ChapterPDF Available

Conventional Hardness Values - Data

Authors:

Abstract and Figures

This document is part of part 3 'Mechanical and Thermodynamical Properties of Polymers' of Subvolume A 'Polymer Solids and Polymer Melts' of Volume 6 'Polymers' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It deals with Conventional Hardness Values - Data. Parent documents: SpringerMaterial s home Volume VIII/ 6A3
Content may be subject to copyright.
Volume VIII/6A3: 4.8 Hardness Testing [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
357
4.8 Hardness Testing
4.8.1 Conventional Hardness Values
[T. Koch, C. Bierögel, S. Seidler]
In the standardized hardness tests most often used today a hard indenter is pressed into the surface of the
specimens under investigation, which is exactly in line with the historical definition of hardness given by
Martens in 1908 that hardness is the resistance against indentation by a harder body. Hardness testing is
comparatively simply, quickly and efficiently and is called nearly non-destructive.
The hardness test methods differ fundamentally with respect to the shape and material of the indenter,
load level and time, as well as their mode of application (under total test load, after unloading), see Tables
4.28. and 4.29. Due to this hardness values cannot be extrapolated from one to another, or only to a lim-
ited extend. In industrial testing practice, however, a trend can be seen to a few universal test procedures.
It should be recognized the fact that there are statistically secured correlations between hardness and other
mechanical properties, such as yield point or abrasion, at least one for group of materials.
In principle, as in metals it is possible to measure indentation magnitude after unloading or under load
whereas the latter method is preferred for plastics and in the case of elastomers unavoidable due to the
rubber-elastic redeformation.
Table 4.28. Classification of hardness test methods typically used in polymer testing.
Measurement under maximum load Measurement after unloading
Ball indentation hardness HB Rockwell R, L, M, E, K
Shore hardness Buchholz hardness
IRHD Vickers hardness
α-Rockwell Knoop hardness
Barcol hardness
Scratch hardness
Scratch hardness
(Vickers under load)
(Knoop under load)
Table 4.29. Overview of hardness test methods typically used in polymer testing.
Parameter Indenter ge-
ometry /ma-
terial
Test force / indenta-
tion depth
Definition
Special requirements/aspects
Ball indenta-
tion hardness
ball, 5 mm
hardened steel
preforce 9.8 N
additional test force
49N, 132 N, 358 N or
961 N
quotient from test force and surface of a
ball’s indentation under the acting test
force.
FF+FF
0
F
0
+F
h
h
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
358
Parameter Indenter ge-
ometry /ma-
terial
Test force / indenta-
tion depth
Definition
Special requirements/aspects
Shore hardness
Shore A
hardened steel
truncated cone
R0 = 1.25 mm
R = 0.79 mm
0.55 N F 8.05 N
0 mm h 2.5 mm
difference between the number 100 and the
depth of penetration [in mm] under force
divided by scale value 0.025 mm.
F
RR
R0R0R0
ADAO AM
ADAO AM
35°
30°
30°
35°
RRRR
Shore D truncated cone
with spherical
cap
R0 = 1.25 mm
R = 0.1 mm
0 N F 44.5 N
0 mm h 2.5 mm
Shore AO spherical,
R = 2.5 mm
0.55 N F 8.05 N
0 mm h 2.5 mm
Shore AM truncated cone
with spherical
cap
R0 = 0.79 mm
R = 0.1 mm
0.32 N F 0.76 N
0 mm h 2.5 mm
IRHD
N (normal)
H (hard)
L (soft)
M (micro)
ball, steel
2.5 mm
1 mm
5 mm
0.395 mm
preload /add. test load
0.3 N / 5.4 N
0.3 N / 5.4 N
0.3 N / 5.4 N
0.0083 N / 0.145 N
Table value, specified by the receptive
depth of indentation under test load.
F
0
F
h
Rockwell
hardness
R
L
M
E
K
ball, hardened
steel
12.7 mm
6.35 mm
6.35 mm
3.175 mm
3.175 mm
preload /add. test load
98.07 N / 490.3 N
98.07 N / 490.3 N
98.07 N / 882.6 N
98.07 N / 882.6 N
98.07 N / 1372.9 N
difference between a value and the depth
of indentation [in mm] divided by the scale
value 0.002 mm, caused by the additional
test load and measured under preload, i.e.
after unloading to preload.
F0F0+FF0
F0F0+FF0
h
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
359
Parameter Indenter ge-
ometry /ma-
terial
Test force / indenta-
tion depth
Definition
Special requirements/aspects
α 12.7 mm 98.07 N / 490.3 N difference between the value 150 and the
depth of indentation [in mm] divided by
the scale value 0.002 mm under total test
load.
F
0
F
0
+F
0 0
h
Barcol truncated cone,
steel
preload 61.1 N,
test load
difference between 100 and the depth of
indentation [in mm] divided by the scale
value 0.0076 mm under total test load.
h
Buchholz
steel wheel 5 N
5 µm h 24 µm
quotient of the number 100 and the length
of the remaining indentation [in mm] after
unloading.
4.905 N
120°
30 mm
30 mm
Vickers square-based
diamond
pyramid, 136°
between oppo-
site surfaces
micro to macro range
(0.05 to 5 N recom-
mended)
quotient of load and indentation surface,
calculated after unloading using the length
of the indentation diagonals.
136°
d1d2
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
360
Parameter Indenter
geometry /
material
Test force / indenta-
tion depth
Definition
Special requirements/aspects
Knoop
rhombic-based
diamond
pyramid
micro range
(0.05 to 1 N recom-
mended)
quotient of load and projected surface,
calculated after unloading using the length
of the long diagonal.
130°
172.5°
130
lafter unloading
l
Scratch
hardness
different sha-
pes and mate-
rials
nano to macro;
constant or steadily
increasing
quotient of normal load and scratch width
or scratch cross-section area.
FF
N
AA
F
L
Special scratch methods
Clemen needle or chisel 0 – 20 N load at which the scratch is visible or the
coating is cut through.
Sikkens carbide blade
van Laar tungsten car-
bide chisel,
0.5 mm
0 – 20 N load at which the scratch is clearly visible.
Bosch tungsten car-
bide chisel,
0.75 mm
0 – 20 N load at which the scratch is clearly visible.
Oesterle fixed round
disk, duroplast,
copper or steel
0 – 20 N resistance against mar effect.
ISO 1518-1 spheric tip,
ruby or hard
metal, 0.25
or 0.5 mm
1 – 20 N load at which the coating is cut through to
the substrate or to a defined layer.
ISO 1518-2 conic tip, sap-
phire or dia-
mond,
0.03 mm
0 – several ten N,
continously increasing
load at which the scratch is visible.
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
361
As other mechanical properties also the hardness shows a strong dependence on temperature (Fig. 4.195.)
and loading time (Fig. 4.196.). With increasing temperature and holding time for example the ball inden-
tation hardness HB is decreasing due to the influence of relaxation and retardation effects.
140
[N mm ]
-2
a
100
120
b
dness HB
80
100
c
ntation hard
40
60
d
20
Ball inden
0
-40 -20 0 20 40 60 80 100 120 140
Temperature T[°C]
Fig. 4.195. Ball indentation hardness HB vs. temperature for different semicrystalline thermoplastics
[08Els]; POM copolymer (a), PA6 (b), PP (c), PE-HD (d).
20
10 100 1000
Holding time at test force t[s]
Ball indentation hardness HB [N mm ]
-2
40
60
80
100
H
a
b
c
d
Fig. 4.196. Ball indentation hardness HB vs. holding time for different semicrystalline thermoplastics;
PA 12 (a), PP-Copolymer (b), PE-HD (c), PTFE (d).
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
362
For many thermoplastics there exist a mostly linear correlation between hardness and crystallinity. This is
a result of the mixing rule of the hardnesses of the crystalline and the amorphous phase of the given poly-
mer. Figure 4.197. shows the increase of hardness with increasing density, i.e. with higher crystallinity.
60
[N mm ]
-2
50
dness HB
30
40
ntation hard
20
30
10
Ball inden
0
0.91 0.92 0.93 0.94 0.95 0.96 0.97
Density
ρ
[kg m ]
-3
Fig. 4.197. Ball indentation hardness HB vs. density for polyethylene materials [08Els].
Table 4.30. Hardness values of thermoplastics materials.
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
ABS
ABS
ABS + GF 10 wt.-%
ABS + GF 15 wt.-%
ABS + GF 17 wt.-%
ABS + GF 20 wt.-%
ABS + GF 30 wt.-%
ABS + GF 33 wt.-%
ABS + GF 40 wt.-%
ABS + GF 50 wt.-%
ABS + GF 60 wt.-%
ABS + CF 5 wt.-%
ABS + CF 10 wt.-%
ABS + CF 15 wt.-%
ABS + CF 20 wt.-%
ABS + CF 25 wt.-%
ABS + CF 30 wt.-%
ABS + CF 40 wt.-%
65 – 120
77 – 95
-
-
110 – 160
-
-
-
-
-
-
-
-
-
-
-
-
-
75 – 80
93
35 – 50
53
-
45 – 76
62 – 68
-
-
-
-
-
-
-
-
-
-
-
85 – 95
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100 – 110
81– 122
110 – 115
107 – 124
-
103 – 124
106 – 115
80
110 – 125
125
125
108
108
108
108
108
110
110
70 – 85
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25 – 50
78 – 121
-
-
-
90
-
-
-
-
-
-
-
-
-
-
-
-
95Car, 12VDI
12MBa
12MBa, 12Pol
12MBa
95Car, 12VDI, 12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12Pol
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
363
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
ABS + GX 5 wt.-%
ABS + GX 10 wt.-%
ABS + GX 15 wt.-%
ABS + GX 17 wt.-%
ABS + GX 20 wt.-%
ABS + GX 30 wt.-%
ABS + MF 20 wt.-%
ABS + MX 20 wt.-%
ABS / PA 6
ABS / PA 6 + GF 5 wt.-%
ABS / PA 6 + GF 15 wt.-%
ABS / PA 6 + GF 20 wt.-%
ABS / PBT
ABS / PBT + GF 20 wt.-%
ABS / PBT + GF 30 wt.-%
ABS / PBT + GX 20 wt.-%
ABS / PC
ABS / PC + GF 10 wt.-%
ABS / PC + GF 17 wt.-%
ABS / PC + GF 20 wt.-%
ABS / PC + GF 30 wt.-%
ABS / PC + GX 10 wt.-%
ABS / PC + GX 20 wt.-%
ABS / PC + GX 30 wt.-%
ABS / PET
ABS / PTFE
ABS / PMMA
ABS / SI
ABS / TPE
ABS / TPU
ABS / PC /SMAH
-
101
-
120
108
-
-
-
-
-
-
-
-
-
-
-
89 – 110
-
-
-
-
116
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
56
37
-
-
41
-
-
-
-
-
-
-
-
-
-
46
58 – 68
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
107
108 – 113
107
117
111
108 – 113
107
110
93 – 121
105
105
105
99 – 120
82
-
113
105 – 123
113 – 118
115 – 118
112
110
111 – 121
112 – 119
112 – 115
112
103
112 – 116
105
-
-
122
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
91
-
-
-
93
82
-
-
84
-
-
-
-
-
-
-
-
-
-
12MBa
AMMA 250 88 120 125 115 105 12VDI
ASA
ASA + GF 15 wt.-%
ASA + GF 20 wt.-%
ASA / AEPDS
ASA / PBT + GX 10 wt.-%
ASA / PBT + GX 20 wt.-%
ASA / PBT + GX 30 wt.-%
ASA / PC
ASA / PET
ASA / PVC
ASA / SAN
65 – 100
-
-
-
100
130
145
104 – 106
-
-
70
75
-
-
-
-
-
-
-
-
-
-
65
-
-
-
-
-
-
-
-
-
-
80 – 108
120
120
85 – 89
120
118
119
103 – 120
120
100 – 102
95
45
-
-
-
-
-
-
-
-
-
-
< 10 – 30
-
-
-
-
-
-
-
-
-
-
95Car, 12VDI, 12MBa
CA 40 – 90 - - 29 – 112 - - 95Car, 12MBa
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
364
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
CAB 25 – 70 - - 12 – 98 - - 95Car, 12MBa
CAP - - - 55 – 98 - - 12MBa
CP 35 – 62 - - - - - 95Car
CTFE - - - 118 – 122 - 118 12MBa
ECO 130 – 190 - - - - - 08Els
ECTFE
ECTFE + GF 25 wt.-%
-
-
-
-
-
-
95
120
-
-
-
-
08Els
12MBa
EEA - 27 – 38 - - - - 08Els
EMAA - 75 - 65 – 106 - - 12MBa
ETFE - 60 – 78 - 98 – 120 - - 05Mar, 12MBa,12Pol
EVA 8 – 14 17 – 45 - - - - 95Car, 08Els
EVAL - 23 – 50 - - - 70 – 100 12MBa
FEP - 55 – 73 - 100 – 121 - - 10Hel, 12MBa
Ionomer - 54 – 66 - - - - 95Car
LCP - - - - - 60 12Pol
MABS 70 – 80 - - 85 – 115 - - 95Car, 12MBa
PA 11 (dry)
PA 11 (cond.)
PA 11
PA 11 + GF 10 wt.-%
PA 11 + GF 17 wt.-%
PA 11 + GF 20 wt.-%
PA 11 + GF 30 wt.-%
PA 11 + GF 40 wt.-%
PA 11 + GF 23 wt.-%
PA 11 + GB 30 wt.-%
PA 11 / PTFE
PA 11 / PTFE + GF 20 wt.-%
PA 11 / PTFE + GF 30 wt.-%
90
75
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
70
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
107
-
90 – 108
108
108
108
109
112
-
108
108
109
108 – 109
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
72 – 80
-
-
-
-
-
-
-
-
-
-
08Els
12MBa
12Pol
12MBa
12Pol
12MBa
12Pol
12MBa, 12Pol
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
365
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PA 12 (dry)
PA 12 (cond.)
PA 12
PA 12 + GF 23 wt.-%
PA 12 + GF 30 wt.-%
PA 12 + GF 40 wt.-%
PA 12 + GF 50 wt.-%
PA 12 + CF 13 wt.-%
PA 12 / PTFE
PA 12 / PTFE + GF 30 wt.-%
PA 12 / PTFE / SI
100
75
78
-
-
-
-
-
-
-
-
-
77
75 – 78
-
75
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
108
105
27 – 120
110
110
110
115
115
-
110
106
-
-
-
-
-
-
-
-
-
-
-
-
-
67 – 75
-
-
-
-
-
82
-
-
95Car, 08Els
95 Car, 12MBa
12MBa
12Pol
12MBa
12MBa
PA 46
PA 46 / PTFE
-
-
-
-
-
-
90 – 100
100
-
-
-
-
12MBa
PA 610 (dry)
PA 610 (cond.)
PA 610
PA 610 + GF 10 wt.-%
PA 610 + GF 20 wt.-%
PA 610 + GF 30 wt.-%
PA 610 + GF 40 wt.-%
PA 610 + GF 50 wt.-%
PA 610 / PTFE
PA 610 / PTFE + GF 30 wt.-%
120
80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
111 – 116
117
119
119
119
119
-
118
-
-
-
-
-
-
-
-
-
-
-
-
82
-
-
-
-
-
80
-
95Car
12MBa, 12Pol
12Pol
12Pol
12Pol
12Pol
12Pol
12Pol
12Pol
PA 612
PA 612 + GF 10 wt.-%
PA 612 + GF 20 wt.-%
PA 612 + GF 25 wt.-%
PA 612 + GF 30 wt.-%
PA 612 + GF 35 wt.-%
PA 612 + GF 40 wt.-%
PA 612 + GF 43 wt.-%
PA 612 + GF 45 wt.-%
PA 612 + GF 50 wt.-%
PA 612 + CF 10 wt.-%
PA 612 + CF 30 wt.-%
PA 612 + (GF + GB) 30 wt.-%
PA 612 / PTFE
PA 612 / PTFE + GF 25 wt.-%
PA 612 / PTFE + GF 30 wt.-%
PA 612 / PTFE + GF 40 wt.-%
PA 612 / PTFE + CF 30 wt.-%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
73
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
66 – 119
117
120
116
121 – 122
121
121
121
119
119
118
118
120
118
117
114 – 118
118
118
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
82
-
-
-
-
-
-
-
-
-
-
-
-
80
-
-
-
-
12MBa, 12Pol
12Pol
12MBa, 12Pol
12Pol
12MBa
12Pol
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
366
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PA 6
PA 6 + GF 5 wt.-%
PA 6 + GF 10 wt.-%
PA 6 + GF 13 wt.-%
PA 6 + GF 15 wt.-%
PA 6 + GF 17 wt.-%
PA 6 + GF 20 wt.-%
PA 6 + GF 25 wt.-%
PA 6 + GF 30 wt.-%
PA 6 + GF 33 wt.-%
PA 6 + GF 35 wt.-%
PA 6 + GF 40 wt.-%
PA 6 + GF 43 wt.-%
PA 6 + GF 45 wt.-%
PA 6 + GF 50 wt.-%
PA 6 + GF 55 wt.-%
PA 6 + GF 60 wt.-%
PA 6 + GB 10 wt.-%
PA 6 + GB 15 wt.-%
PA 6 + GB 20 wt.-%
PA 6 + GB 25 wt.-%
PA 6 + GB 30 wt.-%
PA 6 + GX 13 wt.-%
PA 6 + GX 15 wt.-%
PA 6 + GX 33 wt.-%
PA 6 + GX 35 wt.-%
PA 6 + CF 20 wt.-%
PA 6 + CF 30 wt.-%
PA 6 + CF 40 wt.-%
PA 6 + CD 10 wt.-%
PA 6 + CD 15 wt.-%
PA 6 + MF 15 wt.-%
PA 6 + MF 20 wt.-%
PA 6 + MF 23 wt.-%
PA 6 + MF 25 wt.-%
PA 6 + MF 30 wt.-%
PA 6 + MF 35 wt.-%
PA 6 + MF 40 wt.-%
PA 6 + MX 30 wt.-%
PA 6 + MX 40 wt.-%
PA 6 + (GF + CF) 50 wt.-%
PA 6 + (GF + GB) 30 wt.-%
PA 6 + (GF + MF) 15 wt.-%
PA 6 + (GF + MF) 20 wt.-%
PA 6 + (GF + MF) 30 wt.-%
PA 6 + (GF + MF) 36 wt.-%
PA 6 + (GF + MF) 40 wt.-%
-
-
-
-
190
-
-
-
217
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
52 – 77
-
-
65
73 – 79
40 – 59
79
65 – 80
48 – 80
47
-
-
-
81
81
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
78
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
90 – 123
119
100 – 120
112 – 120
112 – 119
112 – 115
112 – 121
110 – 121
115 – 122
118 – 122
120 – 121
119 – 122
121
121
110 – 122
121
121 – 122
90 – 116
119
119
95
110 – 120
115 – 120
115
118 – 120
120
115
118
114 – 115
118
118
117 – 121
110 – 122
117
112 – 121
117 – 122
-
120 – 121
115
-
121
122
120
121
120 – 122
121
120 – 122
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80 – 100
-
-
-
90
-
92
-
93
-
-
-
-
95
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
90
90
-
-
-
-
-
-
-
-
-
-
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
367
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PA 6 + (GF + MF) 45 wt.-%
PA 6 + (GF + MF) 50 wt.-%
PA 6 + (GF + MX) 40 wt.-%
PA 6, dry
PA 6, cond.
PA 6 + GF 10 wt.-% (dry)
PA 6 + GF 10 wt.-% (cond.)
PA 6 + GF 15 wt.-% (dry)
PA 6 + GF 15 wt.-% (cond.)
PA 6 + GF 18 wt.-% (dry)
PA 6 + GF 20 wt.-% (dry)
PA 6 + GF 20 wt.-% (cond.)
PA 6 + GF 25 wt.-% (dry)
PA 6 + GF 25 wt.-% (cond.)
PA 6 + GF 30 wt.-% (dry)
PA 6 + GF 30 wt.-% (cond.)
PA 6 + GF 35 wt.-% (dry)
PA 6 + GF 40 wt.-% (dry)
PA 6 + GF 40 wt.-% (cond.)
PA 6 + GF 45 wt.-% (dry)
PA 6 + GF 50 wt.-% (dry)
PA 6 + GF 50 wt.-% (cond.)
PA 6 + GF 60 wt.-% (dry)
PA 6 + GB 30 wt.-% (dry)
PA 6 + GB 30 wt.-% (cond.)
PA 6 + CF 10 wt.-% (dry)
PA 6 + CF 20 wt.-% (dry)
PA 6 + CF 30 wt.-% (dry)
PA 6 + CF 40 wt.-% (dry)
PA 6 + MX 15 wt.-% (dry)
PA 6 + MX 15 wt.-% (cond.)
PA 6 + MX 20 wt.-% (dry)
PA 6 + MX 30 wt.-% (dry)
PA 6 + MX 30 wt.-% (cond.)
PA 6 + MX 40 wt.-% (dry)
PA 6 / ABS
PA 6 / ABS + GF 15 wt.-%
PA 6 / ABS + GF 20 wt.-%
PA 6 / PA 66
PA 6 / PTFE
PA 6 / PTFE + GF 10 wt.-%
PA 6 / PTFE + GF 15 wt.-%
PA 6 / PTFE + GF 30 wt.-%
PA 6 / PTFE + GF 40 wt.-%
PA 6 / PTFE + CF 30 wt.-%
PA 6 / PTFE / SI
-
-
-
150 – 160
70
180 – 210
90 – 120
160 – 220
80 – 130
180
200 – 220
120 – 122
190 – 220
130
160 – 240
110 – 150
220
195 – 250
150
290
270 – 280
130 – 200
320
200
95
200
210
255
240
60
90
160 – 175
160 – 200
105 – 120
160 – 200
-
-
-
-
-
-
-
-
-
-
-
-
-
78
-
75
-
-
-
-
-
-
-
-
-
84
-
-
-
-
-
-
-
-
82
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
121 – 122
121
119
111
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
120
122
105
105
118
116
117
90 – 118
95 – 119
120 – 122
118 – 120
116
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa, 12Pol
12MBa
95Car, 08Els
95Car
12MBa
95Car, 08Els, 12MBa
95Car, 12MBa
12MBa
12MBa, 12Pol
12MBa
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
368
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PA 66, dry
PA 66, cond.
PA 66 + GF 5 wt.-%
PA 66 + GF 10 wt.-%
PA 66 + GF 13 wt.-%
PA 66 + GF 15 wt.-%
PA 66 + GF 20 wt.-%
PA 66 + GF 25 wt.-%
PA 66 + GF 30 wt.-%
PA 66 + GF 33 wt.-%
PA 66 + GF 35 wt.-%
PA 66 + GF 40 wt.-%
PA 66 + GF 43 wt.-%
PA 66 + GF 45 wt.-%
PA 66 + GF 50 wt.-%
PA 66 + GF 60 wt.-%
PA 66 + GB 10 wt.-%
PA 66 + GB 15 wt.-%
PA 66 + GB 20 wt.-%
PA 66 + GB 25 wt.-%
PA 66 + GB 30 wt.-%
PA 66 + GB 40 wt.-%
PA 66 + GB 50 wt.-%
PA 66 + GX 13 wt.-%
PA 66 + GX 33 wt.-%
PA 66 + CF 10 wt.-%
PA 66 + CF 15 wt.-%
PA 66 + CF 20 wt.-%
PA 66 + CF 22 wt.-%
PA 66 + CF 30 wt.-%
PA 66 + CF 40 wt.-%
PA 66 + MF 15 wt.-%
PA 66 + MF 20 wt.-%
PA 66 + MF 25 wt.-%
PA 66 + MF 30 wt.-%
PA 66 + MF 40 wt.-%
PA 66 + MX 15 wt.-%
PA 66 + MX 18 wt.-%
PA 66 + MX 20 wt.-% PA 66 +
MX 30 wt.-%
PA 66 + MX 40 wt.-%
PA 66 + CaCO3 20 wt.-%
PA 66 + T 30 wt.-%
PA 66 + (GF + CF) 20 wt.-%
PA 66 + (GF + CF) 30 wt.-%
PA 66 + (GF + CF) 40 wt.-%
160 – 170
100 – 110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
30 – 48
74 – 81
-
83 – 90
77 – 82
60 – 80
-
-
63
-
68 – 85
-
-
-
85 – 86
-
81
-
-
55
82
-
-
-
-
-
-
-
-
-
-
-
78
75
50
75 – 82
59 – 80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
105 – 121
-
117 – 119
113 – 120
111 – 120
115 – 122
116 – 122
118 – 122
118 – 122
108 – 122
122
120 – 123
120 – 122
121
120 – 122
120 – 121
118 – 119
119
118 – 120
118 – 119
119 – 120
119
119
115 – 120
120
110 – 120
118 – 120
110 – 120
125
110 – 120
120
115 – 120
119 – 122
120
115 – 122
118 – 122
-
-
-
120
122
120
125
111 – 115
115
122
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95
-
94
97 – 100
-
-
-
-
103
95
-
-
-
-
-
98
-
-
-
-
-
-
-
-
97
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95Car, 08Els, 12MBa
95Car
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12Pol
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12Pol
12MBa
12MBa, 12Pol
12MBa
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
369
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PA 66 + (GF + MF) 38 wt.-%
PA 66 + (GF + MF) 40 wt.-%
PA 66 + (GF + MF) 45 wt.-%
PA 66 + (CF + RF) 40 wt.-%
PA 66 + (GB + GC) 40 wt.-%
PA 66 + (GF + MX) 40 wt.-%
PA 66 / PP + GF 30 wt.-%
PA 66 / PTFE
PA 66 / PTFE + GF 5 wt.-%
PA 66 / PTFE + GF 10 wt.-%
PA 66 / PTFE + GF 15 wt.-%
PA 66 / PTFE + GF 20 wt.-%
PA 66 / PTFE + GF 30 wt.-%
PA 66 / PTFE + GB 30 wt.-%
PA 66 / PTFE + CF 5 wt.-%
PA 66 / PTFE + CF 10 wt.-%
PA 66 / PTFE + CF 15 wt.-%
PA 66 / PTFE + CF 20 wt.-%
PA 66 / PTFE + CF 30 wt.-%
PA 66 / PTFE + CF 40 wt.-%
PA 66 / PTFE + MF 40 wt.-%
PA 66-HI
PA 66-HI + GF 10 wt.-%
PA 66-HI + GF 20 wt.-%
PA 66-HI + GF 30 wt.-%
PA 66-HI + CF 10 wt.-%
PA 66-HI + CF 20 wt.-%
PA 66-HI + CF 30 wt.-%
PA 66-HI + CF 40 wt.-%
PA 66-HI + GF 40 wt.-%
PA 66-HI / PTFE
PA 66 + GF 30 wt.-% (dry)
PA 66 + GF 30 wt.-% (cond.)
PA 66 + GF 50 wt.-% (dry)
PA 66 + GF 50 wt.-% (cond.)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
270
200
300
260
-
-
-
-
-
82
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95
-
122
121 – 122
119
120
119
118
121
114 – 118
119
95 – 120
120
118 – 120
114 – 118
119
118
118 – 120
119 – 120
100 – 120
118 – 120
120
105
112
113
114
114
114
114
114 – 117
114 – 120
114
112
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa
12Pol
12MBa
12MBa, 12Pol
12Pol
12MBa, 12Pol
12Pol
12MBa, 12Pol
12Pol
12MBa, 12Pol
12Pol
12MBa, 12Pol
12Pol
12MBa
12Pol
95Car, 08Els, 12MBa
95Car
PA 666 - - - 110 - - 12MBa
PA6I/XT - - - 124 – 128 - - 12MBa
PA 6/6 T 190 - - - - - 08Els
PAEK
PAEK + GF 30 wt.-%
220
290
86 – 90
90
-
-
-
-
-
-
-
-
95Car, 12MBa
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
370
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PEBA 12 - 55 – 80 - - - - 08Els
PB - 55 – 65 - - - - 08Els
PBI - 99 - - - 125 08Els
PBT
PBT + GF 5 wt.-%
PBT + GF 10 wt.-%
PBT + GF 15 wt.-%
PBT + GF 20 wt.-%
PBT + GF 25 wt.-%
PBT + GF 30 wt.-%
PBT + GF 40 wt.-%
PBT + GF 45 wt.-%
PBT + GF 50 wt.-%
PBT + GB 10 wt.-%
PBT + GB 20 wt.-%
PBT + GB 30 wt.-%
PBT + GB 40 wt.-%
PBT + GX 10 wt.-%
PBT + GX 15 wt.-%
PBT + GX 30 wt.-%
PBT + MF 15 wt.-%
PBT + MF 30 wt.-%
PBT + MF 35 wt.-%
PBT + T 20 wt.-%
PBT + (GF + MF) 30 wt.-%
PBT + (GF + MF) 40 wt.-%
PBT + (GF + GB) 30 wt.-%
PBT + (GF + GB) 50 wt.-%
PBT / PC
PBT / PS + GF 15 wt.-%
PBT / PC + GF 30 wt.-%
PBT / PET + GF 15 wt.-%
PBT / PET + GF 30 wt.-%
PBT / PET + MF 25 wt.-%
PBT / PTFE
PBT / PTFE + GF 15 wt.-%
PBT / PTFE + GF 20 wt.-%
PBT / PTFE + GF 30 wt.-%
PBT / PTFE + CF 30 wt.-%
PBT / PTFE + RF 15 wt.-%
125 – 145
-
155
-
-
-
200
-
-
230
-
-
170
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
79 – 86
-
-
-
-
-
53 – 85
-
-
-
-
-
-
-
-
-
54
-
-
-
-
-
-
-
-
76
-
-
-
-
-
-
-
-
-
-
-
35 – 95
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
114 – 120
-
117 – 118
117 – 120
118 – 119
118
118 – 120
120
-
-
117
117
117
118
125
119
119
119
119
109
120
118
120
117
120
115 – 119
118
110 – 118
117
120
115
112 – 118
117
117
118 – 120
120
117
85 – 110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
65 – 95
86
80
87 – 93
85 – 93
-
75 – 94
94 – 95
93
-
85
-
-
-
-
-
97
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95Car, 08Els, 12VDI
12MBa
12MBa
95Car, 12MBa, 12Pol
12MBa
12Pol
95Car, 12MBa
12MBa, 12Pol
12MBa
95Car
12MBa, 12Pol
12Pol
95Car, 12Pol
12Pol
12MBa
12Pol
12MBa
12Pol
12MBa, 12Pol
12MBa
12Pol
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
371
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PC
PC + GF 5 wt.-%
PC + GF 10 wt.-%
PC + GF 15 wt.-%
PC + GF 20 wt.-%
PC + GF 30 wt.-%
PC + GF 40 wt.-%
PC + CF 20 wt.-%
PC + CF 30 wt.-%
PC + GX 10 wt.-%
PC + GX 20 wt.-%
PC + GX 30 wt.-%
PC + GX 40 wt.-%
PC / ABS
PC / PET
PC / PMMA
PC / PTFE
PC / PTFE + GF 15 wt.-%
PC / PTFE + GF 20 wt.-%
PC / PTFE + GF 30 wt.-%
110 – 115
-
-
-
-
-
-
-
-
130
-
-
-
80 – 115
-
-
-
-
-
-
51 – 85
-
37 – 65
-
-
65 – 72
-
-
-
-
-
70
-
-
-
-
-
-
-
-
95 – 100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
113 – 124
117 – 121
120 – 124
121 – 123
118 – 122
119 – 120
119
118
119
122 – 124
122
120 – 121
119
108 – 118
120 – 126
116 – 117
117
117 – 118
113 – 118
118
97 – 105
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
60 – 98
70 – 90
76 – 85
84
84 – 93
86 – 92
92 – 95
-
-
85
91
92
-
-
-
-
-
-
-
93
08Els, 12VDI, 12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12Pol
12MBa
08Els, 12VDI
12MBa
12Pol
PCTFE - 76 – 80 - 75 – 95 - - 08Els
PE-HD
PE-HD + GF 10 wt.-%
PE-HD + GF 15 wt.-%
PE-HD + GF 20 wt.-%
PE-HD + GF 25 wt.-%
PE-HD + GF 30 wt.-%
PE-HD + GF 40 wt.-%
PE-HD + GF 50 wt.-%
PE-HD + GF 60 wt.-%
PE-HD + P 40 wt.-%
PE-HD + T 5 wt.-%
PE-HD + T 10 wt.-%
PE-HD + T 20 wt.-%
PE-HD + T 25 wt.-%
PE-HD + T 30 wt.-%
PE-HD + T 40 wt.-%
38 – 53
-
-
-
-
68
-
-
-
-
-
-
-
-
-
-
56 – 69
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25 – 55
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
45 – 110
60 – 80
80
65 – 80
76
75 – 120
85 – 112
112
112
112
30
30
50
50
70
70
3 – 30
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95Car, 12VDI, 05Mar
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
08Els, 12MBa, 12Pol
12MBa, 12Pol
12MBa
PE-HMW 36 – 40 - - - - - 08Els
PE-LD
PE-LD + GF 30 wt.-%
PE-LD + GB 30 wt.-%
13 – 23
33
19
39 – 83
-
-
-
-
-
46 – 110
-
-
-
-
-
60
-
-
95Car, 12MBa
95Car
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
372
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PE-LD + mica 30 wt.-%
PE-LD + T 30 wt.-%
27
30
-
-
-
-
-
-
-
-
-
-
95Car
PE-LLD - 38 – 60 - 103 – 110 - - 95Car, 12MBa
PE-MD 28 – 32 45 – 60 - - - - 95Car, 05Mar, 12MBa
PE-UHMW 30 – 38 60 – 65 - 100 – 102 - - 95Car, 12MBa, 12Pol
PE-VLD - 25 – 40 - - - - 95Car
PEEK
PEEK + GF 20 wt.-%
174 – 231
-
83 – 88
-
-
-
100 – 126
-
-
-
95 – 103
102
08Els, 12MBa, 12Pol
12MBa
PEI
PEI + GF 10 wt.-%
PEI + GF 20 wt.-%
PEI + GF 30 wt.-%
PEI + GF 40 wt.-%
165
-
-
-
-
88 – 90
-
-
-
-
115 – 120
-
-
-
-
110 – 125
121
122
123
123
120
-
-
-
-
110
-
-
-
-
95Car, 08Els, 12VDI
12MBa
12Pol
PEK
PEK + GF 30 wt.-%
-
-
87
90
-
-
-
-
-
-
-
-
12MBa
PES + GF 10 wt.-%
PES + GF 15 wt.-%
PES + GF 20 wt.-%
PES + GF 30 wt.-%
PES + GF 40 wt.-%
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
121
121
122
123
123
-
-
-
-
-
-
-
-
-
-
12Pol
PESU
PESU + GF 20 wt.-%
PESU + GF 30 wt.-%
PESU / PTFE + GF 20 wt.-%
145 – 165
205
220
-
-
-
-
-
-
-
-
-
-
-
-
120
-
-
-
-
-
-
-
-
08Els
95Car, 08Els
12MBa
PET
PET + GF 15 wt.-%
PET + GF 20 wt.-%
PET + GF 30 wt.-%
PET + GF 33 wt.-%
PET + GF 35 wt.-%
PET + GF 45 wt.-%
PET + GF 50 wt.-%
PET + GF 55 wt.-%
PET + (GF + MF) 40 wt.-%
PET / PTFE + GF 20 wt.-%
PET / PTFE + GF 40 wt.-%
97 – 150
-
-
255
-
-
290
-
-
-
-
-
-
-
-
63 – 65
-
76
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
108 – 118
70 – 119
110 – 120
120
121
120
60 – 120
95 – 96
120
120
120
120
107
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
08Els, 12MBa
12MBa
12MBa, 12Pol
95Car, 12MBa
12MBa
12MBa, 12Pol
95Car
12MBa
12Pol
12MBa
12Pol
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
373
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PETG - - - 106 – 117 - - 12MBa
PFA - 60 – 64 - - - - 10Hel
PI 138 – 140 - - - - - 12MBa
PMMA
PMMA, toughened
PMMA + GF 30 wt.-%
170 – 200
40 – 125
-
52 – 85
-
55
100 – 110
-
-
78 – 125
-
-
115
-
-
60 – 105
-
-
08Els, 12VDI, 12MBa
95Car
12MBa
PMP - - - - 67–74 - 95Car
POM, homopolymer
POM, copolymer
POM
POM + GF 10 wt.-%
POM + GF 15 wt.-%
POM + GF 20 wt.-%
POM + GF 25 wt.-%
POM + GF 30 wt.-%
POM + GF 40 wt.-%
POM + GB 10 wt.-%
POM + GB 20 wt.-%
POM + GB 30 wt.-%
POM + GB 40 wt.-%
POM + GX 15 wt.-%
POM + GX 25 wt.-%
POM + CF 10 wt.-%
POM + CF 15 wt.-%
POM + CF 20 wt.-%
POM + MD 20 wt.-%
POM + MD 30 wt.-%
POM + RF 5 wt.-%
POM + RF 15 wt.-%
POM + T 30 wt.-%
POM + CaCO3 5 wt.-%
POM + CaCO3 20 wt.-%
POM + (GF + GB) 20 wt.-%
POM / PTFE
POM / PTFE + GF 10 wt.-%
POM / PTFE + GF 20 wt.-%
POM / PTFE + GF 30 wt.-%
POM / SI
POM / TPE
POM / TPU
POM / PTFE / SI
150 – 180
100 – 156
90 – 150
190
200
205 – 210
205 – 220
180 – 230
230
160
167 – 180
200
-
-
-
210
-
-
180
220
145
-
160
155
84
180
110 – 140
-
175
180
130
-
-
-
79 – 82
-
52 – 83
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
95 – 105
-
-
45
-
61 – 83
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
115 – 120
-
78 – 125
83 – 120
-
107 – 120
85 – 120
112
87 – 118
108
110
110
111
-
-
-
-
-
-
-
-
-
160
155
84
180
110 – 140
-
175
180
130
-
-
-
100 – 110
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
85 – 95
-
60 – 100
-
-
-
-
-
-
-
-
-
-
83
85
90
84
104
-
-
-
-
-
-
-
-
80 – 92
-
-
-
82
70 – 78
60 – 75
-
95Car, 08Els, 12VDI
95Car
12MBa
12MBa, 12Pol
12MBa
08Els, 12MBa, 12Pol
12MBa
12MBa, 12Pol
08Els, 12MBa, 12Pol
12MBa, 12Pol
12Pol
12MBa
08Els
12MBa
08Els
12MBa
12MBa, 12Pol
12MBa
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
374
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PP
PP + GF 10 wt.-%
PP + GF 15 wt.-%
PP + GF 20 wt.-%
PP + GF 25 wt.-%
PP + GF 30 wt.-%
PP + GF 35 wt.-%
PP + GF 40 wt.-%
PP + GF 43 wt.-%
PP + GF 50 wt.-%
PP + GB 10 wt.-%
PP + GB 20 wt.-%
PP + GB 30 wt.-%
PP + GB 40 wt.-%
PP + GX 5 wt.-%
PP + GX 10 wt.-%
PP + GX 15 wt.-%
PP + GX 20 wt.-%
PP + GX 30 wt.-%
PP + GX 40 wt.-%
PP + GX 45 wt.-%
PP + CD 30 wt.-%
PP + MF 10 wt.-%
PP + MF 15 wt.-%
PP + MF 20 wt.-%
PP + MF 30 wt.-%
PP + MF 40 wt.-%
PP + MF 55 wt.-%
PP + MX 10 wt.-%
PP + MX 15 wt.-%
PP + MX 20 wt.-%
PP + MX 23 wt.-%
PP + MX 25 wt.-%
PP + MX 30 wt.-%
PP + MX 40 wt.-%
PP + M 25 wt.-%
PP + M 40 wt.-%
PP + P 10 wt.-%
PP + P 15 wt.-%
PP + P 20 wt.-%
PP + P 25 wt.-%
PP + P 30 wt.-%
PP + P 40 wt.-%
PP + T 10 wt.-%
PP + T 15 wt.-%
PP + T 20 wt.-%
64 – 95
-
-
-
-
100 – 115
-
-
-
-
-
70
-
-
-
-
-
110
110 – 120
-
-
-
-
-
-
-
-
-
88
-
58 – 95
65
-
67 – 71
-
-
-
-
-
-
-
-
-
-
-
80 – 85
59 – 77
62 – 63
-
65 – 87
68 – 69
62 – 80
-
69 – 71
-
-
-
-
-
-
-
-
-
97
-
-
-
74 – 75
-
-
65 – 76
60 – 74
67 – 79
75
66
66
-
-
65 – 70
-
-
75
72
-
-
-
-
65
-
58
57 – 85
60 – 97
30 – 70
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
60 – 110
84 – 120
84 – 112
80 – 113
93 – 113
95 – 115
98
97 – 118
97
90 – 115
82
90
94
96
90
80
100
84 – 105
86 – 110
110
110
-
105
110
110
110
102
-
-
-
100
-
87 – 117
-
100
93
99
89 – 100
121
85 – 90
87
94 – 98
100 – 104
80 – 118
121
74 – 119
40 – 85
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
108
-
-
-
-
104
-
-
-
96
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
76
-
80
08Els, 95Car, 12VDI
12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
12Pol
12MBa
12Pol
95Car, 12Pol
12Pol
12MBa
12MBa, 12Pol
12MBa
12Pol
12MBa
95Car, 12MBa
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
375
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PP + T 25 wt.-%
PP + T 30 wt.-%
PP + T 40 wt.-%
PP + CaCO3 10 wt.-%
PP + CaCO3 15 wt.-%
PP + CaCO3 20 wt.-%
PP + CaCO3 30 wt.-%
PP + CaCO3 40 wt.-%
PP + CaCO3 50 wt.-%
PP + (GF + GB) 40 wt.-%
PP + (GF + MF) 30 wt.-%
PP + (GF + MF) 40 wt.-%
PP + (GF + MX) 30 wt.-%
PP / EPDM
-
90 – 105
-
-
-
-
-
-
-
-
-
-
-
-
60 – 70
63 – 70
52 – 78
85
66
66
55 – 70
70 – 86
-
-
-
-
-
40
-
-
-
-
-
-
-
-
-
-
-
-
-
-
88
76 – 106
80 – 102
82 – 112
-
66 – 120
68 – 118
71 – 114
105
120
93 – 100
94 – 102
117
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
93 – 95
91
60 – 80
-
-
-
97
-
-
-
-
-
-
12MBa
95Car, 12MBa
12MBa, 12Pol
12MBa
12MBa, 12Pol
12MBa
PPA
PPA + GF 22 wt.-%
PPA + GF 33 wt.-%
PPA + GF 35 wt.-%
PPA + GF 45 wt.-%
PPA + MD 30 wt.-%
PPA + MD 40 wt.-%
PPA / PTFE
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
120 – 127
124
121 – 125
125
124 – 125
126
125
80
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa
12Pol
PPE
PPE + GF 10 wt.-%
PPE + GF 15 wt.-%
PPE + GF 20 wt.-%
PPE + GF 30 wt.-%
PPE + GX 30 wt.-%
PPE / PS
PPE / PS + GF 20 wt.-%
PPE / PS + GF 30 wt.-%
PPE / PS + CF 10 wt.-%
PPE / PS + MX 13 wt.-%
PPE / PS + GX 10 wt.-%
PPE / PS + GX 20 wt.-%
PPE / PS + GX 30 wt.-%
PPE / PS-HI
70 – 100
-
100 – 130
100
130 – 140
130
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
124
-
-
-
-
113 – 119
110 – 127
80 – 121
122
121
-
-
-
119 – 124
-
-
-
-
-
-
-
-
-
-
-
104
54 – 106
108
-
-
-
-
-
-
-
76 – 93
-
-
-
-
-
-
-
-
95Car, 12MBa
12MBa
95Car, 12MBa
12MBa
PPO
PPO / PS
PPO / PS-HI
-
70 – 95
87
-
-
-
-
-
-
96
114 – 123
-
-
-
-
-
-
-
12MBa
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
376
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PPS
PPS + GF 5 wt.-%
PPS + GF 10 wt.-%
PPS + GF 15 wt.-%
PPS + GF 20 wt.-%
PPS + GF 30 wt.-%
PPS + GF 40 wt.-%
PPS + GF 50 wt.-%
PPS + CF 10 wt.-%
PPS + CF 15 wt.-%
PPS + CF 20 wt.-%
PPS + CF 30 wt.-%
PPS + CF 40 wt.-%
PPS + CF 50 wt.-%
PPS + CF 55 wt.-%
PPS + CF 60 wt.-%
PPS + (GF + MX) 65 wt.-%
PPS / PTFE
PPS / PTFE + GF 15 wt.-%
PPS / PTFE + GF 20 wt.-%
PPS / PTFE + GF 30 wt.-%
PPS / PTFE + CF 10 wt.-%
PPS / PTFE + CF 30 wt.-%
PPS / PTFE + CF 40 wt.-%
PPS / PPE + GF 30 wt.-%
PPS / PPE + GF 40 wt.-%
190
-
-
-
-
-
300 – 322
-
-
-
-
-
-
-
-
-
428
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
116 – 123
120
121 – 124
121 – 124
121 – 124
118 – 123
118 – 123
123
121 – 124
121
122 – 123
120 – 123
122 – 123
123
123
123
-
115 – 118
119 – 121
117 – 118
118 – 123
124
118 – 123
123
121
121
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
93 – 100
-
-
-
-
100
100
-
-
-
-
100
-
-
-
-
-
98
-
-
-
-
-
-
100
100
08Els, 12MBa, 12Pol
12Pol
12MBa, 12Pol
08Els, 12Pol
12Pol
08Els
12Pol
12MBa, 12Pol
12Pol
PS
PS + GF 10 wt.-%
PS + GF 30 wt.-%
PS + GF 40 wt.-%
PS-HI
165
-
-
-
58 – 88
78 – 80
-
-
-
-
100 – 110
-
-
-
-
94 – 121
117
121
121
-
60 – 110
-
-
-
-
45 – 89
-
-
-
-
08Els, 05Mar, 12VDI
12MBa, 12Pol
12Pol
95Car
PSU
PSU + GF 20 wt.-%
PSU + GC 10 wt.-%
135 – 145
170
-
-
-
-
-
-
-
120 – 123
-
122
-
-
-
-
-
-
08Els, 12MBa
08Els
12Pol
PTFE
PTFE + GF 20 wt.-%
PTFE + GF 25 wt.-%
PTFE + CD 10 wt.-%
PTFE + CD 15 wt.-%
PTFE + CD 20 wt.-%
22 – 34
-
32
-
-
-
50 – 90
75
-
81
-
-
-
-
-
-
-
-
117 – 118
106
-
88
105
104
-
-
-
-
-
-
-
-
-
-
-
-
08Els, 12MBa, 12Pol
12MBa
95Car, 10Hel, 12Pol
12MBa
PUR, mold resin
PUR
-
-
20 – 84
65 – 82
-
-
-
82 – 121
-
-
-
85 – 109
12MBa
Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler] Ref. p. 378]
Landolt-Börnstein
New Series VIII/6A3
377
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
PVC-U
PVC-U + GF 10 wt.-%
PVC-U + GF 10 wt.-%
PVC-U + GF 10 wt.-%
PVC-U / NBR
95 – 145
-
-
-
-
74 – 94
82 – 86
83 – 87
85 – 88
58 – 74
75 – 95
-
-
-
-
110 – 115
-
-
-
95
80 – 95
-
-
-
-
50 – 70
-
-
-
-
12VDI, 05Mar
12MBa
PVC-P - 42 – 77 - 98 – 124 - - 12MBa
PVC-C 170 82 - 107 – 120 - - 95Car, 12MBa
PVDF
PVDF + CD 10 wt.-%
115
-
46–79
74
-
-
95 – 121
-
55
-
-
-
95Car, 12MBa, 12Pol
12MBa
SAN
SAN + GF 10 wt.-%
SAN + GF 20 wt.-%
SAN + GF 25 wt.-%
SAN + GF 30 wt.-%
SAN + GF 35 wt.-%
SAN + GF 40 wt.-%
SAN + GX 12 wt.-%
SAN + GX 15 wt.-%
SAN + GX 20 wt.-%
SAN + GX 32 wt.-%
165 – 205
-
-
-
-
240
-
-
-
-
-
45 – 85
-
-
-
-
-
-
-
-
-
-
110 – 115
-
-
-
-
-
-
-
-
-
-
120 – 125
121
115 – 122
-
123
94 – 124
123
-
-
-
-
105
-
-
-
-
-
-
-
-
-
-
83 – 93
-
-
83
-
-
-
86
90
92
94
95Car, 12VDI, 12MBa
12Pol
12MBa, 12Pol
12MBa
12Pol
95Car
12Pol
12MBa
SI + CaCO3 40 wt.-% - 80 - 106 - - 12MBa
SMAH - - - 98 - - 12MBa
SMMA
SMMA-I
155
-
72 – 82
-
-
-
-
61 – 76
-
-
65 – 85
-
12MBa
TPA (dry) - 22 – 68 - 93 - - 12MBa
TPC
TPC + GF 20 wt.-%
-
-
28 – 82
34 – 72
-
-
103 – 113
-
-
-
-
-
12MBa
TPE
TPE + MX 10 wt.-%
TPE + MX 12 wt.-%
TPE / PTFE
-
-
-
-
48 – 78
54
55
56
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa
TPE-E + GF 5 wt.-%
TPE-E + GF 10 wt.-%
TPE-E + GF 15 wt.-%
TPE-E + GF 20 wt.-%
-
-
-
-
40 – 55
40 – 55
40
55
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12Pol
[Ref. p. 378 Volume VIII/6A3: 4.8.1 Conventional Hardness Values [T. Koch, C. Bierögel, S. Seidler]
Landolt-Börnstein
New Series VIII/6A3
378
Material HB Shore Rockwell Ref.
D α R L M
[N mm-2] [-] [-] [-] [-] [-]
TPE-E + GF 30 wt.-%
TPE-E + GF 40 wt.-%
-
-
55
55
-
-
-
-
-
-
-
-
12Pol
TPE-U + GF 5 wt.-%
TPE-U + GF 10 wt.-%
TPE-U + GF 15 wt.-%
TPE-U + GF 20 wt.-%
-
-
-
-
-
-
-
-
-
-
-
-
55
60
60
60
-
-
-
-
-
-
-
-
12Pol
TPO
TPO + GF 20 wt.-%
TPO + GF 25 wt.-%
TPO + MX 15 wt.-%
TPO + MX 20 wt.-%
-
-
-
50
50
16 – 70
52
55 – 69
-
-
-
-
-
-
-
80 – 118
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa
TPS - 60 - - - - 12MBa
TPU
TPU + GF 10 wt.-%
TPU + GF 20 wt.-%
TPU + GF 30 wt.-%
TPU + GF 40 wt.-%
-
-
-
-
-
28 – 73
55 – 70
70
74 – 80
75
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12MBa
TPV - 40 – 51 - 88 – 95 - - 12MBa
References Chapter 4.8.1
95Car Carlowitz, B.: Kunststoff-Tabellen. 4. Auflage, Carl Hanser Verlag, Munich, Vienna, 1995.
05Mar Martienssen, W., Warlimont, H. (eds.): Springer handbook of condensed matter and materials
data. Springer, Berlin, 2005.
08Els Elsner, P., Eyerer, P., Hirth, T. (eds.): Domininghaus Kunststoffe, Eigenschaften und An-
wendungen. 7. Auflage, Springer, Berlin, 2008.
10Hel Hellerich, W., Harsch, G., Baur, E.: Werkstoff-Führer Kunststoffe. Eigenschaften – Prüfun-
gen – Kennwerte. 10. Auflage, Carl Hanser Verlag, Munich, 2010.
12MBa MBase-Material Data Center in www.m-base.de (rech. 08/2013).
12Pol Polymatfree in http://polymatfree.polybase.com (rech. 08/2013).
12VDI Guideline VDI/VDE 2616-2: Hardness Testing of Plastics and Rubber. VDI/VDE-
Gesellschaft Mess- und Automatisierungstechnik, Düsseldorf, 2012.
Standards Chapter 4.8.1
DIN EN 59
(1977)
Glass reinforced plastics – Measurement of hardness by means of a Barcol impres-
sor
ISO 48
(2010)
Rubber, vulcanized or thermoplastic – Determination of hardness (hardness be-
tween 10 IRHD and 100 IRHD)
Volume VIII/6A3: 4.8.2 Instrumented Hardness Values [T. Koch, S. Seidler] Ref. p. 384]
Landolt-Börnstein
New Series VIII/6A3
379
ISO 2039-1
(2001)
Plastics – Determination of hardness – Part 1: Ball indentation method
ISO 2039-2
(1987)
Plastics – Determination of hardness – Part 2: Rockwell hardness
ISO 2815
(2003)
Paints and varnishes – Buchholz indentation test
ISO 4516
(2002)
Metallic and other inorganic coatings – Vickers and Knoop microhardness tests
ISO 4545-1
(2005)
Metallic materials – Knoop hardness test – Part 1: Test method
ISO 6507-1
(2005)
Metallic materials – Vickers hardness test – Part 1: Test method
ISO 7619-1
(2010)
Rubber, vulcanized or thermoplastic – Determination of indentation hardness –
Part 1: Durometer method (Shore hardness)
ISO 7619-2
(2010)
Rubber, vulcanized or thermoplastic – Determination of indentation hardness –
Part 2: IRHD pocket meter method
VDI/VDE 2616-2
(2012)
Hardness testing of plastics and rubber
ISO 868
(2003)
Plastics and ebonite – Determination of indentation hardness by means of a
durometer (Shore hardness)
ASTM D 2240
(2010)
Standard test method for rubber property – Durometer hardness
ASTM D 785
(2008)
Standard test method for Rockwell hardness of plastics and electrical insulating
materials
4.8.2 Instrumented Hardness Values
[T. Koch, S. Seidler]
The information gained from hardness measurements can be enhanced if both the force required by the
indenter to penetrate the specimen and the indentation depth over the entire indenting process is recorded.
Several names can be found for this type of test: Instrumented hardness test, instrumented indentation test
or depth-sensing indentation testing as well as registering hardness measurement. Because the whole
indentation process is recorded information on the viscoelastic–plastic behaviour is derived by evaluating
the recorded loading and unloading curves as well as the curve during holding at maximum load [77Fro,
78Gre, 83May]. The testing cycle can be performed either load or indentation depth controlled, or at a
constant indentation strain rate (dh/dt)/h. Various indenters can be used: rectangular based Vickers and
Knoop pyramids, triangular-based Berkovich pyramids or cube corners, conical tips and even specially
rounded or flat punch indenters.
Hardness values, indentation moduli, strain hardening exponents and viscoelastic properties can be meas-
ured with the instrumented indentation test, also the fracture toughness of very brittle polymers as well as
the influence of residual stresses. If needed and a suitable device provided measurements can be done
with high spatial resolution and with very small indentation depths. A special application of the testing
devices is the characterization of the elastic behaviour of miniaturized components or the realization of
micro compression tests, i.e. using the machines like a small universal testing machine.
One benefit is the automatic execution of the test, the other big advantage lies in the comparability of all
materials within one hardness scale (Fig. 4.198.).
Following functional dependencies can be measured:
-Indentation depth as a function of load during load increase
-Load and indentation depth as functions of time for determining relaxation and creep behaviour
-Elastic recovery during/after unloading
ResearchGate has not been able to resolve any citations for this publication.
Werkstoff-Führer Kunststoffe
  • W Hellerich
  • G Harsch
  • E Baur
Hellerich, W., Harsch, G., Baur, E.: Werkstoff-Führer Kunststoffe. Eigenschaften -Prüfungen -Kennwerte. 10. Auflage, Carl Hanser Verlag, Munich, 2010.