Content uploaded by Thomas Walker Lynch
Author content
All content in this area was uploaded by Thomas Walker Lynch on May 28, 2017
Content may be subject to copyright.
The White Knight Is Talking Backwards
A Computational Interpretation of QM
by
Introduction
!"!#" $ !
% # ! % " &" # "
% "'() * +" !"!" ,
! !% +"% ! "" "
"% "# " )
-!.%#%! #" % " %""
" '()
! /!" "!! ! 0 %
"" " % # ""#
% " "+ " % "
"+! ##%!!+
"!!)1 "% ! 0/!"2 0+"
% "!" %!,% "'3()
"!!"!""# " "%4 '5()
# % "%""!%
"+ "%"" %""% "" %
% )6" " " !"!2!0#
"#!#" " "% %") 2"
"% + 1"!%0% ! 7"
"!2!)8!"" " % "%
9 % ! ""!"%")
6+ +# " &""% "" "%
":* " "*#" %"" !#
"" # " 0
"!"" #!# #";<)9 """
# ;<" " %% "%%")
1/20
Moving a Piece
8 "" " " " % "!
!+ ! "!7!"# i+! % j+ #"
"!7 " %+) %"!
4% "" !+"#" " )
*" "" " "#" " " ! '(+ " +#
,!%)"" "!! =% !"
!")> '(" )*"#" %
" "+% 7 "
%!"% " 7 " ")7 " " "
" "! % " "% !)
"'( ! #" #
" "7 " " " !+ '(
'()
#"%%!" # "
#" "7 ) " " # # " %
")* " " !"!?
(
[
1 0 −1
1 0 2
0 0 1
][
1 0 −2
1 0 1
0 0 1
][
1 0 1
1 0 2
0 0 1
][
1 0 2
1 0 1
0 0 1
][
1 0 −1
1 0 −2
0 0 1
][
1 0 −2
1 0 −1
0 0 1
][
1 0 1
1 0 −2
0 0 1
][
1 0 2
1 0 −1
0 0 1
]
)
⋅
[
i0
j0
1
]
=
[
i10 i11 i12 i13 i14 i15 i16 i17
j10 j11 j12 j13 j14 j15 j16 j17
11111111
]
Equation 1: Next Move Calculation
% "" "# % " " 'i
j ( " "7 " %+ # %
"7 " ") "" "% "7!
% ! ! " " !)
" " ! ", #" %
%! !" %) * % 7 % %! %
" )
2/20
Zero Knowledge Strategy
8" # " , #!
% ) "#" %" "" ")8!"
#! 7 % " %"!
) @% " ! " " # "
" " "" $!"%" " "k"
% %)
! "7 kA " "" "!" ") "" "
$!" " '(+!, " ")* ,
"" " ") kA! "7# ""
$!" " " " + ! "! !
# #+ )
1" " % " ! "7 kB#
" ! "7 k?
3/20
Figure 1: Probability of Finding the Knight on a Square k Moves into the Future
" /"% %7# "!
kA)* # kA "7,)* #
"! kA! " " C#+ " "+
'(+,%+" %D" 4% % )
$! # " 7 " "+ ' ( ! ' (+
nA) "" " "" " + # !! "
" "+'(!'( kA "7+ %E)
" " " kA !
% "" " kA!)#! "+##"$!
p " E+ ! A+ # !!" " E3 7
" ")8 kB!" "'(##"!!"E3 # "+
A" "'(+! kA" "'(+
" % "" "" F#" '(+!
!!% E)
*" # ! !+n#%!#G)""
%% )"" ""n ""
* !" " "
"% "" " k)#" " "" n
% "" " " " !"
k#"#) "" " %""
F%"!F#"" !%"! "#" "k)
4/20
! "7B "%,)"#"
%% )
"! ! "7 )/!" "+'"4(+! #"?
2.1 ! "" "" "p)
)%=% "! !""" % 7
!" " "7kB)8 "" #"
n" """)
)5 n" " "7kB?
)5)!!" %
pk
n
Figure 2: Probability Flow Calculation
> " %"=% " " !+ #
% ! ", " " # % % " )""
%" ! "" " 7 "
"!! % " "" " =%+ !
"!! % k) """" k "!%
%!" ) %+ " # "! !
"" " k+ # % "
"7 $!#"" kB)" "7""
" %"=% % ! " ") 1#+ "
% "" + %"")
#"%" ++ " """ " ) i+j
! "7 !" ! "!"
!" ?
*%7 % " "'EE3E3()H%
"" F#" /"% % ! "7
"?
Bk+1=F Bk
Equation 3: Probability Flow, Incremental
&" "% % "" """/"%?
[
1/2
0
1/2
0
0
0
0
0
0
]
=
[
0 0 0 0 0 1/2 0 1/2 0
0 0 0 0 0 0 1/2 0 1/2
0 0 0 1 /2 0 0 0 1/2 0
0 0 1/2 0 0 0 0 0 1/2
0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 1/2 0 0
0 1/2 0 0 0 1 /2 0 0 0
1/2 0 1 /2 0 0 0 0 0 0
0 1/2 0 1 /2 0 0 0 0 0
]
⋅
[
0
0
0
0
0
0
0
1
0
]
!
5/20
i A5Ii "7Bj "7
Equation 2: Board matrix co-ordinate indexes to Board Vector component index mapping
[
0
0
0
1/4
0
1/4
0
1/2
0
]
=
[
0 0 0 0 0 1 /2 0 1 /2 0
0 0 0 0 0 0 1/2 0 1/2
0 0 0 1 /2 0 0 0 1 /2 0
0 0 1/2 0 0 0 0 0 1 /2
0 0 0 0 0 0 0 0 0
1/2 0 0 0 0 0 1 /2 0 0
0 1/2 0 0 0 1/2 0 0 0
1/2 0 1/2 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0
]
⋅
[
1/2
0
1/2
0
0
0
0
0
0
]
J !" "/"%?
Bk=FkB0
Equation 4: Probability Flow, Absolute
Emergent Properties
% "k%"%" ")
!% " "+ ∆ + #"
) " !$ 0" " 0 % " "
"" "%" "+ ∆ A+K =%
" %L) % % "" " % 7 !
" " ")
/ k !"""" ! % + ! " %
" #""#" "!)MA" ""
" " " #" " !%"
""" ")*!#" " " !+" "
#" $ #" " )8!"# $
#" " '" 4( '" 4( !#" "
'"4( '"4()1#+ #"" "
"!" )
%"=%! 4 " MA5)8 M A3
! 4 " % 5 !" " ! " ")
"#!%" " MA)/7+
""!+'('('('('(+"#! "
" '('('(+4%" '('('
(+ 4%" $" '('()
6/20
M A G ! !%"
+))'('('('('('('('('()* "
" ! ! #" " #" % "
"" # " !) * " " " "
% #")H " " !
#)
"" " !"" #)
* "" # " !
" !" ) %
! + # #
"!" "" !" ")
1"% 7 " "
A ! ' (+ "
#" " ' ( "
% #" " ' () *
7 " "
!! '(+ '('
()
@% " "" " "" %
"" F# " " " ! "7)"
"" ! "+!""!" #+!"
# ") "" F# #"
" " '("#" 7 $%+/"%3)
7/20
Figure 3: Knight Ring Network
#" " "% "" F#+$ " "
""!) 8 " # , "" $!"
" "!)6!"# ,"" "
!#$!"=%)7!'(?
12
4
3
8
10
32
18
64 ⋯1
4
Equation 5: Node [0 1] Large k Convergence
"!" "#% E3
=%?
6"""#"!!'(?
>!'(" E3!" )
1%"!"!"?
8/20
Figure 4: probability flow over ring network
Figure 5: Ring Modes for Large k
# " # " % " " 7"
"% %"%" " +%"#
" "" !+ "!##"$!" )
> + " #" %! "!! !)
9 " "" " ) 9" #!%
"#" %% "" F%"! " "
" !!"% %%!!") % "+ %
" #%! ! " " !" " "
+ " #""!#" %%)
With Constraints
6% % +%!"!!!
% #" "#!) "%"
!"?
9/20
* # "! % " 4 "
# " " "! # " "+ @% 6"
7" ""'()* " + " #"
" " "+ # " " "
"" !% % "" ) >#" !#+#
" ! % + #" " # "!
" ) #$! 4 % "
"" ! # "+! "" )
> +# % " " %/"%N " +
! % " $ ) " !" % "
""% ")1#+%" +
!%" "!7 !%!%"+#!
"" " 4 "!"% " )
" " % " % #!+ ")) %
10/20
Figure 6: Constraint and Measurement
" #!) " ) !
"" "+ ! " + % + "!
!!" "" "+# % "#" " %!
"" "!"% " )
0% """ ""!"" )
0""%% "" !%"0"0#
"/"%)
" " 4 "" " %
#" #" ?
11/20
Figure 7 Ring Angle
> + k "=% % k+ * " , %"
"" " #"!#%")""" " !!
" %,)
9" % "!""%?
12/20
path k0k0+1 k0+2 base with
constraint
with
measurement
0 0 7 6 1/16
1 0 7 0 1/16 1/8
2 0 1 0 1/16 1/8
3 0 1 2 1/16 1/8 1/4
4 2 1 0 1/16 1/8
5 2 1 2 1/16 1/8 1/4
6 2 3 2 1/16 1/8 1/4
7 2 3 4 1/16
8 4 3 2 1/16 1/8 1/4
9 4 3 4 1/16
10 4 5 4 1/16
11 4 5 6 1/16
12 6 5 4 1/16
13 6 5 6 1/16
14 6 7 6 1/16
15 6 7 0 1/16 1/8
Figure 8: Knight Trajectories
1 # k " ! " "+ % %
" =% ! % % "" "
$!" " "" ") " #"
$ #+! " K% L" !#
" + % " % "
% " "" ")8 %+ " " %
#% % % #"
! " !") " #! " % "+
" !" )
*%"" #" % " "
)* % #" "
! " " "+ ") *
"% " !% %!!" ")
13/20
Figure 9: With Back Propagation
Next Move According to The Reality Wavefront Model
* " #!"%"% "!
" " !) 8 ! #"
"" F#+ + " #
!"%")1 + ""7
" )
8 " #% 7 + #" )
/ "# 7 " "
" "" ! "7 kA) *
7 + % "! )
" "% ! A #"" " +!#
!!")>7 "##"A+ )
* % " 7 0! "0%"
! ! "" ")
#" 7 "!)% !
#% % "+ "% #
" )8 #
" $! 4 " " "7")
"" #?
" " 7 " " ) 9
" "" !7 #
!" " #" !" ! 7 " "
"" ")
14/20
9 "" ")
8 " ")
5 "#!! "!%! "" "
3 @ " 7 +#"" " )
/#! " %! "" ")
N J +% """ )
Figure 10: Reality Wavefront Model Algorithm
"## 0" " 0+ 0!" "% #" 0
! " "% "+ %! # ! "!!"
! "" $! %!% "k) !
"%!!$ ""% )! "
! "! 0" 0)! "!!#"
%"!0 0)% %7" "k%+
!" "$!#" "" $!)8 %!%
" % # " 0" # 0 "
#!)
6 " "" k " " " ")
J " 7 %! #0# "
! "!0 ! "" $! !$ ") % #
!" " # ) 0" 0 # + #! ""
% "# +! "" % "# )
Next Move According to the Reality Crystallization
Model
" # !! "" " A+
%" 7 +A+A+ ) 4% "% # "
! ! " " ) * +"% %#!#
! % " 0 0) 1 "
% 7 "%#!$!%! #
! "!K" L! "" $!#%!
)
* !!$" " " "#% "!
#" %"=%" %%"#+ # " "%
0 " "#) + !$" "+ " "! "
"" $!) " "%! #! " "
!4% )
8+" !""!""7 + %%
#"" " " + " "0%!!
" 0)H"#" "#%!"""" "
$" % "+ %" # !" $7! #"! %
#!) * " %! "" ! %+
15/20
% !) "" F%"! " ""+ #
"" "%!!%+ #" %!!!#)
"" "%!! " +%+
!% ,)
/7"" !% " %
% k, > 0+ %" " " !
!"" ""4% % " "
kA+% " " % " " #" =% k,
)># "! % ")! !
# " ) * % # "
" "% "! +" "+! )* "
"# #!)> #" % "
!+% #" "% O "nP!% %
%! !") "! " " " "% !
""% #"""# % "!#%!
+0 % %0) / "# %
&"#!"%")
J%!" " " % % k " %!!
"" " ")1#+" " " %
! ! "!) 1+ # "
",% "" $!) 8 7+
%!" " "" F###!"/"%3)1
##" ! E)
16/20
#" "$%! "" F##"/"%
3) * ! # "" " ! E %!!
" )*+ "" E"" "
! " A+" 7 %"" " )* %%
#E"" " "# %!%+!
%!!# " " %"" "
")
%!" % % " #! %
"" $!)8# kA#! % "
+ A" ! ! "!+ % "# # " k #
#%! ) "% "" " " k "
")""#" !#)
>#kA" " !%!"+
%!!+! % " "!# !)
17/20
Figure 11: Reality Crystalization
!#" " !% " % $7!
k %+ "" $! " " " %! + ! "
" " %! ") 1 "
#""# " )
#%! "" % " J"
<!) !"D" #" ! " "!
" kB !)*)) "7 " ") *
+ "" " "" "" " !
!"%!!%)"% " #+!
# " 0 "0) 1+ " " 7
"!+% " !)
% "" "!" ""##+ #" ""
# " " + # ! " % 7) *
7 " # "" "
!+ % "" kB)8+ " #+!%
" +%!" " % "k %" "!
! "! % !" ! "" " !" ")
9 # #"! "" " " " "
"!#"#! )""%",! ""
#"$%?
18/20
Figure 12: Schematic of Reality Crystalization in a Complex System
*7 %! ## ! "!!
# ! "! #" 4!! " )
""%% " ")!#"
% "4!%! "!" 7" %!!
"% "% ") "##" "! !
" " "! !0! "!0)
% " 7" % " #" F#!) "
"! ! "" !!!" " "!" )
! "+ + " " !
"" " )6"" " " #"%!
#% !$ ")6"%+ ! "!
!!0 %! "! 0)
8 F#" 7" "+ " ""
!# ""!0" !"!%!+"
"!) * " 0" % %0+ !" ""
!!! "!)" " % "!
! "" #)
" " " !% "" + "
% " % "" $!!
"" "" ") " % " "
! %!" " + % %"
% " Q ! " " K")) A L
"" # !+ % %" "
! "!" )
How Fast are Probability Computing Waves
8 % #" " 4 " =% %
" % " !!!+
" % %! "" $! # ! " "
% """!)
> % "" $! 7" " %" ") * % "
7+ G """ " " " " ) 8
"" ") 1 "" $!
!4% !! %!"%" " )
19/20
" "#% " # " " /"%)
%!! # #4% %" $! " )
1 =% """ "+ "+!%" ""
$!%! $"#" #%)
9" C#+" " "!+ ""
!% " %!" ## " ! "!
!# ! "!) "%!=%"
"" " %!! " +% "" $
%!! " +! %!! " +
%!+=%" "" % "#"!
%)1+ "" #" "" # ")
6% """% %7 ! "7
% " " /"% + ! " " # !
" ")8%+" " # #" k"!
"7+! "7 % k"B "7)#
""+ % " " )
% " "" ! #)
"" % "# ""!"D "'"4
(" !"D % )* " " "" %
7" $!%D )
1#+ "% " "" #! %
% ! " !" " !"D "
!! " 7" 'N(+ % " %!" "
7" " ! "" # ""!
#!"k)
Bibliography
1: Charles Babbage Esq., The Ninth Bridgewater Tratise; A Fragment, John Murray, 1837
2: Konrad Zuse, Rechnender Raum, Vieweg+Teubner Verlag, 1969
3: Kevin Kelly, God Is the Machine, Wired, https://www.wired.com/2002/12/holytech/
4: Fredkin gate, https://en.wikipedia.org/wiki/Fredkin_gate
5: Double-slit experiment, https://en.wikipedia.org/wiki/Double-slit_experiment
6: Wheelers delayed choice experiment, https://en.wikipedia.org/wiki/Wheeler
%27s_delayed_choice_experiment
20/20