DelZannaG,KarlickýM,MasonHE,
SchmiederB.2014.Slippingmagneticreconnectionduringanx-class
solarareobservedbySDO/AIA.AstrophysJ,784:144
FalconerDA,MooreRL,GaryGA.2008.Magnetogrammeasuresof
totalnonpotentialityforpredictionofsolarcoronalmassejectionsfrom
activeregionsofanydegreeofmagneticcomplexity .AstrophysJ,689:
1433–1442
FanY.2001.TheemergenceofatwistedΩ-tubeintothesolaratmosphere.
AstrophysJ,554:L111–L114
FanY.2009.Theemergenceofatwisteduxtubeintothesolaratmosphere:
Sunspotrotationsandtheformationofacoronaluxrope.AstrophysJ,
697:1529–1542
FanY.2012.Thermalsignaturesoftether-cuttingreconnectionsinpre-erup-
tioncoronaluxropes:Hotcentralvoidsincoronalcavities.Astrophys
J,758:60
FengL,WiegelmannT ,SuY ,InhesterB,LiYP ,SunXD,GanWQ.2013.
Magneticenergypartitionbetweenthecoronalmassejectionandare
fromar11283.AstrophysJ,765:37
FengSW,ChenY ,KongXL,LiG,SongHQ,FengXS,LiuY.2012.Ra-
diosignaturesofcoronal-mass-ejection-streamerinteractionandsource
diagnosticsoftypeIIradioburst.AstrophysJ,753:21
FisherGH,AbbettWP ,BercikDJ,KazachenkoMD,LynchBJ,W elsch
BT,HoeksemaJT,HayashiK,LiuY,NortonAA,DaldaAS,SunX,
DeRosaML,CheungMCM.2015.Thecoronalglobalevolutionary
model:UsingHMIvectormagnetogramanddopplerdatatomodelthe
buildupoffreemagneticenergyinthesolarcorona.SpaceWeather,13:
369–373
ForbesTG,IsenbergPA.1991.Acatastrophemechanismforcoronalmass
ejections.AstrophysJ,373:294–307
ForbesTG,PriestER.1995.Photosphericmagneticeldevolutionand
eruptiveares.AstrophysJ,446:377
ForbesTG,LinkerJA,ChenJ,CidC,KótaJ,LeeMA,MannG,MikićZ,
PotgieterMS,SchmidtJM,SiscoeGL,V ainioR,AntiochosSK,Riley
P.2006.CMEtheoryandmodels.SpaceSciRev,123:251–302
GaryGA,MooreRL.2004.Eruptionofamultiple-turnhelicalmagnetic
uxtubeinalargeare:Evidenceforexternalandinternalreconnection
thattsthebreakoutmodelofsolarmagneticeruptions.AstrophysJ,
611:545–556
GibsonSE,FletcherL,DelZannaG,PikeCD,MasonHE,MandriniCH,
DemoulinP ,GilbertH,BurkepileJ,HolzerT,AlexanderD,LiuY ,Nitta
N,QiuJ,SchmiederB,ThompsonBJ.2002.Thestructureandevolution
ofasigmoidalactiveregion.AstrophysJ,574:1021–1038
GibsonSE,FanY ,MandriniC,FisherG,DemoulinP.2004.Observational
consequencesofamagneticuxropeemergingintothecorona.Astro-
physJ,617:600–613
GibsonSE,FosterD,BurkepileJ,deTomaG,StangerA.2006.Thecalm
beforethestorm:Thelinkbetweenquiescentcavitiesandcoronalmass
ejections.AstrophysJ,641:590–605
GibsonSE,FanY ,TörökT,KliemB.2007.Theevolvingsigmoid:Evidence
formagneticuxropesinthecoronabefore,during,andafterCMEs.
SpaceSciRev,124:131–144
GilbertHR,AlexanderD,LiuR.2007.Filamentkinkinganditsimplications
foreruptionandre-formation.SolPhys,245:287–309
GopalswamyN,ThompsonWT,DavilaJM,KaiserML,YashiroS,Mäkelä
P,MichalekG,BougeretJL,HowardRA.2009.Relationbetweentype
IIburstsandCMEsinferredfromSTEREOobservations.SolPhys,259:
227–254
GopalswamyN,YashiroS,AkiyamaS,XieH.2017.Estimationofrecon-
nectionuxusingpost-eruptionarcadesanditsrelevancetomagnetic
cloudsat1AU.SolPhys,292:65
GoslingJT.1993.Thesolararemyth.JGeophysRes,98:18937–18949
GrechnevVV ,UralovAM,KuzmenkoIV ,KochanovAA,ChertokIM,
KalashnikovSS.2015.ResponsibilityofaFilamentEruptionforthe
InitiationofaFlare,CME,andBlastW ave,anditsPossibleTransforma-
tionintoaBowShock.SolPhys,290:129–158
GrechnevVV ,UralovAM,KochanovAA,KuzmenkoIV ,ProsovetskyD
V,EgorovYI,FainshteinVG,KashapovaLK.2016.Atinyeruptive
lamentasaux-ropeprogenitoranddriverofalarge-scaleCMEand
wave.SolPhys,291:1173–1208
GreenLM,KliemB.2009.Fluxropeformationprecedingcoronalmass
ejectiononset.AstrophysJ,700:L83–L87
GreenLM,KliemB,W allaceAJ.2011.Photosphericuxcancellationand
associateduxropeformationanderuption.AstronAstrophys,526:A2
GreenLM,KliemB,TörökT,vanDriel-GesztelyiL,AttrillGDR.2007.
Transientcoronalsigmoidsandrotatingeruptinguxropes.SolPhys,
246:365–391
GuoY ,ChengX,DingMD.2017.OriginandStructuresofSolarEruptions
II:MagneticModelling.SciChinaEarthSci,60,doi:10.1007/s11430-
017-9081-x
GuoY ,SchmiederB,DémoulinP,WiegelmannT,AulanierG,TörökT,
BommierV.2010a.Coexistinguxropeanddippedarcadesections
alongonesolarlament.AstrophysJ,714:343–354
GuoY ,DingMD,SchmiederB,LiH,TörökT ,WiegelmannT.2010b.Driv-
ingmechanismandonsetconditionofaconnederuption.AstrophysJ,
725:L38–L42
GuoY ,DingMD,ChengX,ZhaoJ,PariatE.2013.Twistaccumulationand
topologystructureofasolarmagneticuxrope.AstrophysJ,779:157
HarraLK,WilliamsDR,WallaceAJ,MagaraT,HaraH,TsunetaS,Sterling
AC,DoschekGA.2009.Coronalnonthermalvelocityfollowinghelicity
injectionbeforeanX-classare.AstrophysJ,691:L99–L102
HarraLK,MatthewsS,CulhaneJL,CheungMCM,KontarEP ,HaraH.
2013.Thelocationofnon-thermalvelocityintheearlyphasesoflarge
ares—Revealingpre-eruptionuxropes.AstrophysJ,774:122
HassaninA,KliemB.2016.Helicalkinkinstabilityinaconnedsolarerup-
tion.AstrophysJ,832:106
HessP,ZhangJ.2015.PredictingCMEejectaandsheathfrontarrivalatL1
withadata-constrainedphysicalmodel.AstrophysJ,812:144
HirayamaT.1974.Theoreticalmodelofaresandprominences.I:Evapo-
ratingaremodel.SolarPhys,34:323
HirayamaT.1985.Modernobservationsofsolarprominences.SolPhys,
100:415–434
HuH,LiuYD,WangR,MöstlC,Y angZ.2016.Sun-to-Earthcharacteristics
ofthe2012July12coronalmassejectionandassociatedgeo-effective-
ness.AstrophysJ,829:97
HuQ,QiuJ,DasguptaB,KhareA,WebbGM.2014.Structuresofinter-
planetarymagneticuxropesandcomparisonwiththeirsolarsources.
AstrophysJ,793:53
HudsonHS,LemenJR,St.CyrOC,SterlingAC,W ebbDF.1998.X-ray
coronalchangesduringHaloCMEs.GeophysResLett,25:2481–2484
IllingRME,HundhausenAJ.1983.Possibleobservationofadiscon-
20ChengX,etal.SciChinaEarthSci
nectedmagneticstructureinacoronaltransient.JGeophysRes,88:
10210–10214
InnesDE,McKenzieDE,WangT.2003.SUMERspectralobservationsof
post-aresupra-arcadeinows.SolPhys,217:247–265
InnesDE,InhesterB,AxfordWI,WilhelmK.1997.Bi-directionalplasma
jetsproducedbymagneticreconnectionontheSun.Nature,386:
811–813
InoueS,HayashiK,ShiotaD,MagaraT ,ChoeGS.2013.Magneticstruc-
tureproducingX-andM-classsolararesinsolaractiveregion11158.
AstrophysJ,770:79
InoueS,HayashiK,MagaraT,ChoeGS,ParkYD.2014.Magnetohy-
drodynamicsimulationoftheX2.2solarareon2011February15.I.
Comparisonwiththeobservations.AstrophysJ,788:182
IsenbergPA,ForbesTG,DemoulinP.1993.Catastrophicevolutionofa
force-freeuxrope:Amodelforeruptiveares.AstrophysJ,417:368
IsobeH,TripathiD,ArchontisV.2007.Ellermanbombsandjetsassociated
withresistiveuxemergence.AstrophysJ,657:L53–L56
JanvierM,AulanierG,PariatE,DémoulinP.2013.Thestandardaremodel
inthreedimensions.AstronAstrophys,555:A77
JanvierM,AulanierG,BommierV ,SchmiederB,DémoulinP ,PariatE.
2014.Electriccurrentsinareribbons:Observationsandthree-dimen-
sionalstandardmodel.AstrophysJ,788:60
JanvierM,SavchevaA,PariatE,T assevS,MillhollandS,BommierV ,
McCauleyP,McKillopS,DouganF.2016.Evolutionofareribbons,
electriccurrents,andquasi-separatrixlayersduringanX-classare.
AstronAstrophys,591:A141
JiH,WangH,SchmahlEJ,MoonYJ,JiangY.2003.Observationsofthe
failederuptionofalament.AstrophysJ,595:L135–L138
JiangC,FengX.2012.Anewimplementationofthemagnetohydrodynam-
ics-relaxationmethodfornonlinearforce-freeeldextrapolationinthe
solarcorona.AstrophysJ,749:135
JiangCW,WuST,FengXS,HuQ.2016a.Acomparisonstudyofasolar
active-regioneruptivelamentandaneighboringnon-eruptivelament.
ResAstronAstrophys,16:018
JiangC,FengX,WuST,HuQ.2013.Magnetohydrodynamicsimulationof
asigmoideruptionofactiveregion11283.AstrophysJ,771:L30
JiangC,WuST,FengX,HuQ.2014a.Formationanderuptionofanactive
regionsigmoid.I.Astudybynonlinearforce-freeeldmodeling.As-
trophysJ,780:55
JiangC,WuST,FengX,HuQ.2014b.Nonlinearforce-freeeldextrapo-
lationofacoronalmagneticuxropesupportingalarge-scalesolarla-
mentfromaphotosphericvectormagnetogram.AstrophysJ,786:L16
JiangC,WuST,FengX,HuQ.2016b.Data-drivenmagnetohydrodynamic
modellingofaux-emergingactiveregionleadingtosolareruption.Nat
Commun,7:11522
JiangC,WuST ,YurchyshynV,WangH,FengX,HuQ.2016c.Howdida
majorconnedareoccurinsupersolaractiveregion12192?Astrophys
J,828:62
JoshiNC,MagaraT,InoueS.2014a.Formationofacompounduxrope
bythemergingoftwolamentchannels,theassociateddynamics,and
itsstability.AstrophysJ,795:4
JoshiNC,SrivastavaAK,FilippovB,KayshapP,UddinW ,ChandraR,
PrasadChoudharyD,DwivediBN.2014b.Connedpartiallament
eruptionanditsreformationwithinastablemagneticuxrope.Astro-
physJ,787:11
JoshiNC,LiuC,SunX,W angH,MagaraT,MoonYJ.2015.Theroleof
eruptingsigmoidintriggeringaarewithparallelandlarge-scalequasi-
circularribbons.AstrophysJ,812:50
KahlerSW.1992.Solararesandcoronalmassejections.AnnuRevAstron
Astrophys,30:113–141
KaiserML,KuceraTA,DavilaJM,St.CyrOC,GuhathakurtaM,Christian
E.2008.TheSTEREOmission:Anintroduction.SpaceSciRev,136:
5–16
KarnaN,ZhangJ,PesnellWD,HessWebberSA.2015.Studyofthe3d
geometricstructureandtemperatureofacoronalcavityusingthelimb
synopticmapmethod.AstrophysJ,810:124
KarpenJT,AntiochosSK,DeV oreCR.2012.Themechanismsfortheon-
setandexplosiveeruptionofcoronalmassejectionsanderuptiveares.
AstrophysJ,760:81
KliemB,TörökT.2006.T orusinstability.PhysRevLett,96:255002
KliemB,TitovVS,TörökT.2004.Formationofcurrentsheetsandsig-
moidalstructurebythekinkinstabilityofamagneticloop.AstronAs-
trophys,413:L23–L26
KliemB,LintonMG,TörökT ,KarlickýM.2010.Reconnectionofa
kinkinguxropetriggeringtheejectionofamicrowaveandhardX-ray
sourceII.Numericalmodeling.SolPhys,266:91–107
KliemB,SuYN,vanBallegooijenAA,DeLucaEE.2013.Magnetohy-
drodynamicmodelingofthesolareruptionon2010April8.Astrophys
J,779:129
KliemB,LinJ,ForbesTG,PriestER,TörökT.2014a.Catastropheversus
instabilityfortheeruptionofatoroidalsolarmagneticuxrope.Astro-
physJ,789:46
KliemB,TörökT,TitovVS,LionelloR,LinkerJA,LiuR,LiuC,WangH.
2014b.Slowriseandpartialeruptionofadouble-deckerlament.II.A
doubleuxropemodel.AstrophysJ,792:107
KoppRA,PneumanGW .1976.Magneticreconnectioninthecoronaand
theloopprominencephenomenon.SolarPhys,50:8589
KouloumvakosA,PatsourakosS,HillarisA,VourlidasA,Preka-Papadema
P,MoussasX,CaroubalosC,TsitsipisP,KontogeorgosA.2014.CME
expansionasthedriverofmetrictypeIIshockemissionasrevealedby
self-consistentanalysisofhigh-cadenceEUVimagesandradiospectro-
grams.SolPhys,289:2123–2139
KumarP ,Y urchyshynV ,W angH,ChoKS.2015.Formationanderuptionof
asmalluxropeinthechromosphereobservedbyNST,IRIS,andSDO.
AstrophysJ,809:83
KumarP,Y urchyshynV ,ChoKS,WangH.2017.Multiwavelengthobser-
vationsofauxropeformationbyseriesofmagneticreconnectioninthe
chromosphere.ArXive-prints
KuperusM,RaaduMA.1974.Thesupportofprominencesformedinneutral
sheets.AstronAstrophys,31:189−193
LeakeJE,LintonMG,AntiochosSK.2014.Simulationsofemerging
magneticux.II.Theformationofunstablecoronaluxropesandthe
initiationofcoronalmassejections.AstrophysJ,787:46
LeakeJE,LintonMG,TörökT.2013.Simulationsofemergingmagnetic
ux.I.Theformationofstablecoronaluxropes.AstrophysJ,778:99
LekaKD,BarnesG.2003a.Photosphericmagneticeldpropertiesofaring
versusare-quietactiveregions.I.Data,generalapproach,andsample
results.AstrophysJ,595:1277–1295
LekaKD,BarnesG.2003b.Photosphericmagneticeldpropertiesofaring
versusarequietactiveregions.II.Discriminantanalysis.AstrophysJ,
595:1296–1306
LemenJR,TitleAM,AkinDJ,BoernerPF,ChouC,DrakeJF,DuncanD
W,EdwardsCG,FriedlaenderFM,HeymanGF,HurlburtNE,KatzN
L,KushnerGD,LevayM,LindgrenRW,MathurDP ,McFeatersEL,
MitchellS,RehseRA,SchrijverCJ,SpringerLA,SternRA,Tarbell
TD,WuelserJP ,WolfsonCJ,Y anariC,BookbinderJA,CheimetsP
N,CaldwellD,DelucaEE,GatesR,GolubL,ParkS,PodgorskiW
A,BushRI,ScherrerPH,GumminMA,SmithP ,AukerG,JerramP,
PoolP ,SouiR,WindtDL,BeardsleyS,ClappM,LangJ,W althamN.
2012.Theatmosphericimagingassembly(AIA)onthesolardynamics
observatory(SDO).SolPhys,275:17–40
LeppingRP ,BurlagaLF ,JonesJA.1990.Magneticeldstructureofinter-
planetarymagneticcloudsat1AU.JGeophysRes,95:11957–11965
LevensPJ,SchmiederB,LópezAristeA,LabrosseN,DalmasseK,GellyB.
2016.Magneticeldinatypicalprominencestructures:Bubble,tornado,
anderuption.AstrophysJ,826:164
LiLP,ZhangJ.2013a.EruptionsoftwouxropesobservedbySDOand
STEREO.AstronAstrophys,552:L11
ChengX,etal.SciChinaEarthSci21
LiLP,PeterH,ChenF,ZhangJ.2014.Conversionfrommutualhelicityto
self-helicityobservedwithIRIS.AstronAstrophys,570:A93
LiLP ,ZhangJ,SuJT,LiuY.2016a.Oscillationofcurrentsheetsinthe
wakeofauxropeeruptionobservedbythesolardynamicsobservatory.
AstrophysJ,829:L33
LiT,ZhangJ.2013b.Fine-scalestructuresofuxropestrackedbyerupting
material.AstrophysJ,770:L25
LiT ,ZhangJ.2013c.Homologousuxropesobservedbythesolardynamics
observatoryatmosphericimagingassembly.AstrophysJ,778:L29
LiT ,ZhangJ.2015.High-resolutionobservationsofauxropewiththe
interfaceregionimagingspectrograph.SolPhys,290:2857–2870
LiX,MorganH,LeonardD,JeskaL.2012.Asolartornadoobservedby
AIA/SDO:Rotationalowandevolutionofmagnetichelicityinapromi-
nenceandcavity.AstrophysJ,752:L22
LiY ,QiuJ,LongcopeDW,DingMD,YangK.2016b.Observationsof
anX-shapedribbonareintheSunanditsthree-dimensionalmagnetic
reconnection.AstrophysJ,823:L13
LiZ,FangC,GuoY ,ChenPF,XuZ,CaoWD.2015.DiagnosticsofEller-
manbombswithhigh-resolutionspectraldata.ResAstronAstrophys,
15:1513–1524
LinH,PennMJ,TomczykS.2000.Anewprecisemeasurementofthe
coronalmagneticeldstrength.AstrophysJ,541:L83–L86
LinJ.2001.Theoreticalmechanismsforsolareruptions.DoctoralDisserta-
tion.NewHampshire:UniversityofNewHampshire
LinJ,ForbesTG.2000.Effectsofreconnectiononthecoronalmassejection
process.JGeophysRes,105:2375–2392
LinJ,vanBallegooijenAA.2002.Catastrophicandnoncatastrophicmech-
anismsforcoronalmassejections.AstrophysJ,576:485–492
LinJ,RaymondJC,vanBallegooijenAA.2004.Theroleofmagnetic
reconnectionintheobservablefeaturesofsolareruptions.AstrophysJ,
602:422–435
LinJ,KoYK,SuiL,RaymondJC,StenborgGA,JiangY ,ZhaoS,Mancuso
S.2005.Directobservationsofthemagneticreconnectionsiteofan
eruptionon2003November18.AstrophysJ,622:1251–1264
LinJ,LiJ,ForbesTG,KoYK,RaymondJC,VourlidasA.2007.Features
andpropertiesofcoronalmassejection/arecurrentsheets.AstrophysJ,
658:L123–L126
LinJ,MurphyNA,ShenC,RaymondJC,ReevesKK,ZhongJ,WuN,Li
Y.2015.ReviewoncurrentsheetsinCMEdevelopment:Theoriesand
observations.SpaceSciRev,194:237–302
LitesBW.2005.Magneticuxropesinthesolarphotosphere:The
vectormagneticeldunderactiveregionlaments.AstrophysJ,622:
1275–1291
LiuJ,WangY ,ErdélyiR,LiuR,McIntoshSW ,GouT,ChenJ,LiuK,Liu
L,PanZ.2016a.Onthemagneticandenergycharacteristicsofrecurrent
homologousjetsfromanemergingux.AstrophysJ,833:150
LiuK,W angY,ZhangJ,ChengX,LiuR,ShenC.2015.Extremelylarge
EUVlatephaseofsolarares.AstrophysJ,802:35
LiuL,WangY ,WangJ,ShenC,Y eP,LiuR,ChenJ,ZhangQ,W angS.
2016b.Whyisaare-richactiveregionCME-poor?AstrophysJ,826:
119
LiuR.2013.Dynamicalprocessesattheverticalcurrentsheetbehindan
eruptinguxrope.MonNotRAstronSoc,434:1309–1320
LiuR,AlexanderD.2009.HardX-rayemissioninkinkinglaments.As-
trophysJ,697:999–1009
LiuR,LiuC,W angS,DengN,W angH.2010.Sigmoid-to-ux-ropetran-
sitionleadingtoaloop-likecoronalmassejection.AstrophysJ,725:
L84–L90
LiuR,KliemB,TörökT,LiuC,TitovVS,LionelloR,LinkerJA,Wang
H.2012.Slowriseandpartialeruptionofadouble-deckerlament.I.
Observationsandinterpretation.AstrophysJ,756:59
LiuR,ChenJ,WangY,LiuK.2016c.InvestigatingenergeticX-shaped
aresontheoutskirtsofasolaractiveregion.SciRep,6:34021
LiuR,KliemB,TitovVS,ChenJ,WangY ,W angH,LiuC,XuY ,
WiegelmannT.2016d.Structure,stability ,andevolutionofmagnetic
uxropesfromtheperspectiveofmagnetictwist.AstrophysJ,818:148
LiuW ,ChenQ,PetrosianV.2013.Plasmoidejectionsandloopcontractions
inaneruptiveM7.7solarare:Evidenceofparticleaccelerationand
heatinginmagneticreconnectionoutows.AstrophysJ,767:168
LiuY.2008.Magneticeldoverlyingsolareruptionregionsandkinkand
torusinstabilities.AstrophysJ,679:L151–L154
LiuYD,LuhmannJG,LugazN,MöstlC,DaviesJA,BaleSD,LinRP.
2013.OnSun-to-Earthpropagationofcoronalmassejections.Astrophys
J,769:45
LiuYD,LuhmannJG,KajdičP ,KilpuaEKJ,LugazN,NittaNV,Möstl
C,LavraudB,BaleSD,FarrugiaCJ,GalvinAB.2014a.Observations
ofanextremestormininterplanetaryspacecausedbysuccessivecoronal
massejections.NatCommun,5:3481
LiuYD,HuH,ZhuB,LuhmannJG,V ourlidasA.2017.Structure,propaga-
tion,andexpansionofaCME-drivenshockintheheliosphere:Arevisit
ofthe2012July23extremestorm.AstrophysJ,834:158
LiuY ,LuhmannJG,BaleSD,LinRP.2009.Relationshipbetweena
coronalmassejection-drivenshockandacoronalmetricT ypeIIburst.
AstrophysJ,691:L151–L155
LiuY ,LuhmannJG,BaleSD,LinRP.2011.Solarsourceandheliospheric
consequencesofthe2010April3coronalmassejection:Acomprehen-
siveview.AstrophysJ,734:84
LiuZ,XuJ,GuBZ,W angS,YouJQ,ShenLX,LuRW,JinZY ,ChenLF ,
LouK,LiZ,LiuGQ,XuZ,RaoCH,HuQQ,LiRF,FuHW ,W angF,
BaoMX,WuMC,ZhangBR.2014b.Newvacuumsolartelescopeand
observationswithhighresolution.ResAstronAstrophys,14:705–718
LowBC,HundhausenJR.1995.Magnetostaticstructuresofthesolar
corona.2:Themagnetictopologyofquiescentprominences.Astrophys
J,443:818
LugazN,FarrugiaC,SchwadronN,ManchesterWB.2015.Heliospheric
propagationofcoronalmassejections:Areview.IAUGeneralAssem-
bly,22:2237318
LynchBJ,AntiochosSK,DeVoreCR,LuhmannJG,ZurbuchenTH.
2008.TopologicalevolutionofafastmagneticbreakoutCMEinthree
dimensions.AstrophysJ,683:1192–1206
LynchBJ,AntiochosSK,LiY ,LuhmannJG,DeV oreCR.2009.Rotation
ofcoronalmassejectionsduringeruption.AstrophysJ,697:1918–1927
MaS,RaymondJC,GolubL,LinJ,ChenH,GrigisP,TestaP ,LongD.2011.
Observationsandinterpretationofalowcoronalshockwaveobservedin
theEUVbytheSDO/AIA.AstrophysJ,738:160
MackayDH,vanBallegooijenAA.2006.Modelsofthelarge-scalecorona.
I.Formation,evolution,andliftoffofmagneticuxropes.AstrophysJ,
641:577–589
MackayDH,KarpenJT,BallesterJL,SchmiederB,AulanierG.2010.
Physicsofsolarprominences:II—Magneticstructureanddynamics.
SpaceSciRev,151:333–399
MacNeiceP,AntiochosSK,PhillipsA,SpicerDS,DeV oreCR,OlsonK.
2004.Anumericalstudyofthebreakoutmodelforcoronalmassejection
initiation.AstrophysJ,614:1028–1041
MacTaggartD,HoodAW.2010.Simulatingthe“slidingdoors”effect
throughmagneticuxemergence.AstrophysJ,716:L219–L222
MagaraT.2004.Amodelfordynamicevolutionofemergingmagneticelds
intheSun.AstrophysJ,605:480–492
MagaraT.2006.Dynamicandtopologicalfeaturesofphotosphericandcoro-
nalactivitiesproducedbyuxemergenceintheSun.AstrophysJ,653:
1499–1509
ManchesterIVW,GombosiT,DeZeeuwD,FanY.2004.Eruptionofa
buoyantlyemergingmagneticuxrope.AstrophysJ,610:588–596
MartinSF.1998.Conditionsfortheformationandmaintenanceoflaments.
SolPhys,182:107–137
MartínezGonzálezMJ,RamosAA,ArreguiI,ColladosM,BeckC,
RodríguezJC.2016.Onthemagnetismanddynamicsofprominence
legshostingtornadoes.AstrophysJ,825:119
22ChengX,etal.SciChinaEarthSci
Martínez-SykoraJ,HansteenV ,CarlssonM.2008.Twisteduxtube
emergencefromtheconvectionzonetothecorona.AstrophysJ,679:
871–888
McKenzieDE.2000.Supra-arcadedownowsinlong-durationsolarare
events.SolPhys,195:381–399
McKenzieDE,CaneldRC.2008.HinodeXRTobservationsofalong-
lastingcoronalsigmoid.AstronAstrophys,481:L65–L68
MooreRL,SterlingAC,HudsonHS,LemenJR.2001.Onsetofthe
magneticexplosioninsolararesandcoronalmassejections.Astrophys
J,552:833–848
MöstlC,IsavninA,BoakesPD,KilpuaEKJ,DaviesJA,HarrisonRA,
BarnesD,KruparV ,EastwoodJP ,GoodSW,ForsythRJ,Bothmer
V,ReissMA,AmerstorferT,WinslowRM,AndersonBJ,PhilpottLC,
RodriguezL,RouillardAP ,GallagherPT,ZhangTL.2017.Predictions
ofsolarcoronalmassejectionswithheliosphericimagersveriedwith
theHeliophysicsSystemObservatory.ArXive-prints
MyersCE,YamadaM,JiH,YooJ,FoxW,Jara-AlmonteJ,SavchevaA,
DeLucaEE.2015.Adynamicmagnetictensionforceasthecauseof
failedsolareruptions.Nature,528:526–529
NindosA,PatsourakosS,WiegelmannT.2012.Ontheroleoftheback-
groundoverlyingmagneticeldinsolareruptions.AstrophysJ,748:L6
NindosA,PatsourakosS,VourlidasA,T agikasC.2015.Howcommonare
hotmagneticuxropesinthelowsolarcorona?Astatisticalstudyof
EUVobservations.AstrophysJ,808:117
OkamotoTJ,TsunetaS,LitesBW,KuboM,Y okoyamaT,BergerTE,
IchimotoK,KatsukawaY,NagataS,ShibataK,ShimizuT,ShineRA,
SuematsuY,TarbellTD,TitleAM.2008.Emergenceofahelicalux
ropeunderanactiveregionprominence.AstrophysJ,673:L215–L218
OkamotoTJ,TsunetaS,LitesBW,KuboM,Y okoyamaT,BergerTE,
IchimotoK,KatsukawaY,NagataS,ShibataK,ShimizuT,ShineRA,
SuematsuY ,TarbellTD,TitleAM.2009.Prominenceformationasso-
ciatedwithanemerginghelicaluxrope.AstrophysJ,697:913–922
OlmedoO,ZhangJ.2010.Partialtorusinstability .AstrophysJ,718:
433–440
OuyangY,Y angK,ChenPF.2015.Isuxropeanecessaryconditionfor
theprogenitorofcoronalmassejections?AstrophysJ,815:72
PariatE,AntiochosSK,DeV oreCR.2009a.Amodelforsolarpolarjets.
AstrophysJ,691:61–74
PariatE,MassonS,AulanierG.2009b.Currentbuildupinemergingserpen-
tineuxtubes.AstrophysJ,701:1911–1921
PariatE,AulanierG,SchmiederB,GeorgoulisMK,RustDM,Bernasconi
PN.2004.Resistiveemergenceofundulatoryuxtubes.AstrophysJ,
614:1099–1112
PatsourakosS,VourlidasA,KliemB.2010a.Towardunderstandingtheearly
stagesofanimpulsivelyacceleratedcoronalmassejection.AstronAs-
trophys,522:A100
PatsourakosS,V ourlidasA,StenborgG.2010b.Thegenesisofanimpulsive
coronalmassejectionobservedatultra-highcadencebyAIAonSDO.
AstrophysJ,724:L188–L193
PatsourakosS,VourlidasA,StenborgG.2013.Directevidenceforafast
coronalmassejectiondrivenbythepriorformationandsubsequentdesta-
bilizationofamagneticuxrope.AstrophysJ,764:125
PesnellWD,ThompsonBJ,ChamberlinPC.2012.Thesolardynamics
observatory(SDO).SolPhys,275:3–15
PeterH,TianH,CurdtW ,SchmitD,InnesD,DePontieuB,LemenJ,Title
A,BoernerP,HurlburtN,TarbellTD,WuelserJP,Martínez-SykoraJ,
KleintL,GolubL,McKillopS,ReevesKK,SaarS,T estaP ,Kankelborg
C,JaeggliS,CarlssonM,HansteenV.2014.Hotexplosionsinthecool
atmosphereoftheSun.Science,346:1255726–1255726
PevtsovAA.2002.Active-regionlamentsandX-raysigmoids.SolPhys,
207:111–123
PickM,V ilmerN.2008.Sixty-veyearsofsolarradioastronomy:Flares,
coronalmassejectionsandSun-Earthconnection.AstronAstrophys
Rev,16:1–153
PickM,DemoulinP,KruckerS,MalandrakiO,MaiaD.2005.Radioand
X-raysignaturesofmagneticreconnectionbehindanejecteduxrope.
AstrophysJ,625:1019–1026
PriestER,ForbesTG.2002.Themagneticnatureofsolarares.Astron
AstrophysRev,10:313–377
QiuJ,WangH,ChengCZ,GaryDE.2004.Magneticreconnectionand
massaccelerationinare-coronalmassejectionevents.AstrophysJ,
604:900–905
QiuJ,HuQ,HowardTA,YurchyshynVB.2007.Onthemagneticux
budgetinlow-coronamagneticreconnectionandinterplanetarycoronal
massejections.AstrophysJ,659:758–772
ReevesKK,GibsonSE,KuceraTA,HudsonHS,KanoR.2012.Thermal
propertiesofasolarcoronalcavityobservedwiththeX-raytelescopeon
HINODE.AstrophysJ,746:146
RempelM.2017.ExtensionoftheMURaMradiativeMHDcodeforcoronal
simulations.AstrophysJ,834:10
RevaAA,UlyanovAS,ShestovSV ,KuzinSV.2016.Breakoutreconnec-
tionobservedbytheTESISEUVtelescope.AstrophysJ,816:90
RileyP,LionelloR,MikićZ,LinkerJ.2008.Usingglobalsimulationsto
relatethethree-partstructureofcoronalmassejectionstoinsitusigna-
tures.AstrophysJ,672:1221–1227
RustDM,KumarA.1996.Evidenceforhelicallykinkedmagneticux
ropesinsolareruptions.AstrophysJ,464:L199–L202
RustDM,LaBonteBJ.2005.Observationalevidenceofthekinkinstability
insolarlamenteruptionsandsigmoids.AstrophysJ,622:L69–L72
SavchevaA,vanBallegooijenA.2009.Nonlinearforce-freemodelingofa
long-lastingcoronalsigmoid.AstrophysJ,703:1766–1777
SavchevaAS,vanBallegooijenAA,DeLucaEE.2012.Fieldtopology
analysisofalong-lastingcoronalsigmoid.AstrophysJ,744:78
SavchevaA,PariatE,McKillopS,McCauleyP ,HansonE,SuY ,W ernerE,
DeLucaEE.2015.Therelationbetweensolareruptiontopologiesand
observedarefeatures.I.Flareribbons.AstrophysJ,810:96
SchmiederB,ArchontisV ,PariatE.2014.Magneticuxemergencealong
thesolarcycle.SpaceSciRev,186:227–250
SchmiederB,AulanierG,VršnakB.2015.Flare-CMEmodels:Anobser-
vationalperspective(InvitedReview).SolPhys,290:3457–3486
SchmiederB,DemoulinP ,AulanierG,GolubL.1996.Differentialmagnetic
eldshearinanactiveregion.AstrophysJ,467:881
SchmiederB,MeinN,DengY,DumitracheC,MalherbeJM,StaigerJ,
DelucaEE.2004.Magneticchangesobservedintheformationoftwo
lamentsinacomplexactiveregion:TRACEandMSDPobservations.
SolPhys,223:119–141
SchmiederB,MeinP ,MeinN,LevensPJ,LabrosseN,OfmanL.2017.Hα
Dopplershiftsinatornadointhesolarcorona.AstronAstrophys,597:
A109
SchrijverCJ,DeRosaML,MetcalfT,BarnesG,LitesB,TarbellT,
McTiernanJ,V aloriG,WiegelmannT,WheatlandMS,AmariT ,
AulanierG,DémoulinP ,FuhrmannM,KusanoK,RégnierS,Thalmann
JK.2008a.Nonlinearforce-freeeldmodelingofasolaractiveregion
aroundthetimeofamajorareandcoronalmassejection.Astrophys
J,675:1637–1644
SchrijverCJ,ElmoreC,KliemB,TorokT,TitleAM.2008b.Observa-
tionsandmodelingoftheearlyaccelerationphaseoferuptinglaments
involvedincoronalmassejections.AstrophysJ,674:586–595
SeatonDB,BartzAE,DarnelJM.2017.Observationsoftheformation,
development,andstructureofacurrentsheetinaneruptivesolarare.
AstrophysJ,835:139
SheeleyJr .NR,HowardRA,KoomenMJ,MichelsDJ.1983.Associations
betweencoronalmassejectionsandsoftX-rayevents.AstrophysJ,272:
349–354
ShenC,WangY,YeP,ZhaoXP ,GuiB,WangS.2007.Strengthofcoronal
massejection-drivenshocksneartheSunandtheirimportanceinpre-
dictingsolarenergeticparticleevents.AstrophysJ,670:849–856
ShenC,W angY,WangS,LiuY ,LiuR,VourlidasA,MiaoB,YeP ,LiuJ,
ChengX,etal.SciChinaEarthSci23
ZhouZ.2012a.Super-elasticcollisionoflarge-scalemagnetizedplas-
moidsintheheliosphere.NatPhys,8:923–928
ShenC,LiG,KongX,HuJ,SunXD,DingL,ChenY,WangY ,XiaL.
2013.Compoundtwincoronalmassejectionsinthe2012May17GLE
event.AstrophysJ,763:114
ShenY,LiuY,SuJ.2012b.Sympatheticpartialandfulllamenteruptions
observedinonesolarbreakoutevent.AstrophysJ,750:12
ShiT ,WangY,WanL,ChengX,DingM,ZhangJ.2015.Predictingthe
arrivaltimeofcoronalmassejectionswiththegraduatedcylindricalshell
anddragforcemodel.AstrophysJ,806:271
ShibataK,Masuda,S,Shimojo,M,Hara,H,Yokoyama,T,T suneta,S,
Kosugi,T,OgawaraY.1995.Hot-plasmaejectionsassociatedwithcom-
pact-loopsolarares.AstrophysJ,451:L83
SolankiSK,UsoskinIG,KromerB,SchüsslerM,BeerJ.2004.Unusual
activityoftheSunduringrecentdecadescomparedtotheprevious11,000
years.Nature,431:1084–1087
SongHQ,ZhangJ,ChenY ,ChengX.2014a.Directobservationsofmag-
neticuxropeformationduringasolarcoronalmassejection.Astrophys
J,792:L40
SongHQ,ZhangJ,ChengX,ChenY,LiuR,W angYM,LiB.2014b.
Temperatureevolutionofamagneticuxropeinafailedsolareruption.
AstrophysJ,784:48
SongHQ,ChenY ,ZhangJ,ChengX,FuH,LiG.2015.Accelerationphases
ofasolarlamentduringitseruption.AstrophysJ,804:L38
SterlingAC,HudsonHS.1997.[IT AL]Yohkoh[/ITAL]SXTobservations
ofX-ray“Dimming”associatedwithahalocoronalmassejection.As-
trophysJ,491:L55–L58
SturrockPA.1966.Modelofthehigh-energyphaseofsolarares.Nature,
211:695–697
SuW,ChengX,DingMD,ChenPF,NingZJ,JiHS.2016.Investigating
theconditionsoftheformationofaTypeIIradioburston2014January
8.AstrophysJ,830:70
SuY,vanBallegooijenA.2012.Observationsandmagneticeldmodeling
ofasolarpolarcrownprominence.AstrophysJ,757:168
SuY ,GolubL,VanBallegooijenAA.2007.Astatisticalstudyofshear
motionofthefootpointsintworibbonares.AstrophysJ,655:606–614
SuY ,vanBallegooijenA,LitesBW,DelucaEE,GolubL,GrigisPC,Huang
G,JiH.2009.Observationsandnonlinearforce-freeeldmodelingof
activeregion10953.AstrophysJ,691:105–114
SuY ,W angT,VeronigA,TemmerM,GanW.2012.Solarmagnetized
“tornadoes:”relationtolaments.AstrophysJ,756:L41
SuY ,GömöryP ,V eronigA,T emmerM,WangT,VanninathanK,GanW,Li
YP.2014.Solarmagnetizedtornadoes:Rotationalmotioninatornado-
likeprominence.AstrophysJ,785:L2
SuY ,vanBallegooijenA,McCauleyP,JiH,ReevesKK,DeLucaEE.
2015.Magneticstructureanddynamicsoftheeruptingsolarpolarcrown
prominenceon2012March12.AstrophysJ,807:144
SunJQ,ChengX,DingMD.2014.Differentialemissionmeasureanalysis
ofalimbsolarareon2012July19.AstrophysJ,786:73
SunJQ,ChengX,DingMD,GuoY ,PriestER,ParnellCE,EdwardsSJ,
ZhangJ,ChenPF,FangC.2015a.Extremeultravioletimagingofthree-
dimensionalmagneticreconnectioninasolareruption.NatCommun,6:
7598
SunX,HoeksemaJT,LiuY,ChenQ,HayashiK.2012.Anon-radialerup-
tioninaquadrupolarmagneticcongurationwithacoronalnull.Astro-
physJ,757:149
SunX,BobraMG,HoeksemaJT,LiuY,LiY ,ShenC,CouvidatS,Norton
AA,FisherGH.2015b.Whyisthegreatsolaractiveregion12192
are-richbutCME-poor?AstrophysJ,804:L28
SyntelisP,GontikakisC,PatsourakosS,T singanosK.2016.Thespectro-
scopicimprintofthepre-eruptivecongurationresultingintotwomajor
coronalmassejections.AstronAstrophys,588:A16
TemmerM,VeronigAM,VršnakB,RybákJ,GömöryP ,StoiserS,Maričić
D.2008.AccelerationinfastHaloCMEsandsynchronizedareHXR
bursts.AstrophysJ,673:L95–L98
TemmerM,V eronigAM,KontarEP ,KruckerS,VršnakB.2010.Combined
STEREO/RHESSIstudyofcoronalmassejectionaccelerationandpar-
ticleaccelerationinsolarares.AstrophysJ,712:1410–1420
TemmerM,ThalmannJK,DissauerK,VeronigAM,TschernitzJ,Hinter-
reiterJ,RodriguezL.2017.Onare-CMEcharacteristicsfromSunto
Earthcombiningremotesensingimagedatawithin-situmeasurements
supportedbymodeling.ArXive-prints
ThalmannJK,SuY ,TemmerM,V eronigAM.2015.Theconnedx-class
aresofsolaractiveregion2192.AstrophysJ,801:L23
TianH,McIntoshSW ,XiaL,HeJ,W angX.2012.Whatcanwelearnabout
solarcoronalmassejections,coronaldimmings,andextreme-ultraviolet
jetsthroughspectroscopicobservations?AstrophysJ,748:106
TianH,LiG,ReevesKK,RaymondJC,GuoF,LiuW ,ChenB,MurphyNA.
2014.Imagingandspectroscopicobservationsofmagneticreconnection
andchromosphericevaporationinasolarare.AstrophysJ,797:L14
TitovVS,DémoulinP.1999.Basictopologyoftwistedmagneticcongu-
rationsinsolarares.AstronAstrophys,351:707
TitovVS,HornigG,DémoulinP .2002.Theoryofmagneticconnectivityin
thesolarcorona.JGeophysRes-SpacePhys,107:1164
TörökT,KliemB.2005.Connedandejectiveeruptionsofkink-unstable
uxropes.AstrophysJ,630:L97–L100
TörökT,KliemB,TitovVS.2004.Idealkinkinstabilityofamagneticloop
equilibrium.AstronAstrophys,413:L27–L30
TörökT ,PanasencoO,TitovVS,MikićZ,ReevesKK,VelliM,Linker
JA,DeT omaG.2011.Amodelformagneticallycoupledsympathetic
eruptions.AstrophysJ,739:L63
TripathiD,KliemB,MasonHE,YoungPR,GreenLM.2009.Temperature
tomographyofacoronalsigmoidsupportingthegradualformationofa
uxrope.AstrophysJ,698:L27–L32
TripathiD,ReevesKK,GibsonSE,SrivastavaA,JoshiNC.2013.
SDO/AIAobservationsofapartiallyeruptingprominence.Astrophys
J,778:142
TziotziouK,GeorgoulisMK,LiuY.2013.Interpretingeruptivebehaviorin
NOAAAR11158viatheregion'smagneticenergyandrelative-helicity
budgets.AstrophysJ,772:115
Ugarte-UrraI,WarrenHP,WinebargerAR.2007.Themagnetictopology
ofcoronalmassejectionsources.AstrophysJ,662:1293–1301
vanBallegooijenAA,MartensPCH.1989.Formationanderuptionofsolar
prominences.AstrophysJ,343:971–984
vanBallegooijenAA,CartledgeNP ,PriestER.1998.Magneticuxtrans-
portandtheformationoflamentchannelsontheSun.AstrophysJ,501:
866–881
VargasDomínguezS,MacT aggartD,GreenL,vanDriel-GesztelyiL,Hood
AW.2012.Onsignaturesoftwistedmagneticuxtubeemergence.Sol
Phys,278:33–45
VasanthV,ChenY ,FengS,MaS,DuG,SongH,KongX,WangB.2016.
Aneruptivehot-channelstructureobservedatmetricwavelengthasa
movingType-IVsolarradioburst.AstrophysJ,830:L2
VemareddyP ,ZhangJ.2014.Initiationanderuptionprocessofmagnetic
uxropefromsolaractiveregionNOAA11719toEarth-directedCME.
AstrophysJ,797:80
VemareddyP ,ChengX,RavindraB.2016.Sunspotrotationasadriverof
majorsolareruptionsintheNOAAactiveregion12158.AstrophysJ,
829:24
VourlidasA,LynchBJ,HowardRA,LiY.2013.HowmanyCMEshave
uxropes?Decipheringthesignaturesofshocks,uxropes,andpromi-
nencesincoronagraphobservationsofCMEs.SolPhys,284:179–201
WanL,ChengX,ShiT,SuW,DingMD.2016.Theformationandearly
evolutionofacoronalmassejectionanditsassociatedshockwaveon
2014January8.AstrophysJ,826:174
WangH,CaoW ,LiuC,XuY,LiuR,ZengZ,ChaeJ,JiH.2015.Witness-
ingmagnetictwistwithhigh-resolutionobservationfromthe1.6-mNew
SolarTelescope.NatCommun,6:7008
24ChengX,etal.SciChinaEarthSci
WangJ.2006.Reconnectioninthelowersolaratmosphereandcoronalmass
ejections.AdvSpaceRes,38:1887–1893
WangJ,DingM,JiH,DengY ,LiuY ,LiuZ,QuZ,WangH,XiaL,Y anY .
2016a.AfewperspectivesofsolarphysicsresearchinChina―Current
statusandfuture.AsianJPhys,25:461498
WangR,LiuYD,ZimovetsI,HuH,DaiX,YangZ.2016b.Sympathetic
solarlamenteruptions.AstrophysJ,827:L12
WangY ,ZhangJ.2007.AcomparativestudybetweeneruptiveX-classares
associatedwithcoronalmassejectionsandconnedX-classares.As-
trophysJ,665:1428–1438
WangYM,StenborgG.2010.Spinningmotionsincoronalcavities.Astro-
physJ,719:L181–L184
WangY,ZhuangB,HuQ,LiuR,ShenC,ChiY.2016c.Onthetwists
ofinterplanetarymagneticuxropesobservedat1AU.JGeophysRes
SpacePhys,121:9316–9339
WebbDF,ForbesTG,AurassH,ChenJ,MartensP,RompoltB,RusinV ,
MartinSF.1994.Materialejection.SolPhys,153:73–89
WedemeyerS,ScullionE,RouppevanderVoortL,BosnjakA,AntolinP.
2013.Aregianttornadoesthelegsofsolarprominences?AstrophysJ,
774:123
Wedemeyer-BöhmS,ScullionE,SteinerO,vanderV oortLR,delaCruz
RodriguezJ,FedunV,ErdélyiR.2012.Magnetictornadoesasenergy
channelsintothesolarcorona.Nature,486:505–508
WilliamsDR,TörökT ,DémoulinP ,vanDriel-GesztelyiL,KliemB.2005.
Eruptionofakink-unstablelamentinNOAAactiveregion10696.As-
trophysJ,628:L163–L166
WuZ,ChenY ,HuangG,NakajimaH,SongH,MelnikovV ,LiuW,LiG,
ChandrashekharK,JiaoF.2016.Microwaveimagingofahotuxrope
structureduringthepre-impulsivestageofaneruptiveM7.7solarare.
AstrophysJ,820:L29
XiaC,KeppensR,GuoY.2014.Three-dimensionalprominence-hosting
magneticcongurations:Creatingahelicalmagneticuxrope.Astro-
physJ,780:130
XueZ,YanX,ChengX,Y angL,SuY ,KliemB,ZhangJ,LiuZ,BiY ,Xiang
Y,Y angK,ZhaoL.2016.Observingthereleaseoftwistbymagnetic
reconnectioninasolarlamenteruption.NatCommun,7:11837
YanXL,XueZK,LiuJH,MaL,KongDF ,QuZQ,LiZ.2014.Kinkin-
stabilityevidencedbyanalyzingthelegrotationofalament.Astrophys
J,782:67
YanXL,XueZK,PanGM,W angJC,XiangYY ,KongDF,Y angLH.
2015.Theformationandmagneticstructuresofactive-regionlaments
observedbyNVST,SDO,andHINODE.AstrophysJSupplSer,219:17
YanXL,PriestER,GuoQL,XueZK,WangJC,Y angLH.2016.Thefor-
mationofaninverseS-shapedactive-regionlamentdrivenbysunspot
motionandmagneticreconnection.AstrophysJ,832:23
YanY,DengY ,KarlickýM,FuQ,WangS,LiuY.2001.Themagneticrope
structureandassociatedenergeticprocessesinthe2000July14solar
are.AstrophysJ,551:L115–L119
YangB,JiangY ,YangJ,Y uS,XuZ.2016a.Therapidformationofalament
causedbymagneticreconnectionbetweentwosetsofdarkthreadlike
structures.AstrophysJ,816:41
YangK,GuoY,DingMD.2015a.Onthe2012October23circularribbon
are:Emissionfeaturesandmagnetictopology.AstrophysJ,806:171
YangK,GuoY,DingMD.2016b.Quantifyingthetopologyandevolution
ofamagneticuxropeassociatedwithmulti-areactivities.Astrophys
J,824:148
YangS,XieW,LiuJ.2015b.Eruptionofthemagneticuxropeinaquick
decayingactiveregion.AdvSpaceRes,55:1553–1562
YangS,ZhangJ,LiuZ,XiangY.2014.Newvacuumsolartelescopeobser-
vationsofauxropetrackedbyalamentactivation.AstrophysJ,784:
L36
YashiroS,GopalswamyN,MichalekG,St.CyrOC,PlunkettSP ,RichN
B,HowardRA.2004.Acatalogofwhitelightcoronalmassejections
observedbytheSOHOspacecraft.JGeophysRes,109:A07105
YashiroS,AkiyamaS,GopalswamyN,HowardRA.2006.Differentpower-
lawindicesinthefrequencydistributionsofareswithandwithoutcoro-
nalmassejections.AstrophysJ,650:L143–L146
ZhangJ,DereKP.2006.Astatisticalstudyofmainandresidualaccelera-
tionsofcoronalmassejections.AstrophysJ,649:1100–1109
ZhangJ,LiuY.2011.Ubiquitousrotatingnetworkmagneticeldsandex-
treme-ultravioletcyclonesinthequietSun.AstrophysJ,741:L7
ZhangJ,ChengX,DingMD.2012.Observationofanevolvingmagnetic
uxropebeforeandduringasolareruption.NatCommun,3:747
ZhangJ,YangSH,LiT.2015a.Fluxropeproxiesduring2013detectedby
theSolarDynamicsObservatory.AstronAstrophys,580:A2
ZhangJ,DereKP,HowardRA,KunduMR,WhiteSM.2001.Onthetem-
poralrelationshipbetweencoronalmassejectionsandares.Astrophys
J,559:452–462
ZhangJ,DereKP,HowardRA,V ourlidasA.2004.Astudyofthekinematic
evolutionofcoronalmassejections.AstrophysJ,604:420–432
ZhangM,LowBC.2003.Magneticuxemergenceintothesolarcorona.
III.Theroleofmagnetichelicityconservation.AstrophysJ,584:
479–496
ZhangQM,NingZJ,GuoY,ZhouTH,ChengX,JiHS,FengL,
WiegelmannT.2015b.Multiwavelengthobservationsofapartially
eruptivelamenton2011September8.AstrophysJ,805:4
ZharkovS,GreenLM,MatthewsSA,ZharkovaVV.2011.2011February
15:Sunquakesproducedbyuxropeeruption.AstrophysJ,741:L35
ZhouGP,ZhangJ,W angJX.2016.Observationsofmagneticux-rope
oscillationduringtheprecursorphaseofasolareruption.AstrophysJ,
823:L19
ZhuC,LiuR,AlexanderD,McAteerRTJ.2016.Observationoftheevo-
lutionofacurrentsheetinasolarare.AstrophysJ,821:L29
ZimovetsI,VilmerN,ChianACL,SharykinI,StruminskyA.2012.Spa-
tiallyresolvedobservationsofasplit-bandcoronaltypeIIradioburst.
AstronAstrophys,547:A6
ZuccarelloFP ,AulanierG,GilchristSA.2016.Theapparentcriticaldecay
indexattheonsetofsolarprominenceeruptions.AstrophysJ,821:L23
ZuccarelloFP ,SeatonDB,MierlaM,PoedtsS,RachmelerLA,RomanoP,
ZuccarelloF.2014.Observationalevidenceoftorusinstabilityastrig-
germechanismforcoronalmassejections:The2011August4lament
eruption.AstrophysJ,785:88
ZuccarelloFP ,ChandraR,SchmiederB,AulanierG,JoshiR.2017a.Tran-
sitionfromeruptivetoconnedaresinthesameactiveregion.Astron
Astrophys,601:A26
ZuccarelloFP,AulanierG,DudíkJ,DémoulinP ,SchmiederB,GilchristS
A.2017b.Vortexandsinkowsineruptivearesasamodelforcoronal
implosions.AstrophysJ,837:115
ChengX,etal.SciChinaEarthSci25
... The first task is to verify whether MFRs were indeed presented in those ARs prior to the flare onset or not. It is known that an MFR can be present in an AR before its eruption and the subsequent flare, or an MFR can be formed from a sheared arcade due to the magnetic reconnection (Priest and Forbes, 2002;Schmieder et al., 2013;Cheng et al., 2017;Guo et al., 2017). We aim to check which of these two possibilities were realized in the ARs studied. ...
... (1) For all ARs studied, except the SOL2011-02-15 and SOL2014-10-24 events (see below), we tried to find localized elongated bundles of helical field lines twisted (more than once) around the common central axis. Such bundles of field lines can be considered as an approximation of an MFR (Gibson et al., 2006;Filippov et al., 2015;Cheng et al., 2017;Guo et al., 2017). Looking ahead, we note here that we found such bundles of field lines in the central part of all seven considered flare regions. ...
... Based on the performed extrapolation, first, we found that there is a spatially localized bundle of magnetic field lines twisted around their common axis (some of them -slightly more than once), and elongated mainly along an MPIL in the core of the parent AR before each flare studied (see Figures 2-3). Such bundles of the intertwined field lines can be considered as a reliable signature of the presence of an MFR (e.g., Schrijver, 2009;Schmieder et al., 2013;Liu et al., 2016b;Cheng et al., 2017;Guo et al., 2017, and references therein) in these ARs. Second, it can be seen clearly in Figures 2-3 that the sources of different HXR pulsations are located in footpoints of different magnetic field lines. ...
Preprint
We present analysis of the magnetic field in seven solar flare regions accompanied by the pulsations of hard X-ray (HXR) emission. These flares were studied by Kuznetsov et al. (2016) (Paper~I), and chosen here because of the availability of the vector magnetograms for their parent active regions (ARs) obtained with the SDO/HMI data. In Paper~I, based on the observations only, it was suggested that a magnetic flux rope (MFR) might play an important role in the process of generation of the HXR pulsations. The goal of the present paper is to test this hypothesis by using the extrapolation of magnetic field with the non-linear force-free field (NLFFF) method. Having done this, we found that before each flare indeed there was an MFR elongated along and above a magnetic polarity inversion line (MPIL) on the photosphere. In two flare regions the sources of the HXR pulsations were located at the footpoints of different magnetic field lines wrapping around the central axis, and constituting an MFR by themselves. In five other flares the parent field lines of the HXR pulsations were not a part of an MFR, but surrounded it in the form of an arcade of magnetic loops. These results show that, at least in the analyzed cases, the "single flare loop" models do not satisfy the observations and magnetic field modeling, while are consistent with the concept that the HXR pulsations are a consequence of successive episodes of energy release and electron acceleration in different magnetic flux tubes (loops) of a complex AR. An MFR could generate HXR pulsations by triggering episodes of magnetic reconnection in different loops in the course of its non-uniform evolution along an MPIL. However, since three events studied here were confined flares, actual eruptions may not be required to trigger sequential particle acceleration episodes in the magnetic systems containing an MFR.
... These twisted magnetic field lines can become buoyant and rise through the Sun's outer layers. As they rise, they can form loops that protrude from the Sun's surface [9]. When these loops of magnetic field lines twist around each other, they form structures known as magnetic flux ropes. ...
... When they become unstable, they can release this energy in the form of solar flares or coronal mass ejections (CMEs), which are massive bursts of solar wind and magnetic fields rising above the solar corona or being released into space [9,10]. The tearing or breaking of magnetic flux ropes is a complex process that involves several mechanisms, primarily driven by magnetic reconnection and instabilities [11,12]. ...
... Magnetic flux tube, often with twist of the field lines (i.e., magnetic flux rope), is a basic building block of complex magnetic-field configurations in the solar interior and atmosphere (Cheng, Guo, and Ding 2017;Keppens et al. 2019). It is commonly believed that solar active regions are formed by the emergence of twisted magnetic flux tube from the convection zone into the corona (Cheung and Isobe 2014). ...
Article
Full-text available
This paper is devoted to the description and validation of a new implementation of a fourth-order space–time conservation-element and solution-element (CESE) scheme to numerically solve the time-dependent, three-dimensional (3D) magnetohydrodynamic (MHD) equations. The core of the scheme is that, with the aid of a grid staggered in space and time, the conservative variables are advanced by integration of the controlling equation in the space–time four-dimensional domain by utilizing Taylor expansion, and their spatial derivatives are computed by finite difference with p order derivatives from p1p-1 order ones. The new scheme achieves fourth-order accuracy in both space and time simultaneously, using a compact stencil identical to that in the second-order CESE scheme. We provide a general framework for convenience of programming such that the scheme can be easily extended to arbitrarily higher order by including higher-order terms in the Taylor series. A suite of 3D MHD tests demonstrate that the fourth-order CESE scheme at relatively low grid resolutions can obtain reliable solution comparable to the second-order CESE scheme at four-times higher resolution, and showing a very high efficiency in computing by using only around 5%5\% of the computing resources.
... Complex structures, such as loops and helical flux ropes, as well as phenomena resembling massive vortices or tornadolike formations, often accompany CME evolution, specifically in the solar corona (Su et al. 2013;Vourlidas 2014;Chen 2017;Devi, Pooja et al. 2021). These whirling plasma formations, linked to twisted magnetic fields and magnetic reconnection, of-10 fer valuable insights into solar eruption mechanisms Cheng et al. 2017). Solar tornadoes arise from swirling magnetic fields in the Sun's atmosphere and are often linked to the barbs of solar prominences (Wedemeyer et al. 2013;Engvold 2015). ...
Article
Full-text available
Context. Solar flares and coronal mass ejections (CMEs) are manifestations of energy release in the solar atmosphere. They can be accompanied by dynamic mass motions and waves in the surrounding atmosphere. Aims. We present observations of plasma moving in a helical trajectory along a set of coronal loops formed following the eruption of a CME on 2024 May 14. This helical motion was observed in extreme ultraviolet images from the Solar Dynamics Observatory (SDO) and provides new insights into plasma properties in a set of post-eruption coronal loops. Methods. We utilized images from the SDO Atmospheric Imaging Assembly (AIA) instrument to track the helical motion of plasma and to characterize its speed, acceleration, and physical properties. Additionally, we explored the evolution of the plasma density and temperature along the helical structure using the differential emission measure technique. Results. The helical structure was visible to AIA for approximately 22 minutes; it had a diameter of ∼22 Mm and a total trajectory of nearly 184 Mm. According to our analysis of the AIA observations, the speed of the plasma flow along this helical coronal loop ranged from 77 to 384 km s ⁻¹ , temperatures from 3.46 to 10.2 MK, densities from 4.3 × 10 ⁶ to 1.55 × 10 ⁷ cm ⁻³ , and the magnetic field strength from 0.05 to 0.3 G. Conclusions. Following the launch of the CME, we find clear evidence for impulsive heating and expansion of the plasma, which travelled along a helical trajectory along a set of post-eruption loops. These observations provide an insight into impulsive plasma flows along coronal loops and the topology of coronal loops.
... Therefore, understanding filament formation has been a traditional topic in studying the origin and structure of CMEs (X. Cheng et al. 2017;P.-F. Chen et al. 2020). ...
Article
Full-text available
Solar filaments are believed to be a clump of cold plasma accumulated in the magnetic dips. However, the magnetic configuration of filaments and the key factors for their formation remains elusive. In this Letter, we present a detailed study of the formation and eruption of a multifilament system with observations and simulations. Before the filament appeared visible, the chromospheric fibrils gradually gathered together, evolving from a diffuse distribution into threadlike structures that were nearly parallel to the polarity inversion lines. On 2022 March 20, an arch filament first appeared showing high dynamics, and subsequently two reserved S-shaped filaments were visibly observed. These two filament segments further reconnected, forming a long coherent filament and resulting in a double-decker configuration. In addition, continuous converging motion and magnetic flux cancellation were found in the photosphere during the evolution. Simultaneously, more bald patch structures appeared at the polarities' collision position. Through a data-driven numerical simulation, we further reconstructed the coronal magnetic field, which is composed of two twisted magnetic flux ropes (MFRs) with their bottom touching the photosphere, along with a group of sheared arcades forming an X-shaped configuration. These findings suggest that the magnetic configuration of the filament is in a highly dynamic state, evolving from a hybrid to a coherent MFR. Moreover, we propose that the formation and eruption of the multifilament system are closely related to magnetic reconnection taking place on the photosphere and in the lower corona, respectively, both mainly driven by the photospheric converging motion.
... elocity in the prominence cavity at the solar limb using the Coronal Multi-Channel Polarimeter. Their findings revealed a bull's-eye pattern in Doppler velocity and linear polarization signatures within the prominence cavities, which support the idea that the magnetic field structure of prominences resembles a flux rope (S. E. Gibson & Y. Fan 2006;X. Cheng et al. 2017). Consequently, the question of the magnetic structures of solar filaments remains controversial. ...
Article
Full-text available
Solar filaments are spectacular objects in the solar atmosphere, consisting of accumulations of cool, dense, and partially ionized plasma suspended in the hot solar corona against gravity. The magnetic structures that support the filament material remain elusive, partly due to the lack of high-resolution magnetic field measurements in the chromosphere and corona. In this study, we reconstruct the magnetic structures of a solar intermediate filament using EUV observations and two different methods, to follow the injection of hot material from a B-class solar flare. Our analysis reveals the fine-scale magnetic structures of the filament, including a compact set of mutually wrapped magnetic fields encasing the cool filament material, two groups of helical magnetic structures intertwining with the main filament, and a series of arched magnetic loops positioned along the filament. Additionally, we find that the northern footpoints of the helical structures are rooted in the same location, while their southern footpoints are rooted in different areas. The results obtained in this study offer new insights into the formation and eruption mechanisms of solar filaments.
Article
Full-text available
Filaments are special plasma phenomena embedded in the solar atmosphere, characterized by unique thermodynamic properties and magnetic structures. Magnetohydrodynamic (MHD) simulations are useful to investigate the eruption mechanisms of filaments. We conduct a data-constrained zero- β MHD simulation in spherical coordinates to investigate a C3.5 class flare triggered by an eruptive filament on 2022 August 15 in the decaying weak active region 13079. We reconstruct the three-dimensional coronal magnetic field using vector magnetograms and synoptic maps from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager. We transform the vector magnetic field into Stonyhurst heliographic spherical coordinates combined with a synoptic map and construct a potential field source surface model with a magnetic flux rope embedded using the regularized Biot–Savart laws. Subsequently, we conduct a spherical zero- β MHD simulation using the message-passing interface adaptive mesh refinement versatile advection code (MPI-AMRVAC) and replicate the entire dynamic process of the filament eruption consistent with observations. With the calculation of the time–distance profile, quasi-separatrix layers, and synthetic radiation from simulated current density, we find a good agreement between our simulation and observations in terms of dynamics and magnetic topology. Technically, we provide a useful method of advanced data-constrained simulation of weak active regions in spherical coordinates. Scientifically, the model allows us to quantitatively describe and diagnose the entire process of filament eruption.
Article
The generation and reconnection of magnetic flux ropes in a plasma irradiated by two Laguerre–Gaussian laser pulses with different frequencies and opposite topological charges are investigated numerically by particle-in-cell simulations. It is shown that twisted plasma currents and hence magnetic flux ropes can be effectively generated as long as the laser frequency difference matches the electron plasma frequency. More importantly, subsequent reconnection of magnetic flux ropes can occur. Typical signatures of magnetic reconnection, such as magnetic island formation and plasma heating, are identified in the reconnection of magnetic flux ropes. Notably, it is found that a strong axial magnetic field can be generated on the axis, owing to the azimuthal current induced during the reconnection of the ropes. This indicates that in the reconnection of magnetic flux ropes, the energy can be transferred not only from the magnetic field to the plasma but also from the plasma current back to the magnetic field. This work opens a new avenue to the study of magnetic flux ropes, which helps in understanding magnetic topology changes, and resultant magnetic energy dissipation, plasma heating, and particle acceleration found in solar flares, and magnetic confinement fusion devices.
Article
Prior to solar eruptions, a short-term slow-rise phase is often observed, during which the pre-eruption structure ascends at a speed much greater than the photospheric motions but much less than that of the eruption phase. Numerical magnetohydrodynamic (MHD) simulations of the coronal evolution driven by photospheric motions until eruptions have been used to explain the slow-rise phase, but their bottom driving speeds are much larger than the realistic photospheric values. Therefore, it remains an open question how the excessively fast bottom driving impacts the slow-rise phase. Here we modelled the slow-rise phase before eruption initiated from a continuously sheared magnetic arcade. In particular, we performed a series of experiments with the bottom driving speed unprecedentedly approaching the photospheric value of around 1~km~s1^{-1}. The simulations confirmed that the slow-rise phase is an ideal MHD process, i.e., a manifestation of the growing expansion of the sheared arcade in the process of approaching a fully open field state. The overlying field line above the core flux has a slow-rise speed modulated by magnitude of the driving speed, but always larger than the driving speed by over an order of magnitude. The core field also expands with speed much higher than the driving speed but much lower than that of the overlying field. By incrementally reducing the bottom-driving speed until the realistic values, we observed a correspondingly better match of the slow-rise speed with typical observed ones.
Article
Full-text available
Context. Coronal mass ejections (CMEs) are one of the main drivers of space weather. However, robust and efficient numerical modelling applications of the initial stages of CME propagation and evolution process in the sub-Alfvénic corona are still lacking. Aims. Magnetohydrodynamic (MHD) solar coronal models are critical in the Sun-to-Earth model chain, but they do sometimes encounter low- β (<10 ⁻⁴ ) problems near the solar surface. This paper aims to deal with these low- β problems and make MHD modelling suitable for practical space weather forecasting by developing an efficient and time-accurate MHD model of the solar corona and CMEs. In this paper, we present an efficient and time-accurate three-dimensional (3D) single-fluid MHD solar coronal model and employ it to simulate CME evolution and propagation. Methods. Based on a quasi-steady-state implicit MHD coronal model, we developed an efficient time-accurate coronal model that can be used to speed up the CME simulation by selecting a large time-step size. We have called it the Solar Interplanetary Phenomena-Implicit Finite Volume Method (SIP-IFVM) coronal model. A pseudo-time marching method was implemented to improve temporal accuracy. A regularised Biot-Savart Laws (RBSL) flux rope, whose axis can be designed into an arbitrary shape, was inserted into the background corona to trigger the CME event. We performed a CME simulation on the background corona of Carrington rotation (CR) 2219 and evaluated the impact of time-step sizes on simulation results. Our study demonstrates that this model is able to simulate the CME evolution and propagation process from the solar surface to 20 R s in less than 0.5 hours (192 CPU cores, ~1 M cells). Compared to the explicit counterpart, this implicit coronal model is not only faster, but it also has improved numerical stability. We also conducted an ad hoc simulation with initial magnetic fields artificially increased. It shows that this model can effectively deal with time-dependent low- β problems ( β < 10 ⁻⁴ ). Additionally, an Orszag-Tang MHD vortex flow simulation demonstrates that the pseudo-time-marching method used in this coronal model can simulate small-scale unsteady-state flows. Results. The simulation results show that this MHD coronal model is very efficient and numerically stable. It is a promising approach to simulating time-varying events in the solar corona with low plasma β in a timely and accurate manner.
Article
Full-text available
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.
Article
Full-text available
Using high-resolution observations from the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), we report direct evidence of merging/reconnection of cool Hα\alpha loops in the chromosphere during two homologous flares (B- and C-class) caused by a shear motion at the footpoint of two loops. The reconnection between these loops caused the formation of an unstable flux rope which showed counterclockwise rotation. The flux rope could not reach the height of torus instability and failed to form a coronal mass ejection. The HMI magnetograms revealed rotation of the negative/positive (N1/P2) polarity sunspots in the opposite directions, which increased the right and left-handed twist in the magnetic structures rooted at N1/P2. Rapid photospheric flux cancellation (duration\sim20-30 min, rate\approx3.44×\times1020^{20} Mx h1^{-1}) was observed during and even after the first B6.0 flare and continued until the end of the second C2.3 flare. The RHESSI X-ray sources were located at the site of the loop's coalescence. To the best of our knowledge, such a clear interaction of chromospheric loops along with rapid flux cancellation has not been reported before. These high-resolution observations suggest the formation of a small flux rope by a series of magnetic reconnection within chromospheric loops associated with very rapid flux cancellation.
Article
Full-text available
We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study the solar surface and atmosphere associated with the flare-CME from SDO and ground-based instruments, and also track the CME signature off-limb from combined EUV and white-light data with STEREO. By applying 3D reconstruction techniques (GCS, total mass) to stereoscopic STEREO-SoHO coronagraph data, we track the temporal and spatial evolution of the CME in interplanetary space and derive its geometry and 3D-mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the MC from in-situ measurements (Wind). This is compared to nonlinear force-free (NLFF) model results as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are reduced in interplanetary space by ~50% and 75%, respectively, possibly indicating to an erosion process. A mass increase of 10% for the CME is observed over the distance range from ~4-20 Rs. The temporal evolution of the CME associated core dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
Article
Full-text available
Eruptive flares are sudden releases of magnetic energy that involve many phenomena, several of which can be explained by the standard 2D flare model and its realizations in three-dimensions. We analyze a three-dimensional magnetohydrodynamics simulation in the framework of this model that naturally explains the contraction of coronal loops in the proximity of the flare sites, as well as the inflow towards the region above the cusp-shaped loops. We find that two vorticity arcs located along the flanks of the erupting magnetic flux rope are generated as soon as the eruption begins. The magnetic arcades above the flux-rope legs are then subjected to expansion, rotation or contraction depending on which part of the vortex-flow advects them. In addition to the vortices, an inward-directed magnetic pressure gradient exists in the current sheet below the magnetic flux rope. It results in the formation of a sink that is maintained by reconnection. We conclude that coronal loop apparent implosions observed during eruptive flares are the result of hydro-magnetic effects related to the generation of vortex- and sink-flows when a flux rope moves in a magnetized environment.
Article
Full-text available
We report on a new method to compute the flare reconnection (RC) flux from post-eruption arcades (PEAs) and the underlying photospheric magnetic fields. In previous work, the RC flux has been computed using cumulative flare ribbon area. Here we obtain the RC flux as half of that underlying the PEA associated with the eruption using an image in EUV taken after the flare maximum. We apply this method to a set of 21 eruptions that originated near the solar disk center in solar cycle 23. We find that the RC flux from the arcade method ({\Phi}rA) has excellent agreement with that from the ribbon method ({\Phi}rR) according to: {\Phi}rA = 1.24({\Phi}rR)^0.99. We also find {\Phi}rA to be correlated with the poloidal flux ({\Phi}P) of the associated magnetic cloud at 1 au: {\Phi}P = 1.20({\Phi}rA)^0.85. This relation is nearly identical to that obtained by Qiu et al. (2007) using a set of only 9 eruptions. Our result supports the idea that flare reconnection results in the formation of flux rope and PEA as a common process.
Article
Context. Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided into two classes: eruptive flares, where plasma is ejected from the solar atmosphere resulting in a coronal mass ejection (CME), and confined flares, where no CME is associated with the flare. Aims. We present a case study showing the evolution of key topological structures, such as spines and fans, which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares followed by confined flares, which all originate from the same site. Methods. To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation. Results. The change in behavior of the flares from one day to the next – from eruptive to confined – can be attributed to the change in orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine rather than an overall change in the stability of the large-scale field. Conclusions. Flares tend to be more confined when the field that supports the filament and the overlying field gradually becomes less anti-parallel as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations.
Article
Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims. The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods. The tornado was also observed in H α with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results. The H α Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10′′ wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions. The Doppler pattern observed in H α cannot be interpreted as rotation of the cool plasma inside the tornado. The H α velocity observations give strong constraints on the possible interpretations of the AIA tornado.