Content uploaded by Yang Guo
Author content
All content in this area was uploaded by Yang Guo on Apr 05, 2020
Content may be subject to copyright.
©ScienceChinaPressandSpringer-VerlagBerlinHeidelberg2017earth.scichina.comlink.springer.com
SCIENCECHINA
EarthSciences
•
REVIEW
•doi:10.1007/s11430-017-9074-6
OriginandstructuresofsolareruptionsI:Magneticuxrope
CHENGXin1,2*,GUOY ang1,2&DINGMingDe1,2
1SchoolofAstronomyandSpaceScience,NanjingUniversity ,Nanjing210093,China;
2KeyLaboratoryforModernAstronomyandAstrophysics(NanjingUniversity),MinistryofEducation,Nanjing210023,China
ReceivedFebruary17,2017;acceptedJune15,2017;publishedonlineJuly10,2017
AbstractCoronalmassejections(CMEs)andsolararesarethelarge-scaleandmostenergeticeruptivephenomenainoursolar
systemandabletoreleasealargequantityofplasmaandmagneticuxfromthesolaratmosphereintothesolarwind.Whenthese
high-speedmagnetizedplasmasalongwiththeenergeticparticlesarriveattheEarth,theymayinteractwiththemagnetosphere
andionosphere,andseriouslyaffectthesafetyofhumanhigh-techactivitiesinouterspace.ThetraveltimeofaCMEto1AUis
about1–3days,whileenergeticparticlesfromtheeruptionsarriveevenearlier.Anefcientforecastofthesephenomenatherefore
requiresacleardetectionofCMEs/aresatthestageasearlyaspossible.Toestimatethepossibilityofaneruptionleadingto
aCME/are,weneedtoelucidatesomefundamentalbutelusiveprocessesincludinginparticulartheoriginandstructuresof
CMEs/ares.UnderstandingtheseprocessescannotonlyimprovethepredictionoftheoccurrenceofCMEs/aresandtheireffects
ongeospaceandtheheliospherebutalsohelpunderstandthemassejectionsandaresonothersolar-typestars.Themainpurpose
ofthisreviewistoaddresstheoriginandearlystructuresofCMEs/ares,frommulti-wavelengthobservationalperspective.First
ofall,westartwiththeongoingdebateofwhetherthepre-eruptiveconguration,i.e.,ahelicalmagneticuxrope(MFR),of
CMEs/aresexistsbeforetheeruptionandthenemphaticallyintroduceobservationalmanifestationsoftheMFR.Secondly,we
elaborateonthepossibleformationmechanismsoftheMFRthroughdistinctways.Thirdly,wediscusstheinitiationoftheMFR
andassociateddynamicsduringitsevolutiontowardtheCME/are.Finally,wecometosomeconclusionsandputforwardsome
prospectsinthefuture.
KeywordsCoronalmassejections,Flares,Magneticuxropes,Magneticeld,EUV/UVemissions,Photosphere,Corona,
Particleacceleration
Citation:ChengX,GuoY ,DingMD.2017.OriginandstructuresofsolareruptionsI:Magneticuxrope.ScienceChinaEarthSciences,60,doi:10.1007/s11430-
017-9074-6
1.
Introduction
Solareruptionsrefertovariousphenomenathatinvolvean
outowofplasmaandmagneticuxfromthesolaratmos-
phereintothesolarwindsuchasspicules,jets,surges,coronal
massejections(CMEs),andaresetc..Amongthem,CMEs
andaresarethelarge-scaleeruptiveandenergeticprocesses
thatusuallyaccompanywitheachotherthoughnotalways
(SheeleyJr.etal.,1983;Kahler,1992;Yashiroetal.,2006).
Aftershotout,CMEsoftendisplayatypicalthree-compo-
*Correspondingauthor(email:xincheng@nju.edu.cn)
nentstructure:aleadingfrontfollowedbyanencloseddark
cavityandanembeddedbrightcore(IllingandHundhausen,
1983)asseeninwhite-lightcoronagraphs.Thedarkcavity
andbrightcorearebelievedtobemanifestationsofamag-
neticuxrope(MFR),whichisdenedasacoherentlyhe-
licalmagneticstructurewithalleldlineswrappingaround
thecentralaxisatleastoneturn.Thedarkcavitymaycorre-
spondtothecrosssectionoftheMFRandthebrightcoreto
thecoollament/prominencematerialslocatedatthebottom
oftheMFRwhenviewededge-on(Dereetal.,1999;Gibson
etal.,2007;Rileyetal.,2008).
Besidesbeinglledwithahelicalmagneticstructure,
CMEsalsoexperienceanaccelerationprocessofshortpe-
riod(~tensofminutes;Zhangetal.,2001;ZhangandDere,
2006),nallyreachinghighvelocitiesrangingfromhundreds
tothousandsofkm s−1(Yashiroetal.,2004;Tianetal.,2012;
Fengetal.,2013).After1–3days,thesehigh-speedhelical
plasmoidsmayarriveattheEarth(Liuetal.,2011,2013,
2017;Shenetal.,2012a;HessandZhang,2015;Shietal.,
2015;Huetal.,2016;Temmeretal.,2017).Thetypical
featuresofCMEsintheinterplanetaryspace,suchasrotation
ofmagneticeld,increasedsolarwindspeed,depressed
protontemperature,andlowplasmabeta,canbeobserved
directlyviainsituinstruments(e.g.,Burlaga,1988;Lepping
etal.,1990).WhentheinterplanetaryCMEsinteractwith
themagnetosphereandionosphere,theyprobablygiverise
toseriousinuencesonthesafetyofhumanhigh-techac-
tivitiesinouterspace,suchasdisruptingcommunications,
overloadingpowergrids,presentingahazardtoastronauts,
andsoon(Gosling,1993;Webbetal.,1994;Shenetal.,
2013;Solankietal.,2004;Liuetal.,2014a;Shietal.,2015)
Inordertopredicttheproductsandtheirinuencesinduced
bysolareruptions,elucidatingsomefundamentalbutelu-
siveprocessesincludingtheiroriginandstructuresandsub-
sequentSun-to-Earthpropagationisamatterofgreatimpor-
tance.Inthepastdecades,manysignicantprogresseshave
beenmadeinthisaspect,thereadercanrefertomanyprevi-
ousreviews(e.g.,Forbesetal.,2006;Chen,2011;Schmieder
etal.,2015;Linetal.,2015;Wangetal.,2016a;Byrneet
al.,2010;Lugazetal.,2015;Möstletal.,2017).Inthecur-
rentreview,weelaborateonrecentprogressesonthestudy
oftheoriginandstructuresofCMEs/aresfrommulti-wave-
lengthobservationalperspective,whicharemostlyascribed
tothelaunchofSolarDynamicsObservatory(SDO;Pesnell
etal.,2012).W ealsointroducesomerelevantresultsfrom
SolarT errestrialRelationsObservatory(STEREO;Kaiseret
al.,2008),InterfaceRegionImagingSpectrograph(IRIS;De
Pontieuetal.,2014),andnewlyconstructedground-based
instrumentsliketheNewSolarT elescope(NST;Caoetal.,
2010)atBigBearSolarObservatoryandtheNewVacuum
SolarT elescope(NVST;Liuetal.,2014b)atYunnanObser-
vatory(FuxianLake).Firstofall,westartwiththequestions
ofwhetherahighlyhelicalMFRisnecessaryfortheerup-
tionandwhethertheMFRexistspriortotheeruption.We
thenemphaticallyintroducetheobservationalmanifestations
oftheMFR.Secondly,weelaborateonthepossibleforma-
tionmechanismsofthedifferentmanifestationsoftheMFR
inSection3.Thirdly,wediscusstheinitiationmechanismsof
theMFRandthedynamicsduringtheevolutionoftheMFR
towardtheCME/areinSection4.Intheend,wecometo
conclusionsandpresentsomeprospectsthatshouldbead-
dressedinthefuture.
Thisreviewisfocusedontheobservationalaspect.
Themagneticmodellingaspectoftheoriginandstruc-
turesofCMEs/aresisgiveninanotherreviewbyGuoetal.
(2017).
2.
Pre-eruptivecongurationsofsolarerup-
tions
Inthe2DstandardCME/aremodel(Carmichael,1964;Stur-
rock,1966;Hirayama,1974;KoppandPneuman,1976;Shi-
bataetal.,1995),thepre-eruptiveconguration,whichis
modelledtobeahelicalMFR(Shibataetal.,1995;Chen,
1996;TitovandDémoulin,1999;Vourlidasetal.,2013)or
shearedarcade(Sturrock,1966;Antiochosetal.,1999),is
constrainedbythebackgroundmagneticelds.Theeruption
ofthepre-eruptivecongurationstretchesthebackground
eldstoformamagneticdissipationregion,aso-calledcur-
rentsheet(CS),inbetweentheirtwolegs.Oncethethick-
nessoftheCSislessthanathreshold,magneticreconnection
willbeswitchedon(LinandForbes,2000).Ontheonehand,
thereconnectionacceleratestheeruptionviacontinuouslyin-
jectingpoloidaluxintotheeruptingstructure.Ontheother
hand,thereconnectionreleasesalargequantityofenergythat
inducesarapidlyenhancedradiationoverthewholeelectro-
magneticspectrumrangingfromdecameterradiowavestoγ
rays.
Atpresent,thenatureofthepre-eruptivecongurationis
stillelusive.Ontheonehand,observationsshowthatthe
pre-eruptivecongurationcouldbeshearedarcades,indicat-
ingthattheMFRcouldbeunnecessaryforinitiatingtheerup-
tion(e.g.,Songetal.,2014a;Ouyangetal.,2015).Onthe
otherhand,afewobservationsimplythatthepre-eruptive
congurationisahelicalMFR(e.g.,LowandHundhausen,
1995;Gibsonetal.,2006;GreenandKliem,2009;Zhanget
al.,2012;Chengetal.,2013a;Patsourakosetal.,2013).Con-
sideringthatthemagneticeldinthesolaratmospherecannot
bemeasuredaccuratelyexceptonthephotosphere,thecom-
munityusuallyresortstoindirectobservationsorextrapola-
tiontechniquessuchasnon-linearforce-freeeld(NLFFF)
modellingtosearchfortheevidenceoftheMFR.Forex-
ample,throughtheNLFFFmodelling,stronglytwistedeld
lineswithasubstantialmagnetichelicityareoftenfoundto
existalongthepolarityinversionline(PIL)ofactiveregions
beforetheeruption(e.g.,Yanetal.,2001;CanouandAmari,
2010;Guoetal.,2010b;Savchevaetal.,2012;Chengetal.,
2013b,2014b;Inoueetal.,2013;Jiangetal.,2014a;Jianget
al.,2016c;Y anetal.,2015).Inthefollowing,weintroduce
variousobservationalevidencesfortheexistenceoftheMFR
indetail.
2.1
Filamentsandlamentchannels
Filamentsareaphenomenonofrelativelycoolanddense
plasmaembeddedinthehotandtenuouscorona,commonly
observedinabsorptioninHαandtheExtremeUltraviolet
(EUV)passbandsonthesolardisk,whileappearinginemis-
sionasbrightfeatures,i.e.,prominences,againstthedark
backgroundwhenseenabovethesolarlimb(Hirayama,1985;
2ChengX,etal.SciChinaEarthSci
Mackayetal.,2010).
Themagneticstructureoflamentsisusuallythoughttobe
shearedarcades(Antiochosetal.,1994;Aulanieretal.,2006)
orhighlytwistedMFR(KuperusandRaadu,1974;vanBal-
legooijenandMartens,1989;Aulanieretal.,1998;Aulanier
etal.,1999),whichpossessmagneticdipsthatareableto
provideanupwardmagnetictensionagainstthegravityof
lamentmaterials(Martin,1998;Mackayetal.,2010).In
ordertovalidatesuchapicture,manyauthorsextrapolated
three-dimensional(3D)structuresofthelamentsourcere-
gionsbasedontheassumptionoflinear(e.g.,Aulanieretal.,
1998;Aulanieretal.,1999)ornon-linearFFF(e.g.,Guoet
al.,2010b;Savchevaetal.,2012;Chengetal.,2014b;Jiang
etal.,2016c;Y anetal.,2015).Inmanyevents,inparticular
activeregionlaments,thedipsoftheshearedarcades(Anti-
ochosetal.,1994;Aulanieretal.,2006)ortwistedelds(e.g.,
Chengetal.,2014b;Jiangetal.,2016c)aremostlyco-spa-
tialwiththelamentlocations.Sometimes,apartofthela-
mentlocationsareconsistentwiththedipsofshearedarcades,
whiletheotherpartwiththedipsoftwistedelds(Figure1a;
Guoetal.,2010b).Duringthelamenteruption,thetwistof
magneticeldlinesisalsoobservedtobereleasedbymag-
neticreconnection(Figure1b;Xueetal.,2016).
Insomeevents,itisverydifculttoreconstructthestrongly
twistedeldlinescomparablewiththelaments,inparticu-
larforthequiescentlaments,whichareprobablyduetothe
reasonthatthepreprocessingover-smoothesthevectoreld
beforedoingtheextrapolation.However,usingthenewlyde-
velopedCESE-MHD-NLFFFcodebyJiangandFeng(2012),
Jiangetal.(2014b)reproducedalarge-scalecoronalMFR
thatexistsinbetweenanactiveregionandaweakpolarityre-
gionandsupportsaquiescentlament.Itisevenfoundthat
thelargepolarcrownprominencelocatedattheweakmag-
neticeldregioncanalsobemodelledwithanMFRcong-
urationalthoughwithacertaindegreesoffreedom(e.g.,Su
andvanBallegooijen,2012;Suetal.,2015).
Itispossiblethattherearenocoolmaterialsdeposited
indipsofMFRs.Inthiscase,theMFRsmaymanifestas
lamentchannelsandusuallylieoverthePILofthelong
decayedactiveregions(e.g.,vanBallegooijenetal.,1998;
AulanierandSchmieder,2002;Chenetal.,2014c).Itisalso
observedthattheeruptingMFRdoesnotaccompanywith
apre-existinglament,suchasforadouble-deckercong-
urationthatconsistsofahigh-lyingMFRandavertically
separatedlament-associatedlow-lyinguxsystem(e.g.,
Liuetal.,2012;Chengetal.,2014b;Dudíketal.,2014;
Kliemetal.,2014b).Withtheeruptionbeginning,onlythe
high-lyingMFRuxeruptstogiverisetoaCMEandaare,
whilethelow-lyinglamentremainsinoriginalplace.
2.2
Coronalcavities
Whenquiescentlamentsandlamentchannelsrotatetothe
solarlimb,theyareprobablyseenasdark,semi-circularor
circularcavitiessurroundingprominencesandembeddedin
bipolarhelmetstreamer(Figure1c).Cavitiesinactivere-
Figure1
(a)Hαimageoverlaidbytheextrapolatedmagneticeldlines.TheMFRindicatedbymixedcolorsiscospatialwithasegmentofthelament
(adaptedfromGuoetal.,2010b.ReproducedbypermissionoftheAAS).(b)Twistreleasingbythereconnectionduringthelamenteruption(fordetailsplease
seeXueetal.,2016.ReproducedbypermissionoftheAAS).(c)CoronalcavitiesasseenintheAIA193Åpassband.(d)AsequenceofXRTimagesshowing
theevolutionofasigmoidpriortotheeruption(fromMcKenzieandCaneld,2008).
ChengX,etal.SciChinaEarthSci3
gionsareverydifculttoobserve,becausetheylierelatively
lowtothesolarsurfaceandaresignicantlyinuencedby
strongemissionfromtheforegroundandbackground.At
present,theyhavebeenobservedonlyinfeweventsasan
eruptinghotblob(e.g.,Songetal.,2014b).Itisalsoar-
guedthatthemagneticstructureofcavitiesisanMFR,i.e.,
thecrosssectionoftheMFRcorrespondstothewholeor
lowerpartofcavities(LowandHundhausen,1995).Prior
totheeruption,thecavitiestypicallyexistinthelowcorona
andareabletosurvivefordays,evenformonths(Gibson
etal.,2006,2007).Itcanbeobservedatarangeofwave-
lengths,mostlyinthewhite-lightpassbandofsuchasthe
ground-basedwhite-lightcoronagraphMarkIVcoronameter
installedattheMaunaLoaSolarObservatory,aswellinthe
EUVpassbandsofsuchastheAtmosphericImagingAssem-
bly(AIA;Lemenetal.,2012)onboardSDO.
Manyfeaturesofcoronalcavitiesindicatethattheirfunda-
mentalmagneticstructureisanMFR.Therstevidenceis
continuousspinningmotions,whicharefrequentlyseenin-
sidecavitiesandhaveaowspeedof5−10 km s−1(Wang
andStenborg,2010).Moreover,thepolarizationringincav-
itiesobservedbyCoronalMulti-ChannelPolarimeteralso
supportstheMFRmodel,whichillustratesthatabrightring
oflinearpolarizationmayappearinadensitydepletedre-
gion(Doveetal.,2011).Inlinearpolarizationobservations,
Bak-Stęślickaetal.(2013)furtherfoundthatthecavitypos-
sessesacharacteristic“lagomorphic”signature,whichagain
indicatestheexistenceoftheMFRasapatternofconcentric
rings.
Solar“tornadoes”,anewphenomenondiscoveredrecently
andoftenappearingincavityassociatedprominences,are
alsoconsideredasapieceofevidenceoftheMFR.Thedi-
rectevidenceof‘tornadoes”havingahelicalstructureisthe
swirlingmotions(ZhangandLiu,2011;Lietal.,2012;Su
etal.,2012;Wedemeyer-Böhmetal.,2012).Spectroscopic
observationsalsodisclosedapatternwithblueshiftedand
redshiftedemissions,i.e.,oppositevelocities,existingatthe
twosidesofprominences,implyingthemagneticstructureof
“tornadoes”beinghelical(Suetal.,2014).However,spectro-
scopicobservationsincoollines(e.g.,Hαand10830 Å)re-
vealedthattheDopplershiftpatterndoesnotfollowthepat-
ternobservedincoronallines.Itismostlikelyoscillationsof
theplasmaalongtheeldlineslikecounterstreamingoroscil-
lationsofthewholemagneticstructure(MartínezGonzálezet
al.,2016;Schmiederetal.,2017).Tornadoescouldbejustthe
foopointsofprominences(Wedemeyeretal.,2013;Levenset
al.,2016)oramanifestationofspirallyejectedjetsdrivenby
torsionalAlfvénwaves(Pariatetal.,2009a).
2.3
Sigmoids
Sigmoids,forwardorreversedsigmoidalemissionpatterns
appearinginEUVandsoftX-ray(SXR)passbands(Figure
1d),havebeenfoundtobeanimportantpre-eruptivecong-
urationofCMEs/ares(Hudsonetal.,1998;RustandKu-
mar,1996;SterlingandHudson,1997;Gibsonetal.,2002),
whicharestatisticallymorelikelytobeeruptive(Caneld
etal.,1999).Basedonthedurationtime,sigmoidscanbe
classiedastransientorpersistentones.Theformertendto
besharperandbrighter,apparentlyassigmoidalloops,and
evolveintocuspsorarcadesofloopsmanytimes;thelatter
appearmorediffuseandcouldbeacollectionofsomesheared
loops(Pevtsov,2002;Gibsonetal.,2002;Greenetal.,2007).
Thesigmoidalemissionpatternisexpectedtobeduetothe
heatinginacurvedCSattheinterfacebetweenthehelical
coreeld(e.g.,MFR)andtheambienteld(Kliemetal.,
2004;Gibsonetal.,2006).Greenetal.(2007)evenfound
that,duringtheeruptionphaseofsigmoids,thehelicitysign
ofsigmoidsisconsistentwiththerotationdirectionofassoci-
atederuptinglaments(alsoseeYangetal.,2015b),showing
theconversionoftwistintowritheundertheassumptionof
helicityconservation,supportingtheexistenceofthetwisted
eldlinesinsigmoids.
Theappearanceofthesigmoidalemissionpatterndoes
notmeantheexistenceofcontinuoussigmoidaleldlines.
McKenzieandCaneld(2008)analyzedalong-lasting
coronalsigmoidandfoundthattheoverallSshapeofthe
sigmoiddenitelyconsistsoftwoseparateJ-shapedloops
withastraightsectionpossiblylyinginthemiddle.Green
andKliem(2009)andLiuetal.(2010)pointedoutthattwo
oppositeJ-shapedloopscanformthecontinuousS-shaped
loopsthroughthetether-cuttingreconnection.Usingan
MHDsimulation,Aulanieretal.(2010)reproducedsynthetic
SXRimagesfromthedistributionoftheelectriccurrentsand
revealedtheformationofasigmoidalactiveregion.They
foundthatabrightsigmoidalenvelopeisbuiltupgradually
bythebald-patch(BP,wheremagneticeldlinesarecurved
upwardandaretangenttothephotosphere)andtether-cutting
reconnectionbetweentwopairofJ-shapedeldlines.Using
theuxemergencemodel,Archontisetal.(2009)evendis-
closedthatoppositeJ-shapedloopsandS-shapedloopsexist
simultaneously,whichresultintheoverallmagneticstructure
ofsigmoids.Moreover,someauthorsalsoreconstructed3D
NLFFFcongurationofsourceregionsofsigmoidsanddid
ndthatthecoreeldconsistsofatwistedMFRembedded
inhighlyshearedelds(e.g.,Suetal.,2009;Savchevaand
vanBallegooijen,2009;Savchevaetal.,2012;Jiangetal.,
2013,2014a;Chengetal.,2014b).
2.4
Hotchannels
Hotchannelsorhotblobsareatypeofnewandpromisingev-
idenceoftheexistenceofMFRs.Throughanalysingalimb
event,Chengetal.(2011b)forthersttimeobservedthe
formationofanMFRduringtheimpulsivephase.Itinitially
appearsasaneruptinghotblobasseenintheAIA131and
4ChengX,etal.SciChinaEarthSci
94 Åpassbands(T≥8MK).Whileintheotherlowtemper-
aturepassbands(1MK≤T≤5MK),itappearsasadarkcav-
ity.Combingwithsometypicalfeaturessuchastheinows,
stretchedoverlyingeld,andcusp-shapedareloopsthatare
expectedbytheMFReruptionmodelsofCME/ares,theau-
thorsstronglyarguedthatthehotblobisanunambiguousevi-
denceoftheMFRexistinginthecorona(alsosee;Songetal.,
2014b).FollowingtheworkofChengetal.(2011b),Zhang
etal.(2012)andChengetal.(2013a)startedtosearchfor
moreevidenceoftheMFRinthe131and94 Åpassbands.
TheydiscoveredthattheMFRevenexistspriortotheerup-
tionasawrithedchannel-likestructurewithtwoelbowsin-
cliningtotheoppositedirectionsandthemiddlebeingcon-
cavedtowardthesurfacewhenseenoffthesolarlimb(Fig-
ure2a).Thevisibilityofthechannel-likestructureonlyat
theAIAhightemperaturepassbands(e.g.,131and94 Å)but
notatothercoolerpassbandsshowsthatithasatempera-
tureof>6MK.Subsequently,moreandmorehotchannel
eventsthatexistpriortotheCME/arebeginningareiden-
tied(e.g.,Patsourakosetal.,2013;LiandZhang,2013a,
2013c;Tripathietal.,2013;VemareddyandZhang,2014;
Dudíketal.,2014;Chintzoglouetal.,2015;Joshietal.,2015;
Zhouetal.,2016).Interestingly,apre-existingMFRiseven
conrmedtoexistinthechromospherewithobservationsby
NSTatBBSO(Wangetal.,2015).Moreover,Chengetal.
(2012)quantiedthedifferentialemissionmeasure(DEM)of
thehotblobsandchannels,whichshowsthattheemissionof
thesehotMFRsareactuallyfromabroadtemperaturerange
of6.5≤logT≤7.3withaDEM-weightedaveragetemperature
largerthan~8MK.Thecorrespondingelectronnumberden-
sityvariesfrom5.0×108to3.0×109 cm−3.
Zhangetal.(2012)andChengetal.(2013a)furtherfound
thatthehotchannelshowsaremarkablemorphologicalevo-
lutionduringtheearlyphaseoftheeruption.Initially,the
dippedcentralpartofthewrithedhotchannelrisesupslowly
andgraduallybecomesmorelinear.Thecontinuingriseofthe
centralparteventuallyturnsthesigmoidalshapeofthechan-
nelintoalooplikeshapedpartialtorus(Figure2a).Duringthe
transformationprocess,thetwofootpointsoftheevolvinghot
channelarenearlyxed.Afterwards,theloop-likestructure
quicklystretchestheoverlyingeldandbuildsupaCME,si-
multaneouslygivingrisetoaareunderneath.Furthermore,
Chengetal.(2014c)identiedthatthehotchanneliscapa-
bleofevolvingsmoothlyfromtheinnerintotheoutercorona
withalmostretainingitscoherence,morphologicallyconsis-
tentwiththeCMEcavityasseeninthewhite-lightimages
(Figure2b).ChengandDing(2016)studiedthefootpointsof
thehotchannelandfoundasubstantialdeviationofthehot
Figure2
(a)AIA131Åimagesshowingthepre-existence(left)anderuption(right)ofahotchannel-likeMFR(fromZhangetal.,2012;Chengetal.,2013a.
ReproducedbypermissionoftheAAS).(b)Transformationofahotchannel-likeMFR,asseenintheAIA131Åpassband(left),totheCMEimagedbythe
LASCOC2white-lightcoronagraph(right).
ChengX,etal.SciChinaEarthSci5
channelaxisfromtheassociatedlament.Itshowsthatthe
hotchannelhasascendedtoahighaltitudeandlikelysepa-
ratedfromthatofthelamentwhenapproachingtheeruption.
InordertouncovertheappearancefrequencyofthehotMFR,
Nindosetal.(2015)madeastatisticalstudyanddocumented
thatalmosthalfofmajoreruptivearescontainahotblobor
channel-likeconguration.TheobservedMFRmorphology
mainlydependsontheorientationoftheMFRaxiswithre-
specttothelineofsight.Thatistosay,theMFRappearsas
ahotblobandahotchannelparallelandperpendiculartoits
axis,respectively.
Inaddition,somespectroscopicobservationsalsosupport
thepre-existenceoftheMFR.ByanalysingCoronalDiag-
nosticsSpectrometer(CDS)orEUVImagingSpectrometer
(EIS)data,Gibsonetal.(2002),Harraetal.(2009),and
Harraetal.(2013)foundasignicantpre-areenhancement
innon-thermalvelocity,thelocationsofwhichmaycorre-
spondtothefootpointsoftheMFR.CombiningEISandAIA
observations,Syntelisetal.(2016)evenfoundthattheen-
hancednon-thermalvelocities,aswellastheblueshifts,can
lastfor5hoursbeforetheeruptionofthehotchannel-like
MFR.
2.5
ReconcilingdistinctaspectsoftheMFR
Asdiscussedabove,laments,lamentchannels,cavities,
sigmoids,andhotchannelscanbewelluniedintheframe-
workoftheMFR;theymaybejustthedistinctmanifesta-
tionsoftheMFR,dependingondifferentobservationalwave-
lengthsandperspectives,aswellasmagneticenvironment.
Therehavebeenmanystudiesrevealingtherelationshipbe-
tweenanytwoofthem.
Throughobservingtheevolutionofaneruptinglament,Li
andZhang(2013b)foundthattheeruptingmaterialshavea
helicaltrajectorywhenmovingalongthethreadsofhotchan-
nels(alsoseeYangetal.,2014;Zhangetal.,2015a).During
theeruptionphaseofhotchannels,coollamentarymaterials
arealsoseentodescendspirallydowntothechromosphere
alongtheirlegs(Chengetal.,2014c).Furthermore,Chenget
al.(2014a)foundthatthehotchannelisinitiallyco-spatial
withtheprominenceintheearlyrisephase,whilewiththe
eruptionbeginningthehotchannelquicklyexpands,result-
inginaseparationofitstopfromtheprominence.Through
adetailedanalysisofthetemperaturestructureofanerupting
lament,Chenetal.(2014a)conrmedthattherelatively
coolplasmaalwaysstaysatthebottomofthehotchannel.
Theseresultsstronglysuggestthatthehotchannelisadirect
manifestationoftheheatedMFRwithlamentmaterialscol-
lectedatitsbottom.
AlthoughpreviousstudiesrevealedthatCME-productive
activeregionsoftentakeonasigmoidalshapeintheEUV
and/orSXRimagespriortotheeruption,itdoesnotmeanthat
thecorrespondingmagneticeldlinesmustbehighlytwisted.
Alternatively,theycouldconsistoftwogroupsofshearedar-
cades,makingupasigmoidalshapeapparently(Titovand
Démoulin,1999;Kliemetal.,2004;Schmiederetal.,2015;
ChengandDing,2016).However,westillcannotexcludethe
possibilitythatanexistingbutinvisibleMFR,probablyhav-
ingaveryweakemission,isembeddedinthemiddleofthe
sigmoidandoverlaidbyambientshearedarcades.Recently,
peoplehavestartedtorecognisethatthecontinuoussigmoidal
orhighlytwistedeldlinescanoriginateinthesigmoidalac-
tiveregions.UsingXRTdata,McKenzieandCaneld(2008)
observedadiffuselinearstructurethatappearsinthemiddle
ofthesigmoidpriortotheeruptionandliftsoffastheare
begins(alsoseeLiuetal.,2010;Greenetal.,2011;Zharkov
etal.,2011).Takingadvantageoftheunprecedentedhigh
cadence,highresolution,andmulti-wavelengthobservations
oftheAIA,Chengetal.(2014b)foundthatthelinearfeature
ismostlikelytobecontinuoussigmoidalhotthreads.They
evenfoundthatadouble-deckerMFRsystemthatconsists
ofahigh-lyingcontinuoussigmoidalthreads(hotchannel)
andaverticallyseparatedlament-associatedlow-lyingux
couldbeformedinthesigmoidalactiveregion.Closetothe
eruption,themorphologyofthehigh-lyinghotchannelvaries
fromanS-shapetoaloop-shape,similarlytothelinearfeature
intheeruptingsigmoids.Inaddition,itshouldbenotedthat
sigmoidsaremostlyamanifestationduetotheheatingina
sigmoidalCSbetweentheMFRanditsambienteld(Kliem
etal.,2004;Gibsonetal.,2006),whiletheydonotdelin-
eatethespecicmagneticeldcongurations.However,hot
channelsrefertocoherentmagneticstructures,whichcanbe
tracedcontinuouslyfromthesigmoidalactiveregionstothe
outercorona.Duringthewholeeruptionprocess,theevolu-
tionofhotchannelsismainlycontrolledbytheirowndy-
namics.Therefore,wecansaythathotchannelsandsig-
moidsaredistinctphenomena,morespecically,theformer
arewell-denedandspecicstructuresthatoriginateinthe
latter.
Thevisibilityofhotchannel-likeMFRsonlyinthe131and
94 Åpassbandsshowsthattheyaresubstantiallyheatedbe-
foretheeruption.Interestingly,quiescentcavitiesarealso
foundtobeheatedwithahighertemperaturethantheback-
ground.Reevesetal.(2012)examinedthethermalproperties
ofaquiescentcavitythatcontainsstrongX-rayemissioninits
coreandfoundthatthereisanobvioustemperatureincrease
inthecavitycore,andthatthecoretemperaturevariesfrom
1.75to2.0MKwiththeevolutionofthemorphologyfrom
aring-shapedatthebeginningtoanelongatedstructuretwo
dayslater.Thereasonisconjecturedtobethatdifferentparts
ofthecavitycoreareheatedatdifferenttimes.Byconstruct-
inglimbsynopticmapsoftheAIA211,193,and171 Åpass-
bands,Karnaetal.(2015)analyzedanumberofquiescent
cavityeventsandalsofoundthatquiescentcavitiesarehotter
thantheirsurroundingsalthoughonlyslightly .Theseresults
implythatactiveregionhotchannelsandquiescentcavities
6ChengX,etal.SciChinaEarthSci
mayhavethesame,atleastsimilar,heatingmechanismin
thepre-eruptivephase,thoughtheexactmechanismremains
mysteriousatpresent.Webelievethatmagneticstructures
ofboththeactiveregionhotchannelsandquiescentcavities
areanMFR,theonlydifferenceofthemisthedistinctsize;
theformerusuallyhasalengthof20–100Mm(thescaleof
theactiveregionPIL)andaheightof10–20Mm,whilethe
latterextendsalongthewholePILoflong-termdecayedac-
tiveregions,havingalengthof200–500Mmandaheightof
30–100Mm(e.g.,Liuetal.,2010;Suetal.,2015;Chengand
Ding,2016).
3.
Formationofpre-eruptivecongurations
3.1
BodilyemergenceoftheMFR
IfanMFRreallyexistsinthecorona,thequestionisthen
when,where,andhowtheMFRisbuiltup.Theoretically,two
possibilitieshavebeenproposed.Onepossibilityisthatthe
MFRintheconvectionzoneemergesintothecoronabybuoy-
ancy(Figure3a;Fan,2001;Magara,2004;Martínez-Sykora
etal.,2008;ArchontisandTörök,2008;Leakeetal.,2013).
However,Manchesteretal.(2004)foundthatwhenthepri-
maryaxisoftheMFRapproachesthephotosphere,theMFR
issplitintotwopartsbymagneticreconnectionwithsur-
roundingelds,whichonlyallowstheupperuxofthemid-
dlesectionwithveryweaktwist(lessthanoneturnabout
theaxis)toseparatefromthelowermass-ladenanddipped
ux(alsoseeMagara,2006).Evenso,thetotalrelativemag-
netichelicityofthewholesystemiswellconserved(Zhang
andLow,2003).Afterascendingtothecorona,thecenter
oftheMFRriseswithanincreasingvelocityaslongasthe
MFRfootpointsrotatecontinuously.Asaresult,signicant
twististransportedfromtheMFRinteriorparttowardthe
coronalpartthroughnonlineartorsionalAlfvénwaves(Fan,
2009;Leakeetal.,2013).Afteremergingintothecorona,the
reconnectionwiththepre-existingcoronaleldalsoplaysan
importantroleinformingtheMFRandevendrivingitserup-
tion(e.g.,ArchontisandTörök,2008;Leakeetal.,2014).
Fan(2012)foundthatinthequasi-staticrisephaseofthe
MFR,magneticreconnection,mostlikelytether-cuttingin
thesigmoidalhyperbolicuxtube(HFT,intersectionoftwo
quasi-separatrixlayers(QSLs),wherethelinkagesofmag-
neticeldlinesarecontinuousbutchangedrastically(Titov
etal.,2002)),effectivelyinjectstwisteduxtotheMFRso
astodriveitseruption.
Someobservationalstudiesalsostandfortheemergenceof
theMFRfrombelowthephotospheretothecorona.Through
analyzingthevectormagnetogramsobtainedbytheDunnSo-
larTelescopeoftheNationalSolarObservatory,Lites(2005)
foundaconcave-upgeometryinthephotospherebelowtwo
activeregionlaments.Okamotoetal.(2008)andOkamoto
etal.(2009)examinedasequenceofvectormagnetograms
ofAR10953observedwiththeSolarOpticalTelescopeon
boardHinodeandfoundthefollowingfeatures:theadjacent
opposite-polarityregionswithhorizontallystrongbutverti-
callyweakmagneticeldsgrowinglaterallyandthennar-
rowing,thereversalofthedirectionofthehorizontalmag-
neticeldsalongthePILfromanormalpolaritytoanin-
verseone,andtheappearanceoftheblueshiftanddiverging
owsinthehorizontalmagneticeldregion.Theseobser-
vationalfeatures,aswellastheconcave-upgeometry,imply
thattheMFRprobablymayemergefromthesolarinterior
tothecorona.However,V argasDomínguezetal.(2012)re-
centlyprovidedacontradictoryinterpretationforthoseobser-
vationalcharacteristicsinthephotosphere.Comparingwith
thenumericalresultsofMacTaggartandHood(2010),they
pointedoutthatmagneticcancellationisalsocapableofpro-
ducingthelateralgrowingandthennarrowingofthepositive
andnegativepolarities,aswellasthereversalofthedirection
ofthehorizontalmagneticelds.
Magneto-convectionhasasignicantinuenceonthe
emergenceoftheMFRfrombelowthephotospheretothe
corona.Becauseofconvectiveows,undulationsappearin
theemerginghorizontaleldtoformΩ-loopsandU-loops
(CheungandIsobe,2014).Thelaternaturallyhaveacon-
cave-upgeometry.Bernasconietal.(2002)andPariatetal.
(2004)studiedtheFlareGenesisTelescopedataandfound
thatserpentinestructuresand“U”-shapedloopsfrequently
appearedinemergingactiveregions.Ellermanbombsare
alsodetectedatthelocationswhereserpentinestructures
and“U”-shapedloopstouchthephotosphere(alsoseeLi
etal.,2015).Thisismainlyduetothebuildupofcurrents
alongtheserpentineand“U”-shapedmagneticeld,which
thenleadtothereconnectionintheloweratmosphere(e.g.,
Isobeetal.,2007;Pariatetal.,2009b;ArchontisandHood,
2009;W ang,2006).Formoredetailsconcerninghowthe
sub-photospheremagneticeldemergesintothecoronaand
producesvariousactives,thereadercanconsultthereviews
bySchmiederetal.(2014)andCheungandIsobe(2014).
3.2
MFRformationbymagneticreconnection
3.2.1
MFRformationpriortotheeruption
TheMFRcanalsobebuiltupdirectlyinthecoronaviamag-
neticreconnectionpriortotheeruption.Inthemodelofvan
BallegooijenandMartens(1989),itisproposedthatuxcan-
cellationtransfersshearedloopstohelicaleldlines,creat-
ingacoherentMFRconguration(Figure3b).Theuxcan-
cellationisusuallyinterpretedintermsoftransportofpos-
itiveandnegativeuxestowardthePIL,reminiscentofthe
well-knownmoatowaroundtwopolaritiesofanactivere-
gion(Amarietal.,2010,2011,2014).Throughimposing
convergingmotionstowardthePIL,Amarietal.(2003a)
successfullysimulatedthattwogroupsofsheareduxare
broughttogetherandreconnecttowardatwistedMFR(also
ChengX,etal.SciChinaEarthSci7
Figure3
(a)Fluxemergencemodel,inwhichatwistedMFRbodilyemergesfrombelowthephotospheretothecorona.Thelinesinvioletshowbald-
patch–associatedseparatrixsurfaces.Theblacksegmentsdisplaymagneticdipswherethelamentmaterialscanbecollected(fordetailspleaseseeGibson
etal.,2004.ReproducedbypermissionoftheAAS).(b)Fluxcancellationmodel,inwhichtheMFRisformedbythereconnectionoftwogroupsofsheared
arcadesdrivenbytheshearingandconvergingmotions(fordetailspleaseseevanBallegooijenandMartens,1989.ReproducedbypermissionoftheAAS).
seeMackayandvanBallegooijen,2006).Amarietal.(1999,
2003b)showedtheimportanceofphotosphericturbulentdif-
fusiononpre-shearedmagneticeld(possiblyremnant)that
leadstotheformationofmagneticuxrope.Subsequently,
Aulanieretal.(2010)didamoredetailedMHDsimulation,
inwhichaninitiallypotentialbipolareldevolvesasdriven
bymagneticelddiffusionandshearingmotions.Similarto
theresultsofAmarietal.(2003a),ux-cancellation-driven
reconnectionappearsinaBPseparatrixandgraduallytrans-
formstheshearedarcadesintotheMFR.Inthewholeforma-
tionprocess,theMFRgraduallyrisesupbutinaquasi-static
manner.Then,theBPstructurechangestotheHFTtopology,
wherethereconnection,ofatether-cuttingtype,takesplace
tocontinuouslyinjectthepoloidaluxtotheMFR.Using
isothermalMHDsimulations,Xiaetal.(2014)evolvedalin-
earforce-freebipolarmagneticeldbymeansofintroducing
vortexowsaroundtheoppositepolaritiesandconverging
owstowardthePIL.Theyalsofoundthecreationofthehe-
licaleldlinesthroughthereconnectionanduxcancellation
atthePILdrivenbytheconvergingows.
Observationally,adirectviewoftheformationofanMFR
isimpossibleasmagneticeldmeasurementabovethepho-
tosphereistechnicallydifcultatpresent.Thus,forthesake
ofexploringtheformationoftheMFR,peopleusuallyinves-
tigatehowthevariousmanifestationsoftheMFR,including
laments,sigmoids,andhotchannels,areformed.
ThroughHαobservationsbytheMulti-channelSubtractive
DoublePassspectrograph,Schmiederetal.(2004)observed
thatdifferentsegmentsoflamentsmerge(reconnect)toform
alonglament.Atthemergencelocations,bothbrightenings
attheEUVpassbandsanduxcancellationsofsmallbipo-
lararefound.Thisisconsistentwiththelamentformation
modelintermsofmagneticreconnectionproposedbyvan
BallegooijenandMartens(1989)andAulanieretal.(1998).
Afterthereconnection,thecoolmaterialsareexpelledalong
thereconnectedeldlines,whichareconrmedbymeasured
horizontalvelocities(e.g.,Dengetal.,2002).
Recently,usingHαdatawithhigherresolutionandcadence
providedbytheNVST ,Yanetal.(2015)observedtheobvi-
ousshearingmotionoftheoppositepolaritiesandthesunspot
rotationduringtheformationprocessoftwoactive-regionl-
aments(Figure4a).Theysuggestedthattheshearingmotion
stretcheslament-associatedmagneticeldmorehorizontal
andthenthesunspotrotationinjectssometwisttoformala-
8ChengX,etal.SciChinaEarthSci
Figure4
(a)NVSTTiOandHαimagesoverlaidbyline-of-sightmagnetogramswiththepositive(negative)inblue(red)showingtheformationofalament
drivenbythesunspotrotation(fromY anetal.,2015.ReproducedbypermissionoftheAAS).(b)NVSTHαimagesdisplayingtheformationofalamentby
thereconnection(fromY anetal.,2016.ReproducedbypermissionoftheAAS).
ment-hostinghelicalmagneticstructure.Besidesthesunspot
rotation,Y anetal.(2016)andV emareddyetal.(2016)also
addressedtheroleofthereconnectioninbuildingupthehe-
licalconguration,whichisevidencedbytheappearanceof
theEUV/UVbrighteningatthetouchpointofthedifferent
branches(Figure4b).Bymeansofstudyingtheinteraction
oftwosetsofdarkthreadsorlamentchannelsdrivenbyux
convergenceandcancellation,bothJoshietal.(2014a)and
Yangetal.(2016a)arguedthatthereconnectionisaneces-
saryconditionfortheformationofthelament.Moreover,
theyalsoobservedthatthereconnection-drivenhotplasma
undergoarollingmotionalongthelamentthreads.
Tripathietal.(2009)analyzedthetemperaturestructure
ofasigmoidanddiscoveredthattheplasmaintheJ-shaped
arcadeshasahighertemperaturethanthatintheS-shaped
uxifbotharesimultaneouslyvisible.Theyarguedthatthe
J-shapedarcadesaremostlikelyreconnectingtotheS-shaped
ux,thushavingahighertemperaturebutstartingtocool
downafterleavingthereconnectiondiffusionregion.Green
andKliem(2009)andGreenetal.(2011)supportedthepoint
thatthesigmoidisfromthereconnectionofshearedarcades
thatisdrivenbytheuxconvergenceandcancellationunder
thesigmoidalthoughonlypartofthecancelleduxbeing
injectedintothesigmoidaleldlines.
Chengetal.(2014b)studiedtheformationofthehotchan-
nel-likeMFRafterthatwasdiscovered.Throughanalyzing
thelong-termevolutionofanevolvingsigmoidalactivere-
gion,theyfoundthatthetwistedeld,indicatedbycontin-
uoussigmoidalhotthreads,isformedviathereconnection
oftwogroupsofshearedarcadesnearthePILhalfdaybe-
foretheeruption.Thetemperatureofthetwistedeldand
shearedarcadesderivedbytheDEMtechniqueishigherthan
thatoftheambientvolume(Figure5a),indicatingthatthe
reconnectiontakesplaceandheattheplasmatherein.They
alsoconrmedthatthereconnectionisdrivenbytheshearing
andconvergingmotionsnearthePIL.Throughconstructing
atimesequenceofNLFFFstructures,itisfurtherrevealed
thatthereconnectionhappenssimultaneouslyattheBPsep-
aratrixinthephotosphereandintheHFTinthecorona(the
tether-cutting).TheMFRcanevenbeformedinthelowerat-
mosphere(e.g.,Wangetal.,2015),via,forexample,aseries
ofmagneticreconnectioninthechromosphere,andsome-
timesbeheateduptothecoronaltemperatureasvisiblein
theAIA131and94 Åpassbands(Kumaretal.,2015,2017;
LiandZhang,2015).Moreover,theconversionofmutualhe-
licitytoself-helicitythroughtheinterchangereconnectionof
twogroupsofloopsisalsoarguedtobestrongevidencefor
theformationofthehelicaleldpriortotheeruption(e.g.,
Tziotziouetal.,2013;Lietal.,2014).
Chengetal.(2015a)furtherperformedspectroscopicdi-
agnosticsontheformationofhotchannelsbasedontheAIA
andIRISjointobservations.Atthefootpointsofthehotchan-
nel,itisfoundthattheSiIV ,CII,andMgIIlinesexhibit
weaktomoderateredshiftsandnon-thermalvelocitiesinthe
pre-arephase.However,relativelylargeblueshiftsandex-
tremelystrongnon-thermalvelocitiesappearatthereconnec-
tionsiteoftwoshearedarcades,i.e.,theformationsiteofthe
hotchannel(Figure6aand6b).Thesespectralfeaturesim-
plythatthereconnectionplaysanimportantroleinthefor-
mationandheatingofhotchannels,andthatthelocationof
thereconnectionismostlikelyintheloweratmosphere(Fig-
ure6c),basedonthefactthattheSiIV ,CII,andMgIIlines,
forminginthechromosphereandtransitionregion,allexhibit
blueshiftsandnon-thermalvelocities.Theoutowsfromthe
ChengX,etal.SciChinaEarthSci9
Figure5
Emissionmeasuremapsatdifferenttemperatureintervalsandinstantsshowingtheformationofasigmoidalhotchannel-likeMFRintheactive
region11520,whichcanbeclearlyseeninpanels(g)–(i)(adaptedfromChengetal.,2014b.ReproducedbypermissionoftheAAS).
reconnectionsitemaypropagatetowardthefootpointsofthe
hotchannelalongthenewlyreconnectedeldlines,produc-
ingweakredshiftsandnon-thermalvelocities.Notethat,red-
shiftsarealsoexpectedatthereconnectionsite(Innesetal.,
1997;Peteretal.,2014),which,however,couldbeabsent
intheobservedlinesbecauseofkineticallybeinglessobvi-
ousthanblueshifts.Weshouldalsomentionthat,therecon-
nectionisnotauniqueinterpretationfortheappearanceof
blueshifts,redshifts,andnon-thermalvelocities.Therota-
tionmotioncouldbeanalternativereason.
ItisworthnotingthattheMFRcanevenbeformedduring
aseriesofconnedarespriortotheeruption.Patsourakoset
al.(2013)studiedaconnedareandaneruptivearefrom
thesamesourceregionandbelievedthattherstconned
areformstheMFRbythereconnection.TheMFRthen
lossesitsequilibriumandproducestheseconderuptionabout
7hourslater.Thisdeductionisconsistentwiththeanalysisof
Guoetal.(2013),whofoundthattheQSLreconnectioninthe
interfacebetweenthecentraluxandthesurroundingelds,
manifestingasaseriesofconnedaresbeforetheeruptive
one,hasanimportantroleininjectingmagnetichelicityand
twisttotheMFR.WiththeeruptionoftheMFR,thetwist
numberandmagnetichelicityintheresidualuxthenquickly
decrease(Yangetal.,2016b;Liuetal.,2016a,2016d).
3.2.2
MFRformationduringtheeruption
IthasalsobeenproposedthattheMFRcanbequicklybuiltup
duringtheeruptionviathearereconnection.Inthetether-
cuttingmodelproposedbyMooreetal.(2001),twooppo-
sitelyshearedarcadesreconnecttoformatwistedloopdur-
ingtheonsetandearlyphaseoftheeruption.Inthebreakout
modeldevelopedbyAntiochosetal.(1999),theinitialcon-
gurationiscomprisedofcentralshearedarcadesandtwo
neighboringuxsystems.Withthecentraluxtakingoff,
aCSisformedbelowandthereconnectionthereinquickly
transformsthesheareduxestothecentraluxtoforman
eruptingMFR.Evidenceofbreakoutreconnectioninitiating
amajoreruptionisidentiedbyAulanieretal.(2000).Fol-
lowingsuchanidea,MacNeiceetal.(2004)performedan
MHDsimulationandreproducedthecompleteprocessofthe
MFReruptionincludingtheinitiation,formation,andaccel-
eration,aswellastheeventualrelaxationoftheshearedcen-
traleldtoamorepotentialstate(alsoseeLynchetal.,2008;
Karpenetal.,2012).
Correspondingly,someobservationalstudiessupportthat
theMFRevolvingsubsequentlytoaCMEisdirectlyformed
duringtheeruption.Theunambiguousevidenceisgivenby
Liuetal.(2010),whoobservedthatinthepre-arephase
twooppositeJ-shapedloopsreconnecttoformcontinuous
sigmoidalloopswiththecentralpartdippeddownand
alignedalongthePIL.Simultaneously,thecompactbright
loopscrossingthePILarealsoseen.Afterlastingformin-
utes,thesigmoidalloopsquicklyriseupandthenproduce
aCMEandaare.Throughobservingtheinteractionof
twopre-existingloopsorlamentsintheinitiationphaseof
twoeruptiveares,Chenetal.(2014b,2016a)alsonoticed
thatsomesmallbrightloopsappearedbelowtheinteraction
regionandsomenewhelicallinesconnectingthetwofar
endsofthepre-existingloopsareformedatthesametime.
Theypointedoutthattheformationprocessofthehelical
10ChengX,etal.SciChinaEarthSci
Figure6
(a)SDO/AIA131Å,304Åimages,andSDO/HMIline-of-sightmagnetogramshowingtheformationofanMFRpriortotheeruption(top).Spec-
trogramsoftheSiIV ,CII,andMgIIlinesattheMFRformationsite(bottom).(b)Dopplervelocityandnon-thermalvelocitymapsoftheSiIVlineatthe
MFRformationsite.(c)AcartoonillustratingtheMFR(brown)formationthroughthereconnectionoftwoarcades(green)intheloweratmosphere(fordetails
pleaseseeChengetal.(2015a).ReproducedbypermissionoftheAAS).
ChengX,etal.SciChinaEarthSci11
structurebasicallyagreeswiththetether-cuttingscenario.
ObservationsrevealingtheformationoftheMFRduring
themainphaseofaresareveryrare.Songetal.(2014a)
reportedaninterestinglimberuptiveevent,whichshowsthat
theblob-likeMFRcouldbebuiltupduringtheCMEerup-
tionphase.Itisseenthattheexpansionofalow-lyingcoro-
nalarcadestretchestheoverlyingmagneticeld,whoselegs
arethencurvedin,forminganX-pointinbetween.Then,
thereconnectionneartheX-pointleadstotheformationand
eruptionofthehotbooblikeMFR.However,itisdifcultto
ensurethattheeruptingMFRisfullyfromthereconnection;it
ispossiblethatanascentMFR(e.g.,MFRseedwithastrong
twistbutasmallux)hasexistedbeforetheeruption.More-
over,agoodagreementisfoundbetweenthereconnection
uxcalculatedfromareribbonsandtheuxofmagnetic
cloudscomputedusinginsituobservationsat1AU,whichis
alsoregardedasastrongindicationofMFRformationduring
thearephase(e.g.,Linetal.,2004;Qiuetal.,2007;Huet
al.,2014;Gopalswamyetal.,2017).
4.
Initiationandearlydynamicsofsolarerup-
tions
OncetheMFReruptsoutward,itquicklyformsaCMEand
producesareemissionssimultaneously.Forare-associ-
atedCMEs,theyusuallyexperienceathree-phaseevolution:
theslowrisephase,impulsiveaccelerationphase,andprop-
agationphaseofanearlyconstantvelocity(Zhangetal.,
2001,2004).Thethreephasesroughlycorrespondtothe
threephasesofassociatedares:thepre-arephase,rise
phase,anddecayphase,respectively(Zhangetal.,2001,
2004;Qiuetal.,2004;Temmeretal.,2008,2010;Chenget
al.,2010),implyingthecouplingbetweentheCMEeruptions
andtheenergyreleaseofthearesthroughasamephysical
mechanism,mostlikelythemagneticreconnection(Linetal.,
2000;PriestandForbes,2002;ZhangandDere,2006;Linet
al.,2015).
Atpresent,weareonlyabletoforecastthelikelihoodofthe
productionofCMEs/aresempiricallyinthelightofdifferent
propertiesofactiveregionsincludingmagneticmorphology,
horizontalgradientofthemagneticeld,current,magnetic
helicity,magneticshear,non-potentiality,aswellasLorentz
forceetc.(e.g.,LekaandBarnes,2003a,2003b;Falconeret
al.,2008;Bobraetal.,2014;BobraandIlonidis,2016,Eu-
ropeanFLARECASTproject).Anaccuratedeterminationof
theonsetoferuptionsisstilldifcult,whichisprimarilydue
tothefollowingreasons:(1)theoretically,theinitiationof
CMEs/areshasnotbeenunderstoodthoroughly,(2)validat-
ingordistinguishingtheexactinitiationmechanismfromthe
possibleonesobservationallyisamatterofgreatdifculty.
Recently,SDOobservationsprovideunprecedentedhighca-
dence,highresolution,andmulti-wavelengthdata,whichal-
lowustostudytheinitiationofCMEs/aresindetail.More-
over,thenewobservationsalsoopenawindowtounderstand
thedetailedformationprocessofCMEs,inparticularthose
MFR-drivenCMEs.Inthefollowing,werstintroducevar-
ioustheoreticalmodelsthatarefrequentlyusedforinterpret-
ingtheonsetofCMEs/ares.Then,wepresentsomeobser-
vationaleffortstowardansweringtheabovequestions,inpar-
ticularsomenewknowledgeachievedontheearlydynamics
ofMFR-drivenCMEs.
4.1
Initiationofthepre-eruptiveconguration
4.1.1
Initiationbymagneticreconnection
Intermsofwhetherthereconnectionisinvolvedornot,the
existinginitiationmodelscanbedividedintotwocategories.
Therstcategoryisreconnection-basedmodelsincludingthe
tether-cuttingmodel(Mooreetal.,2001),breakoutmodel
(Antiochosetal.,1999;Karpenetal.,2012),anduxemer-
gencemodel(ChenandShibata,2000).Inthetether-cut-
tingmodel,thekeymechanismisthereconnectioninthe
sigmoidalcoreeldregion,whichtransformstwogroups
ofshearedarcadesintotwistedloops,thusprovidinganup-
wardLorentzforcetoinitiatetheeruption.Asmentionedin
Section3.2.2,thetether-cuttingreconnectioninthepre-are
phasehasbeenobservedinsomeevents(e.g.,Liuetal.,2010;
Chenetal.,2014b,2016a).
Thebreakoutmodelresortstothereconnectiontaking
placeatthenullpointthatexistsbetweenthecentralsheared
uxandoverlyingeld.Themostimportantfeatureisthat
thereconnectionsiteislocatedabovethecoreeld,rather
thaninthecoreeldasstatedinthetether-cuttingmodel.
Thereconnectionatthenullpointisabletoremovethe
constraintoftheoverlyingux,therebyreducingthedown-
wardtensionforceandallowingthecentraluxtoescape
away.Theoretically,aquadrupolarstructure,whichincludes
acentralshearedarcadeandtwoneighboringloopsystems
withanX-pointlocatedinbetweenisapromisingstructure
forbreakout-typeeruption.Observationally,abrighteningat
theX-shapedstructure,andsomeremotebrighteningsatthe
footpointsofthetwoneighboringuxes,aswellastheside-
waysmotionofthelateralloops,havebeenseentosupport
theoccurrenceofthebreakoutreconnection(Aulanieretal.,
2000;GaryandMoore,2004;Ugarte-Urraetal.,2007;Shen
etal.,2012b;Chenetal.,2016b;Revaetal.,2016).
IntheuxemergencemodelofChenandShibata(2000),
whentheemerginguxemergeswithinthelamentchannel,
itcanreconnectwiththemagneticeldbelowtheMFR.Ow-
ingtotheincreaseofmagneticpressure,theMFRmaylose
itsequilibriumandthenrisetoformaCSbelowit.Thisis
similartothetether-cuttingreconnection.Onetheotherhand,
whenreconnection-favoredemerginguxappearsandrecon-
nectswiththeouteredgeoftheMFR,thedownwardtension
forceisreduced,makingtheMFRriseup.Thiscaseissimi-
lartothelateralbreakoutreconnection.
12ChengX,etal.SciChinaEarthSci
4.1.2
MFRinitiationbyMHDinstabilities
Differentfromthereconnectionmodels,theothercategory
referstoMFR-basedidealMHDmodelsincludingcata-
strophicloss-of-equilibrium(ForbesandIsenberg,1991;
Isenbergetal.,1993;Lin,2001;LinandvanBallegooi-
jen,2002),kinkinstability(Töröketal.,2004),andtorus
instability(KliemandTörök,2006;OlmedoandZhang,
2010).ForbesandIsenberg(1991)andIsenbergetal.(1993)
documentedthatastraightMFRcanloseitsequilibrium
intheidealMHDprocesswhenthephotosphericsources
oftheconstrainingeldapproacheachother.Thetorus
instabilitymeansthattheexpansionoftheMFRtendsto
developnonlinearlyiftheconstrainingelddeclineswith
heightrapidlyenough.ForatoroidalMFRthatstartsto
becometorusunstable,thecriticaldecayindexoftheover-
lyingeldisfoundtobe1.5(KliemandTörök,2006).
OlmedoandZhang(2010)showedthatthecriticalvalueisa
functionofthefractionalnumberofthepartialMFRwiththe
footpointsanchoredinthephotosphere,i.e.,aratiobetween
thelengthofthepartialMFRabovethephotosphereand
thecircumferenceoftheMFR.Interestingly,Démoulinand
Aulanier(2010)andKliemetal.(2014a)provedthatthe
torusinstabilityisactuallyanequivalentdescriptionofthe
catastrophiclossofequilibriumoftheMFRintheMHD
framework.IfignoringtheminorradiusoftheMFR,the
criticaldecayindexis1.5and1forthecircularandstraight
MFR,respectively.However,whentheMFRisdeformable
andasthickastherealcase,theircriticalindicesvarybut
slowly,typicallyintherangeof1.1–1.3.
TheMFRwithenoughtwistcanalsobecomeunstable,an
MHDprocessknownasthekinkinstability.Itrequiresthat
thetwistnumberoftheMFRexceedsathresholdsuchas
3.5π(Töröketal.,2004;Wangetal.,2016b).Whenthe
kinkinstabilityhappens,thetopoftheMFRshouldslowly
ascendatrstiftheperturbationisupward.Then,theMFR
isquicklywrithedbytheconversionoftwistintowrithe,the
deformationoftheMFRaxis,forminganinverseγ-shaped
orΩ-shapedstructure(e.g.,Jietal.,2003;Williamsetal.,
2005;RustandLaBonte,2005;Gilbertetal.,2007;Guoet
al.,2010a;Y anetal.,2014;HassaninandKliem,2016).At
thesametime,theheightoftheMFRincreasesexponentially
(Schrijveretal.,2008a),whichthencausesthereconnection
atthecrosspointoftwoMFRlegs(e.g.,LiuandAlexander,
2009;Kliemetal.,2010;Tripathietal.,2013).Itisworth
noticingthattherapidrotationoftheMFRaxisisusuallyre-
gardedasaconditionbutnotasufcientoneforjudgingthe
occurrenceofkinkinstability(Lynchetal.,2009).
Recently,Aulanieretal.(2010)comparedthedistinct
mechanismsthroughazero-βMHDsimulation.They
disclosedthat,priortotheeruption,uxcancellationand
tether-cuttingreconnectioncontinuouslyworktobuildup
theMFRandmakeitascending.Whenrisingtothecritical
heightatwhichtheidealtorusinstabilityoccurs,theMFR
thenstartstoerupt.Aulanieretal.(2010)thusarguedthatthe
reconnection-involvedprocessesdonottriggertheeruption
butactasthekeymechanismsoftheMFRformationandits
slowrise.Themechanismthatinitiatestheeruptionofthe
MFRistheidealtorusinstability.
4.1.3
Validationoftorusinstability
Inthepastyears,manystudiesattemptedtovalidateanddis-
tinguishtherightmodelfromtheavailableinitiationmodels,
inparticularthetorusinstability,mainlybecausewhichcan
betestedfromobservationsquantitatively.Ageneralway
istocomparethedecayindexofthebackgroundeldatthe
criticalheightwiththetheoreticalvalue.Thecriticalheight
isestimatedroughlyastheheightoftheMFRjustbeforethe
eruption(e.g.,Chengetal.,2011a;Nindosetal.,2012;Jiang
etal.,2013;Chenetal.,2014b;Inoueetal.,2014;Zuccarello
etal.,2014;Chintzoglouetal.,2015;Wangetal.,2016c).
Thebackgroundmagneticeldisthencalculatedusingpo-
tentialeldmodel.Ifthedecayindexofthebackgroundeld
attheonsetheightislargerthanthethresholdof~1.5,itis
usuallysuggestedthatthetorusinstabilityplaysaroleintrig-
geringtheeruptions.
However,estimationofthecriticalheightoftheMFRerup-
tionusuallysuffersfromasignicantuncertainty.Inorderto
resolvethisissue,Chengetal.(2013b)devisedamathematic
modelthatassumestheheightevolutionoftheMFRinthe
lowercoronafollowingafunctionh(t)=c0e(t−t0)/τ+c1(t−t0)+c2,
whereh(t)isheight,tistime,andτ,t0,c0,c1,c2arevefree
coefcients.Themodelconsistsofalineartermandanexpo-
nentialterm,whichcorrespondtotheslowrisephasewitha
constantvelocityandtheimpulsiveaccelerationphasechar-
acterizedbyanexponentialincreaseofvelocity,respectively.
Physically,thisexponentialtermisreasonablebecauseitde-
scribestheimpulsiveaccelerationoftheMFR(Schrijveret
al.,2008b)whenitistriggeredeitherbythearereconnection
(e.g.,Antiochosetal.,1999;Mooreetal.,2001;Karpenetal.,
2012)orbyotherMHDinstabilities(e.g.,TörökandKliem,
2005;OlmedoandZhang,2010).Applyingthemathematic
modeltotwoMFReruptionevents,Chengetal.(2013b)
quantitativelydeterminedtheonsettimeoftheMFRimpul-
siveacceleration,andfoundthattheonsettimeis~2minutes
earlierthanthatoftheassociatedares(Figure7a).Simi-
larly,throughanalyzingthetemporalcorrelationbetweenthe
velocityofalamenteruptionandtheassociatedSXRemis-
sion,Songetal.(2015)alsofoundthatthebeginningofthe
lamentaccelerationoccursearlierthanthatoftheareSXR
emissionbyminutes.CombingthefactthattheMFRhasas-
cendedtoaheightattheonsettimewherethedecayindexof
theoverlyingeldislargerthanthethresholdof1.5(Figure
7b),itissuggestedthattheidealtorusinstabilityplaysakey
roleininitiatingtheimpulsiveaccelerationoftheMFR.
Studyingthemagneticenvironmentofconnedarescan
ChengX,etal.SciChinaEarthSci13
Figure7
(a)Temporalevolutionoftheheight,velocity,andaccelerationoftheMFRduringtheearlyeruptionwiththeblacksolidlinesshowingthemodel
tting.TheredsolidlinesshowtheGOESSXR1–8Åuxandresultingtimederivation.Theverticalblue(horizontal)lineestimatestheonsettime(height)
oftheeruption.Theverticalredlinepointsouttheonsettimeoftheare.(b)Distributionsofthebackgroundmagneticelddecayindexwithheightoverthe
differentsegmentsofthePILofaCME-productiveactiveregion.TheverticallinesdisplaytheonsetheightsoftheMFReruptionwithblueandgreenbars
showingtheuncertainties.Thehorizontallineindicatesthethreshold1.5oftorusinstability(fromChengetal.,2013b.ReproducedbypermissionoftheAAS).
(c)Distributionsofthebackgroundmagneticeld(black)andtheresultingdecayindex(green)withheightoveraCME-pooractiveregion.Thehorizontal
dashedlinealsoshowsthethreshold1.5(adaptedfromSunetal.,2015b.ReproducedbypermissionoftheAAS).
alsohelptodistinguishthedistinctinitiationmechanisms.A
goodexamplethathasbeenwellanalysedistheare-produc-
tivebutCME-pooractiveregion12192,whichproduced32
M-classand6X-classareswithonlyoneassociatedwith
aCME.Throughcomparingthisactiveregionwithother
are-and-CME-productiveactiveregions,Sunetal.(2015b)
foundthatthebackgroundmagneticeldintheactiveregion
12192ismuchstrongerthanthatofothers(Figure7c).The
decayindexinthelowercorona(e.g.,30–100Mm)isalso
smallerthanthethresholdoftorusinstability(alsoseeWang
andZhang,2007;Chenetal.,2015;Thalmannetal.,2015;
Jiangetal.,2016b).Ofcourse,thedecayofthebackground
magneticeldbeingrapidenoughisnotauniquecondition
fortorusinstabilitytotakeplace.Anotherconditionisthe
pre-existenceofanMFRinthesourceactiveregion(Liuet
al.,2016b).Moreover,Zuccarelloetal.(2017b)noticedthat
thechangeofthearesfromeruptivetoconnedisalsoin-
uencedbythevariationintheorientationofthepre-eruptive
magneticcongurationwithrespecttotheoverlyingeld,
ratherthanmerelytheoverallchangeoftheMHDstability.
Inthepastyears,muchattentionhasalsobeenpaidtothe
onsetconditionoffailederuptions.Guoetal.(2010a)stud-
iedalamenteruptionthatrstlydisplaysafastrisingand
writhingmotionbutisnallyconnedinthelowercorona.
Throughexaminingtheheightdistributionofthedecayindex
ofthebackgroundmagneticeld,theyfoundthatthedecay
indexinthehighercoronadoesnotcontinuouslyincrease,
insteaditstartstodecreaseandstaysbelowthethresholdfor
thetorusinstability,thusleadingtotheconnementofthel-
amenteruption(alsoseeWangandZhang,2007;Liu,2008;
Chengetal.,2011a;Joshietal.,2014b;Liuetal.,2015).
Inaddition,throughalaboratoryexperiment,Myersetal.
(2015)foundthattheconnementoftheMFReruptionis
alsocontrolledbytheguidemagneticeld,thecomponentof
thebackgroundeldthatrunstoroidallyalongtheMFRaxis,
whichinteractswithelectriccurrentsintheMFRtogenerate
atoroidaleldtensionforcetorestricttheeruption.
Oneshouldbeverycarefulwhendeterminingthedecayin-
dexatthecriticalheight.WiththehelpofMHDsimulations,
Zuccarelloetal.(2016)foundthatthedecayindexatthe
14ChengX,etal.SciChinaEarthSci
heightoftheMFRaxisisdifferentfromthatattheheightof
theMFRtop.ItissuggestedthatthesizeoftheMFRshould
notbeignoredobservationallywhenestimatingtheheightof
theMFR.
Amarietal.(2000,2010,and2011)showedthatuxcan-
cellationisabletobringtheinitialequilibriumcontaininga
twisteduxropetonalnon-equilibriumstateassociatedto
theonsetoftheeruptiontoacriticalvalueoffreeenergy.
Theynallyuniedthisenergycriteriaandthetorusinstabil-
ityoneinthecaseoflargescaleeruption(Amarietal.,2014).
4.2
EarlydynamicsofMFR-drivenCME
4.2.1
FormationoftheCME
Althoughitisknownthattheeruptionofvariouspre-eruptive
structurescanproduceCMEs,howdotheybuildupCMEsis
stillaquestion.Themainobstaclesarethat(1)lackofthe
lowercoronaobservationsthathaveanenoughlargeeldof
view(e.g.,extendingto~1.5R⊙)toguaranteethecomplete
CMEformationprocessobservableand(2)lackofhighca-
denceandhighresolutiondataasthedynamicaltimescaleof
theCMEformationisveryshort,usuallyoftheorderofmin-
utes.
AfterthelaunchofSTEREOandSDOsatellites,the
abovetwoobstaclesareovercometosomeextent.Usingthe
STEREO-EUVIdata,Patsourakosetal.(2010a)studieda
limbCMEandfoundthatitoriginatesfromtheexpansionof
aplasmabubble.Shortlyaftertheonsetoftheacceleration,
aneruptingbubbleshowsafastoverexpansion,whichis
roughlycoincidentwithitsimpulsiveacceleration,andit
isthenfollowedbyaself-similarexpansionprocess.The
authorsattributedtheoverexpansiontotheuxconservation
aroundarisingMFRofdecreasingaxialcurrentandtheux
injectiontoagrowingMFRbythereconnection.Withthe
highcadenceSDO-AIAdata,Patsourakosetal.(2010b)
foundthattheplasmabubbleevenexperiencesanevolution
ofthreephases:aslowself-similarexpansion,afastbut
short-livedperiodofstronglateraloverexpansion,anda
self-similarexpansion.Theyarguedthatitisthelateral
overexpansionoftheplasmabubblethatcreatestheCME.
However,theyalsofoundthattheoverexpansionhappens
duringthedecliningphaseoftheare,thusweakeningthe
roleofthearereconnectionininducingtheoverexpansion.
Sometimes,theoverexpansionisalsobelievedtobethe
originofcompressionregionswheretypeIIandIIIbursts
areproduced(e.g.,Démoulinetal.,2012).
Thediscoveryofthehotchannelfurtherimprovesourun-
derstandingoftheCMEformation.Chengetal.(2013a)in-
vestigatedindetailtwoCMEeventsandfoundthatthefor-
mationoftheCMEsiscompletelycontrolledbythedynamics
ofthehotchannels.IntheAIAhightemperaturepassbands,a
hotchannelappearsastheS-shapedstructurewithitsaxisal-
mostparallelwiththePIL.Afterexperiencingashortperiod
ofrisingmotion,thehotchanneldevelopsintothesemicircu-
larstructureandthenquicklyexpandsoutwardandspeedsup.
Atthesametime,intheAIAlowtemperaturepassbands,itis
clearlyseenthataplasmabubbleappearsandalsohasafast
expansionandascendingmotion,verysimilartotheevents
analyzedbyPatsourakosetal.(2010a)andPatsourakosetal.
(2010b).Grechnevetal.(2016)alsodisclosedthesimilar
formationprocessofalimbCMEthatisdrivenbytheerupt-
inghotMFR.Throughacarefulanalysis,itisfoundthatthe
speedofthehotchannelisalwaysfasterthanthatofthebub-
ble(Chengetal.,2013a).Moreover,thehotchannelnotonly
hasanoverexpansionbutalsocoincideswiththeoverexpan-
sionoftheplasmabubble.Therefore,itisarguedthatearly
dynamicsofaCMEessentiallydependsonthatofembedded
hotchannel,whichactsasacentralenginetodrivetheCME
formationandacceleration.
4.2.2
Emissioncausedbyenergeticparticles
Intheaccelerationphase,asexpectedbythestandard
CME/aremodel(Carmichael,1964;Sturrock,1966;Hi-
rayama,1974;KoppandPneuman,1976),theeruption
stretchestheoverlyingmagneticelds,formingaCSin
thewakeoftheeruptingMFR(e.g.,Linetal.,2005,2007;
CiaravellaandRaymond,2008;Chengetal.,2011b;Lietal.,
2016a;Zhuetal.,2016;Seatonetal.,2017).Thereconnec-
tionintheCSefcientlyinjectspoloidaluxestotheMFR
andthusacceleratesitseruption.Thereconnectiontypically
lastsforminutestohours,whichismainlymaintainedby
sinkowscausedbyinward-directedmagneticpressure
gradientatbothsidesoftheCS(Zuccarelloetal.,2017a).Si-
multaneously,thereconnectionaccelerateselectrons,which
thenquicklystreamdownalongthenewlyformedareloops
toheattheirfootpoints,mappingtwoparallelbrightribbons
inthechromosphere(ForbesandPriest,1995;Tianetal.,
2014;Chengetal.,2015b).
TodisclosetherelationshipbetweentheeruptingMFRand
particleaccelerationandfurtherdeterminethelocationofpar-
ticlesacceleration,oneusuallyneedstocomparetheHXR
emissionsourceswiththedynamicsofCMEs/ares.Liuet
al.(2013)analyzedtheCScausedbytheeruptingMFRand
foundthatbothbi-directionaloutowsinformsofplasmoids
andcontractingcusp-shapedloopsoriginateinbetweenthe
hotMFRandareloops(leftpanelofFigure8a).Moreover,
theseoutowsareco-spatialwithseparateddoublecoronal
X-raysources(alsoseeSunetal.,2014).Thecentroidsep-
arationofdoublecoronalsourcesdecreaseswithenergybut
increaseswithtime(rightpanelofFigure8a).Afterwards,in
thelaterphaseofthereconnection,manydarkvoidsarealso
seentomovetowardthearearcadeswithintheCS(McKen-
zie,2000;Innesetal.,2003;Liu,2013).Theseobservations
showacloserelationshipbetweentheeruptingMFRandthe
productionofenergeticparticles,suggestingthatthelatter
maymainlyoccurinthereconnectionoutowregionsrather
ChengX,etal.SciChinaEarthSci15
Figure8
(a)ThecentroidlocationsandevolutionsofHXRemissionsinducedbytheeruptingMFR(fordetailspleaseseeLiuetal.,2013).(b)Thesource
ofmetrictypeIIradioburstproducedbytheCME-drivenshock(fordetailspleaseseeChenetal.,2014d).ReproducedbypermissionoftheAAS.
thanintheCS.
Observationsattheradiowavelengthalsoprovideanim-
portantperspectivetoexplorewhereparticlesareaccelerated
duringtheeruption.AstheMFRisacceleratedcontinuously,
acoronalshockmayappearatthefrontofCMEs,whichis
provedbytheappearanceofmetrictypeIIradiobursts(e.g.,
Shenetal.,2007;Liuetal.,2009,2017;Maetal.,2011;
Bainetal.,2012;Fengetal.,2012;Carleyetal.,2013).
TheformationoftheshockisdrivenbytheCMEexpansion
(Kouloumvakosetal.,2014;Cunha-Silvaetal.,2015;W an
etal.,2016).Theaverageheightofshocksattheonsettime
oftypeIIburstswasestimatedtobe0.5solarradius(Gopal-
swamyetal.,2009)withthesmallestvalueof0.2(W anet
al.,2016).ThetypeIIburstsourcesareusuallybelieved
tobelocatedatthetopoftheshockfront(Zimovetsetal.,
2012;Grechnevetal.,2015,2016).However,throughcom-
paringthephysicalparametersoftheshockfrontderivedby
theDEMmethodwiththatderivedfromtheband-splitting
ofthetypeIIburst,Suetal.(2016)foundthatthesources
ofthetypeIIradioburst,atleastfortheeventtheystudied,
arelocatedattheankoftheshock.Thisresultisconsistent
withthedirectcomparisonoftheNancayradioimageswith
reconstructed3Dmorphologyoftheshockwaveasdoneby
Chenetal.(2014d),whoforthersttimeidentiedthatthe
typeIIradiosourcesoriginateinaninteractionregionofthe
shockankandnearbycoronalray(Figure8b).
Radioimagingisalsoapowerfultooltotracethedynami-
calevolutionoftheMFRandassociatedfeatures(Picketal.,
2005;PickandVilmer,2008;Démoulinetal.,2012).V ery
recently,theeruptinghotMFRhasbeenobservedintheradio
wavelength.WiththeNobeyamaRadioheliographobserva-
tionat17GHz,Wuetal.(2016)presentedtherstmicrowave
observationscorrespondingtoahotMFRthatappearsasan
overallarcade-likecongurationconsistingofseveralinten-
sityenhancementsconnectedbyweakemissions.V asanthet
al.(2016)evenobservedanobviousMFRstructureinthe
metricwavelengthandfoundthattheassociatedradioemis-
sionmanifestsasamovingtype-IVburstwiththeirsources
co-movingwiththemotionofthehotMFR.Theseobserva-
tionsindicatethatelectronsarealsoprobablyacceleratedand
trappedwithintheMFRduringtheeruption.
4.2.3
3Dstructureandproperties
ThestandardCME/aremodelthatwellinterpretsmanyas-
pectsofthecharacteristicsofCMEs/aresisessentially2D.
Inreality,theCME/areprocessis3D(Aulanieretal.,2012;
Janvieretal.,2013).ChengandDing(2016)foundthatthe
axisofthepre-eruptiveMFRofCMEs/areshasasignicant
16ChengX,etal.SciChinaEarthSci
writhingevidencedbythebigratioofitsprojectedlengthto
footpointseparationdistance.Theorientationoftheaxisof
theMFRalsosignicantlydeviatesfromthatofthemainPIL
priortotheeruption.Moreover,theareloopsarestrongly
shearedinitially,butthesheargraduallybecomeweakwith
thedevelopmentofCMEs/ares(Suetal.,2007).Thesechar-
acteristicsshowthatboththepre-eruptiveMFRandtheback-
groundmagneticeldare3DinnatureandtheMFR-induced
CME/areprocessisalso3D.Inordertounderstandthe3D
processofCMEs/ares,Aulanieretal.(2012)andJanvier
etal.(2013)extendedthe2DstandardCME/aremodelto
3D,withwhichmanynewfeaturescanbeinterpreted.The
strong-to-weaktransitionoftheshearoftheareloopsis
foundtobearesultoftheshearofreconnectedoverlyingeld
graduallydecreasingwithincreasingheight(Schmiederetal.,
1996).
DuringtheMFReruption,theinducedareribbonsalso
displayparticularfeaturesintheirmorphologiesandevo-
lution.TheyinitiallyappearasEUV/UVbrighteningsat
thetwoendsoftheMFRandthenextendtotwosheared
J-shapedribbonswithtwohookssurroundingthefootpoints
oftheMFRs(ChengandDing,2016),probablycorrespond-
ingtothefootprintsofthecurvedQSLsinthechromosphere
(Savchevaetal.,2015).AtthefootpointsoftheMFR,both
theaverageinclinationangleandthedirectcurrentdecrease
withtimesuggestiveofastraighteninganduntwistingofthe
magneticeldoftheMFRlegs(ChengandDing,2016).
Theseobservationsarebasicallyconsistentwiththe3D
standardCME/aremodelofAulanieretal.(2012)and
Janvieretal.(2013).Notethat,however,thecurrentattwo
parallelareribbonscanbedoubledascomparedwiththe
prearevalue,contrarytothatatthefootpointsoftheMFR,
probablyasaconsequenceofthecollapseofthecoronal
currentlayerduringtheareassuggestedbyJanvieretal.
(2014)andJanvieretal.(2016).
Themorphologiesofareribbonsalsodependonthethree-
dimensionalityofthebackgroundeldabovethepre-eruptive
MFR.Sunetal.(2012)studiedanon-radialMFReruptionin
aquadrupolarcongurationwithanullpointlocatedabove.
Throughananalysisofmagnetictopology,theypointedout
thatthesimultaneousbrighteningofmultiplepairsofare
ribbonsisaresultofthereconnectionbetweenthedifferent
uxesinthequadrupolarsystem(alsoseeJiangetal.,2014a;
Joshietal.,2015;Zhangetal.,2015b).Inadifferentevent,
however,Y angetal.(2015a)foundthatthenullpointcanalso
beembeddedwithinthequadrupolarstructure.Inthiscase,
theeruptionofanMFRlocatedblowthenullpointleadstoa
three-ribbonarewithtwohighlyelongatedonesinsideand
outsideaquasi-circularone,respectively.Veryrecently,a
closeattentionisalsopaidtoX-shapedareribbons.Lietal.
(2016b)foundthatthearebrighteningspropagatealongthe
ribbonstowardthecenterofanX-structure,andthenspread
outwardinadirectionmoreperpendiculartotheribbons.Itis
interpretedastheevidenceof3Dreconnectionthathappens
betweentwosetsofnon-coplanarloopsthatapproachlater-
allyandproceedsdownwardalongasectionoftheCS.How-
ever,Liuetal.(2016c)attributedtheX-shapedribbonstothe
intersectionoftwoQSLlayers,i.e.,theHFT ,withinwhicha
separatorconnectingdoublenullsisembedded.Infact,even
formostofobservedareswithtwoparallelribbons,there-
connectionisalso3Dinnature.Usingthetwoperspectives
ofSTEREOandSDO,Sunetal.(2015a)reportedawellob-
servedlimbareandclearlyshowedthattwogroupsofeld
linesoverlyingtheeruptingMFRareoppositelydirectedand
non-coplanarwhentheyreconnect,indicatingthepresenceof
aquasiseparator.Afterthereconnection,thepoloidaluxes
newlyaddedtotheMFRarehighlyhelicalandtheirtwoends
arestillanchoredinthephotosphere(Figure9).
5.
Summaryandprospects
CMEs/aresarelarge-scaleandmostenergeticeruptivephe-
nomenainthesolarsystem.Theejectedhigh-speedmagne-
tizedplasmaandacceleratedparticlesmayhittheEarthand
thusseriouslyaffectthesafetyofhumanhigh-techactivities.
Inthepastdecades,anewinterdisciplinaryeldcalledspace
weatherthatreferstothesolaractivities,thesolarwindand
theirinuencesonthemagnetosphere,ionosphere,andther-
mosphereofourEarthhaveemerged.Inordertounderstand
theoriginofspaceweather,asignicantbutstillunsolvedis-
Figure9
Reconstructed3Dtopologyoftwomagneticeldlines(cyanandgreencurves)before,duringandafterthereconnection.Thebottomboundaries
areprojectedEUVI304Åimagesdisplayingtheareribbons(fromSunetal.,2015a).
ChengX,etal.SciChinaEarthSci17
sueisunderstandingtheoriginandstructuresofCMEs/ares.
Inthepastyears,signicantprogressesinthisaspecthave
beenachieved.Fromobservationalperspective,wesumma-
rizethemajorndingsandnewunderstandingsasfollows:
(1)Thepre-eruptivecongurationofCMEs/aresismore
likelytobeanMFR,whichcanmanifestitselfasalament,
lamentchannel,cavity,sigmoid,andhotchanneletc.,inde-
pendenceonthesize,twist,andwritheoftheMFRcongu-
ration,theviewingangle,andthewavelengthatwhichobser-
vationisperformed.Inthefuture,weneedamoreadvanced
MHDsimulationthatcanreproducealltheseobservables.In
reality,thepre-eruptivecongurationofCMEs/aresmaynot
beassimpleasanisolatedhelicalMFR.Somespecicchar-
acteristicssuchasdouble-deckerstructuresandpartialerup-
tionsshouldalsobeconsidered.
(2)TheformationoftheMFRisproposedeitherduetoa
directemergenceoraslowreconnectioninthecoronaprior
totheeruption,orsometimesevenduetothefastreconnec-
tionduringtheare.Inmostobservations,thereconnection
scenarioseemsamorefavorableexplanationfortheMFRfor-
mation.MHDsimulationsshowthatthebodilyemergingof
awholeMFRistheoreticallydifcult.Thereconnectionis
thusneededtotransfersomeemergeduxesintoanewMFR
systeminthecoronapriortotheeruption.However,thefol-
lowingquestionsarestillunclearandneedtobeexploredfur-
ther:howdoesthereconnectionexactlybuildupanMFR?
WhatisthetimescaleoftheMFRformation?Whatarethe
indispensablefeatures?Howmuchuxesareneededtobuild
upanunstableMFR?CanwedistinguishtheunstableMFR
fromthestableoneobservationally?
(3)TheeruptionoftheMFRgenerallyexperiencesaslow
risephasefollowedbyanimpulsiveaccelerationphasechar-
acterisedbyanexponentialincreaseinheight.Theinitia-
tionmechanismsforthetwophasesaredifferentandneed
tobeclariedrespectively .Itisarguedthattheinitiationof
theslowrisephasecouldbeduetodiversereasonsincluding
magneticreconnection,MHDinstabilities,andwavepertur-
bationsaslongastheequilibriumoftheMFRisbroken.The
transformationoftheslowrisephasetothefastacceleration
oneismostlikelyaresultofMHDinstabilities.Shortlyaf-
terwards,themagneticreconnectionisthenignitedtocontin-
uouslyacceleratetheMFReruption.However,moreobser-
vationsareneededtoconrmthisargument.
(4)TheMFRis3Dinnature,e.g.,awrithedhotchan-
nel-likecongurationwithitstwoelbowsincliningtoop-
positedirectionsandthemiddlepartdippedtowardthesur-
face.TheMFReruptionandtheinducedareoftenshow
somenewpropertiessuchasJ-shapedandX-shapedarerib-
bons,strong-to-weakchangeofareloopshear,asymmetric
orpartialeruptions,sequentialreconnectionalongthePIL
etc.Therefore,arealMFReruptionprocesscouldbemuch
morecomplexthanthata2Dmodelpredicts.Inordertothor-
oughlyunderstandallobservables,3DMHDsimulationsthat
considersomespecicphysicalprocesses(e.g.,Törökand
Kliem,2005;Töröketal.,2011;Aulanieretal.,2010)and
3Ddata-drivenMHDsimulations(e.g.,CheungandDeRosa,
2012;Kliemetal.,2013;Fisheretal.,2015;Jiangetal.,
2016a),evenincludingtheradiativetransfer(e.g.,Rempel,
2017),areimminentlyneeded.Moreover,theeruptionofan
MFRin3Dmaycomplicatetheprocessofparticleaccelera-
tion,whichshouldbeconsideredinthefutureaswell.
Acknowledgements
Wear egratefultotheassociateeditorand
threeanonymousreferees,whosecommentsandsuggestsimprovedthe
manuscript.W ealsothankProf.FengXSandProf.WanWXforcordial
invitationtowritethereviewpaperandtherstISSIworkshopon“Decod-
ingthePre-EruptiveMagneticCongurationofCoronalMassEjections”
ledbyS.PatsourakosandA.V ourlidasforusefuldiscussions.ChenX,Guo
Y,andDingMDaresupportedbytheFundamentalResearchFundsfor
theCentralUniversities,theNationalNaturalScienceFoundationofChina
(GrantNos.1 1303016,11373023,11533005,1 1203014)andNationalKey
BasicResearchSpecialFoundation(GrantNo.2014CB744203).
References
AmariT ,CanouA,AlyJJ.2014.Characterizingandpredictingthemagnetic
environmentleadingtosolareruptions.Nature,514:465–469
AmariT,LucianiJF,MikicZ,LinkerJ.1999.Three-dimensionalsolu-
tionsofmagnetohydrodynamicequationsforprominencemagneticsup-
port:T wistedmagneticuxrope.AstrophysJ,518:L57–L60
AmariT,LucianiJF,MikicZ,LinkerJ.2000.Atwisteduxropemodel
forcoronalmassejectionsandtwo-ribbonares.AstrophysJ,529:
L49–L52
AmariT,LucianiJF ,AlyJJ,MikicZ,LinkerJ.2003a.Coronalmass
ejection:initiation,magnetichelicity,anduxropes.I.Boundarymo-
tion-drivenevolution.AstrophysJ,585:1073–1086
AmariT,LucianiJF,AlyJJ,MikicZ,LinkerJ.2003b.Coronalmassejec-
tion:initiation,magnetichelicity,anduxropes.II.Turbulentdiffu-
sion-drivenevolution.AstrophysJ,595:1231–1250
AmariT,AlyJJ,MikicZ,LinkerJ.2010.Coronalmassejectioninitiation:
Onthenatureoftheuxcancellationmodel.AstrophysJ,717:L26–L30
AmariT ,AlyJJ,LucianiJF ,MikicZ,LinkerJ.2011.Coronalmassejection
initiationbyconvergingphotosphericows:T owardarealisticmodel.
AstrophysJ,742:L27
AntiochosSK,DahlburgRB,KlimchukJA.1994.Themagneticeldof
solarprominences.AstrophysJ,420:L41–L44
AntiochosSK,DeV oreCR,KlimchukJA.1999.Amodelforsolarcoronal
massejections.AstrophysJ,510:485–493
ArchontisV ,HoodAW.2009.FormationofEllermanbombsdueto3Dux
emergence.AstronAstrophys,508:1469–1483
ArchontisV ,TörökT.2008.Eruptionofmagneticuxropesduringux
emergence.AstronAstrophys,492:L35–L38
ArchontisV ,HoodAW ,SavchevaA,GolubL,DelucaE.2009.Onthe
structureandevolutionofcomplexityinsigmoids:Auxemergence
model.AstrophysJ,691:1276–1291
AulanierG,SchmiederB.2002.ThemagneticnatureofwideEUVlament
channelsandtheirroleinthemassloadingofCMEs.AstronAstrophys,
386:1106–1122
AulanierG,DeV oreCR,AntiochosSK.2006.Solarprominencemerging.
AstrophysJ,646:1349–1357
AulanierG,JanvierM,SchmiederB.2012.Thestandardaremodelinthree
dimensions.AstronAstrophys,543:A110
AulanierG,DémoulinP ,vanDriel-GesztelyiL,MeinP,DeforestC.1998.
3-Dmagneticcongurationssupportingprominences.II.Thelateralfeet
asaperturbationofatwistedux-tube.AstronAstrophys,335:309‒332
18ChengX,etal.SciChinaEarthSci
AulanierG,DémoulinP,MeinN,vanDriel-GesztelyiL,MeinP,Schmieder
B.1999.3-Dmagneticcongurationssupportingprominences.III.Evo-
lutionofnestructuresobservedinalamentchannel.AstronAstro-
phys,342:867‒880
AulanierG,DeLucaEE,AntiochosSK,McMullenRA,GolubL.2000.
Thetopologyandevolutionofthebastilledayare.AstrophysJ,540:
1126–1142
AulanierG,TörökT,DémoulinP ,DeLucaEE.2010.Formationoftorus-
unstableuxropesandelectriccurrentsineruptingsigmoids.Astrophys
J,708:314–333
BainHM,KruckerS,GlesenerL,LinRP.2012.Radioimagingof
shock-acceleratedelectronsassociatedwithaneruptingplasmoidon
2010November3.AstrophysJ,750:44
Bak-StęślickaU,GibsonSE,FanY,BethgeC,ForlandB,RachmelerLA.
2013.Themagneticstructureofsolarprominencecavities:Newobser-
vationalsignaturerevealedbycoronalmagnetometry .AstrophysJ,770:
L28
BernasconiPN,RustDM,GeorgoulisMK,LabonteBJ.2002.Moving
dipolarfeaturesinanemerginguxregion.SolPhys,209:119–139
BobraMG,IlonidisS.2016.Predictingcoronalmassejectionsusingma-
chinelearningmethods.AstrophysJ,821:127
BobraMG,SunX,HoeksemaJT ,TurmonM,LiuY ,HayashiK,BarnesG,
LekaKD.2014.Thehelioseismicandmagneticimager(HMI)vector
magneticeldpipeline:SHARPs―Space-weatherHMIActiveRegion
Patches.SolPhys,289:3549–3578
BurlagaLF.1988.Magneticcloudsandforce-freeeldswithconstantalpha.
JGeophysRes,93:7217–7224
ByrneJP,MaloneySA,McAteerRTJ,RefojoJM,GallagherPT.2010.
PropagationofanEarth-directedcoronalmassejectioninthreedimen-
sions.NatCommun,1:1–8
CaneldRC,HudsonHS,McKenzieDE.1999.Sigmoidalmorphology
anderuptivesolaractivity.GeophysResLett,26:627–630
CanouA,AmariT.2010.Atwisteduxropeasthemagneticstructureofa
lamentinactiveregion10953observedbyHINODE.AstrophysJ,715:
1566–1574
CaoW ,GorceixN,CoulterR,AhnK,RimmeleTR,GoodePR.2010.
Scienticinstrumentationforthe1.6mNewSolarTelescopeinBigBear .
AstronNachr,331:636–639
CarleyEP,LongDM,ByrneJP ,ZuccaP,ShaunBloomeldD,McCauley
J,GallagherPT.2013.Quasiperiodicaccelerationofelectronsbyaplas-
moid-drivenshockinthesolaratmosphere.NatPhys,9:811–816
CarmichaelH.1964.Aprocessforares.NASASpecPubl,50:451
ChenB,BastianTS,GaryDE.2014a.Directevidenceofaneruptive,
lament-hostingmagneticuxropeleadingtoafastsolarcoronalmass
ejection.AstrophysJ,794:149
ChenH,ZhangJ,ChengX,MaS,YangS,LiT.2014b.Directobservations
oftether-cuttingreconnectionduringamajorsolareventfrom2014Feb-
ruary24to25.AstrophysJ,797:L15
ChenH,ZhangJ,MaS,Y angS,LiL,HuangX,XiaoJ.2015.Connedares
insolaractiveregion12192from2014October18to29.AstrophysJ,
808:L24
ChenH,ZhangJ,LiL,MaS.2016a.Tether-cuttingreconnectionbetween
twosolarlamentstriggeringoutowsandacoronalmassejection.As-
trophysJ,818:L27
ChenJ.1996.Theoryofprominenceeruptionandpropagation:Interplane-
taryconsequences.JGeophysRes,101:27499–27519
ChenPF.2011.Coronalmassejections:Modelsandtheirobservational
basis.LivingRevSolPhys,8:1
ChenPF ,ShibataK.2000.Anemerginguxtriggermechanismforcoronal
massejections.AstrophysJ,545:524–531
ChenPF ,HarraLK,FangC.2014c.Imagingandspectroscopicobserva-
tionsofalamentchannelandtheimplicationsforthenatureofcounter-
streamings.AstrophysJ,784:50
ChenY ,DuG,FengL,FengS,KongX,GuoF ,W angB,LiG.2014d.Asolar
typeiiradioburstfromcoronalmassejection-coronalrayinteraction:
simultaneousradioandextremeultravioletimaging.AstrophysJ,787:
59
ChenY,DuG,ZhaoD,WuZ,LiuW ,WangB,RuanG,FengS,SongH.
2016b.Imagingamagnetic-breakoutsolareruption.AstrophysJ,820:
L37
ChengX,DingMD.2016.Thecharacteristicsofthefootpointsofsolar
magneticuxropesduringeruptions.AstrophysJSupplSer,225:16
ChengX,DingMD,FangC.2015a.Imagingandspectroscopicdiagnostics
ontheformationoftwomagneticuxropesrevealedbySDO/AIAand
IRIS.AstrophysJ,804:82
ChengX,DingMD,ZhangJ.2010.Astudyofthebuild-up,initiation,
andaccelerationof2008April26coronalmassejectionobservedby
STEREO.AstrophysJ,712:1302–1310
ChengX,ZhangJ,DingMD,GuoY ,SuJT.2011a.Acomparativestudyof
connedanderuptivearesinNOAAAR10720.AstrophysJ,732:87
ChengX,ZhangJ,LiuY ,DingMD.2011b.Observinguxropeformation
duringtheimpulsivephaseofasolareruption.AstrophysJ,732:L25
ChengX,ZhangJ,SaarSH,DingMD.2012.Differentialemissionmeasure
analysisofmultiplestructuralcomponentsofcoronalmassejectionsin
theinnercorona.AstrophysJ,761:62
ChengX,ZhangJ,DingMD,OlmedoO,SunXD,GuoY,LiuY.2013a.
Investigatingtwosuccessiveuxropeeruptionsinasolaractiveregion.
AstrophysJ,769:L25
ChengX,ZhangJ,DingMD,LiuY,PoomvisesW.2013b.Thedriverof
coronalmassejectionsinthelowcorona:Auxrope.AstrophysJ,763:
43
ChengX,DingMD,ZhangJ,SunXD,GuoY ,WangYM,KliemB,Deng
YY.2014a.Formationofadouble-deckermagneticuxropeinthe
sigmoidalsolaractiveregion11520.AstrophysJ,789:93
ChengX,DingMD,ZhangJ,SrivastavaAK,GuoY,ChenPF,SunJQ.
2014b.Ontherelationshipbetweenahot-channel-likesolarmagnetic
uxropeanditsembeddedprominence.AstrophysJ,789:L35
ChengX,DingMD,GuoY ,ZhangJ,V ourlidasA,LiuYD,OlmedoO,Sun
JQ,LiC.2014c.Trackingtheevolutionofacoherentmagneticuxrope
continuouslyfromtheinnertotheoutercorona.AstrophysJ,780:28
ChengX,HaoQ,DingMD,LiuK,ChenPF,FangC,LiuYD.2015b.A
two-ribbonwhite-lightareassociatedwithafailedsolareruptionob-
servedbyONSET,SDO,andIRIS.AstrophysJ,809:46
CheungMCM,DeRosaML.2012.Amethodfordata-drivensimulations
ofevolvingsolaractiveregions.AstrophysJ,757:147
CheungMCM,IsobeH.2014.FluxEmergence(Theory).LivingRevSolar
Phys,11:3
ChintzoglouG,PatsourakosS,V ourlidasA.2015.Formationofmagnetic
uxropesduringconnedaringwellbeforetheonsetofapairofmajor
coronalmassejections.AstrophysJ,809:34
CiaravellaA,RaymondJC.2008.Thecurrentsheetassociatedwiththe2003
November4coronalmassejection:Density,temperature,thickness,and
linewidth.AstrophysJ,686:1372–1382
Cunha-SilvaRD,FernandesFCR,SelhorstCL.2015.SolartypeIIradio
burstsassociatedwithCMEexpansionsasshownbyEUVwaves.Astron
Astrophys,578:A38
DePontieuB,TitleAM,LemenJR,KushnerGD,AkinDJ,AllardB,
BergerT,BoernerP ,CheungM,ChouC,DrakeJF,DuncanDW,
FreelandS,HeymanGF,HoffmanC,HurlburtNE,LindgrenRW,
MathurD,RehseR,SabolishD,SeguinR,SchrijverCJ,TarbellTD,
WülserJP ,WolfsonCJ,Y anariC,MudgeJ,Nguyen-PhucN,Timmons
R,vanBezooijenR,WeingrodI,BrooknerR,ButcherG,DoughertyB,
EderJ,KnagenhjelmV ,LarsenS,MansirD,PhanL,BoyleP,Cheimets
PN,DeLucaEE,GolubL,GatesR,HertzE,McKillopS,ParkS,
PerryT,PodgorskiWA,ReevesK,SaarS,TestaP,TianH,WeberM,
DunnC,EcclesS,JaeggliSA,KankelborgCC,MashburnK,Pust
N,SpringerL,CarvalhoR,KleintL,MarmieJ,MazmanianE,Pereira
TMD,SawyerS,StrongJ,W ordenSP,CarlssonM,HansteenVH,
ChengX,etal.SciChinaEarthSci19
LeenaartsJ,WiesmannM,AloiseJ,ChuKC,BushRI,ScherrerPH,
BrekkeP,Martinez-SykoraJ,LitesBW,McIntoshSW,UitenbroekH,
OkamotoTJ,GumminMA,AukerG,JerramP ,PoolP,WalthamN.
2014.Theinterfaceregionimagingspectrograph(IRIS).SolPhys,289:
2733–2779
DémoulinP ,AulanierG.2010.Criteriaforuxropeeruption:Non-equilib-
riumversustorusinstability.AstrophysJ,718:1388–1399
DémoulinP,V ourlidasA,PickM,BouteilleA.2012.Initiationanddevel-
opmentofthewhite-lightandradiocoronalmassejectionon2001April
15.AstrophysJ,750:147
DengY,LinY ,SchmiederB,EngvoldOØ.2002.Filamentactivationand
magneticreconnection.SolPhys,209:153–170
DereKP ,BruecknerGE,HowardRA,MichelsDJ,DelaboudiniereJP.
1999.LASCOandEITobservationsofhelicalstructureincoronalmass
ejections.AstrophysJ,516:465–474
DoveJB,GibsonSE,RachmelerLA,TomczykS,JudgeP.2011.Aring
ofpolarizedlight:Evidencefortwistedcoronalmagnetismincavities.
AstrophysJ,731:L1
DudíkJ,JanvierM,AulanierG,DelZannaG,KarlickýM,MasonHE,
SchmiederB.2014.Slippingmagneticreconnectionduringanx-class
solarareobservedbySDO/AIA.AstrophysJ,784:144
FalconerDA,MooreRL,GaryGA.2008.Magnetogrammeasuresof
totalnonpotentialityforpredictionofsolarcoronalmassejectionsfrom
activeregionsofanydegreeofmagneticcomplexity .AstrophysJ,689:
1433–1442
FanY.2001.TheemergenceofatwistedΩ-tubeintothesolaratmosphere.
AstrophysJ,554:L111–L114
FanY.2009.Theemergenceofatwisteduxtubeintothesolaratmosphere:
Sunspotrotationsandtheformationofacoronaluxrope.AstrophysJ,
697:1529–1542
FanY.2012.Thermalsignaturesoftether-cuttingreconnectionsinpre-erup-
tioncoronaluxropes:Hotcentralvoidsincoronalcavities.Astrophys
J,758:60
FengL,WiegelmannT ,SuY ,InhesterB,LiYP ,SunXD,GanWQ.2013.
Magneticenergypartitionbetweenthecoronalmassejectionandare
fromar11283.AstrophysJ,765:37
FengSW,ChenY ,KongXL,LiG,SongHQ,FengXS,LiuY.2012.Ra-
diosignaturesofcoronal-mass-ejection-streamerinteractionandsource
diagnosticsoftypeIIradioburst.AstrophysJ,753:21
FisherGH,AbbettWP ,BercikDJ,KazachenkoMD,LynchBJ,W elsch
BT,HoeksemaJT,HayashiK,LiuY,NortonAA,DaldaAS,SunX,
DeRosaML,CheungMCM.2015.Thecoronalglobalevolutionary
model:UsingHMIvectormagnetogramanddopplerdatatomodelthe
buildupoffreemagneticenergyinthesolarcorona.SpaceWeather,13:
369–373
ForbesTG,IsenbergPA.1991.Acatastrophemechanismforcoronalmass
ejections.AstrophysJ,373:294–307
ForbesTG,PriestER.1995.Photosphericmagneticeldevolutionand
eruptiveares.AstrophysJ,446:377
ForbesTG,LinkerJA,ChenJ,CidC,KótaJ,LeeMA,MannG,MikićZ,
PotgieterMS,SchmidtJM,SiscoeGL,V ainioR,AntiochosSK,Riley
P.2006.CMEtheoryandmodels.SpaceSciRev,123:251–302
GaryGA,MooreRL.2004.Eruptionofamultiple-turnhelicalmagnetic
uxtubeinalargeare:Evidenceforexternalandinternalreconnection
thattsthebreakoutmodelofsolarmagneticeruptions.AstrophysJ,
611:545–556
GibsonSE,FletcherL,DelZannaG,PikeCD,MasonHE,MandriniCH,
DemoulinP ,GilbertH,BurkepileJ,HolzerT,AlexanderD,LiuY ,Nitta
N,QiuJ,SchmiederB,ThompsonBJ.2002.Thestructureandevolution
ofasigmoidalactiveregion.AstrophysJ,574:1021–1038
GibsonSE,FanY ,MandriniC,FisherG,DemoulinP.2004.Observational
consequencesofamagneticuxropeemergingintothecorona.Astro-
physJ,617:600–613
GibsonSE,FosterD,BurkepileJ,deTomaG,StangerA.2006.Thecalm
beforethestorm:Thelinkbetweenquiescentcavitiesandcoronalmass
ejections.AstrophysJ,641:590–605
GibsonSE,FanY ,TörökT,KliemB.2007.Theevolvingsigmoid:Evidence
formagneticuxropesinthecoronabefore,during,andafterCMEs.
SpaceSciRev,124:131–144
GilbertHR,AlexanderD,LiuR.2007.Filamentkinkinganditsimplications
foreruptionandre-formation.SolPhys,245:287–309
GopalswamyN,ThompsonWT,DavilaJM,KaiserML,YashiroS,Mäkelä
P,MichalekG,BougeretJL,HowardRA.2009.Relationbetweentype
IIburstsandCMEsinferredfromSTEREOobservations.SolPhys,259:
227–254
GopalswamyN,YashiroS,AkiyamaS,XieH.2017.Estimationofrecon-
nectionuxusingpost-eruptionarcadesanditsrelevancetomagnetic
cloudsat1AU.SolPhys,292:65
GoslingJT.1993.Thesolararemyth.JGeophysRes,98:18937–18949
GrechnevVV ,UralovAM,KuzmenkoIV ,KochanovAA,ChertokIM,
KalashnikovSS.2015.ResponsibilityofaFilamentEruptionforthe
InitiationofaFlare,CME,andBlastW ave,anditsPossibleTransforma-
tionintoaBowShock.SolPhys,290:129–158
GrechnevVV ,UralovAM,KochanovAA,KuzmenkoIV ,ProsovetskyD
V,EgorovYI,FainshteinVG,KashapovaLK.2016.Atinyeruptive
lamentasaux-ropeprogenitoranddriverofalarge-scaleCMEand
wave.SolPhys,291:1173–1208
GreenLM,KliemB.2009.Fluxropeformationprecedingcoronalmass
ejectiononset.AstrophysJ,700:L83–L87
GreenLM,KliemB,W allaceAJ.2011.Photosphericuxcancellationand
associateduxropeformationanderuption.AstronAstrophys,526:A2
GreenLM,KliemB,TörökT,vanDriel-GesztelyiL,AttrillGDR.2007.
Transientcoronalsigmoidsandrotatingeruptinguxropes.SolPhys,
246:365–391
GuoY ,ChengX,DingMD.2017.OriginandStructuresofSolarEruptions
II:MagneticModelling.SciChinaEarthSci,60,doi:10.1007/s11430-
017-9081-x
GuoY ,SchmiederB,DémoulinP,WiegelmannT,AulanierG,TörökT,
BommierV.2010a.Coexistinguxropeanddippedarcadesections
alongonesolarlament.AstrophysJ,714:343–354
GuoY ,DingMD,SchmiederB,LiH,TörökT ,WiegelmannT.2010b.Driv-
ingmechanismandonsetconditionofaconnederuption.AstrophysJ,
725:L38–L42
GuoY ,DingMD,ChengX,ZhaoJ,PariatE.2013.Twistaccumulationand
topologystructureofasolarmagneticuxrope.AstrophysJ,779:157
HarraLK,WilliamsDR,WallaceAJ,MagaraT,HaraH,TsunetaS,Sterling
AC,DoschekGA.2009.Coronalnonthermalvelocityfollowinghelicity
injectionbeforeanX-classare.AstrophysJ,691:L99–L102
HarraLK,MatthewsS,CulhaneJL,CheungMCM,KontarEP ,HaraH.
2013.Thelocationofnon-thermalvelocityintheearlyphasesoflarge
ares—Revealingpre-eruptionuxropes.AstrophysJ,774:122
HassaninA,KliemB.2016.Helicalkinkinstabilityinaconnedsolarerup-
tion.AstrophysJ,832:106
HessP,ZhangJ.2015.PredictingCMEejectaandsheathfrontarrivalatL1
withadata-constrainedphysicalmodel.AstrophysJ,812:144
HirayamaT.1974.Theoreticalmodelofaresandprominences.I:Evapo-
ratingaremodel.SolarPhys,34:323
HirayamaT.1985.Modernobservationsofsolarprominences.SolPhys,
100:415–434
HuH,LiuYD,WangR,MöstlC,Y angZ.2016.Sun-to-Earthcharacteristics
ofthe2012July12coronalmassejectionandassociatedgeo-effective-
ness.AstrophysJ,829:97
HuQ,QiuJ,DasguptaB,KhareA,WebbGM.2014.Structuresofinter-
planetarymagneticuxropesandcomparisonwiththeirsolarsources.
AstrophysJ,793:53
HudsonHS,LemenJR,St.CyrOC,SterlingAC,W ebbDF.1998.X-ray
coronalchangesduringHaloCMEs.GeophysResLett,25:2481–2484
IllingRME,HundhausenAJ.1983.Possibleobservationofadiscon-
20ChengX,etal.SciChinaEarthSci
nectedmagneticstructureinacoronaltransient.JGeophysRes,88:
10210–10214
InnesDE,McKenzieDE,WangT.2003.SUMERspectralobservationsof
post-aresupra-arcadeinows.SolPhys,217:247–265
InnesDE,InhesterB,AxfordWI,WilhelmK.1997.Bi-directionalplasma
jetsproducedbymagneticreconnectionontheSun.Nature,386:
811–813
InoueS,HayashiK,ShiotaD,MagaraT ,ChoeGS.2013.Magneticstruc-
tureproducingX-andM-classsolararesinsolaractiveregion11158.
AstrophysJ,770:79
InoueS,HayashiK,MagaraT,ChoeGS,ParkYD.2014.Magnetohy-
drodynamicsimulationoftheX2.2solarareon2011February15.I.
Comparisonwiththeobservations.AstrophysJ,788:182
IsenbergPA,ForbesTG,DemoulinP.1993.Catastrophicevolutionofa
force-freeuxrope:Amodelforeruptiveares.AstrophysJ,417:368
IsobeH,TripathiD,ArchontisV.2007.Ellermanbombsandjetsassociated
withresistiveuxemergence.AstrophysJ,657:L53–L56
JanvierM,AulanierG,PariatE,DémoulinP.2013.Thestandardaremodel
inthreedimensions.AstronAstrophys,555:A77
JanvierM,AulanierG,BommierV ,SchmiederB,DémoulinP ,PariatE.
2014.Electriccurrentsinareribbons:Observationsandthree-dimen-
sionalstandardmodel.AstrophysJ,788:60
JanvierM,SavchevaA,PariatE,T assevS,MillhollandS,BommierV ,
McCauleyP,McKillopS,DouganF.2016.Evolutionofareribbons,
electriccurrents,andquasi-separatrixlayersduringanX-classare.
AstronAstrophys,591:A141
JiH,WangH,SchmahlEJ,MoonYJ,JiangY.2003.Observationsofthe
failederuptionofalament.AstrophysJ,595:L135–L138
JiangC,FengX.2012.Anewimplementationofthemagnetohydrodynam-
ics-relaxationmethodfornonlinearforce-freeeldextrapolationinthe
solarcorona.AstrophysJ,749:135
JiangCW,WuST,FengXS,HuQ.2016a.Acomparisonstudyofasolar
active-regioneruptivelamentandaneighboringnon-eruptivelament.
ResAstronAstrophys,16:018
JiangC,FengX,WuST,HuQ.2013.Magnetohydrodynamicsimulationof
asigmoideruptionofactiveregion11283.AstrophysJ,771:L30
JiangC,WuST,FengX,HuQ.2014a.Formationanderuptionofanactive
regionsigmoid.I.Astudybynonlinearforce-freeeldmodeling.As-
trophysJ,780:55
JiangC,WuST,FengX,HuQ.2014b.Nonlinearforce-freeeldextrapo-
lationofacoronalmagneticuxropesupportingalarge-scalesolarla-
mentfromaphotosphericvectormagnetogram.AstrophysJ,786:L16
JiangC,WuST,FengX,HuQ.2016b.Data-drivenmagnetohydrodynamic
modellingofaux-emergingactiveregionleadingtosolareruption.Nat
Commun,7:11522
JiangC,WuST ,YurchyshynV,WangH,FengX,HuQ.2016c.Howdida
majorconnedareoccurinsupersolaractiveregion12192?Astrophys
J,828:62
JoshiNC,MagaraT,InoueS.2014a.Formationofacompounduxrope
bythemergingoftwolamentchannels,theassociateddynamics,and
itsstability.AstrophysJ,795:4
JoshiNC,SrivastavaAK,FilippovB,KayshapP,UddinW ,ChandraR,
PrasadChoudharyD,DwivediBN.2014b.Connedpartiallament
eruptionanditsreformationwithinastablemagneticuxrope.Astro-
physJ,787:11
JoshiNC,LiuC,SunX,W angH,MagaraT,MoonYJ.2015.Theroleof
eruptingsigmoidintriggeringaarewithparallelandlarge-scalequasi-
circularribbons.AstrophysJ,812:50
KahlerSW.1992.Solararesandcoronalmassejections.AnnuRevAstron
Astrophys,30:113–141
KaiserML,KuceraTA,DavilaJM,St.CyrOC,GuhathakurtaM,Christian
E.2008.TheSTEREOmission:Anintroduction.SpaceSciRev,136:
5–16
KarnaN,ZhangJ,PesnellWD,HessWebberSA.2015.Studyofthe3d
geometricstructureandtemperatureofacoronalcavityusingthelimb
synopticmapmethod.AstrophysJ,810:124
KarpenJT,AntiochosSK,DeV oreCR.2012.Themechanismsfortheon-
setandexplosiveeruptionofcoronalmassejectionsanderuptiveares.
AstrophysJ,760:81
KliemB,TörökT.2006.T orusinstability.PhysRevLett,96:255002
KliemB,TitovVS,TörökT.2004.Formationofcurrentsheetsandsig-
moidalstructurebythekinkinstabilityofamagneticloop.AstronAs-
trophys,413:L23–L26
KliemB,LintonMG,TörökT ,KarlickýM.2010.Reconnectionofa
kinkinguxropetriggeringtheejectionofamicrowaveandhardX-ray
sourceII.Numericalmodeling.SolPhys,266:91–107
KliemB,SuYN,vanBallegooijenAA,DeLucaEE.2013.Magnetohy-
drodynamicmodelingofthesolareruptionon2010April8.Astrophys
J,779:129
KliemB,LinJ,ForbesTG,PriestER,TörökT.2014a.Catastropheversus
instabilityfortheeruptionofatoroidalsolarmagneticuxrope.Astro-
physJ,789:46
KliemB,TörökT,TitovVS,LionelloR,LinkerJA,LiuR,LiuC,WangH.
2014b.Slowriseandpartialeruptionofadouble-deckerlament.II.A
doubleuxropemodel.AstrophysJ,792:107
KoppRA,PneumanGW .1976.Magneticreconnectioninthecoronaand
theloopprominencephenomenon.SolarPhys,50:85‒89
KouloumvakosA,PatsourakosS,HillarisA,VourlidasA,Preka-Papadema
P,MoussasX,CaroubalosC,TsitsipisP,KontogeorgosA.2014.CME
expansionasthedriverofmetrictypeIIshockemissionasrevealedby
self-consistentanalysisofhigh-cadenceEUVimagesandradiospectro-
grams.SolPhys,289:2123–2139
KumarP ,Y urchyshynV ,W angH,ChoKS.2015.Formationanderuptionof
asmalluxropeinthechromosphereobservedbyNST,IRIS,andSDO.
AstrophysJ,809:83
KumarP,Y urchyshynV ,ChoKS,WangH.2017.Multiwavelengthobser-
vationsofauxropeformationbyseriesofmagneticreconnectioninthe
chromosphere.ArXive-prints
KuperusM,RaaduMA.1974.Thesupportofprominencesformedinneutral
sheets.AstronAstrophys,31:189−193
LeakeJE,LintonMG,AntiochosSK.2014.Simulationsofemerging
magneticux.II.Theformationofunstablecoronaluxropesandthe
initiationofcoronalmassejections.AstrophysJ,787:46
LeakeJE,LintonMG,TörökT.2013.Simulationsofemergingmagnetic
ux.I.Theformationofstablecoronaluxropes.AstrophysJ,778:99
LekaKD,BarnesG.2003a.Photosphericmagneticeldpropertiesofaring
versusare-quietactiveregions.I.Data,generalapproach,andsample
results.AstrophysJ,595:1277–1295
LekaKD,BarnesG.2003b.Photosphericmagneticeldpropertiesofaring
versusare‐quietactiveregions.II.Discriminantanalysis.AstrophysJ,
595:1296–1306
LemenJR,TitleAM,AkinDJ,BoernerPF,ChouC,DrakeJF,DuncanD
W,EdwardsCG,FriedlaenderFM,HeymanGF,HurlburtNE,KatzN
L,KushnerGD,LevayM,LindgrenRW,MathurDP ,McFeatersEL,
MitchellS,RehseRA,SchrijverCJ,SpringerLA,SternRA,Tarbell
TD,WuelserJP ,WolfsonCJ,Y anariC,BookbinderJA,CheimetsP
N,CaldwellD,DelucaEE,GatesR,GolubL,ParkS,PodgorskiW
A,BushRI,ScherrerPH,GumminMA,SmithP ,AukerG,JerramP,
PoolP ,SouiR,WindtDL,BeardsleyS,ClappM,LangJ,W althamN.
2012.Theatmosphericimagingassembly(AIA)onthesolardynamics
observatory(SDO).SolPhys,275:17–40
LeppingRP ,BurlagaLF ,JonesJA.1990.Magneticeldstructureofinter-
planetarymagneticcloudsat1AU.JGeophysRes,95:11957–11965
LevensPJ,SchmiederB,LópezAristeA,LabrosseN,DalmasseK,GellyB.
2016.Magneticeldinatypicalprominencestructures:Bubble,tornado,
anderuption.AstrophysJ,826:164
LiLP,ZhangJ.2013a.EruptionsoftwouxropesobservedbySDOand
STEREO.AstronAstrophys,552:L11
ChengX,etal.SciChinaEarthSci21
LiLP,PeterH,ChenF,ZhangJ.2014.Conversionfrommutualhelicityto
self-helicityobservedwithIRIS.AstronAstrophys,570:A93
LiLP ,ZhangJ,SuJT,LiuY.2016a.Oscillationofcurrentsheetsinthe
wakeofauxropeeruptionobservedbythesolardynamicsobservatory.
AstrophysJ,829:L33
LiT,ZhangJ.2013b.Fine-scalestructuresofuxropestrackedbyerupting
material.AstrophysJ,770:L25
LiT ,ZhangJ.2013c.Homologousuxropesobservedbythesolardynamics
observatoryatmosphericimagingassembly.AstrophysJ,778:L29
LiT ,ZhangJ.2015.High-resolutionobservationsofauxropewiththe
interfaceregionimagingspectrograph.SolPhys,290:2857–2870
LiX,MorganH,LeonardD,JeskaL.2012.Asolartornadoobservedby
AIA/SDO:Rotationalowandevolutionofmagnetichelicityinapromi-
nenceandcavity.AstrophysJ,752:L22
LiY ,QiuJ,LongcopeDW,DingMD,YangK.2016b.Observationsof
anX-shapedribbonareintheSunanditsthree-dimensionalmagnetic
reconnection.AstrophysJ,823:L13
LiZ,FangC,GuoY ,ChenPF,XuZ,CaoWD.2015.DiagnosticsofEller-
manbombswithhigh-resolutionspectraldata.ResAstronAstrophys,
15:1513–1524
LinH,PennMJ,TomczykS.2000.Anewprecisemeasurementofthe
coronalmagneticeldstrength.AstrophysJ,541:L83–L86
LinJ.2001.Theoreticalmechanismsforsolareruptions.DoctoralDisserta-
tion.NewHampshire:UniversityofNewHampshire
LinJ,ForbesTG.2000.Effectsofreconnectiononthecoronalmassejection
process.JGeophysRes,105:2375–2392
LinJ,vanBallegooijenAA.2002.Catastrophicandnoncatastrophicmech-
anismsforcoronalmassejections.AstrophysJ,576:485–492
LinJ,RaymondJC,vanBallegooijenAA.2004.Theroleofmagnetic
reconnectionintheobservablefeaturesofsolareruptions.AstrophysJ,
602:422–435
LinJ,KoYK,SuiL,RaymondJC,StenborgGA,JiangY ,ZhaoS,Mancuso
S.2005.Directobservationsofthemagneticreconnectionsiteofan
eruptionon2003November18.AstrophysJ,622:1251–1264
LinJ,LiJ,ForbesTG,KoYK,RaymondJC,VourlidasA.2007.Features
andpropertiesofcoronalmassejection/arecurrentsheets.AstrophysJ,
658:L123–L126
LinJ,MurphyNA,ShenC,RaymondJC,ReevesKK,ZhongJ,WuN,Li
Y.2015.ReviewoncurrentsheetsinCMEdevelopment:Theoriesand
observations.SpaceSciRev,194:237–302
LitesBW.2005.Magneticuxropesinthesolarphotosphere:The
vectormagneticeldunderactiveregionlaments.AstrophysJ,622:
1275–1291
LiuJ,WangY ,ErdélyiR,LiuR,McIntoshSW ,GouT,ChenJ,LiuK,Liu
L,PanZ.2016a.Onthemagneticandenergycharacteristicsofrecurrent
homologousjetsfromanemergingux.AstrophysJ,833:150
LiuK,W angY,ZhangJ,ChengX,LiuR,ShenC.2015.Extremelylarge
EUVlatephaseofsolarares.AstrophysJ,802:35
LiuL,WangY ,WangJ,ShenC,Y eP,LiuR,ChenJ,ZhangQ,W angS.
2016b.Whyisaare-richactiveregionCME-poor?AstrophysJ,826:
119
LiuR.2013.Dynamicalprocessesattheverticalcurrentsheetbehindan
eruptinguxrope.MonNotRAstronSoc,434:1309–1320
LiuR,AlexanderD.2009.HardX-rayemissioninkinkinglaments.As-
trophysJ,697:999–1009
LiuR,LiuC,W angS,DengN,W angH.2010.Sigmoid-to-ux-ropetran-
sitionleadingtoaloop-likecoronalmassejection.AstrophysJ,725:
L84–L90
LiuR,KliemB,TörökT,LiuC,TitovVS,LionelloR,LinkerJA,Wang
H.2012.Slowriseandpartialeruptionofadouble-deckerlament.I.
Observationsandinterpretation.AstrophysJ,756:59
LiuR,ChenJ,WangY,LiuK.2016c.InvestigatingenergeticX-shaped
aresontheoutskirtsofasolaractiveregion.SciRep,6:34021
LiuR,KliemB,TitovVS,ChenJ,WangY ,W angH,LiuC,XuY ,
WiegelmannT.2016d.Structure,stability ,andevolutionofmagnetic
uxropesfromtheperspectiveofmagnetictwist.AstrophysJ,818:148
LiuW ,ChenQ,PetrosianV.2013.Plasmoidejectionsandloopcontractions
inaneruptiveM7.7solarare:Evidenceofparticleaccelerationand
heatinginmagneticreconnectionoutows.AstrophysJ,767:168
LiuY.2008.Magneticeldoverlyingsolareruptionregionsandkinkand
torusinstabilities.AstrophysJ,679:L151–L154
LiuYD,LuhmannJG,LugazN,MöstlC,DaviesJA,BaleSD,LinRP.
2013.OnSun-to-Earthpropagationofcoronalmassejections.Astrophys
J,769:45
LiuYD,LuhmannJG,KajdičP ,KilpuaEKJ,LugazN,NittaNV,Möstl
C,LavraudB,BaleSD,FarrugiaCJ,GalvinAB.2014a.Observations
ofanextremestormininterplanetaryspacecausedbysuccessivecoronal
massejections.NatCommun,5:3481
LiuYD,HuH,ZhuB,LuhmannJG,V ourlidasA.2017.Structure,propaga-
tion,andexpansionofaCME-drivenshockintheheliosphere:Arevisit
ofthe2012July23extremestorm.AstrophysJ,834:158
LiuY ,LuhmannJG,BaleSD,LinRP.2009.Relationshipbetweena
coronalmassejection-drivenshockandacoronalmetricT ypeIIburst.
AstrophysJ,691:L151–L155
LiuY ,LuhmannJG,BaleSD,LinRP.2011.Solarsourceandheliospheric
consequencesofthe2010April3coronalmassejection:Acomprehen-
siveview.AstrophysJ,734:84
LiuZ,XuJ,GuBZ,W angS,YouJQ,ShenLX,LuRW,JinZY ,ChenLF ,
LouK,LiZ,LiuGQ,XuZ,RaoCH,HuQQ,LiRF,FuHW ,W angF,
BaoMX,WuMC,ZhangBR.2014b.Newvacuumsolartelescopeand
observationswithhighresolution.ResAstronAstrophys,14:705–718
LowBC,HundhausenJR.1995.Magnetostaticstructuresofthesolar
corona.2:Themagnetictopologyofquiescentprominences.Astrophys
J,443:818
LugazN,FarrugiaC,SchwadronN,ManchesterWB.2015.Heliospheric
propagationofcoronalmassejections:Areview.IAUGeneralAssem-
bly,22:2237318
LynchBJ,AntiochosSK,DeVoreCR,LuhmannJG,ZurbuchenTH.
2008.TopologicalevolutionofafastmagneticbreakoutCMEinthree
dimensions.AstrophysJ,683:1192–1206
LynchBJ,AntiochosSK,LiY ,LuhmannJG,DeV oreCR.2009.Rotation
ofcoronalmassejectionsduringeruption.AstrophysJ,697:1918–1927
MaS,RaymondJC,GolubL,LinJ,ChenH,GrigisP,TestaP ,LongD.2011.
Observationsandinterpretationofalowcoronalshockwaveobservedin
theEUVbytheSDO/AIA.AstrophysJ,738:160
MackayDH,vanBallegooijenAA.2006.Modelsofthelarge-scalecorona.
I.Formation,evolution,andliftoffofmagneticuxropes.AstrophysJ,
641:577–589
MackayDH,KarpenJT,BallesterJL,SchmiederB,AulanierG.2010.
Physicsofsolarprominences:II—Magneticstructureanddynamics.
SpaceSciRev,151:333–399
MacNeiceP,AntiochosSK,PhillipsA,SpicerDS,DeV oreCR,OlsonK.
2004.Anumericalstudyofthebreakoutmodelforcoronalmassejection
initiation.AstrophysJ,614:1028–1041
MacTaggartD,HoodAW.2010.Simulatingthe“slidingdoors”effect
throughmagneticuxemergence.AstrophysJ,716:L219–L222
MagaraT.2004.Amodelfordynamicevolutionofemergingmagneticelds
intheSun.AstrophysJ,605:480–492
MagaraT.2006.Dynamicandtopologicalfeaturesofphotosphericandcoro-
nalactivitiesproducedbyuxemergenceintheSun.AstrophysJ,653:
1499–1509
ManchesterIVW,GombosiT,DeZeeuwD,FanY.2004.Eruptionofa
buoyantlyemergingmagneticuxrope.AstrophysJ,610:588–596
MartinSF.1998.Conditionsfortheformationandmaintenanceoflaments.
SolPhys,182:107–137
MartínezGonzálezMJ,RamosAA,ArreguiI,ColladosM,BeckC,
RodríguezJC.2016.Onthemagnetismanddynamicsofprominence
legshostingtornadoes.AstrophysJ,825:119
22ChengX,etal.SciChinaEarthSci
Martínez-SykoraJ,HansteenV ,CarlssonM.2008.Twisteduxtube
emergencefromtheconvectionzonetothecorona.AstrophysJ,679:
871–888
McKenzieDE.2000.Supra-arcadedownowsinlong-durationsolarare
events.SolPhys,195:381–399
McKenzieDE,CaneldRC.2008.HinodeXRTobservationsofalong-
lastingcoronalsigmoid.AstronAstrophys,481:L65–L68
MooreRL,SterlingAC,HudsonHS,LemenJR.2001.Onsetofthe
magneticexplosioninsolararesandcoronalmassejections.Astrophys
J,552:833–848
MöstlC,IsavninA,BoakesPD,KilpuaEKJ,DaviesJA,HarrisonRA,
BarnesD,KruparV ,EastwoodJP ,GoodSW,ForsythRJ,Bothmer
V,ReissMA,AmerstorferT,WinslowRM,AndersonBJ,PhilpottLC,
RodriguezL,RouillardAP ,GallagherPT,ZhangTL.2017.Predictions
ofsolarcoronalmassejectionswithheliosphericimagersveriedwith
theHeliophysicsSystemObservatory.ArXive-prints
MyersCE,YamadaM,JiH,YooJ,FoxW,Jara-AlmonteJ,SavchevaA,
DeLucaEE.2015.Adynamicmagnetictensionforceasthecauseof
failedsolareruptions.Nature,528:526–529
NindosA,PatsourakosS,WiegelmannT.2012.Ontheroleoftheback-
groundoverlyingmagneticeldinsolareruptions.AstrophysJ,748:L6
NindosA,PatsourakosS,VourlidasA,T agikasC.2015.Howcommonare
hotmagneticuxropesinthelowsolarcorona?Astatisticalstudyof
EUVobservations.AstrophysJ,808:117
OkamotoTJ,TsunetaS,LitesBW,KuboM,Y okoyamaT,BergerTE,
IchimotoK,KatsukawaY,NagataS,ShibataK,ShimizuT,ShineRA,
SuematsuY,TarbellTD,TitleAM.2008.Emergenceofahelicalux
ropeunderanactiveregionprominence.AstrophysJ,673:L215–L218
OkamotoTJ,TsunetaS,LitesBW,KuboM,Y okoyamaT,BergerTE,
IchimotoK,KatsukawaY,NagataS,ShibataK,ShimizuT,ShineRA,
SuematsuY ,TarbellTD,TitleAM.2009.Prominenceformationasso-
ciatedwithanemerginghelicaluxrope.AstrophysJ,697:913–922
OlmedoO,ZhangJ.2010.Partialtorusinstability .AstrophysJ,718:
433–440
OuyangY,Y angK,ChenPF.2015.Isuxropeanecessaryconditionfor
theprogenitorofcoronalmassejections?AstrophysJ,815:72
PariatE,AntiochosSK,DeV oreCR.2009a.Amodelforsolarpolarjets.
AstrophysJ,691:61–74
PariatE,MassonS,AulanierG.2009b.Currentbuildupinemergingserpen-
tineuxtubes.AstrophysJ,701:1911–1921
PariatE,AulanierG,SchmiederB,GeorgoulisMK,RustDM,Bernasconi
PN.2004.Resistiveemergenceofundulatoryuxtubes.AstrophysJ,
614:1099–1112
PatsourakosS,VourlidasA,KliemB.2010a.Towardunderstandingtheearly
stagesofanimpulsivelyacceleratedcoronalmassejection.AstronAs-
trophys,522:A100
PatsourakosS,V ourlidasA,StenborgG.2010b.Thegenesisofanimpulsive
coronalmassejectionobservedatultra-highcadencebyAIAonSDO.
AstrophysJ,724:L188–L193
PatsourakosS,VourlidasA,StenborgG.2013.Directevidenceforafast
coronalmassejectiondrivenbythepriorformationandsubsequentdesta-
bilizationofamagneticuxrope.AstrophysJ,764:125
PesnellWD,ThompsonBJ,ChamberlinPC.2012.Thesolardynamics
observatory(SDO).SolPhys,275:3–15
PeterH,TianH,CurdtW ,SchmitD,InnesD,DePontieuB,LemenJ,Title
A,BoernerP,HurlburtN,TarbellTD,WuelserJP,Martínez-SykoraJ,
KleintL,GolubL,McKillopS,ReevesKK,SaarS,T estaP ,Kankelborg
C,JaeggliS,CarlssonM,HansteenV.2014.Hotexplosionsinthecool
atmosphereoftheSun.Science,346:1255726–1255726
PevtsovAA.2002.Active-regionlamentsandX-raysigmoids.SolPhys,
207:111–123
PickM,V ilmerN.2008.Sixty-veyearsofsolarradioastronomy:Flares,
coronalmassejectionsandSun-Earthconnection.AstronAstrophys
Rev,16:1–153
PickM,DemoulinP,KruckerS,MalandrakiO,MaiaD.2005.Radioand
X-raysignaturesofmagneticreconnectionbehindanejecteduxrope.
AstrophysJ,625:1019–1026
PriestER,ForbesTG.2002.Themagneticnatureofsolarares.Astron
AstrophysRev,10:313–377
QiuJ,WangH,ChengCZ,GaryDE.2004.Magneticreconnectionand
massaccelerationinare-coronalmassejectionevents.AstrophysJ,
604:900–905
QiuJ,HuQ,HowardTA,YurchyshynVB.2007.Onthemagneticux
budgetinlow-coronamagneticreconnectionandinterplanetarycoronal
massejections.AstrophysJ,659:758–772
ReevesKK,GibsonSE,KuceraTA,HudsonHS,KanoR.2012.Thermal
propertiesofasolarcoronalcavityobservedwiththeX-raytelescopeon
HINODE.AstrophysJ,746:146
RempelM.2017.ExtensionoftheMURaMradiativeMHDcodeforcoronal
simulations.AstrophysJ,834:10
RevaAA,UlyanovAS,ShestovSV ,KuzinSV.2016.Breakoutreconnec-
tionobservedbytheTESISEUVtelescope.AstrophysJ,816:90
RileyP,LionelloR,MikićZ,LinkerJ.2008.Usingglobalsimulationsto
relatethethree-partstructureofcoronalmassejectionstoinsitusigna-
tures.AstrophysJ,672:1221–1227
RustDM,KumarA.1996.Evidenceforhelicallykinkedmagneticux
ropesinsolareruptions.AstrophysJ,464:L199–L202
RustDM,LaBonteBJ.2005.Observationalevidenceofthekinkinstability
insolarlamenteruptionsandsigmoids.AstrophysJ,622:L69–L72
SavchevaA,vanBallegooijenA.2009.Nonlinearforce-freemodelingofa
long-lastingcoronalsigmoid.AstrophysJ,703:1766–1777
SavchevaAS,vanBallegooijenAA,DeLucaEE.2012.Fieldtopology
analysisofalong-lastingcoronalsigmoid.AstrophysJ,744:78
SavchevaA,PariatE,McKillopS,McCauleyP ,HansonE,SuY ,W ernerE,
DeLucaEE.2015.Therelationbetweensolareruptiontopologiesand
observedarefeatures.I.Flareribbons.AstrophysJ,810:96
SchmiederB,ArchontisV ,PariatE.2014.Magneticuxemergencealong
thesolarcycle.SpaceSciRev,186:227–250
SchmiederB,AulanierG,VršnakB.2015.Flare-CMEmodels:Anobser-
vationalperspective(InvitedReview).SolPhys,290:3457–3486
SchmiederB,DemoulinP ,AulanierG,GolubL.1996.Differentialmagnetic
eldshearinanactiveregion.AstrophysJ,467:881
SchmiederB,MeinN,DengY,DumitracheC,MalherbeJM,StaigerJ,
DelucaEE.2004.Magneticchangesobservedintheformationoftwo
lamentsinacomplexactiveregion:TRACEandMSDPobservations.
SolPhys,223:119–141
SchmiederB,MeinP ,MeinN,LevensPJ,LabrosseN,OfmanL.2017.Hα
Dopplershiftsinatornadointhesolarcorona.AstronAstrophys,597:
A109
SchrijverCJ,DeRosaML,MetcalfT,BarnesG,LitesB,TarbellT,
McTiernanJ,V aloriG,WiegelmannT,WheatlandMS,AmariT ,
AulanierG,DémoulinP ,FuhrmannM,KusanoK,RégnierS,Thalmann
JK.2008a.Nonlinearforce-freeeldmodelingofasolaractiveregion
aroundthetimeofamajorareandcoronalmassejection.Astrophys
J,675:1637–1644
SchrijverCJ,ElmoreC,KliemB,TorokT,TitleAM.2008b.Observa-
tionsandmodelingoftheearlyaccelerationphaseoferuptinglaments
involvedincoronalmassejections.AstrophysJ,674:586–595
SeatonDB,BartzAE,DarnelJM.2017.Observationsoftheformation,
development,andstructureofacurrentsheetinaneruptivesolarare.
AstrophysJ,835:139
SheeleyJr .NR,HowardRA,KoomenMJ,MichelsDJ.1983.Associations
betweencoronalmassejectionsandsoftX-rayevents.AstrophysJ,272:
349–354
ShenC,WangY,YeP,ZhaoXP ,GuiB,WangS.2007.Strengthofcoronal
massejection-drivenshocksneartheSunandtheirimportanceinpre-
dictingsolarenergeticparticleevents.AstrophysJ,670:849–856
ShenC,W angY,WangS,LiuY ,LiuR,VourlidasA,MiaoB,YeP ,LiuJ,
ChengX,etal.SciChinaEarthSci23
ZhouZ.2012a.Super-elasticcollisionoflarge-scalemagnetizedplas-
moidsintheheliosphere.NatPhys,8:923–928
ShenC,LiG,KongX,HuJ,SunXD,DingL,ChenY,WangY ,XiaL.
2013.Compoundtwincoronalmassejectionsinthe2012May17GLE
event.AstrophysJ,763:114
ShenY,LiuY,SuJ.2012b.Sympatheticpartialandfulllamenteruptions
observedinonesolarbreakoutevent.AstrophysJ,750:12
ShiT ,WangY,WanL,ChengX,DingM,ZhangJ.2015.Predictingthe
arrivaltimeofcoronalmassejectionswiththegraduatedcylindricalshell
anddragforcemodel.AstrophysJ,806:271
ShibataK,Masuda,S,Shimojo,M,Hara,H,Yokoyama,T,T suneta,S,
Kosugi,T,OgawaraY.1995.Hot-plasmaejectionsassociatedwithcom-
pact-loopsolarares.AstrophysJ,451:L83
SolankiSK,UsoskinIG,KromerB,SchüsslerM,BeerJ.2004.Unusual
activityoftheSunduringrecentdecadescomparedtotheprevious11,000
years.Nature,431:1084–1087
SongHQ,ZhangJ,ChenY ,ChengX.2014a.Directobservationsofmag-
neticuxropeformationduringasolarcoronalmassejection.Astrophys
J,792:L40
SongHQ,ZhangJ,ChengX,ChenY,LiuR,W angYM,LiB.2014b.
Temperatureevolutionofamagneticuxropeinafailedsolareruption.
AstrophysJ,784:48
SongHQ,ChenY ,ZhangJ,ChengX,FuH,LiG.2015.Accelerationphases
ofasolarlamentduringitseruption.AstrophysJ,804:L38
SterlingAC,HudsonHS.1997.[IT AL]Yohkoh[/ITAL]SXTobservations
ofX-ray“Dimming”associatedwithahalocoronalmassejection.As-
trophysJ,491:L55–L58
SturrockPA.1966.Modelofthehigh-energyphaseofsolarares.Nature,
211:695–697
SuW,ChengX,DingMD,ChenPF,NingZJ,JiHS.2016.Investigating
theconditionsoftheformationofaTypeIIradioburston2014January
8.AstrophysJ,830:70
SuY,vanBallegooijenA.2012.Observationsandmagneticeldmodeling
ofasolarpolarcrownprominence.AstrophysJ,757:168
SuY ,GolubL,VanBallegooijenAA.2007.Astatisticalstudyofshear
motionofthefootpointsintwo‐ribbonares.AstrophysJ,655:606–614
SuY ,vanBallegooijenA,LitesBW,DelucaEE,GolubL,GrigisPC,Huang
G,JiH.2009.Observationsandnonlinearforce-freeeldmodelingof
activeregion10953.AstrophysJ,691:105–114
SuY ,W angT,VeronigA,TemmerM,GanW.2012.Solarmagnetized
“tornadoes:”relationtolaments.AstrophysJ,756:L41
SuY ,GömöryP ,V eronigA,T emmerM,WangT,VanninathanK,GanW,Li
YP.2014.Solarmagnetizedtornadoes:Rotationalmotioninatornado-
likeprominence.AstrophysJ,785:L2
SuY ,vanBallegooijenA,McCauleyP,JiH,ReevesKK,DeLucaEE.
2015.Magneticstructureanddynamicsoftheeruptingsolarpolarcrown
prominenceon2012March12.AstrophysJ,807:144
SunJQ,ChengX,DingMD.2014.Differentialemissionmeasureanalysis
ofalimbsolarareon2012July19.AstrophysJ,786:73
SunJQ,ChengX,DingMD,GuoY ,PriestER,ParnellCE,EdwardsSJ,
ZhangJ,ChenPF,FangC.2015a.Extremeultravioletimagingofthree-
dimensionalmagneticreconnectioninasolareruption.NatCommun,6:
7598
SunX,HoeksemaJT,LiuY,ChenQ,HayashiK.2012.Anon-radialerup-
tioninaquadrupolarmagneticcongurationwithacoronalnull.Astro-
physJ,757:149
SunX,BobraMG,HoeksemaJT,LiuY,LiY ,ShenC,CouvidatS,Norton
AA,FisherGH.2015b.Whyisthegreatsolaractiveregion12192
are-richbutCME-poor?AstrophysJ,804:L28
SyntelisP,GontikakisC,PatsourakosS,T singanosK.2016.Thespectro-
scopicimprintofthepre-eruptivecongurationresultingintotwomajor
coronalmassejections.AstronAstrophys,588:A16
TemmerM,VeronigAM,VršnakB,RybákJ,GömöryP ,StoiserS,Maričić
D.2008.AccelerationinfastHaloCMEsandsynchronizedareHXR
bursts.AstrophysJ,673:L95–L98
TemmerM,V eronigAM,KontarEP ,KruckerS,VršnakB.2010.Combined
STEREO/RHESSIstudyofcoronalmassejectionaccelerationandpar-
ticleaccelerationinsolarares.AstrophysJ,712:1410–1420
TemmerM,ThalmannJK,DissauerK,VeronigAM,TschernitzJ,Hinter-
reiterJ,RodriguezL.2017.Onare-CMEcharacteristicsfromSunto
Earthcombiningremotesensingimagedatawithin-situmeasurements
supportedbymodeling.ArXive-prints
ThalmannJK,SuY ,TemmerM,V eronigAM.2015.Theconnedx-class
aresofsolaractiveregion2192.AstrophysJ,801:L23
TianH,McIntoshSW ,XiaL,HeJ,W angX.2012.Whatcanwelearnabout
solarcoronalmassejections,coronaldimmings,andextreme-ultraviolet
jetsthroughspectroscopicobservations?AstrophysJ,748:106
TianH,LiG,ReevesKK,RaymondJC,GuoF,LiuW ,ChenB,MurphyNA.
2014.Imagingandspectroscopicobservationsofmagneticreconnection
andchromosphericevaporationinasolarare.AstrophysJ,797:L14
TitovVS,DémoulinP.1999.Basictopologyoftwistedmagneticcongu-
rationsinsolarares.AstronAstrophys,351:707
TitovVS,HornigG,DémoulinP .2002.Theoryofmagneticconnectivityin
thesolarcorona.JGeophysRes-SpacePhys,107:1164
TörökT,KliemB.2005.Connedandejectiveeruptionsofkink-unstable
uxropes.AstrophysJ,630:L97–L100
TörökT,KliemB,TitovVS.2004.Idealkinkinstabilityofamagneticloop
equilibrium.AstronAstrophys,413:L27–L30
TörökT ,PanasencoO,TitovVS,MikićZ,ReevesKK,VelliM,Linker
JA,DeT omaG.2011.Amodelformagneticallycoupledsympathetic
eruptions.AstrophysJ,739:L63
TripathiD,KliemB,MasonHE,YoungPR,GreenLM.2009.Temperature
tomographyofacoronalsigmoidsupportingthegradualformationofa
uxrope.AstrophysJ,698:L27–L32
TripathiD,ReevesKK,GibsonSE,SrivastavaA,JoshiNC.2013.
SDO/AIAobservationsofapartiallyeruptingprominence.Astrophys
J,778:142
TziotziouK,GeorgoulisMK,LiuY.2013.Interpretingeruptivebehaviorin
NOAAAR11158viatheregion'smagneticenergyandrelative-helicity
budgets.AstrophysJ,772:115
Ugarte-UrraI,WarrenHP,WinebargerAR.2007.Themagnetictopology
ofcoronalmassejectionsources.AstrophysJ,662:1293–1301
vanBallegooijenAA,MartensPCH.1989.Formationanderuptionofsolar
prominences.AstrophysJ,343:971–984
vanBallegooijenAA,CartledgeNP ,PriestER.1998.Magneticuxtrans-
portandtheformationoflamentchannelsontheSun.AstrophysJ,501:
866–881
VargasDomínguezS,MacT aggartD,GreenL,vanDriel-GesztelyiL,Hood
AW.2012.Onsignaturesoftwistedmagneticuxtubeemergence.Sol
Phys,278:33–45
VasanthV,ChenY ,FengS,MaS,DuG,SongH,KongX,WangB.2016.
Aneruptivehot-channelstructureobservedatmetricwavelengthasa
movingType-IVsolarradioburst.AstrophysJ,830:L2
VemareddyP ,ZhangJ.2014.Initiationanderuptionprocessofmagnetic
uxropefromsolaractiveregionNOAA11719toEarth-directedCME.
AstrophysJ,797:80
VemareddyP ,ChengX,RavindraB.2016.Sunspotrotationasadriverof
majorsolareruptionsintheNOAAactiveregion12158.AstrophysJ,
829:24
VourlidasA,LynchBJ,HowardRA,LiY.2013.HowmanyCMEshave
uxropes?Decipheringthesignaturesofshocks,uxropes,andpromi-
nencesincoronagraphobservationsofCMEs.SolPhys,284:179–201
WanL,ChengX,ShiT,SuW,DingMD.2016.Theformationandearly
evolutionofacoronalmassejectionanditsassociatedshockwaveon
2014January8.AstrophysJ,826:174
WangH,CaoW ,LiuC,XuY,LiuR,ZengZ,ChaeJ,JiH.2015.Witness-
ingmagnetictwistwithhigh-resolutionobservationfromthe1.6-mNew
SolarTelescope.NatCommun,6:7008
24ChengX,etal.SciChinaEarthSci
WangJ.2006.Reconnectioninthelowersolaratmosphereandcoronalmass
ejections.AdvSpaceRes,38:1887–1893
WangJ,DingM,JiH,DengY ,LiuY ,LiuZ,QuZ,WangH,XiaL,Y anY .
2016a.AfewperspectivesofsolarphysicsresearchinChina―Current
statusandfuture.AsianJPhys,25:461‒498
WangR,LiuYD,ZimovetsI,HuH,DaiX,YangZ.2016b.Sympathetic
solarlamenteruptions.AstrophysJ,827:L12
WangY ,ZhangJ.2007.AcomparativestudybetweeneruptiveX-classares
associatedwithcoronalmassejectionsandconnedX-classares.As-
trophysJ,665:1428–1438
WangYM,StenborgG.2010.Spinningmotionsincoronalcavities.Astro-
physJ,719:L181–L184
WangY,ZhuangB,HuQ,LiuR,ShenC,ChiY.2016c.Onthetwists
ofinterplanetarymagneticuxropesobservedat1AU.JGeophysRes
SpacePhys,121:9316–9339
WebbDF,ForbesTG,AurassH,ChenJ,MartensP,RompoltB,RusinV ,
MartinSF.1994.Materialejection.SolPhys,153:73–89
WedemeyerS,ScullionE,RouppevanderVoortL,BosnjakA,AntolinP.
2013.Aregianttornadoesthelegsofsolarprominences?AstrophysJ,
774:123
Wedemeyer-BöhmS,ScullionE,SteinerO,vanderV oortLR,delaCruz
RodriguezJ,FedunV,ErdélyiR.2012.Magnetictornadoesasenergy
channelsintothesolarcorona.Nature,486:505–508
WilliamsDR,TörökT ,DémoulinP ,vanDriel-GesztelyiL,KliemB.2005.
Eruptionofakink-unstablelamentinNOAAactiveregion10696.As-
trophysJ,628:L163–L166
WuZ,ChenY ,HuangG,NakajimaH,SongH,MelnikovV ,LiuW,LiG,
ChandrashekharK,JiaoF.2016.Microwaveimagingofahotuxrope
structureduringthepre-impulsivestageofaneruptiveM7.7solarare.
AstrophysJ,820:L29
XiaC,KeppensR,GuoY.2014.Three-dimensionalprominence-hosting
magneticcongurations:Creatingahelicalmagneticuxrope.Astro-
physJ,780:130
XueZ,YanX,ChengX,Y angL,SuY ,KliemB,ZhangJ,LiuZ,BiY ,Xiang
Y,Y angK,ZhaoL.2016.Observingthereleaseoftwistbymagnetic
reconnectioninasolarlamenteruption.NatCommun,7:11837
YanXL,XueZK,LiuJH,MaL,KongDF ,QuZQ,LiZ.2014.Kinkin-
stabilityevidencedbyanalyzingthelegrotationofalament.Astrophys
J,782:67
YanXL,XueZK,PanGM,W angJC,XiangYY ,KongDF,Y angLH.
2015.Theformationandmagneticstructuresofactive-regionlaments
observedbyNVST,SDO,andHINODE.AstrophysJSupplSer,219:17
YanXL,PriestER,GuoQL,XueZK,WangJC,Y angLH.2016.Thefor-
mationofaninverseS-shapedactive-regionlamentdrivenbysunspot
motionandmagneticreconnection.AstrophysJ,832:23
YanY,DengY ,KarlickýM,FuQ,WangS,LiuY.2001.Themagneticrope
structureandassociatedenergeticprocessesinthe2000July14solar
are.AstrophysJ,551:L115–L119
YangB,JiangY ,YangJ,Y uS,XuZ.2016a.Therapidformationofalament
causedbymagneticreconnectionbetweentwosetsofdarkthreadlike
structures.AstrophysJ,816:41
YangK,GuoY,DingMD.2015a.Onthe2012October23circularribbon
are:Emissionfeaturesandmagnetictopology.AstrophysJ,806:171
YangK,GuoY,DingMD.2016b.Quantifyingthetopologyandevolution
ofamagneticuxropeassociatedwithmulti-areactivities.Astrophys
J,824:148
YangS,XieW,LiuJ.2015b.Eruptionofthemagneticuxropeinaquick
decayingactiveregion.AdvSpaceRes,55:1553–1562
YangS,ZhangJ,LiuZ,XiangY.2014.Newvacuumsolartelescopeobser-
vationsofauxropetrackedbyalamentactivation.AstrophysJ,784:
L36
YashiroS,GopalswamyN,MichalekG,St.CyrOC,PlunkettSP ,RichN
B,HowardRA.2004.Acatalogofwhitelightcoronalmassejections
observedbytheSOHOspacecraft.JGeophysRes,109:A07105
YashiroS,AkiyamaS,GopalswamyN,HowardRA.2006.Differentpower-
lawindicesinthefrequencydistributionsofareswithandwithoutcoro-
nalmassejections.AstrophysJ,650:L143–L146
ZhangJ,DereKP.2006.Astatisticalstudyofmainandresidualaccelera-
tionsofcoronalmassejections.AstrophysJ,649:1100–1109
ZhangJ,LiuY.2011.Ubiquitousrotatingnetworkmagneticeldsandex-
treme-ultravioletcyclonesinthequietSun.AstrophysJ,741:L7
ZhangJ,ChengX,DingMD.2012.Observationofanevolvingmagnetic
uxropebeforeandduringasolareruption.NatCommun,3:747
ZhangJ,YangSH,LiT.2015a.Fluxropeproxiesduring2013detectedby
theSolarDynamicsObservatory.AstronAstrophys,580:A2
ZhangJ,DereKP,HowardRA,KunduMR,WhiteSM.2001.Onthetem-
poralrelationshipbetweencoronalmassejectionsandares.Astrophys
J,559:452–462
ZhangJ,DereKP,HowardRA,V ourlidasA.2004.Astudyofthekinematic
evolutionofcoronalmassejections.AstrophysJ,604:420–432
ZhangM,LowBC.2003.Magneticuxemergenceintothesolarcorona.
III.Theroleofmagnetichelicityconservation.AstrophysJ,584:
479–496
ZhangQM,NingZJ,GuoY,ZhouTH,ChengX,JiHS,FengL,
WiegelmannT.2015b.Multiwavelengthobservationsofapartially
eruptivelamenton2011September8.AstrophysJ,805:4
ZharkovS,GreenLM,MatthewsSA,ZharkovaVV.2011.2011February
15:Sunquakesproducedbyuxropeeruption.AstrophysJ,741:L35
ZhouGP,ZhangJ,W angJX.2016.Observationsofmagneticux-rope
oscillationduringtheprecursorphaseofasolareruption.AstrophysJ,
823:L19
ZhuC,LiuR,AlexanderD,McAteerRTJ.2016.Observationoftheevo-
lutionofacurrentsheetinasolarare.AstrophysJ,821:L29
ZimovetsI,VilmerN,ChianACL,SharykinI,StruminskyA.2012.Spa-
tiallyresolvedobservationsofasplit-bandcoronaltypeIIradioburst.
AstronAstrophys,547:A6
ZuccarelloFP ,AulanierG,GilchristSA.2016.Theapparentcriticaldecay
indexattheonsetofsolarprominenceeruptions.AstrophysJ,821:L23
ZuccarelloFP ,SeatonDB,MierlaM,PoedtsS,RachmelerLA,RomanoP,
ZuccarelloF.2014.Observationalevidenceoftorusinstabilityastrig-
germechanismforcoronalmassejections:The2011August4lament
eruption.AstrophysJ,785:88
ZuccarelloFP ,ChandraR,SchmiederB,AulanierG,JoshiR.2017a.Tran-
sitionfromeruptivetoconnedaresinthesameactiveregion.Astron
Astrophys,601:A26
ZuccarelloFP,AulanierG,DudíkJ,DémoulinP ,SchmiederB,GilchristS
A.2017b.Vortexandsinkowsineruptivearesasamodelforcoronal
implosions.AstrophysJ,837:115
ChengX,etal.SciChinaEarthSci25