ArticlePDF Available

Impacts of salvage logging on biodiversity: A meta-analysis

Authors:
  • Hessian Agency for Nature Conservation, Environment and Geology (HLNUG)
  • Nationalpark Bayerischer Wald

Abstract

Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organisms. A meta-analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio-temporal distribution of retained dead wood needed to maintain all components of biodiversity.
J Appl Ecol. 2018;55:279–289. wileyonlinelibrary.com/journal/jpe  
|
 279
© 2017 The Authors. Journal of Applied Ecology
© 2017 British Ecological Society
Received:16January2017 
|
  Accepted:18May2017
DOI: 10.1111/1365-2664.12945
REVIEW
Impacts of salvage logging on biodiversity: A meta- analysis
Simon Thorn1| Claus Bässler2| Roland Brandl3| Philip J. Burton4| Rebecca
Cahall5| John L. Campbell5| Jorge Castro6| Chang-Yong Choi7| Tyler Cobb8|
Daniel C. Donato9| Ewa Durska10| Joseph B. Fontaine11| Sylvie Gauthier12|
Christian Hebert12| Torsten Hothorn13| Richard L. Hutto14| Eun-Jae Lee15|
Alexandro B. Leverkus16 | David B. Lindenmayer17 | Martin K. Obrist18|
Josep Rost19,20| Sebastian Seibold2,21 | Rupert Seidl22| Dominik Thom22|
Kaysandra Waldron23| Beat Wermelinger24| Maria-Barbara Winter25|
Michal Zmihorski26| Jörg Müller1,2
1FieldStationFabrikschleichach,DepartmentofAnimalEcologyandTropicalBiology(ZoologyIII),Julius-Maximilians-UniversityWürzburg,Rauhenebrach,Germany
2BavarianForestNationalPark,Grafenau,Germany
3DepartmentofEcology,AnimalEcology,FacultyofBiology,Philipps-UniversitätMarburg,Marburg,Germany
4UniversityofNorthernBritishColumbia,Terrace,BC,Canada
5DepartmentofForestEcosystemsandSociety,OregonStateUniversity,Corvallis,OR,USA
6DepartmentofEcology,UniversityofGranada,Granada,Spain
7DepartmentofForestSciences,SeoulNationalUniversity,Seoul,Korea
8RoyalAlbertaMuseum,Edmonton,AB,Canada
9SchoolofEnvironmental&ForestSciences,UniversityofWashington,Seattle,WA,USA
10DepartmentofEcologyandBiodiversity,MuseumandInstituteofZoology,PolishAcademyofSciences,Warsaw,Poland
11SchoolofVeterinaryandLifeSciences,MurdochUniversity,Murdoch,WA,Australia
12NaturalResourcesCanada,CanadianForestService,LaurentianForestryCentre,Quebec,QC,Canada
13DivisionofBiostatistics,UniversityofZürich,Zürich,Switzerland
14DivisionofBiologicalSciences,UniversityofMontana,Missoula,MT,USA
15UrbanPlanningResearchGroup,DaejeonSejongResearchInstitute,Daejeon,Korea
16EcologyUnit,DepartmentofLifeSciences,UniversityofAlcalá,AlcaládeHenares,Madrid,Spain
17FennerSchoolofEnvironmentandSociety,TheAustralianNationalUniversity,Canberra,ACT,Australia
18WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,BiodiversityandConservationBiology,Birmensdorf,Switzerland
19DepartmentofEnvironmentalSciencesandFoodIndustries,UniversityofVic-CentralUniversityofCatalonia,Catalonia,Vic.,Spain
20DepartmentofEnvironmentalSciences,UniversityofGirona,Girona,Spain
21DepartmentofEcologyandEcosystemManagement,ChairforTerrestrialEcology,TechnischeUniversitätMünchen,Freising,Germany
22InstituteofSilviculture,DepartmentofForest-andSoilSciences,UniversityofNaturalResourcesandLifeSciencesVienna,Vienna,Austria
23DepartmentofWoodandForestSciences,LavalUniversity,Québec,QC,Canada
24WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,ForestDynamics–ForestEntomology,Birmensdorf,Switzerland
25ForestResearchInstituteofBaden-Württemberg(FVA),Freiburg,Germany
26DepartmentofEcology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden
280 
|
    
Journal of Applied Ecology
THORN eT al.
1 | INTRODUCTION
The frequency and extent of stand-replacing natural disturbances,
such as wildfires, windstorms and insect outbreaks, has increased
considerably during recent decades, particularly in the Northern
Hemisphere(Kurz etal.,2008;Seidl, Schelhaas,Rammer,&Verkerk,
2014).Naturaldisturbancescanenhancethestructuralheterogeneity
offorests,createhabitatsforspecies-richassemblagesofhighconser-
vationvalueandincreasethelong-termresilienceofforeststofuture
stressors(Swansonetal.,2011).However,societaldemandfortimber
and/orpestreductioncompelsforestmanagersto“salvage”timberby
logging before it deteriorates,a common practice even in locations
otherwise exempt from conventional green-tree harvesting, such
as national parks orwilderness areas (Figure1) (Chylarecki & Selva,
2016;Thorn etal., 2014).Suchsalvage loggingreducesthe amount
of dead wood, alters successional trajectories, affects biodiversity,
and can influence restoration costs and subsequent fire hazards
(Lindenmayer,Burton, & Franklin, 2008; Waldron,Ruel, & Gauthier,
2013).Consequently,conflictsoftenemergebetweennaturalresource
managers,policy-makersandconservationistsonhowtohandlenatu-
rallydisturbedforests(González&Veblen,2007;Lindenmayer,Thorn,
& Banks, 2017; Lindenmayer etal., 2004; Schmiegelow, Stepnisky,
Stambaugh,& Koivula,2006).This hasresultedinintensepublicde-
bates(Lindenmayeretal.,2017;Nikiforuk,2011;Stokstad,2006).
Differentnaturaldisturbance regimesleavedistincttypesofbio-
logicaland/orstructural legacies(Franklinetal.,2000).Forinstance,
forestskilledbywildfireorinsectoutbreaksarecharacterizedbylarge
numbersofsnags,whilewindstormscreateuprootedtrees(Swanson
etal., 2011). Salvage logging typicallyremoves or alters these lega-
cies.Theresponsesofsaproxylicandnon-saproxylicspeciesgroupsto
salvageloggingthusdependontheirrelationto(deadwood)legacies
affectedbysalvagelogging(Lindenmayeretal.,2008).Consequently,
differenttaxonomicgroupsindifferenttypesofnaturaldisturbances
may respond differently to salvage logging (Zmihorski & Durska,
2011).Numerousstudieshavefocusedontheeffectsofsalvagelog-
gingafternaturaldisturbancesonspeciesrichnessandthecommunity
compositionofvarioustaxasuchasvascularplants(Blair,McBurney,
Blanchard, Banks, & Lindenmayer, 2016; Macdonald, 2007; Stuart,
Correspondence
SimonThorn
Email:simon@thornonline.de
Funding information
GermanEnvironmentalFoundation;Austrian
Science Fund
HandlingEditor:MatthewStruebig
Abstract
1. Loggingto“salvage”economicreturnsfromforestsaffectedbynaturaldisturbances
hasbecomeincreasingly prevalentglobally.Despite potentialnegativeeffects on
biodiversity,salvageloggingisoftenconducted,eveninareasotherwiseexcluded
from logging and reserved for nature conservation, inter alia because
strategicprioritiesforpost-disturbancemanagementarewidelylacking.
2. Areviewoftheexistingliteraturerevealedthatmoststudiesinvestigatingtheef-
fects of salvage logging on biodiversity have been conducted less than 5years
followingnaturaldisturbances,andfocusedonnon-saproxylicorganisms.
3. Ameta-analysisacross24speciesgroupsrevealedthatsalvageloggingsignificantly
decreasesnumbers ofspecies ofeighttaxonomicgroups.Richnessofdeadwood
dependenttaxa(i.e.saproxylicorganisms)decreasedmorestronglythanrichnessof
non-saproxylictaxa.Incontrast, taxonomicgroupstypically associatedwithopen
habitatsincreasedinthenumberofspeciesaftersalvagelogging.
4. Byanalysing134originalspeciesabundancematrices,wedemonstratethatsalvage
logging significantly alters community composition in 7 of 17 species groups,
particularlyaffectingsaproxylicassemblages.
5. Synthesis and applications.Ourresultssuggestthatsalvageloggingisnotconsistent
withthe managementobjectivesofprotectedareas. Substantialchanges,suchas
theretentionofdeadwoodin naturallydisturbedforests, areneededto support
biodiversity.Futureresearchshouldinvestigatetheamountandspatio-temporal
distribution of retained dead wood needed to maintain all components of
biodiversity.
KEYWORDS
barkbeetle,climatechange,deadwood,disturbedforest,fire,naturaldisturbance,post-
disturbancelogging,salvagelogging,saproxylictaxa,windstorm
    
|
 281
Journal of Applied Ecology
THORN eT al.
Grifantini,Fox,&Fox,1993),carabids(Cobb,Langor,&Spence,2007;
Koivula & Spence, 2006; Phillips, Cobb,Spence, & Brigham, 2006),
birds(Castro,Moreno-Rueda,&Hódar,2010;Choi,Lee,Nam,Lee,&
Lim,2014;Nappi&Drapeau, 2009; Saab, Russell,&Dudley, 2009;
Thorn,Werner,etal.,2016; Zmihorski,2010),and saproxylicorgan-
isms(i.e.thosedependingon dead wood during somepartoftheir
life cycles; Cobb etal., 2011; Norvez, Hébert, Bélanger, Hebert, &
Belanger,2013).
Twomain effects of salvage logging on biodiversityarise recur-
rentlyfrom the existing bodyofliterature. First,salvageloggingre-
duces the richness of taxonomicgroups or abundance of particular
speciesthatdependondeadwood.Forinstance,salvageloggingde-
creasednestingdensity ofcavity-nesting-birdsthat usuallybreedin
fire-killedtrees(Hutto&Gallo,2006).Similarly,post-stormloggingde-
creasedthetotalnumberofsaproxylicbeetlespeciesandthenumber
ofthreatenedspecies(Thornetal.,2014).Second,studiesthatinves-
tigateasetofdifferenttaxonomicgroupshavedemonstratedthatsal-
vageloggingcanalterthecommunitycompositionofbothsaproxylic
andnon-saproxylicorganisms,whiletheeffectsontheoverallnumber
ofspeciescanbesmall(Thorn,Bässler,Bernhardt-Römermann,etal.,
2016).Forinstance, post-stormsalvagelogginginMinnesota greatly
diminishedbirdcommunities,whilefewerdifferencesinthetreecover
weredetected(Lain,Haney,Burris,&Burton,2008).However,previ-
ousattemptstosummarizeknowledgeontheeffectsofsalvagelog-
gingonbiodiversityhavefocusedmainlyonsalvageloggingofburned
forests(Lindenmayer&Noss,2006;Lindenmayeretal.,2008;McIver
&Starr,2000;Thorn,Bässler,Svoboda,&Müller,2016),andaquan-
titativeassessment ofsalvagelogging impactsonbiodiversityisstill
lacking,particularlyacrossdifferenttaxonomicgroupsandinresponse
todifferenttypesofdisturbances(Figure1).
FIGURE1 Salvagelogging(SL)iscommonlyappliedafterwildfires,windstormsorinsectoutbreaks,andleadstochangesinhabitatsand
communitycompositionsinvariousforestecosystemsaroundtheworld(ashighlightedbythestudiesillustratedinpanels(a–l).Studylocations
(colouredcircles)representstudysitesthatcontributeddatatoourmeta-analysis.Photographsbyauthors.[Colourfigurecanbeviewedat
wileyonlinelibrary.com]
282 
|
    
Journal of Applied Ecology
THORN eT al.
Here,wereviewedthescientificliteratureandcompiledexisting
data to quantify the effectsof salvage logging after wildfire,wind-
storms and insect outbreaks on (1) species numbers via a meta-
analysisof238individualcomparisonsofsalvaged/unsalvagedareas;
and (2) community composition, based on a subset of134 original
speciesabundancematrices.Wealsotestedthehypothesisthat the
impactsofsalvagelogging aremorepronouncedfor saproxylicspe-
ciesgroups thanfor non-saproxylicgroupsregardingthenumber of
speciesandcommunitycompositionwithindifferenttypesofnatural
disturbances.
2 | MATERIALS AND METHODS
2.1 | Literature search
We followed guidelines for systematic literature reviews (Pullin &
Stewart,2006) tocompile comparisonsofspeciesrichnessbetween
salvagedandunsalvagedfire-, wind- or insect-affectedforests.We
screenedtheelectronicdatabasesWebofScience,ScopusandGoogle
Scholaron15 February 2016 byusingthe simplified search strings
[salvageloggingORpost$disturbance*ORsalvaging]and[forest$OR
vegetationORdisturbanceORecosystem].Fromthis bodyoflitera-
ture(>2,000articles),weretainedonlyfield-basedstudiesafterhav-
ingscreenedthetitleandabstract.Modellingstudieswereexcluded.
Wealsoaddedrelevantpapersfromreferencelistsinpublishedstud-
ies. We restricted studies to those providing comparisons between
completely salvage logged plots and completely unsalvaged control
plotsaccordingtotheinformationgivenintherespectivestudies.This
meansthatonsalvageloggedplots,morethan75%ofthetreeswere
affectedbynatural disturbanceandthen completelysalvage logged
withoutfurthertreatment suchastree plantingorlegacy retention.
Lowerintensitiesofnaturaldisturbanceshavebeenrarelytargetedby
scientificstudies.Salvageloggingoperationsthusresembledconven-
tionalclear-cutting.Unsalvaged control plots hadtobeaffected by
thesamenaturaldisturbanceeventbutwithoutanyhumaninterven-
tion.Salvageloggedplotshadtobeofsimilarsize,surveyedwiththe
samefieldmethodsduringthesamestudyperiodandwiththesame
samplingeffortasunsalvagedcontrolplots.
Toexaminewhetherpseudo-replication(i.e.allplotsnestedwithin
onearea)mightbiasthe resultsofour meta-analysis(Ramage etal.,
2013), we carefullyselected the studies according to their designs,
andweusedstatisticsthataccountforpseudo-replication(seebelow).
Thespatialarrangementofplotsinallstudieswascheckedbasedon
methoddescriptionsand/ororiginalgeographiccoordinates.Wecon-
tactedauthorstoprovidedataortoclarifytheirstudydesignswhere
necessary(seeDatasourcessection).Studieswithouttrue replicates
(e.g.allsalvagedplotsnestedandseparatedfromunsalvagedcontrol
plots) were excluded from the analysis to ensure valid effect sizes
(Halme etal., 2010). Studies using the same set offield plots and/
orthesame studyarea(e.g.Samcheok Forest,Korea)wereidentified
andnestedinallsubsequentstatisticalanalysestocontrolforpseudo-
replicationwithinstudyareas.Wealsoexcludedstudiesthatsampled
forests undergoing multiple types of disturbances. Salvage logging
hadtobe conducted immediately(<12months)afternaturaldistur-
bancetookplace.Meannumberofspeciesandstandarddeviationval-
uespersamplingunitwereextractedfrompublishedtextandtables,
or from figures using PLOT DIGITIZER 2.6.2. (www.plotdigitizer.
sourceforge.net). Last, we compiled data on covariates by extract-
ing information on the disturbance type and the time since distur-
bance, and the time since subsequent salvage logging. In addition,
we compiled original species abundance matrices that underpinned
the published papers, which allowed us to explore the effects of
salvageloggingoncommunitycomposition.
2.2 | Meta- analysis
Allanalyseswereconductedinr3.3.1(www.r-project.org).Priortosta-
tisticalanalysis,specieswereassignedtooneofthefollowingtaxonomic
groupsandtoassociationwithdeadwood(i.e.saproxylic/non-saproxylic)
basedonthedescriptioninthearticles.Thesewhere:amphibians,ants,
bats, bees and wasps, birds, carabids, epigeal lichens, epigeal mosses,
epigealspiders,epixyliclichens,epixylicmosses,harvestmen,hoverflies,
landsnails,nocturnalmoths,non-saproxylicbeetles(excludingcarabids),
reptiles,rodents,saproxylic beetles,scuttleflies, springtails, truebugs,
vascular plants and wood-inhabiting fungi. For the analysis compar-
ingresponses ofsaproxylicand non-saproxylicspecies groups,wede-
finedsaproxylicbeetles,wood-inhabitingfungi,andepixyliclichensand
mossesassaproxylicandallotherspeciesgroupsasnon-saproxylic.
Forcomparing numbersofspecies betweensalvagedand unsal-
vagednaturallydisturbedplotsdescribedin thepublished literature,
weusedHedges’d,whichaccountsfordifferencesinsamplingeffort
across studies and for small sample sizes (Hedges & Olkin, 1985).
PositivevaluesofHedges’dindicatehighernumbersofspeciesinsal-
vageloggedplots,whereasnegativevaluesindicatealossinnumbers
ofspeciesattributedtosalvagelogging(i.e.highernumbersofspecies
inunsalvagednaturallydisturbedplots).Meanabsoluteeffectsizesof
d=0.2indicateasmalleffect,d=0.5amoderateeffect,andd = 0.8 a
largeeffect(Koricheva,Gurevitch,&Mengersen,2013).
We used multi-level linear mixed-effectsmodels, provided by
the r function “rma.mv” in the “metafor” package (Viechtbauer,
2010),totest theeffectoftaxonomicgroup asacategorical pre-
dictor and year since disturbance as a numerical covariate on
Hedges’dastheresponsevariable.Hedges’dvalueswereweighted
bythecorrespondingsamplingvariancewithinthestatisticalmodel.
Furthermore,thestudysitewasincludedasarandomeffectinthe
model (i.e. moderator term) to control for unmeasured site spec-
ificities and repeated measurements (pseudo-replication) within
onestudysite.Thismeansthatmultipledatapointsperstudywere
possibleifstudiesexaminedmultipletaxonomicgroupsorifstudies
lastedformorethan1year.Wesubtracted theinterceptfromthe
effectsizes (byincluding “−1”in themodelformula)to evaluateif
observedHedges’ddifferedsignificantlyfrom zero(fordetails and
modelformulaseeTableS1).
Toevaluate theeffectsof salvagelogging on saproxylicvs.non-
saproxylic groups, we fitted a second model with Hedges’d as re-
sponsevariable.Weagainincludedtheyearafternaturaldisturbance
    
|
 283
Journal of Applied Ecology
THORN eT al.
andsubsequentlogging as a numericalpredictorvariable andstudy
siteas wellastaxonomicgroupasrandomfactors. Furthermore,we
addedtheinteractionofdeadwooddependence(i.e.saproxylic/non-
saproxylic)withnaturaldisturbancetypeaspredictorstotestwhether
theeffectofsalvageloggingonthe numberofspecies insaproxylic
andnon-saproxylicgroups differedwithin different typesofnatural
disturbances. Weimplemented a simultaneous inference procedure
tocomparesaproxylicandnon-saproxylicspeciesgroupswithineach
disturbancetype(Hothorn, Bretz,& Westfall,2008). Thisprocedure
allowedus totest ifresponsesofsaproxylicandnon-saproxylictaxa
varyamong fire-,wind-and insect-disturbedforests(fordetails and
model formula see TableS2). Last, we conducted funnel plots by
meansofthefunction“funnel”fromthe“metafor”packagetoassess
publicationbias(Korichevaetal.,2013;FigureS1).
2.3 | Analysis of community composition
Based on the reviewed literature, we compiled original species
abundance matrices to quantify changes in community composi-
tioninducedby salvage logging.Quantifyingchangesin community
compositionamong largeheterogeneousdatasetsischallenging and
requires statistical methods able to deal with issues such as unbal-
ancedsamplingeffortandwhichgenerateastandardizedeffect size
thatis comparableamong differentspecies groupsand surveytech-
niques.Thus,weusedpermutationalmultivariateanalysisofvariance
usingdistance matrices(Legendre&Anderson,1999),performedby
meansofthefunction“adonis”inthepackage“vegan”(Oksanenetal.,
2016).ThisanalysisprovidesapseudoF-value,basedon999permu-
tations,thatquantifies thedeviancefrom thenull-hypothesis,while
simultaneouslyaccounting forimbalanced studydesigns (McArdle&
Anderson,2001).Consequently,largevaluesofFcorrespondtolarge
changesin communitycompositioninducedbysalvagelogging.This
F-value represents the standardized difference between communi-
tiesinsalvageloggedandunsalvagednaturallydisturbedplotswithin
onespeciesabundancematrix(e.g. differences in bird communities
6yearsafterwildfire andsalvagelogging inOregon).We rigorously
restrictedthisanalysistothoseabundancematricesthatyieldedvalid
pseudoF-values overthe courseof permutations;that is,those ma-
triceswhichgeneratedlessthan99realpermutationswereexcluded.
Theserestrictions resultedin atotal numberof 134matrices, which
suppliedF-valuesfortheanalysisoutlinedbelow.
Totestifsalvageloggingchangedcommunitycompositionindif-
ferenttaxonomicgroups,wemodelledpseudoF-valuesinlinearmixed
modelsprovidedbythefunction“lmer”inthe“lme4”packageassum-
ingaGaussianerrordistribution(Bolkeretal.,2009).Weincludedthe
taxonomicgroupasacategoricalpredictorand theyearsincedistur-
banceas a numericalcovariate. Furthermore,weincludedthe study
siteasarandomeffecttocontrolforpossibledifferencesamongstudy
sitesand repeatedmeasurementswithin onestudysite.Weomitted
theinterceptfromthemodelformulatodetermineifF-valuesdiffered
significantlyfromzero.Thus,significant changesin communitycom-
positionofataxonomicgroupduetosalvageloggingwereindicated
by F-valuessignificantlylargerthanzero(fordetailsandmodelformula
seeTableS3).
AsfortheanalysisofHedges’d,asecondmodelwasfittedtotest
whether the effects of salvage logging on community composition
differed between saproxylic and non-saproxylic species groups in
differenttypesofdisturbances.Therefore,weincludedtheyearafter
disturbance and the interaction of saproxylic/non-saproxylic with
disturbancetypeaspredictors.Taxonomicgroupandstudysitewere
includedasrandomfactorsinthismodel.Weimplementedasimulta-
neousinferenceproceduretocomparesaproxylicandnon-saproxylic
species groups within each disturbance type (for details and model
formulaseeTableS4).
3 | RESULTS
Our meta-analysis showed that the effects of salvage logging have
been studied primarily for birds, vascular plants and carabids, par-
ticularly in burned forests. Studies were conducted primarily in
NorthAmerica andEurope, butlackingintropicalregions(Figure1).
Furthermore,therewasaclearlackofstudiesinvestigatingsaproxylic
taxa.Ofthe238compileddatapoints,170coveredaperiodof5years
or less after disturbance, with studies addressing the long-term ef-
fectsofsalvageloggingbeingrare(Figure2).Onlyonestudy(Hutto&
Gallo,2006)wasavailablethatprovideddataontheeffectsofsalvage
loggingformorethan20yearsafterdisturbances(Figure2).
Halfofthe individual comparisonsproducedvalues ofHedges’d
lowerthanzero,indicatinghighernumbers ofspeciesinnon-salvage
loggedareasthan salvageloggedareas (Figure3).Wefoundsignifi-
cantly lowerspecies numbers of epigeal and epixylic mosses, birds,
wood-inhabiting fungi, saproxylic beetles, springtails and epixylic
aswellas epigeallichensin salvage loggedareas comparedtonon-
salvagelogged areas(Figure3a).Incontrast,thenumbers ofspecies
of land snails, epigeal spiders and carabids were higher in salvage
logged areas than in unsalvaged areas (Figure3a). Thirteen of the
24 taxonomic groups, includingvascular plants, exhibited no signif-
icantresponsein numbers ofspeciestosalvage logging (Figure3a).
The numbers of species of saproxylic taxa significantly decreased
compared to non-saproxylic taxa in storm-affected and burned for-
ests(Figure4a).Thenegativeeffectofsalvageloggingonnumberof
speciesincreasedwithtimeelapsedsincedisturbanceandsubsequent
salvagelogging,althoughlong-termdataonsalvageloggingarescarce.
Salvageloggingwas associatedwithsignificant changes incom-
munitycompositionin 7 of 17taxonomicgroups(Figure3b).These
seven groups were epigeal spiders, carabids, vascular plants, birds,
wood-inhabiting fungi, saproxylic beetles and epixylic lichens
(Figure3b). Time elapsed since disturbance had no effect on the
strength of logging-induced changes to community composition
(TableS3).Furthermore,logging-inducedchangesincommunitycom-
positionwerestrongerforsaproxylictaxathanfornon-saproxylictaxa
in storm-disturbed forests. However, data availabilitywas scarce in
insect-affectedforestandlackinginburnedforests(Figure4b).
284 
|
    
Journal of Applied Ecology
THORN eT al.
4 | DISCUSSION
Our study revealed that salvage logging can result in significant
changes in species numbers and/or in altered community composi-
tion.Negativeeffects were particularlystrongfor taxa thatdepend
ondeadwood. Incontrast,thenumbers ofspeciesof taxa thatare
commonly characterized by species-rich communities in open habi-
tats, such as carabids and epigeal spiders, responded positively to
salvage logging. Despite positive effects of salvage logging on taxa
associated with open habitats, strong negative effects on saprox-
ylicgroupscall forsubstantialchanges inhowdisturbed forestsare
routinelymanaged.
Naturallydisturbedforestsarecharacterizedbylargevolumesof
deadwoodwithhighstructuraldiversity(Swansonetal.,2011).Incon-
trast,salvageloggingtypicallyreducestheamountandheterogeneity
of deadwood by removing tree trunks (Keyser, Smith, & Shepperd,
2009;Priewasser,Brang,Bachofen,Bugmann,&Wohlgemuth,2013).
Notsurprisingly, salvageloggingreduced thenumbersof speciesof
saproxylicgroups (Figures3and4). However,not onlyadecreasing
deadwoodamountbutlikewisealogging-inducedshiftindeadwood
qualitymay haveadditionalimpacts onsaproxylictaxa. Salvagelog-
gingnotonlyreducestheamountoflargetreetrunksbutalsoalters
characteristicconditions,such as decaystages or diameterdistribu-
tions,oftheremainingdeadwood(Waldronetal.,2013).Forinstance,
branchescutduringpost-stormloggingremainonthegroundbutare
overgrownbygroundvegetation.Theresultingshiftin microclimatic
conditionsthenmodifiesresourcequality,leadingtoalossofsaprox-
ylicbeetles thatdependon sun-exposed, drybranches (Thornetal.,
2014).
It is important to note that losses of saproxylic species can be
presentalso within taxonomicgroups thatdisplayedno responsein
theiroverallspeciesnumbers(Figure3a).Forinstance,birds(themost
studiedvertebrategroup)wereslightlynegativelyaffectedbysalvage
logging(Figure3a),despitefewspeciesbeing directlydependent on
dead wood. Nevertheless, several forest-dwelling bird species de-
pend on snags, cavities or natural regenerationin post-disturbance
forest stands. The removal of such legacies bysalvage logging can
causealossofassociated bird speciesandconsequentlyan overall
lowernumber ofbirdspecies in loggedareas(Hutto &Gallo,2006;
Werner,Müller,Heurich,&Thorn,2015).Althoughtheoverallnumber
ofbirdspeciesdecreasedlessstronglythan,forinstance,thenumber
ofsaproxylic beetlespecies(Figure3a),birdspecies thatdependon
post-disturbancehabitatcharacteristicsareoftenofhighconservation
interest.Forinstance,salvageloggingafterhighseveritywildfirescan
leadtolowersite occupanciesofNorthernSpottedOwls(Strix occi-
dentalis caurina)onlogged than onunloggedsites in Oregon(Clark,
Anthony,&Andrews,2013).
Ourstudyrevealedthatsalvageloggingcausedsignificantchanges
incommunitycomposition forsevenspeciesgroups(Figure3b),with
saproxylic species groups being affected most strongly (Figure4b).
Suchalterationsin community compositionmightreflect the estab-
lishmentofopen-habitatspeciesand/orasimultaneouslossofforest
specialists.Forinstance, salvagelogging canincreasetheabundance
ofopen-habitatcarabidbeetles(Koivula&Spence,2006)orpromote
the establishment of non-forest vegetation (Stuartetal., 1993; Van
Nieuwstadt,Sheil, &Kartawinata,2001).Hence,speciesgroupsthat
are commonly characterized by species-rich communities in open
habitats,suchascarabidsorepigealspiders,candisplayanoverallin-
creaseinnumbersofspeciesinresponsetosalvagelogging(Figure3a).
Likewise, salvagelogging can cause an increase in herb- and grass-
feedingmothspeciesbutadecreaseinsaproxylicanddetritus-feeding
mothspecies (Thornetal., 2015).Such contrastingresponseswithin
andbetweenspeciesgroupscan masktheoverallimpactofsalvage
logging on biodiversity in coarse-scale analyses (i.e. Thom & Seidl,
2016).Numerousspecies ofhighconservationinterest, suchasthe
Red-cockadedWoodpecker(Leuconotopicus borealis),dependondead
woodin burnedforests(Conner,Rudolph,& Walters,2001).The re-
sultsofourstudythereforeindicatethat thebiodiversityofsaprox-
ylictaxacouldbeenhanced bya modifiedmanagementofnaturally
disturbedforests.Incontrast,populationsofspeciesassociatedwith
open habitats, such as the Sharp-tailed Grouse (Tympanuchus pha-
sianellus)inNorthAmerica,maypersistorevenincreaseinthelarger
remaining area subject to unmodified management, that is, salvage
logging(Radeloff,Mladenoff,&Boyce,2000).
Thetwomajor incentivesfor salvageloggingare toreduceeco-
nomic losses caused by a naturaldisturbance and to omit mass re-
productionand spreadofinsectpests thatdevelop intrees killedor
weakenedbya preceding naturaldisturbance.Forinstance,salvage
logging of storm-felled Norway spruce (Picea abies) decreased new
infestationsofnearbytreesbytheEuropeansprucebarkbeetle (Ips
FIGURE2 Distributionofstudies
investigatingtheeffectsofsalvagelogging
onbiodiversityafterwildfire,windstorms
andinsectoutbreaksaccordingtotheyears
afterdisturbance.[Colourfigurecanbe
viewedatwileyonlinelibrary.com]
    
|
 285
Journal of Applied Ecology
THORN eT al.
typographus) at a landscape scale (Stadelmann, Bugmann, Meier,
Wermelinger,&Bigler,2013).Salvageloggingisthereforethepredom-
inantresponsetonaturaldisturbancesinwoodproductionforests,but
pestcontrolis regularlyusedtojustify salvage logginginprotected
areas.Forinstance,theBiałowieżaForestNationalParkontheborder
betweenPolandandBelarus,whichis thelast primevallowland for-
estinEurope,iscurrentlyobligedtosalvageloggingofareasaffected
by I. typographusonattempttoavoidfurtherinfestations(Chylarecki
&Selva,2016). Suchan approachtodisturbed forestsneglects that
regionalfactors,suchassummerdrought,canpromoteoutbreaksof
I. typographus more strongly than local standvariables (Seidl etal.,
2015).Furthermore,salvageloggedtimberis usuallyofsubstantially
lowereconomicvaluethannormallyharvestedtimberduetoarapid
colonization by wood-inhabiting fungi and to the fact that distur-
bancesaffect forestsofanyage,sothat generalizedsalvagelogging
operationsnecessarilyincludeyoungerstands thatotherwisewould
notbeharvested(Leverkus,Puerta-Pinero,Guzmán-Álvarez,Navarro,
& Castro, 2012). Our results demonstrate that salvage logging has
strongandnegative effects on manytaxonomic groups, particularly
thoseassociatedwith deadwood,and thatitisthus notconsistent
with biodiversity conservation goals.Along with questionable eco-
nomicoutputs andpestreducingeffects,weargue thatsalvagelog-
gingshouldbeexcludedfromprotectedareassuchasnationalparks.
The incidence of stand-replacing natural disturbances remains
spatially and temporally unpredictable (Berry etal., 2015), creating
inherentuncertaintyaboutappropriatemanagementofnaturallydis-
turbedforests.Hence,managementplansneedtobejointlydeveloped
with(andconfirmedby)stakeholders,scientistsandnaturalresource
managers before the nextdisturban ceoccurs (Lindenmayer, Likens,
& Franklin, 2010). Such management plans could,for instance, en-
compassan aprioriidentificationofsalvageloggingexclusionzones
basedonecologicaldata(e.g.Nappietal.,2011).Forestmanagersalso
may targetthe preservation of structural key attributes in naturally
disturbed forests, including snags or tipped uproot plates of wind-
throwntrees(Hutto,2006).Retentionoftreesduringgreen-treehar-
vestshas becomeanincreasingly commontool aroundtheglobe to
helpconserveforestbiodiversity(Fedrowitzetal.,2014;Gustafsson
etal.,2012;Mori&Kitagawa,2014).Toobtainsomeeconomicreturn
whileretainingdeadwood-dependenttaxa,werecommendasimple
expansionofthe green-treeretentionapproach toincludenaturally
disturbedforests.Retentionapproachesinnaturallydisturbedforests
couldbeexpectedtobelesscostlythaningreen-treeharvestdueto
theloweropportunitycostofnotharvestingdisturbance-killedtrees.
Approximately70%ofthestudieswecompiledspannedlessthan
5years; studies addressing the long-term effects of salvage logging
arerare(Figure2). However,deadwood, and particularlysnags, are
long-lastingkeybiologicallegacies,andtheirlosscanhavelong-lasting
effectson biodiversity(Hutto,2006). Hence,future researchshould
target the long-term effects of salvage logging after natural distur-
bances.Therearealsotaxonomicbiasesinexistingstudiesinvestigating
FIGURE3 (a)Estimatedresponse
ofHedges’dbasedon238individual
comparisonsofspeciesnumbersin
salvageloggedandunsalvagedforests
affectedbynaturaldisturbances.Higher
speciesnumbersinsalvageloggedareas
correspondtopositiveHedges’d,whereas
negativevaluesindicatelowerspecies
numbersinsalvageloggedareas.(b)Pseudo
F-valuesofpermutationalmultivariate
analysisofvariancebasedon134individual
speciesabundancematrices.Largerpseudo
F-valuescorrespondtolargerchangesin
communitycompositioninducedbysalvage
logging.Asterisksindicatesignificant
responses(seeTablesS1andS2for
statisticaldetails).Forillustrativepurposes,
greydots(andthegreylinejoiningthemfor
emphasis)representthemeaneffectsizein
eachtaxonomicgroup.[Colourfigurecan
beviewedatwileyonlinelibrary.com]
286 
|
    
Journal of Applied Ecology
THORN eT al.
theeffectsofsalvageloggingafternaturaldisturbances.Inparticular,
saproxylicgroupssuchaswood-inhabitingfungihavebeenunderrep-
resentedin empirical studiesdespitetheir high diversityand impor-
tance for ecosystem functioning. Future research should therefore
targetparticularlysaproxylicspeciesgroups.Incontrast,othergroups
havebeenrelativelywellstudiedinonedisturbancetype(e.g.birdsin
burnedforests),but lessinothers,and studies wereconducted pri-
marilyin NorthAmerica, Europeand Asia,butlacking intropicalre-
gions(Figure1).However,differenttypesofnatural disturbancesin
differentpartsoftheworldcanactatverydifferentspatialscalesand
mayrequiredifferentretentionapproaches(Kulakowskietal.,2016).
Furthermore,coniferousforestsoftheNorthernHemisphere—incon-
trasttotropicalforests—arenaturallypronetolarge-scalenaturaldis-
turbances(Lindenmayeretal.,2008),whereasdisturbancesintropical
forestsmostlyhave anthropogeniccausesassociatedwithlong-term
land-use change (e.g. fire to open space for livestock grazing and
agriculture; Peres,Barlow, & Laurance, 2006). Nevertheless, natural
disturbancessuchaswindstormsaffecttropicalforestsaswellastem-
perateforests,andsalvageloggingeffectson tropicalforestsshould
betargetedinfutureresearch(e.g.Lawton&Putz,1988).
In conclusion, these data from a wide range of studies demon-
strate that salvage logging has a range of effects on species num-
bers and community composition ofvarious taxonomic groups,with
important negative consequences for several groups, especially
saproxylic ones. Whilecurrent policies for enhancing biodiversity and
ecosystemservices,suchasgreen-treeretention(e.g.,Gustafssonetal.,
2012), focus mainly on forestssubjected to traditional logging opera-
tions,suchpolicies are largelyabsent fromnaturallydisturbed forests.
Wethereforecallforanexpansionofthegreen-treeretentionapproach
toincludenaturallydisturbedforestsbyleavingsubstantialamountsof
deadwoodonsitetoreducetheimpactofsalvageloggingonbiodiversity.
ACKNOWLEDGEMENTS
Wethanknumerouscontributorsforclarifyingtheirstudiesandthree
anonymousreviewersfortheircommentsonanearlierversionofthis
manuscript.S.T.andS.S.werefundedbytheGermanEnvironmental
Foundation. R.S. and D.T. acknowledge support from the Austrian
ScienceFund(FWF,STARTgrantY895-B25).J.C.acknowledgessup-
portfromgrantP12-RNM-2705andA.L.fromSpanishMINECO(FJCI-
2015-23687).D.B.L.wassupportedbyanARCLaureateFellowship.
AUTHORS' CONTRIBUTIONS
S.T.andJ.M.initiatedthestudy.S.T.analysedandinterpretedthedata
andwrotethefirstdraftofthepaper.TheauthorsnamedfromS.T.to
J.M.arelistedalphabetically,astheycontributedequallyingathering
fielddata,providingcorrectionstosubsequentmanuscriptdraftsand
discussingideas.
DATA ACCESSIBILITY
All data are from previously published articles, see “Data sources”.
Datafromthesearticlescan bemadeavailable uponreasonable re-
questtooriginaldataowners.Alistofdatasourcesusedinthestudy
isprovidedintheDataSourcessection.
REFERENCES
Berry,L.E.,Driscoll,D.A.,Stein,J.A.,Blanchard,W.,Banks,S.C.,Bradstock,
R.A.,&Lindenmayer,D.B.(2015).Identifyingthelocationoffireref-
ugesinwetforestecosystems.Ecological Applications,25,2337–2348.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.
B.(2016).Disturbancegradientshowsloggingaffectsplantfunctional
groupsmorethanfire.Ecological Applications,26,2280–2301.
FIGURE4 (a)Estimatedresponseandcorrespondingstandard
errorofsaproxylicandnon-saproxylictaxatosalvageloggingbased
on238individualcomparisons(basedonHedges’d)ofnumbers
ofspeciesinburned,storm-andinsect-affectedforests.Negative
estimatescorrespondtoadecreaseinnumbersofspeciesby
salvagelogging(TableS3).(b)Estimatedresponseandcorresponding
standarderrorofcommunitycompositionofsaproxylicand
non-saproxylictaxabasedonpseudoF-valuesofpermutational
multivariateanalysisofvarianceobtainedfrom134individual
speciesabundancematrices.IncreasingF-valuescorrespondto
largerchangesincommunitycompositioninducedbysalvagelogging
(TableS4).Note,insufficientdata(DD)wereavailableforsaproxylic
taxainburnedforests.Asterisksabovedotsindicatesignificant
differencesintheresponsesbetweensaproxylicandnon-saproxylic
taxawithineachdisturbancetype.Numberofunderlyingdatapoints
isindicatedbythesizeofthecircles,with10and100sizeshownfor
reference.[Colourfigurecanbeviewedatwileyonlinelibrary.com]
    
|
 287
Journal of Applied Ecology
THORN eT al.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens,M. H. H.,&White,J.-S.S. (2009). Generalizedlinear mixed
models:Apracticalguideforecologyandevolution.Trends in Ecology &
Evolution,24,127–135.
Castro, J., Moreno-Rueda, G., & Hódar, J. (2010). Experimental test of
postfire management in pine forests:Impact of salvage logging ver-
suspartialcutting and noninterventiononbird-species assemblages.
Conservation Biology,24,810–819.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporal
changes in the breeding bird community caused by post-fire treat-
mentsaftertheSamcheokforestfireinKorea.Landscape and Ecological
Engineering,10,203–214.
Chylarecki,P.,&Selva, N.(2016).Ancient forest:Spareit fromclearance.
Nature,530,419.
Clark,D.A.,Anthony,R.G.,&Andrews,L.S.(2013).Relationshipbetween
wildfire,salvagelogging,andoccupancyofnestingterritoriesbynorth-
ernspottedowls.The Journal of Wildlife Management,77,672–688.
Cobb,T.P.,Langor,D. W.,&Spence,J.R. (2007).Biodiversityandmulti-
pledisturbances: Borealforestgroundbeetle(Coleoptera:Carabidae)
responses to wildfire, harvesting,and herbicide. Canadian Journal of
Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J. L.,Jacobs,J.M.,Koivula,M.J.,Spence,J.R., &
Langor,D.W.(2011).Effectsofpostfiresalvageloggingondeadwood-
associatedbeetles.Conservation Biology,25,94–104.
Conner, R., Rudolph, D. C., & Walters, J. R. (2001). The red-cockated
woodpecker surviving in a fire-maintained ecosystem. Austin, TX: The
UniversityofTexasPress.
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B.,
Rosenvald, R., … Gustafsson, L. (2014). Can retention forestry help
conservebiodiversity?Ameta-analysis.Journal of Applied Ecology,51,
1669–1679.
Franklin,J.F.,Lindenmayer,D.,Macmahon,J.A.,Mckee,A.,Perry,D.A.,
Waide,R.,&Foster,D. (2000).Threadsofcontinuity:Ecosystemdis-
turbances, biological legacies and ecosystem recovery. Conservation
Biology in Practice,1,8–16.
González, M. E., & Veblen, T. T. (2007). Wildfire in Araucaria araucana
forests and ecological considerationsabout salvage logging in areas
recentlyburned.Revista Chilena de Historia Natural,80,243–253.
Gustafsson,L., Baker,S. C.,Bauhus, J.,Beese, W.J.,Brodie,A.,Kouki,J.,
…Franklin,J.F.(2012).Retentionforestrytomaintain multifunctional
forests:Aworldperspective.BioScience,62,633–645.
Halme, P., Toivanen,T., Honkanen,M., Kotiaho, J. S., Mönkkönen, M., &
Timonen, J. (2010). Flawed meta-analysis of biodiversity effects of
forestmanagement.Conservation Biology,24,1154–1156.
Hedges,L.V.,&Olkin, I.(1985).Statistical methods for meta-analysis. San
Diego,CA:AcademicPress.
Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinferenceingen-
eralparametricmodels.Biometrical Journal,50,346–363.
Hutto,R.L. (2006). Towardmeaningfulsnag-management guidelines for
postfiresalvagelogginginNorthAmericanconiferforests.Conservation
Biology,20,984–993.
Hutto,R.L.,&Gallo,S.M.(2006).Theeffectsofpostfiresalvageloggingon
cavity-nestingbirds.Condor,108,817–831.
Inbar,M.,Wittenberg,L.,&Tamir,M.(1997).Soilerosionandforestryman-
agementafterwildfireinamediterraneanwoodland,Mt.Carmel,Israel.
International Journal of Wildland Fire,7,285–294.
Keyser,T.L.,Smith,F.W.,&Shepperd,W.D.(2009).Short-termimpactof
post-firesalvageloggingonregeneration,hazardousfuelaccumulation,
andunderstoreydevelopmentinponderosa pineforestsoftheBlack
Hills,SD,USA.International Journal of Wildland Fire,18,451–458.
Koivula, M., & Spence,J. R. (2006). Effects of post-fire salvage logging
on boreal mixed-wood ground beetle assemblages (Coleoptera,
Carabidae).Forest Ecology and Management,236,102–112.
Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of
meta-analysis in ecology and evolution(edsJ.Koricheva,J.Gurevitch&
K.Mengersen).Princeton,NJ:PrincetonUniversityPress.
Kulakowski,D.,Seidl,R.,Holeksa,J.,Kuuluvainen,T.,Nagel,T.A.,Panayotov,
M.,… Bebi,P.(2016).Awalkon thewild side:Disturbancedynamics
andtheconservationandmanagement ofEuropean mountainforest
ecosystems.Forest Ecology and Management,388,120–131.
Kurz,W.,Dymond,C.C.,Stinson,G.,Rampley,G.J.,Neilson,E.T.,Carroll,
A.L., …Safranyik,L.(2008).Mountainpinebeetle andforest carbon
feedbacktoclimatechange.Nature,452,987–990.
Lain,E.J.,Haney,A.,Burris,J. M.,&Burton,J.(2008).Responseofvege-
tationandbirds tosevere winddisturbance and salvagelogging ina
southernborealforest.Forest Ecology and Management,256,863–871.
Lawton,R.,&Putz,F.E.(1988).Naturaldisturbanceandgap-phaseregen-
erationinawind-exposedtropicalcloudforest.Ecology,69,764–777.
Legendre,P.,&Anderson,M.J.(1999).Distance-basedredundancyanaly-
sis:Testingmultispeciesresponsesinmultifactorialecologicalexperi-
ments.Ecological Monographs,69,1–24.
Leverkus,A. B., Puerta-Pinero, C., Guzmán-Álvarez, J. R., Navarro,J., &
Castro,J.(2012). Post-fire salvageloggingincreasesrestorationcosts
inaMediterraneanmountainecosystem.New Forests,43,601–613.
Lindenmayer,D.,Burton,P.J.,&Franklin,J.F.(2008).Salvage logging and its
ecological consequences.Washington:IslandPress.
Lindenmayer,D.B.,Foster,D.R., Franklin,J.F.,Hunter,M.L.,Noss,R. F.,
Schmiegelow,F.A.,&Perry,D.(2004).Salvageharvestingpoliciesafter
naturaldisturbance.Science,303,1303.
Lindenmayer,D.B.,Likens,G.E.,& Franklin,J.F.(2010).Rapidresponses
tofacilitateecologicaldiscoveriesfrommajordisturbances.Frontiers in
Ecology and the Environment,8,527–532.
Lindenmayer, D. B., & Noss, R. F. (2006). Salvage logging, ecosystem
processes, and biodiversity conservation. Conservation Biology, 20,
946–948.
Lindenmayer,D.B.,&Ough,K.(2007).Salvagelogginginthemontaneash
eucalyptforestsoftheCentralHighlands ofVictoriaand itspotential
impactsonbiodiversity.Conservation Biology,20,1005–1015.
Lindenmayer, D.,Thorn, S., & Banks, S. (2017). Please do not disturb
ecosystemsfurther.Nature Ecology and Evolution,1,1–8.
Macdonald,S.E.(2007).Effectsofpartialpost-firesalvageharvestingon
vegetation communities in the boreal mixedwood forest region of
northeastern Alberta, Canada. Forest Ecology and Management, 239,
21–31.
McArdle,B. H., &Anderson,M. J.(2001).Fitting multivariate modelsto
communitydata:Acommenton distance-basedredundancyanalysis.
Ecology,82,290–297.
McIver, J. D., & Starr, L. (2000). Environmental effects of postfire log-
ging: Literature review and annotated bibliography. Portland, OR: U.S.
DepartmentofAgriculture,ForestService,PacificNorthwestResearch
Station.
Mori,A.S.,&Kitagawa,R.(2014).Retentionforestryasamajorparadigm
forsafeguardingforestbiodiversityinproductivelandscapes:Aglobal
meta-analysis.Biological Conservation,175,65–73.
Morimoto,J.,Morimoto,M.,&Nakamura,F.(2011).Initialvegetationre-
covery following a blowdown of a conifer plantation in monsoonal
EastAsia:Impactsoflegacyretention,salvaging,sitepreparation,and
weeding.Forest Ecology and Management,261,1353–1361.
Nappi,A.,&Drapeau,P.(2009).Reproductivesuccessoftheblack-backed
woodpecker (Picoides arcticus) in burned boreal forests: Are burns
sourcehabitats?Biological Conservation,142,1381–1391.
Nappi,A.,Stéphane,D.,Bujold,F.,Chabot,M.,Dumont,M.-C.,Duval,J.,…
Bergeron,I.(2011).Harvestinginburnedforests–Issuesandorienta-
tionsforecosystem-basedmanagement.MinistèredesRessourcesna-
turellesetdelaFaune,Directiondel’environnementetdelaprotection
desforêts,Québec.
288 
|
    
Journal of Applied Ecology
THORN eT al.
Nikiforuk,A.(2011).Empire of the beetle: How human folly and a tiny bug
are killing North America’s great forests,FirstEdit.Vancouver,Canada:
DavidSuzukiFoundationSeries.
Norvez, O., Hébert, C., Bélanger, L., Hebert, C., & Belanger, L. (2013).
Impact of salvagelogging on stand structure and beetle diversity in
borealbalsamfir forest,20years afteraspruce budworm outbreak.
Forest Ecology and Management,302,122–132.
Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,R.
B.,…Wagner,H.(2016).vegan:CommunityEcologyPackage.Retrieved
fromhttps://cran.r-project.org/package=vegan
Peres,C.A.,Barlow,J.,&Laurance,W.F.(2006).Detectinganthropogenic
disturbance in tropical forests. Trends in Ecology and Evolution, 21,
227–229.
Phillips,I. D.,Cobb,T.P.,Spence,J. R.,&Brigham, R.M. (2006).Salvage
logging,edgeeffects, andcarabidbeetles: Connectionstoconserva-
tionandsustainableforestmanagement.Environmental Entomology,35,
950–957.
Priewasser, K., Brang, P., Bachofen, H., Bugmann, H., & Wohlgemuth, T.
(2013).Impactsofsalvage-loggingonthestatusofdeadwoodafterwind-
throwinSwissforests.European Journal of Forest Research,132,231–240.
Pullin,A. S.,&Stewart, G.B.(2006). Guidelinesforsystematicreviewin
conservation and environmental management. Conservation Biology,
20,1647–1656.
Radeloff,V.C.,Mladenoff,D.J.,&Boyce,M.S.(2000).Effectsofinteracting
disturbancesonlandscapepatterns:Budwormdefoliationandsalvage
logging.Ecological Applications,10,233–247.
Ramage,B.S., Sheil, D.,Salim,H. M. W.,Fletcher,C.,Mustafa, N. Z.A.,
Luruthusamay,J.C.,… Potts,M.D.(2013).Pseudoreplicationintrop-
ical forests and the resulting effects on biodiversity conservation.
Conservation Biology,27,364–372.
Saab,V.,Russell,R.E.,&Dudley,J.G.(2009).Nest-siteselectionbycavity-
nestingbirdsinrelationtopostfiresalvagelogging.Forest Ecology and
Management,257,151–159.
Schmiegelow, F. K.A., Stepnisky, D. P.,Stambaugh, C. A., & Koivula,
M. (2006). Reconciling salvage logging of boreal forests with a
natural-disturbance managementmodel.Conservation Biology, 20,
971–983.
Seidl,R.,Müller,J.,Hothorn,T.,Bässler,C.,Heurich,M.,&Kautz,M.(2015).
Smallbeetle, large-scaledrivers:Howregionaland landscapefactors
affectoutbreaksoftheEuropeansprucebarkbeetle.Journal of Applied
Ecology,53,530–540.
Seidl,R., Schelhaas,M.-J.,Rammer,W.,&Verkerk,P.J.(2014). Increasing
forest disturbances in Europe and their impact on carbon storage.
Nature Climate Change,4,806–810.
Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., & Bigler, C.
(2013).Effectsofsalvageloggingandsanitationfellingonbarkbeetle
(Ips typographusL.) infestations.Forest Ecology and Management,305,
273–281.
Stokstad,E.(2006).Salvageloggingresearchcontinuestogeneratesparks.
Science,311,761.
Stuart,J. D., Grifantini,M.C., Fox,L.III., & Fox,L. (1993). Early succes-
sionalpathwaysfollowingwildfireand subsequentsilvicultural treat-
mentinDouglas-fir/hardwoodforests, NWCalifornia. Forest Science,
39,561–572.
Swanson,M.E.,Franklin,J.F.,Beschta,R.L.,Crisafulli,C.M.,DellaSala,D.
A.,Hutto,R. L.,…Swanson,F.J.(2011).Theforgottenstageofforest
succession:Early-successionalecosystemsonforestsites.Frontiers in
Ecology and the Environment,9,117–125.
Thom, D., & Seidl,R. (2016). Natural disturbance impacts on ecosystem
services and biodiversity in temperate and boreal forests. Biological
Reviews,91,760–781.
Thorn, S., Bässler,C., Bernhardt-Römermann, M., Cadotte, M., Heibl, C.,
Schäfer, H., … Müller, J. (2016). Changes in the dominant assembly
mechanismdrivesspecieslosscausedbydecliningresources.Ecology
Letters,19,163–170.
Thorn, S., Bässler, C., Gottschalk, T., Hothorn, T., Bussler, H., Raffa, K.,
& Müller, J. (2014). New insights into the consequences of post-
windthrowsalvageloggingrevealedbyfunctionalstructureofsaprox-
ylicbeetlesassemblages.PLoS ONE,9,e101757.
Thorn,S.,Bässler,C.,Svoboda,M.,&Müller,J.(2016).Effectsofnatural
disturbancesand salvageloggingonbiodiversity–Lessonsfromthe
BohemianForest.Forest Ecology and Management,388,113–119.
Thorn,S.,Hacker,H.H.,Seibold,S.,Jehl,H.,Bässler,C.,&Müller,J.(2015).
Guild-specificresponsesofforestLepidopterahighlightconservation-
oriented forest management – Implications from conifer-dominated
forests.Forest Ecology and Management,337,41–47.
Thorn,S.,Werner,S.A.B.,Wohlfahrt,J.,Bässler,C.,Seibold,S.,Quillfeldt,
P.,&Müller,J.(2016).Responseofbirdassemblagestowindstormand
salvagelogging—Insightsfromanalysesoffunctionalguildandindica-
torspecies.Ecological Indicators,65,142–148.
VanNieuwstadt,M.G.L.,Sheil,D.,&Kartawinata,K.(2001).Theecologi-
calconsequencesofloggingintheburnedforestsofEastKalimantan,
Indonesia.Conservation Biology,15,1183–1186.
Viechtbauer,W.(2010).Conductingmeta-analysesinRwith themetafor
package.Journal of Statistical Software,36,1–48.
Waldron,K.,Ruel,J.,&Gauthier,S.(2013).Foreststructuralattributesafter
windthrow and consequences ofsalvage logging. Forest Ecology and
Management,289,28–37.
Werner,S.A.B.,Müller,J.,Heurich,M.,&Thorn,S.(2015).Naturalregen-
erationdetermineswinteringbirdpresenceinwind-damagedconifer-
ousforeststandsindependentofpost-disturbance logging.Canadian
Journal of Forest Research,45,1232–1237.
Zmihorski, M. (2010). The effect of windthrow and its managementon
breeding bird communities in a managed forest. Biodiversity and
Conservation,19,1871–1882.
Zmihorski,M.,&Durska,E.(2011).Theeffectofcontrastingmanagement
typesontwodistincttaxonomic groupsin alarge-scaledwindthrow.
European Journal of Forest Research,130,589–600.
DATA SOURCES
Barnouin,T.(2005).ÉvaluationdeL‘ImportanceDesForêtsAffectéesParLaTordeuse
DesBourgeons deLâ€TMÉpinette,ChoristoneuraFumiferana(Clem.),Dans Le
MaintiendeLaDiversitéDesColéoptèresSaproxyliques.UniversitéLavalQuebec.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.B.(2016).
Disturbance gradient shows loggingaffects plant functional groups more than
fire.Ecological Applications,26,2280–2301.
Boucher,D.,Gauthier,S.,Noël,J.,Greene,D.F.,&Bergeron,Y.(2014).Salvagelogging
affectsearlypost-firetreecomposition inCanadianboreal forest.Forest Ecology
and Management,325,118–127.
Bradbury,S.M.(2006).Responseofthepost-firebryophytecommunitytosalvagelog-
ginginborealmixedwoodforestsofnortheasternAlberta,Canada.Forest Ecology
and Management,234,313–322.
Cahall,R.E.,&Hayes,J.P.(2009).Influencesofpostfiresalvageloggingonforestbirdsinthe
EasternCascades,Oregon,USA.Forest Ecology and Management,257,1119–1128.
Castro,J.,Moreno-Rueda,G.,&Hódar,J.(2010).Experimentaltestofpostfiremanage-
mentinpineforests:Impactofsalvageloggingversuspartialcuttingandnoninter-
ventiononbird-speciesassemblages.Conservation Biology,24,810–819.
Choi,C.-Y.(2007).Effectsofpostfireloggingonbirdpopulationsandcommunitiesin
burnedforests.Journal of the Korean Forest Society,96,115–123.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporalchangesin
thebreedingbirdcommunitycausedbypost-firetreatmentsaftertheSamcheok
forestfireinKorea.Landscape and Ecological Engineering,10,203–214.
Cobb,T. P.,Langor, D. W.,& Spence, J. R. (2007). Biodiversity and multiple distur-
bances:Borealforestgroundbeetle(Coleoptera:Carabidae)responsestowildfire,
harvesting,andherbicide.Canadian Journal of Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J.L.,Jacobs,J.M.,Koivula,M.J., Spence,J.R., &Langor, D.
W.(2011). Effectsof postfiresalvageloggingon deadwood-associatedbeetles.
Conservation Biology,25,94–104.
Donato, D. C., Fontaine,J. B., Campbell, J. L., Robinson, W.D., Kauffman, J. B., &
Law,B.E.(2009).Coniferregenerationinstand-replacementportionsofalarge
    
|
 289
Journal of Applied Ecology
THORN eT al.
mixed-severitywildfire in the Klamath-SiskiyouMountains. Canadian Journal of
Forest Research,39,823–838.
Donato,D.C.,Fontaine,J.B.,Kauffman,J.B.,Robinson,D., &Law,B.E.(2013).Fuel
massandforeststructurefollowingstand-replacementfireandpost-firelogging
inamixed-evergreenforest.International Journal of Wildland Fire,22,652–666.
Duelli,P.,Obrist,M.K.,&Wermelinger,B.(2002).Windthrow-induced changesinfau-
nisticbiodiversityinalpinespruceforests.Forest Snow and Landscape Research,131,
117–131.
Durska,E. (2013).Effectsofdisturbanceson scuttleflies (Diptera:Phoridae)in Pine
Forests.Biodiversity and Conservation,22,1991–2021.
Fontaine,J. B.(2007). Influences of high severity fire and postfire logging on avian and
small mammal communities of the Siskiyou Mountains.Corvallis,OR:OregonState
University.
Fontaine,J.B., Donato,D.C.,Robinson,W.D.,Law,B. E.,& Kauffman,J.B. (2009).
Birdcommunitiesfollowinghigh-severityfire:Responsetosingleandrepeatfires
inamixed-evergreenforest,Oregon,USA.Forest Ecology and Management,257,
1496–1504.
Hutto,R. L.,& Gallo,S.M.(2006).The effectsofpostfire salvageloggingoncavity-
nestingbirds.Condor,108,817–831.
Jeffrey,O.(2013).EffetsDesCoupesdeRécupérationSurLesSuccessionsNaturelles
deColéoptèresSaproxyliquesLeLongD’une Chronoséquencede15 AnsAprès
FeuEnForêtBoréaleCommerciale.Univer.
Jonasova,M.,&Prach,K. (2008).Theinfluenceofbark beetlesoutbreakvs. salvage
loggingongroundlayervegetationinCentralEuropeanmountainspruceforests.
Biological Conservation,141,1525–1535.
Koivula, M., & Spence, J.R. (2006). Effects of post-fire salvage logging on boreal
mixed-wood groundbeetle assemblages(Coleoptera,Carabidae).Forest Ecology
and Management,236,102–112.
Kurulok,S. E.,&Macdonald,S.E. (2007).Impacts ofpostfiresalvage loggingonun-
derstoryplantcommunitiesoftheborealmixedwoodforest2and34yearsafter
disturbance.Canadian Journal of Forest Research,37,2637–2651.
Lee,E.L.W.,Hun,S., Rhim,S.-J.,Lee,W.-S.,& Son,S.H.(2011).Differencesinbird
communitiesinpostfiresilviculturalpracticesstandswithinpineforestofSouth
Korea.Landscape and Ecological Engineering,7,137–143.
Lee,E., Lee,W., &Rhim, S.-J.(2008). Characteristics ofsmall rodentpopulations in
post-fire silvicultural management stands within pine forest.Forest Ecology and
Management,255,1418–1422.
Lee,E.-J.,Rhim,S.,Son, S.,&Lee,W.(2012).Differencesinsmall-mammalandstand
structuresbetween unburned andburned pine standssubjectedto twodiffer-
entpost-firesilvicultural managementpractices.Annales Zoologici Fennici,2450,
129–138.
Leverkus,A. B.,Lorite,J., Navarro,F.B., Sánchez-Cañete, E.P.,&Castro, J.(2014).
Post-fire salvage logging alters species composition and reduces cover, rich-
ness,anddiversityin Mediterraneanplantcommunities.Journal of Environmental
Management,133,323–331.
Liepold,K.(2004).VergleichendeUntersuchungenZurFaunistischenUndGenetischen
DiversitätvonKäferzönoseninGenutzten UndUngenutzten Bergmischwäldern
DesBayerischenWaldes.TUMMünchen.
Mehr,M.,Brandl,R.,Kneib,T.,&Müller,J.(2012).Theeffectofbarkbeetleinfestation
andsalvageloggingonbatactivityinanationalpark.Biodiversity and Conservation,
21,2775–2786.
Norvez,O.,Hébert,C., Bélanger,L.,Hebert,C.,& Belanger,L.(2013).Impactofsal-
vageloggingon standstructureand beetlediversityinboreal balsamfirforest,
20yearsafterasprucebudwormoutbreak.Forest Ecology and Management,302,
122–132.
Park,C. (2012).Differences in characteristics of amphibian and reptile communities due
to different forest environment at forest fired area in Samcheok, Gangwon Province.
Seoul,Korea:SeoulNationalUniversity.
Peterson,C.J.,&Leach,A.D.(2008).Salvageloggingafterwindthrowaltersmicrosite
diversity,abundanceandenvironment,butnotvegetation.Forestry,81,361–376.
Rost,J.,Clavero,M.,Brotons,L.,& Pons,P.(2012).Theeffectofpostfiresalvagelog-
gingonbirdcommunitiesinMediterraneanpineforests:Thebenefitsfordeclining
species.Journal of Applied Ecology,49,644–651.
Rumbaitis,C.M., &RumbaitisdelRio, C.M.(2006).Changesinunderstorycomposi-
tionfollowing catastrophicwindthrowand salvagelogging ina subalpineforest
ecosystem.Canadian Journal of Forest Research – Revue Canadienne De Recherche
Forestiere,36,2943–2954.
Thorn,S., Bässler,C.,Bernhardt-Römermann,M.,Cadotte, M.,Heibl, C.,Schäfer,H.,
…Müller,J.(2016).Changesinthedominantassemblymechanismdrivesspecies
losscausedbydecliningresources.Ecology Letters,19,163–170.
Thorn, S., Bässler,C., Gottschalk, T., Hothorn,T., Bussler,H., Raffa, K., & Müller, J.
(2014).New insightsinto theconsequencesofpost-windthrow salvagelogging
revealedbyfunctionalstructureofsaproxylicbeetlesassemblages.PLoS ONE,9,
e101757.
Thorn,S.,Hacker,H.H., Seibold,S.,Jehl, H.,Bässler, C., &Müller, J.(2015). Guild-
specific responses of forestLepidoptera highlight conservation-oriented forest
management – Implications fromconifer-dominated forests. Forest Ecology and
Management,337,41–47.
Thorn, S., Werner, S. A. B., Wohlfahrt,J., Bässler, C., Seibold, S., Quillfeldt, P., &
Müller,J. (2016).Responseof birdassemblages towindstorm and salvagelog-
ging—Insightsfromanalyses offunctionalguildandindicatorspecies.Ecological
Indicators,65,142–148.
Waldron,K.,Ruel,J.-C.,Gauthier,S.,DeGrandpré,L.,&Peterson,C.J.(2014).Effects
ofpost-windthrowsalvageloggingonmicrosites,plantcompositionandregener-
ationed.J. Ewald. Applied Vegetation Science,17,323–337.
Wermelinger,B.,Moretti,M.,Duelli,P.,Lachat,T.,Pezzatti,G.B.,&Obrist,M.K.(2017).
Impactofwindthrowandsalvage-loggingontaxonomicandfunctionaldiversityof
forestarthropods.Forest Ecology and Management,391,9–18.
Winter,M.-B.,Ammer,C.,Baier,R.,Donato,D.C.,Seibold,S., &Müller,J.(2015).Multi-
taxonalphadiversityfollowingbarkbeetledisturbance:Evaluatingmulti-decadeper-
sistenceofadiverseearly-seralphase.Forest Ecology and Management,338,32–45.
Zmihorski,M.(2010).Theeffectofwindthrowanditsmanagementonbreeding bird
communitiesinamanagedforest.Biodiversity and Conservation,19,1871–1882.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:ThornS,BässlerC,BrandlR,etal.
Impactsofsalvageloggingonbiodiversity:Ameta-analysis.
J Appl Ecol. 2018;55:279–289. https://doi.org/10.1111/1365-
2664.12945
... Recent advances have highlighted the potential for unforeseen, interacting effects among the natural disturbance and the subsequent disturbance by logging (Buma and Wessman 2011;Leverkus et al. 2018a;Lindenmayer and Sato 2018), and subsequent reviews have aimed to provide broader views on the topic (e.g. Royo et al. 2016;Leverkus et al. 2018b;Thorn et al. 2018). ...
... Besides the Lanjarón biodiversity data serving as an individual case study, international collaborations have allowed learning from this and other experiments worldwide about the extent to which the biodiversity responses to salvage logging are generalized, stochastic, or dependent on factors such as taxonomic group and local conditions. A meta-analysis involving 134 original species abundance datasets found that salvage logging after natural disturbances (including wildfire, insect outbreaks and storms) decreased the species richness of 8 out of 24 taxonomic groups that were assessed, and that significant alterations in community composition occurred in 40% of the groups (Thorn et al. 2018). This impact was mostly observed on saproxylic species; on the contrary, species groups typically associated with open habitats profited from salvage logging (Thorn et al. 2018). ...
... A meta-analysis involving 134 original species abundance datasets found that salvage logging after natural disturbances (including wildfire, insect outbreaks and storms) decreased the species richness of 8 out of 24 taxonomic groups that were assessed, and that significant alterations in community composition occurred in 40% of the groups (Thorn et al. 2018). This impact was mostly observed on saproxylic species; on the contrary, species groups typically associated with open habitats profited from salvage logging (Thorn et al. 2018). More detailed analysis on bird species assemblages found that dissimilarities in the occurrence of species between salvaged and unsalvaged areas are strongest, and most persistent, for rare species (Georgiev et al. 2020). ...
Chapter
Full-text available
Sierra Nevada faces the stark challenge of preserving and restoring biodiversityBiodiversity and the provision of ecosystem servicesEcosystem service in the face of ongoing shifts in natural disturbance regimes. As wildfiresWildfire become more frequent, severe and widespread under human land-use changes andClimateclimate changeClimate change, there is a need to understand the mechanisms that promote ecological resilienceResilience after the fire and the effects of management on such mechanisms. After the 2005 Lanjarón fire in Sierra NevadaSierra Nevada, we established an experiment in a burnt pine stand to assess how the ecosystem responded to three management schemes: (a) salvage logging, a common strategy consisting in the felling and extraction of burnt trees; (b) partial cut, where 90% of trees were felled and cut in pieces but left scattered on the ground; and (c) non-intervention, where no action was taken. For 15 years, we monitored how different components of biodiversityBiodiversity and ecosystem processes and services responded to the post-fire treatments, and assessed how management affected the mechanisms that drive natural regeneration. In this chapter, we describe the Lanjarón experiment and its key scientific contributions. We first describe the insights related to the role of dead woodDead wood in promoting regeneration. This includes processes such as seed dispersal and predation, fertilization through the gradual decomposition of dead woodDead wood, microclimatic amelioration, and herbivory. Second, we portray how the communityCommunity of birds, vascular plants and soil insects responded to the post-fire treatments. Whereas diversity itself was affected by management, the key responses were related to communityCommunity composition. And third, we address the functions of the ecosystem related to its capacity to provide benefits to human society. We mainly address regulating ecosystem servicesEcosystem service but also analyze some provisioning services, including their economic value. In each of these three sections, we end by providing a broader, global view on the effects of salvage logging as derived from reviews that have subsequently been made under international collaborations. Altogether, the Lanjarón experiment in Sierra NevadaSierra Nevada constitutes a unique research infrastructure that has broadened our understanding of the role of dead woodDead wood in promoting ecological resilienceResilience and whose findings have contributed to the integration of knowledge about post-fire dynamics in an international context. Additionally, ongoing monitoring aims to fill the research gap of addressing the long-term effects of a critical post-disturbance management strategy in a world facing novel disturbance regimes.
... As a rule, intensive logging has adverse consequences for saproxylic beetle biodiversity when removing wood after a disturbance 7 . The natural development of forests results in the gradual disturbance of homogeneous structures, usually by wind 27,28 , but also by insect outbreaks and fire 29 . Forests were also shaped by large herbivores in the past 30,31 . ...
Article
Full-text available
Natural dynamics in forests play an important role in the lives of many species. In the landscape of managed forests, natural disturbances are reduced by management activities. This usually has a significant effect on insect diversity. The effect of small-scale natural dynamics of protected beech stands on the richness of saproxylic and non-saproxylic beetles was investigated. Sampling was carried out by using flight interception traps in the framework of comparing different developmental stages: optimum, disintegration, and growing up, each utilizing 10 samples. We recorded 290 species in total, of which 61% were saproxylic. The results showed that the highest species richness and thus abundance was in the disintegration stage. In each developmental stage, species variation was explained differently depending on the variable. Deadwood, microhabitats, and canopy openness were the main attributes in the later stages of development for saproxylic beetles. For non-saproxylics, variability was mostly explained by plant cover and canopy openness. Small-scale disturbances, undiminished by management activities, are an important element for biodiversity. They create more structurally diverse stands with a high supply of feeding and living habitats. In forestry practice, these conclusions can be imitated to the creation of small-scale silvicultural systems with active creation or retention of high stumps or lying logs.
... accessed on 6 July 2022). It is now known that salvage logging in many cases did not stop the bark beetle outbreak, and it did have a severe impact on biodiversity [83,84]. On the other hand, forest dieback caused by insects in protected areas (such as the Białowieża Primeval Forest) may lead to the restoration of species typical of the primeval forest [85]. ...
Article
Full-text available
Białowieża Primeval Forest (BPF, approx. 1700 km 2) is an important forest area in Europe from the point of view of the protection of natural diversity. BPF is covered with old mixed tree stands of mostly natural origin. Norway spruce is a tree species in BPF and covers approx. 27% of its area. Between 2012 and 2017 a large outbreak of the bark beetle Ips typographus (Linnaeus, 1758) took place in the forest, which transformed the stands and left many dead standing trees. At that time salvage logging had begun but was stopped due to protests by scientists and activists and for legal reasons. As a result of research conducted using a radiotelemetry method in 2020, we found that the Western barbastelle bat Barbastella barbastellus (Schreber, 1774) chooses nursery roosts in dead Norway spruce trees, showing ecological plasticity by colonizing a newly available resource. Based on this, we found that the Western barbastelle has a preference for a type of roost rather than a tree species. Insect outbreaks in forests of primary, natural, or semi-natural origin are one of the natural factors that shape the habitat. Removal of dead standing trees disrupts these processes, and in this particular case results in the disappearance of a newly appeared ecological niche.
... Federal agencies target high severity patches for logging believing that the trees are dead anyway and can be expeditiously logged with a substantial amount of timber revenue generated under minimal environmental standards (Hanson, 2021). Such logging is known to reduce carbon sequestration (Serrano-Ortiz et al., 2011, Kauffman et al., 2019 and emit carbon stored in dead wood (Bradford et al., 2012), can increase surface fuels that contribute to fire spread while killing natural conifer establishment (Donato et al., 2006;Mattson et al., 2019), can impact streams from chronic sedimentation due to logging on steep slopes and from roads (Karr et al., 2004), can contribute to reburn severity (Thompson et al., 2007), can cause nest site abandonment in spotted owls (Lee, 2018), and reduce the abundance of numerous bird species among many other impacts (Lindenmayer et al., 2008;Thorn et al., 2018). ...
Article
Full-text available
Debate remains about the effectiveness of commercial thinning as a wildfire management strategy, with some studies reporting somewhat lower severity in thinned forests, and some reporting higher severity, during wildfires. However, while vegetation severity is a measure of basal area tree mortality, research on this question generally omits tree mortality from thinning itself. We investigated whether cumulative tree mortality, or cumulative severity, from commercial thinning and wildfire was different between thinned and unthinned forests in the Caldor Fire of 2021 in the northern Sierra Nevada mountains of California, USA. We found significantly higher cumulative severity in commercial thinning areas compared to unthinned forests. More research is needed to determine whether cumulative severity is higher in commercially thinned forests in other large western US wildfires.
... With the exception of intensive plantation we do not have sufficiently robust data based on regularly managed forests covering different environmental gradients that would support the expert observations. In addition, there is a sufficient amount of evidence showing the negative effects of post-disturbance salvage logging on biodiversity with biological legacy destruction (especially deadwood removal -Grove 2002, Thorn et al. 2018). Therefore, the impact of forest management practices on biodiversity shall not be underestimated, both in intensive and low impact forms. ...
... In many protected areas across Europe, it is common practice to perform sanitary and salvage logging, especially after a disturbance. While natural disturbances have positive effects on species diversity, negative effects of salvage and sanitary logging on species diversity have been well documented (Thorn et al. 2018). ...
Article
Full-text available
Aim of the report - This report aims to explore the importance of biodiversity in the context of European forests and to make suggestions on how this biodiversity can be effectively maintained and enhanced through protection, management and restoration. The term Europe in this document means European Union, except where mentioned otherwise. The report is meant for all kinds of decision-makers at the EU, national and local levels who are confronted with policy and management decisions related to biodiversity conservation and sustainable forest management. Although the primary focus is on the EU, most of the insights and recommendations made should be transferrable, with varying degrees of customisation where necessary, to non-EU countries as well. This report does not and cannot provide black and white guidelines on how to support forest biodiversity, rather it is designed to be a reference source for information and inspiration on the basics of forest biodiversity and forest biodiversity management. As such, it is a useful tool that highlights what is possible for evidence-based decision-making on this complex and dynamic matter. The report is purposely written and presented in a manner to stimulate dialogue on maintaining and restoring forest biodiversity while illuminating ways to bridge gaps between divergent viewpoints on the available options to avoid the loss of the irreplaceable and invaluable natural and cultural heritage inherent to European forest biodiversity.
Article
The response of biodiversity to natural and anthropogenic disturbances is a central topic in applied ecology. Climate change has altered forest disturbance regimes, resulting in global increases in stand-replacing disturbances, which are regularly followed by the removal of trees (salvage logging). Yet, the mid- to long-term effects of disturbances and salvage logging and the importance of species relative abundances on β-diversity remain unclear. We compared the β-diversity of 13 taxonomic groups in intact forest, unlogged windthrow, and salvage-logged windthrow plots 11 years after a windthrow. Hill numbers were used to quantify differences in between-treatment and within-treatment β-diversity for rare, common, and dominant species. We found that over a decade post-disturbance, both windthrow and salvage logging led to significant changes in between-treatment β-diversity of all 13 taxonomic groups. In addition, differences in between- and within-treatment β-diversity were more pronounced for rare species than for common and dominant ones. Windthrow led to the homogenization of communities of most saproxylic and half of the non-saproxylic studied groups. However, contrary to our expectation, salvage logging did not further increase community homogenization for any taxonomic group or Hill number. Moreover, salvage logging even reversed the community homogenization caused by the windthrow for saproxylic groups, leading to more heterogeneous communities. This effect was likely caused by the relatively high amount and diversity of deadwood found on the salvage-logged plots. Our study suggests that differences in within-treatment β-diversity between salvaged and unsalvaged windthrows tend to vanish over time, whereas differences between-treatments persisted, especially for saproxylic groups and rare species. This finding underlines the importance of preserving the characteristic communities in unsalvaged wind-disturbed forests in the mid- to long-term. Therefore, we recommend a management strategy that balances the amount of salvage-logged areas with that of set-aside areas.
Article
The natural composition of forests has undergone significant changes over recent centuries. A closer-to-natural tree species composition has long been perceived as key to a high biodiversity. We investigated the impact on communities of click beetles (Elateridae) caused by changes in the tree species composition of spruce monocultures compared to reference sites of recently unmanaged natural beech forests. To collect data, passive interception traps were distributed within managed spruce stands of different age classes and natural beech forests of various developmental stages. The beetle species richness was slightly but not significantly higher in the beech forests. The saproxylic species group was significantly more common in the spruce stands, whereas the group of nonsaproxylic species was significantly more abundant in the beech stands. In the commercial stands, the significantly highest species richness was in the clearings (0–10-year-old stands), and at this forest age class, the vast majority of the beetle species occurred in the spruce stands. In the developmental stages of the natural forest, a slightly higher beetle richness was found at the disintegration stage. The study results suggested that different tree species compositions and stand structures affect the communities of click beetles and substantially change their species composition and thus their response to external influences. Therefore, management of stands using diverse silvicultural systems is recommended for creating diverse ecological niches in forests.
Article
Full-text available
Windthrow is a common occurrence in boreal forests, affecting wood supply and presenting regeneration challenges for forest managers. Salvage harvesting is often conducted afterwards to extract valuable wood and improve access for forest renewal activities. Research efforts, however, are generally limited to the effects of windthrow and salvage harvesting in the first few years following disturbance. In 2006, a catastrophic wind event occurred in a trembling aspen (Populus tremuloides Michx.) forest in northeastern Ontario. A field study was established with a range of silvicultural treatments from leaving after windthrow (W) to forest renewal treatments including windrow site preparation, planting, and herbicide release (WSPR). While the results of first 5-year assessment have been reported, the objective of the current study was to reassess treatment effects at 15 years post-disturbance, a stage of stand development that is more indicative of future forest conditions. Compared to the results of the earlier assessment, the 15-year assessment indicated that standing dead wood (snags) declined, whereas coarse downed wood did not change substantially over time. Post-disturbance salvage harvesting improved aspen regeneration in terms of density, stocking, and growth, but substantially reduced the proportion of conifers relative to windthrow only. Thus, salvage harvesting helped to sustain aspen composition, compared to other treatment options that increased proportions of pine and spruce trees from W to windthrow and salvage harvesting combined with windrow site preparation and planting (WSP), and from WSP to WSPR.
Article
Full-text available
We investigated the effects of postfire salvage logging on cavity-nesting birds by comparing nest densities and patterns of nest reuse over a three-year period in seven logged and eight unlogged patches of mixed-conifer forest in the Blackfoot-Clearwater Wildlife Management Area, Montana. We found 563 active nests of 18 cavity-nesting birds; all species were found nesting in the uncut burned forest plots, but only eight nested in the salvage-logged plots. All except one species nested at a higher density in the unlogged areas, and half of the species were significantly more abundant in the unlogged plots. Every timber-drilling and timber-gleaning species was less abundant in the salvage-logged plots, including two of the most fire-dependent species in the northern Rocky Mountains—American Three-toed (Picoides dorsalis) and Black-backed (P. arcticus) Woodpeckers. Lower abundances in salvage-logged plots occurred despite the fact that there were still more potential nest snags per hectare than the recommended minimum number needed to support maximum densities of primary cavity-nesters, which suggests that reduced woodpecker densities are more related to a reduction in food (wood-boring beetle larvae) than to nest-site availability. Because cavities were present in only four of 244 randomly selected trees, and because frequency of cavity reuse by secondary cavity-nesters was higher in salvage-logged than in unlogged plots, nest-site limitation may be a more important constraint for secondary cavity-nesters in salvage-logged areas. These results suggest that typical salvage logging operations are incompatible with the maintenance of endemic levels of most cavity-nesting bird populations, especially populations of primary cavity-nesting species.
Article
Full-text available
The vegan package provides tools for descriptive community ecology. It has most basic functions of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools can be used for other data types as well. The functions in the vegan package contain tools for diversity analysis, ordination methods and tools for the analysis of dissimilarities. Together with the labdsv package, the vegan package provides most standard tools of descriptive community analysis. Package ade4 provides an alternative comprehensive package, and several other packages complement vegan and provide tools for deeper analysis in specific fields. Package https://CRAN.R-project.org/package=BiodiversityR provides a Graphical User Interface (GUI) for a large subset of vegan functionality. The vegan package is developed at GitHub (https://github.com/vegandevs/vegan/). GitHub provides up-to-date information and forums for bug reports. Most important changes in vegan documents can be read with news(package="vegan") and vignettes can be browsed with browseVignettes("vegan"). The vignettes include a vegan FAQ, discussion on design decisions, short introduction to ordination and discussion on diversity methods. A tutorial of the package at http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf provides a more thorough introduction to the package. To see the preferable citation of the package, type citation("vegan").
Article
Windthrow is recognized as the most important driver in European forest dynamics and its importance is likely to increase with climate change. Typically, windthrown timber is salvaged for economic and phytosanitary reasons. This markedly affects the natural development of the disturbed areas, in particular by removing important dead wood resources. For a sustainable and ecologically sound management of disturbance effects, more knowledge is needed on the impact of windthrow and salvage logging on animal species communities.
Article
Clearing up after natural disturbances may not always be beneficial for the environment. We argue that a radical change is needed in the way ecosystems are managed; one that acknowledges the important role of disturbance dynamics.
Article
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Article
Severe natural disturbances are common in many forest ecosystems, particularly in the Northern Hemisphere. Attempts to minimize their effects through forest management include salvage logging. In the Bohemian Forest, one of Central Europe’s largest continuous forests, windstorms and bark beetle outbreaks have affected stands of Norway Spruce for centuries. Over the past decades, these natural disturbances and their management in the Bavarian Forest National Park and the adjacent Šumava National Park in the central part of the Bohemian Forest have been scientifically studied. Owing to a benign-neglect strategy, both windstorms and bark beetle outbreaks have increased stand structural heterogeneity, the amount of dead wood and light availability, which contribute to increased populations of nearly-extinct forest specialists. However, the response of a particular taxonomic group or species strongly depends on its relationship to specific legacies that persist after disturbances. Stand climate but not dead wood appears to greatly influence the diversity of epigeal bryophytes, whereas both factors determine the diversity of epixylic bryophytes. Both the amount and heterogeneity of dead wood seems to be more important than stand climate in determining assemblages of wood-inhabiting fungi and lichens. To reduce the population density of bark beetles in the management zones of both national parks, storm-felled spruces are salvage logged, which alters a variety of these legacies and natural successional pathways. Consequently, the numbers of species of wood-inhabiting fungi, saproxylic beetles and epixylic lichens are reduced. Natural levels of biodiversity in salvage-logged areas can be preserved by (1) preserving root plates of storm-felled trees with partly retained trunks; (2) avoiding soil disturbance by using cable yarding instead of harvesters; (3) retaining sun-exposed dry branches of storm-felled trees and snags of beetle-killed spruces; (4) avoiding logging damage of natural regeneration and of large trees that survive disturbances; and (5) bark scratching instead of debarking to avoid bark beetle outbreaks while maintaining biodiversity. Windstorms and bark beetle outbreaks could be utilized to restore intensely managed forests of Central Europe to their natural composition and structure. Furthermore, experimentally mimicked natural disturbances might help in gaining a mechanistic understanding of how natural disturbances affect biodiversity.