ArticlePDF Available

Impacts of salvage logging on biodiversity: A meta-analysis

Authors:
  • Hessian Agency for Nature Conservation, Environment and Geology (HLNUG)
  • Nationalpark Bayerischer Wald

Abstract

Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organisms. A meta-analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio-temporal distribution of retained dead wood needed to maintain all components of biodiversity.
J Appl Ecol. 2018;55:279–289. wileyonlinelibrary.com/journal/jpe  
|
 279
© 2017 The Authors. Journal of Applied Ecology
© 2017 British Ecological Society
Received:16January2017 
|
Accepted:18May2017
DOI: 10.1111/1365-2664.12945
REVIEW
Impacts of salvage logging on biodiversity: A meta- analysis
Simon Thorn1| Claus Bässler2| Roland Brandl3| Philip J. Burton4| Rebecca
Cahall5| John L. Campbell5| Jorge Castro6| Chang-Yong Choi7| Tyler Cobb8|
Daniel C. Donato9| Ewa Durska10| Joseph B. Fontaine11| Sylvie Gauthier12|
Christian Hebert12| Torsten Hothorn13| Richard L. Hutto14| Eun-Jae Lee15|
Alexandro B. Leverkus16 | David B. Lindenmayer17 | Martin K. Obrist18|
Josep Rost19,20| Sebastian Seibold2,21 | Rupert Seidl22| Dominik Thom22|
Kaysandra Waldron23| Beat Wermelinger24| Maria-Barbara Winter25|
Michal Zmihorski26| Jörg Müller1,2
1FieldStationFabrikschleichach,DepartmentofAnimalEcologyandTropicalBiology(ZoologyIII),Julius-Maximilians-UniversityWürzburg,Rauhenebrach,Germany
2BavarianForestNationalPark,Grafenau,Germany
3DepartmentofEcology,AnimalEcology,FacultyofBiology,Philipps-UniversitätMarburg,Marburg,Germany
4UniversityofNorthernBritishColumbia,Terrace,BC,Canada
5DepartmentofForestEcosystemsandSociety,OregonStateUniversity,Corvallis,OR,USA
6DepartmentofEcology,UniversityofGranada,Granada,Spain
7DepartmentofForestSciences,SeoulNationalUniversity,Seoul,Korea
8RoyalAlbertaMuseum,Edmonton,AB,Canada
9SchoolofEnvironmental&ForestSciences,UniversityofWashington,Seattle,WA,USA
10DepartmentofEcologyandBiodiversity,MuseumandInstituteofZoology,PolishAcademyofSciences,Warsaw,Poland
11SchoolofVeterinaryandLifeSciences,MurdochUniversity,Murdoch,WA,Australia
12NaturalResourcesCanada,CanadianForestService,LaurentianForestryCentre,Quebec,QC,Canada
13DivisionofBiostatistics,UniversityofZürich,Zürich,Switzerland
14DivisionofBiologicalSciences,UniversityofMontana,Missoula,MT,USA
15UrbanPlanningResearchGroup,DaejeonSejongResearchInstitute,Daejeon,Korea
16EcologyUnit,DepartmentofLifeSciences,UniversityofAlcalá,AlcaládeHenares,Madrid,Spain
17FennerSchoolofEnvironmentandSociety,TheAustralianNationalUniversity,Canberra,ACT,Australia
18WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,BiodiversityandConservationBiology,Birmensdorf,Switzerland
19DepartmentofEnvironmentalSciencesandFoodIndustries,UniversityofVic-CentralUniversityofCatalonia,Catalonia,Vic.,Spain
20DepartmentofEnvironmentalSciences,UniversityofGirona,Girona,Spain
21DepartmentofEcologyandEcosystemManagement,ChairforTerrestrialEcology,TechnischeUniversitätMünchen,Freising,Germany
22InstituteofSilviculture,DepartmentofForest-andSoilSciences,UniversityofNaturalResourcesandLifeSciencesVienna,Vienna,Austria
23DepartmentofWoodandForestSciences,LavalUniversity,Québec,QC,Canada
24WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,ForestDynamics–ForestEntomology,Birmensdorf,Switzerland
25ForestResearchInstituteofBaden-Württemberg(FVA),Freiburg,Germany
26DepartmentofEcology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden
280 
|
    
Journal of Applied Ecology
THORN eT al.
1 | INTRODUCTION
The frequency and extent of stand-replacing natural disturbances,
such as wildfires, windstorms and insect outbreaks, has increased
considerably during recent decades, particularly in the Northern
Hemisphere(Kurz etal.,2008;Seidl, Schelhaas,Rammer,&Verkerk,
2014).Naturaldisturbancescanenhancethestructuralheterogeneity
offorests,createhabitatsforspecies-richassemblagesofhighconser-
vationvalueandincreasethelong-termresilienceofforeststofuture
stressors(Swansonetal.,2011).However,societaldemandfortimber
and/orpestreductioncompelsforestmanagersto“salvage”timberby
logging before it deteriorates,a common practice even in locations
otherwise exempt from conventional green-tree harvesting, such
as national parks orwilderness areas (Figure1) (Chylarecki & Selva,
2016;Thorn etal., 2014).Suchsalvage loggingreducesthe amount
of dead wood, alters successional trajectories, affects biodiversity,
and can influence restoration costs and subsequent fire hazards
(Lindenmayer,Burton, & Franklin, 2008; Waldron,Ruel, & Gauthier,
2013).Consequently,conflictsoftenemergebetweennaturalresource
managers,policy-makersandconservationistsonhowtohandlenatu-
rallydisturbedforests(González&Veblen,2007;Lindenmayer,Thorn,
& Banks, 2017; Lindenmayer etal., 2004; Schmiegelow, Stepnisky,
Stambaugh,& Koivula,2006).This hasresultedinintensepublicde-
bates(Lindenmayeretal.,2017;Nikiforuk,2011;Stokstad,2006).
Differentnaturaldisturbance regimesleavedistincttypesofbio-
logicaland/orstructural legacies(Franklinetal.,2000).Forinstance,
forestskilledbywildfireorinsectoutbreaksarecharacterizedbylarge
numbersofsnags,whilewindstormscreateuprootedtrees(Swanson
etal., 2011). Salvage logging typicallyremoves or alters these lega-
cies.Theresponsesofsaproxylicandnon-saproxylicspeciesgroupsto
salvageloggingthusdependontheirrelationto(deadwood)legacies
affectedbysalvagelogging(Lindenmayeretal.,2008).Consequently,
differenttaxonomicgroupsindifferenttypesofnaturaldisturbances
may respond differently to salvage logging (Zmihorski & Durska,
2011).Numerousstudieshavefocusedontheeffectsofsalvagelog-
gingafternaturaldisturbancesonspeciesrichnessandthecommunity
compositionofvarioustaxasuchasvascularplants(Blair,McBurney,
Blanchard, Banks, & Lindenmayer, 2016; Macdonald, 2007; Stuart,
Correspondence
SimonThorn
Email:simon@thornonline.de
Funding information
GermanEnvironmentalFoundation;Austrian
Science Fund
HandlingEditor:MatthewStruebig
Abstract
1. Loggingto“salvage”economicreturnsfromforestsaffectedbynaturaldisturbances
hasbecomeincreasingly prevalentglobally.Despite potentialnegativeeffects on
biodiversity,salvageloggingisoftenconducted,eveninareasotherwiseexcluded
from logging and reserved for nature conservation, inter alia because
strategicprioritiesforpost-disturbancemanagementarewidelylacking.
2. Areviewoftheexistingliteraturerevealedthatmoststudiesinvestigatingtheef-
fects of salvage logging on biodiversity have been conducted less than 5years
followingnaturaldisturbances,andfocusedonnon-saproxylicorganisms.
3. Ameta-analysisacross24speciesgroupsrevealedthatsalvageloggingsignificantly
decreasesnumbers ofspecies ofeighttaxonomicgroups.Richnessofdeadwood
dependenttaxa(i.e.saproxylicorganisms)decreasedmorestronglythanrichnessof
non-saproxylictaxa.Incontrast, taxonomicgroupstypically associatedwithopen
habitatsincreasedinthenumberofspeciesaftersalvagelogging.
4. Byanalysing134originalspeciesabundancematrices,wedemonstratethatsalvage
logging significantly alters community composition in 7 of 17 species groups,
particularlyaffectingsaproxylicassemblages.
5. Synthesis and applications.Ourresultssuggestthatsalvageloggingisnotconsistent
withthe managementobjectivesofprotectedareas. Substantialchanges,suchas
theretentionofdeadwoodin naturallydisturbedforests, areneededto support
biodiversity.Futureresearchshouldinvestigatetheamountandspatio-temporal
distribution of retained dead wood needed to maintain all components of
biodiversity.
KEYWORDS
barkbeetle,climatechange,deadwood,disturbedforest,fire,naturaldisturbance,post-
disturbancelogging,salvagelogging,saproxylictaxa,windstorm
    
|
 281
Journal of Applied Ecology
THORN eT al.
Grifantini,Fox,&Fox,1993),carabids(Cobb,Langor,&Spence,2007;
Koivula & Spence, 2006; Phillips, Cobb,Spence, & Brigham, 2006),
birds(Castro,Moreno-Rueda,&Hódar,2010;Choi,Lee,Nam,Lee,&
Lim,2014;Nappi&Drapeau, 2009; Saab, Russell,&Dudley, 2009;
Thorn,Werner,etal.,2016; Zmihorski,2010),and saproxylicorgan-
isms(i.e.thosedependingon dead wood during somepartoftheir
life cycles; Cobb etal., 2011; Norvez, Hébert, Bélanger, Hebert, &
Belanger,2013).
Twomain effects of salvage logging on biodiversityarise recur-
rentlyfrom the existing bodyofliterature. First,salvageloggingre-
duces the richness of taxonomicgroups or abundance of particular
speciesthatdependondeadwood.Forinstance,salvageloggingde-
creasednestingdensity ofcavity-nesting-birdsthat usuallybreedin
fire-killedtrees(Hutto&Gallo,2006).Similarly,post-stormloggingde-
creasedthetotalnumberofsaproxylicbeetlespeciesandthenumber
ofthreatenedspecies(Thornetal.,2014).Second,studiesthatinves-
tigateasetofdifferenttaxonomicgroupshavedemonstratedthatsal-
vageloggingcanalterthecommunitycompositionofbothsaproxylic
andnon-saproxylicorganisms,whiletheeffectsontheoverallnumber
ofspeciescanbesmall(Thorn,Bässler,Bernhardt-Römermann,etal.,
2016).Forinstance, post-stormsalvagelogginginMinnesota greatly
diminishedbirdcommunities,whilefewerdifferencesinthetreecover
weredetected(Lain,Haney,Burris,&Burton,2008).However,previ-
ousattemptstosummarizeknowledgeontheeffectsofsalvagelog-
gingonbiodiversityhavefocusedmainlyonsalvageloggingofburned
forests(Lindenmayer&Noss,2006;Lindenmayeretal.,2008;McIver
&Starr,2000;Thorn,Bässler,Svoboda,&Müller,2016),andaquan-
titativeassessment ofsalvagelogging impactsonbiodiversityisstill
lacking,particularlyacrossdifferenttaxonomicgroupsandinresponse
todifferenttypesofdisturbances(Figure1).
FIGURE1 Salvagelogging(SL)iscommonlyappliedafterwildfires,windstormsorinsectoutbreaks,andleadstochangesinhabitatsand
communitycompositionsinvariousforestecosystemsaroundtheworld(ashighlightedbythestudiesillustratedinpanels(a–l).Studylocations
(colouredcircles)representstudysitesthatcontributeddatatoourmeta-analysis.Photographsbyauthors.[Colourfigurecanbeviewedat
wileyonlinelibrary.com]
282 
|
    
Journal of Applied Ecology
THORN eT al.
Here,wereviewedthescientificliteratureandcompiledexisting
data to quantify the effectsof salvage logging after wildfire,wind-
storms and insect outbreaks on (1) species numbers via a meta-
analysisof238individualcomparisonsofsalvaged/unsalvagedareas;
and (2) community composition, based on a subset of134 original
speciesabundancematrices.Wealsotestedthehypothesisthat the
impactsofsalvagelogging aremorepronouncedfor saproxylicspe-
ciesgroups thanfor non-saproxylicgroupsregardingthenumber of
speciesandcommunitycompositionwithindifferenttypesofnatural
disturbances.
2 | MATERIALS AND METHODS
2.1 | Literature search
We followed guidelines for systematic literature reviews (Pullin &
Stewart,2006) tocompile comparisonsofspeciesrichnessbetween
salvagedandunsalvagedfire-, wind- or insect-affectedforests.We
screenedtheelectronicdatabasesWebofScience,ScopusandGoogle
Scholaron15 February 2016 byusingthe simplified search strings
[salvageloggingORpost$disturbance*ORsalvaging]and[forest$OR
vegetationORdisturbanceORecosystem].Fromthis bodyoflitera-
ture(>2,000articles),weretainedonlyfield-basedstudiesafterhav-
ingscreenedthetitleandabstract.Modellingstudieswereexcluded.
Wealsoaddedrelevantpapersfromreferencelistsinpublishedstud-
ies. We restricted studies to those providing comparisons between
completely salvage logged plots and completely unsalvaged control
plotsaccordingtotheinformationgivenintherespectivestudies.This
meansthatonsalvageloggedplots,morethan75%ofthetreeswere
affectedbynatural disturbanceandthen completelysalvage logged
withoutfurthertreatment suchastree plantingorlegacy retention.
Lowerintensitiesofnaturaldisturbanceshavebeenrarelytargetedby
scientificstudies.Salvageloggingoperationsthusresembledconven-
tionalclear-cutting.Unsalvaged control plots hadtobeaffected by
thesamenaturaldisturbanceeventbutwithoutanyhumaninterven-
tion.Salvageloggedplotshadtobeofsimilarsize,surveyedwiththe
samefieldmethodsduringthesamestudyperiodandwiththesame
samplingeffortasunsalvagedcontrolplots.
Toexaminewhetherpseudo-replication(i.e.allplotsnestedwithin
onearea)mightbiasthe resultsofour meta-analysis(Ramage etal.,
2013), we carefullyselected the studies according to their designs,
andweusedstatisticsthataccountforpseudo-replication(seebelow).
Thespatialarrangementofplotsinallstudieswascheckedbasedon
methoddescriptionsand/ororiginalgeographiccoordinates.Wecon-
tactedauthorstoprovidedataortoclarifytheirstudydesignswhere
necessary(seeDatasourcessection).Studieswithouttrue replicates
(e.g.allsalvagedplotsnestedandseparatedfromunsalvagedcontrol
plots) were excluded from the analysis to ensure valid effect sizes
(Halme etal., 2010). Studies using the same set offield plots and/
orthesame studyarea(e.g.Samcheok Forest,Korea)wereidentified
andnestedinallsubsequentstatisticalanalysestocontrolforpseudo-
replicationwithinstudyareas.Wealsoexcludedstudiesthatsampled
forests undergoing multiple types of disturbances. Salvage logging
hadtobe conducted immediately(<12months)afternaturaldistur-
bancetookplace.Meannumberofspeciesandstandarddeviationval-
uespersamplingunitwereextractedfrompublishedtextandtables,
or from figures using PLOT DIGITIZER 2.6.2. (www.plotdigitizer.
sourceforge.net). Last, we compiled data on covariates by extract-
ing information on the disturbance type and the time since distur-
bance, and the time since subsequent salvage logging. In addition,
we compiled original species abundance matrices that underpinned
the published papers, which allowed us to explore the effects of
salvageloggingoncommunitycomposition.
2.2 | Meta- analysis
Allanalyseswereconductedinr3.3.1(www.r-project.org).Priortosta-
tisticalanalysis,specieswereassignedtooneofthefollowingtaxonomic
groupsandtoassociationwithdeadwood(i.e.saproxylic/non-saproxylic)
basedonthedescriptioninthearticles.Thesewhere:amphibians,ants,
bats, bees and wasps, birds, carabids, epigeal lichens, epigeal mosses,
epigealspiders,epixyliclichens,epixylicmosses,harvestmen,hoverflies,
landsnails,nocturnalmoths,non-saproxylicbeetles(excludingcarabids),
reptiles,rodents,saproxylic beetles,scuttleflies, springtails, truebugs,
vascular plants and wood-inhabiting fungi. For the analysis compar-
ingresponses ofsaproxylicand non-saproxylicspecies groups,wede-
finedsaproxylicbeetles,wood-inhabitingfungi,andepixyliclichensand
mossesassaproxylicandallotherspeciesgroupsasnon-saproxylic.
Forcomparing numbersofspecies betweensalvagedand unsal-
vagednaturallydisturbedplotsdescribedin thepublished literature,
weusedHedges’d,whichaccountsfordifferencesinsamplingeffort
across studies and for small sample sizes (Hedges & Olkin, 1985).
PositivevaluesofHedges’dindicatehighernumbersofspeciesinsal-
vageloggedplots,whereasnegativevaluesindicatealossinnumbers
ofspeciesattributedtosalvagelogging(i.e.highernumbersofspecies
inunsalvagednaturallydisturbedplots).Meanabsoluteeffectsizesof
d=0.2indicateasmalleffect,d=0.5amoderateeffect,andd = 0.8 a
largeeffect(Koricheva,Gurevitch,&Mengersen,2013).
We used multi-level linear mixed-effectsmodels, provided by
the r function “rma.mv” in the “metafor” package (Viechtbauer,
2010),totest theeffectoftaxonomicgroup asacategorical pre-
dictor and year since disturbance as a numerical covariate on
Hedges’dastheresponsevariable.Hedges’dvalueswereweighted
bythecorrespondingsamplingvariancewithinthestatisticalmodel.
Furthermore,thestudysitewasincludedasarandomeffectinthe
model (i.e. moderator term) to control for unmeasured site spec-
ificities and repeated measurements (pseudo-replication) within
onestudysite.Thismeansthatmultipledatapointsperstudywere
possibleifstudiesexaminedmultipletaxonomicgroupsorifstudies
lastedformorethan1year.Wesubtracted theinterceptfromthe
effectsizes (byincluding “−1”in themodelformula)to evaluateif
observedHedges’ddifferedsignificantlyfrom zero(fordetails and
modelformulaseeTableS1).
Toevaluate theeffectsof salvagelogging on saproxylicvs.non-
saproxylic groups, we fitted a second model with Hedges’d as re-
sponsevariable.Weagainincludedtheyearafternaturaldisturbance
    
|
 283
Journal of Applied Ecology
THORN eT al.
andsubsequentlogging as a numericalpredictorvariable andstudy
siteas wellastaxonomicgroupasrandomfactors. Furthermore,we
addedtheinteractionofdeadwooddependence(i.e.saproxylic/non-
saproxylic)withnaturaldisturbancetypeaspredictorstotestwhether
theeffectofsalvageloggingonthe numberofspecies insaproxylic
andnon-saproxylicgroups differedwithin different typesofnatural
disturbances. Weimplemented a simultaneous inference procedure
tocomparesaproxylicandnon-saproxylicspeciesgroupswithineach
disturbancetype(Hothorn, Bretz,& Westfall,2008). Thisprocedure
allowedus totest ifresponsesofsaproxylicandnon-saproxylictaxa
varyamong fire-,wind-and insect-disturbedforests(fordetails and
model formula see TableS2). Last, we conducted funnel plots by
meansofthefunction“funnel”fromthe“metafor”packagetoassess
publicationbias(Korichevaetal.,2013;FigureS1).
2.3 | Analysis of community composition
Based on the reviewed literature, we compiled original species
abundance matrices to quantify changes in community composi-
tioninducedby salvage logging.Quantifyingchangesin community
compositionamong largeheterogeneousdatasetsischallenging and
requires statistical methods able to deal with issues such as unbal-
ancedsamplingeffortandwhichgenerateastandardizedeffect size
thatis comparableamong differentspecies groupsand surveytech-
niques.Thus,weusedpermutationalmultivariateanalysisofvariance
usingdistance matrices(Legendre&Anderson,1999),performedby
meansofthefunction“adonis”inthepackage“vegan”(Oksanenetal.,
2016).ThisanalysisprovidesapseudoF-value,basedon999permu-
tations,thatquantifies thedeviancefrom thenull-hypothesis,while
simultaneouslyaccounting forimbalanced studydesigns (McArdle&
Anderson,2001).Consequently,largevaluesofFcorrespondtolarge
changesin communitycompositioninducedbysalvagelogging.This
F-value represents the standardized difference between communi-
tiesinsalvageloggedandunsalvagednaturallydisturbedplotswithin
onespeciesabundancematrix(e.g. differences in bird communities
6yearsafterwildfire andsalvagelogging inOregon).We rigorously
restrictedthisanalysistothoseabundancematricesthatyieldedvalid
pseudoF-values overthe courseof permutations;that is,those ma-
triceswhichgeneratedlessthan99realpermutationswereexcluded.
Theserestrictions resultedin atotal numberof 134matrices, which
suppliedF-valuesfortheanalysisoutlinedbelow.
Totestifsalvageloggingchangedcommunitycompositionindif-
ferenttaxonomicgroups,wemodelledpseudoF-valuesinlinearmixed
modelsprovidedbythefunction“lmer”inthe“lme4”packageassum-
ingaGaussianerrordistribution(Bolkeretal.,2009).Weincludedthe
taxonomicgroupasacategoricalpredictorand theyearsincedistur-
banceas a numericalcovariate. Furthermore,weincludedthe study
siteasarandomeffecttocontrolforpossibledifferencesamongstudy
sitesand repeatedmeasurementswithin onestudysite.Weomitted
theinterceptfromthemodelformulatodetermineifF-valuesdiffered
significantlyfromzero.Thus,significant changesin communitycom-
positionofataxonomicgroupduetosalvageloggingwereindicated
by F-valuessignificantlylargerthanzero(fordetailsandmodelformula
seeTableS3).
AsfortheanalysisofHedges’d,asecondmodelwasfittedtotest
whether the effects of salvage logging on community composition
differed between saproxylic and non-saproxylic species groups in
differenttypesofdisturbances.Therefore,weincludedtheyearafter
disturbance and the interaction of saproxylic/non-saproxylic with
disturbancetypeaspredictors.Taxonomicgroupandstudysitewere
includedasrandomfactorsinthismodel.Weimplementedasimulta-
neousinferenceproceduretocomparesaproxylicandnon-saproxylic
species groups within each disturbance type (for details and model
formulaseeTableS4).
3 | RESULTS
Our meta-analysis showed that the effects of salvage logging have
been studied primarily for birds, vascular plants and carabids, par-
ticularly in burned forests. Studies were conducted primarily in
NorthAmerica andEurope, butlackingintropicalregions(Figure1).
Furthermore,therewasaclearlackofstudiesinvestigatingsaproxylic
taxa.Ofthe238compileddatapoints,170coveredaperiodof5years
or less after disturbance, with studies addressing the long-term ef-
fectsofsalvageloggingbeingrare(Figure2).Onlyonestudy(Hutto&
Gallo,2006)wasavailablethatprovideddataontheeffectsofsalvage
loggingformorethan20yearsafterdisturbances(Figure2).
Halfofthe individual comparisonsproducedvalues ofHedges’d
lowerthanzero,indicatinghighernumbers ofspeciesinnon-salvage
loggedareasthan salvageloggedareas (Figure3).Wefoundsignifi-
cantly lowerspecies numbers of epigeal and epixylic mosses, birds,
wood-inhabiting fungi, saproxylic beetles, springtails and epixylic
aswellas epigeallichensin salvage loggedareas comparedtonon-
salvagelogged areas(Figure3a).Incontrast,thenumbers ofspecies
of land snails, epigeal spiders and carabids were higher in salvage
logged areas than in unsalvaged areas (Figure3a). Thirteen of the
24 taxonomic groups, includingvascular plants, exhibited no signif-
icantresponsein numbers ofspeciestosalvage logging (Figure3a).
The numbers of species of saproxylic taxa significantly decreased
compared to non-saproxylic taxa in storm-affected and burned for-
ests(Figure4a).Thenegativeeffectofsalvageloggingonnumberof
speciesincreasedwithtimeelapsedsincedisturbanceandsubsequent
salvagelogging,althoughlong-termdataonsalvageloggingarescarce.
Salvageloggingwas associatedwithsignificant changes incom-
munitycompositionin 7 of 17taxonomicgroups(Figure3b).These
seven groups were epigeal spiders, carabids, vascular plants, birds,
wood-inhabiting fungi, saproxylic beetles and epixylic lichens
(Figure3b). Time elapsed since disturbance had no effect on the
strength of logging-induced changes to community composition
(TableS3).Furthermore,logging-inducedchangesincommunitycom-
positionwerestrongerforsaproxylictaxathanfornon-saproxylictaxa
in storm-disturbed forests. However, data availabilitywas scarce in
insect-affectedforestandlackinginburnedforests(Figure4b).
284 
|
    
Journal of Applied Ecology
THORN eT al.
4 | DISCUSSION
Our study revealed that salvage logging can result in significant
changes in species numbers and/or in altered community composi-
tion.Negativeeffects were particularlystrongfor taxa thatdepend
ondeadwood. Incontrast,thenumbers ofspeciesof taxa thatare
commonly characterized by species-rich communities in open habi-
tats, such as carabids and epigeal spiders, responded positively to
salvage logging. Despite positive effects of salvage logging on taxa
associated with open habitats, strong negative effects on saprox-
ylicgroupscall forsubstantialchanges inhowdisturbed forestsare
routinelymanaged.
Naturallydisturbedforestsarecharacterizedbylargevolumesof
deadwoodwithhighstructuraldiversity(Swansonetal.,2011).Incon-
trast,salvageloggingtypicallyreducestheamountandheterogeneity
of deadwood by removing tree trunks (Keyser, Smith, & Shepperd,
2009;Priewasser,Brang,Bachofen,Bugmann,&Wohlgemuth,2013).
Notsurprisingly, salvageloggingreduced thenumbersof speciesof
saproxylicgroups (Figures3and4). However,not onlyadecreasing
deadwoodamountbutlikewisealogging-inducedshiftindeadwood
qualitymay haveadditionalimpacts onsaproxylictaxa. Salvagelog-
gingnotonlyreducestheamountoflargetreetrunksbutalsoalters
characteristicconditions,such as decaystages or diameterdistribu-
tions,oftheremainingdeadwood(Waldronetal.,2013).Forinstance,
branchescutduringpost-stormloggingremainonthegroundbutare
overgrownbygroundvegetation.Theresultingshiftin microclimatic
conditionsthenmodifiesresourcequality,leadingtoalossofsaprox-
ylicbeetles thatdependon sun-exposed, drybranches (Thornetal.,
2014).
It is important to note that losses of saproxylic species can be
presentalso within taxonomicgroups thatdisplayedno responsein
theiroverallspeciesnumbers(Figure3a).Forinstance,birds(themost
studiedvertebrategroup)wereslightlynegativelyaffectedbysalvage
logging(Figure3a),despitefewspeciesbeing directlydependent on
dead wood. Nevertheless, several forest-dwelling bird species de-
pend on snags, cavities or natural regenerationin post-disturbance
forest stands. The removal of such legacies bysalvage logging can
causealossofassociated bird speciesandconsequentlyan overall
lowernumber ofbirdspecies in loggedareas(Hutto &Gallo,2006;
Werner,Müller,Heurich,&Thorn,2015).Althoughtheoverallnumber
ofbirdspeciesdecreasedlessstronglythan,forinstance,thenumber
ofsaproxylic beetlespecies(Figure3a),birdspecies thatdependon
post-disturbancehabitatcharacteristicsareoftenofhighconservation
interest.Forinstance,salvageloggingafterhighseveritywildfirescan
leadtolowersite occupanciesofNorthernSpottedOwls(Strix occi-
dentalis caurina)onlogged than onunloggedsites in Oregon(Clark,
Anthony,&Andrews,2013).
Ourstudyrevealedthatsalvageloggingcausedsignificantchanges
incommunitycomposition forsevenspeciesgroups(Figure3b),with
saproxylic species groups being affected most strongly (Figure4b).
Suchalterationsin community compositionmightreflect the estab-
lishmentofopen-habitatspeciesand/orasimultaneouslossofforest
specialists.Forinstance, salvagelogging canincreasetheabundance
ofopen-habitatcarabidbeetles(Koivula&Spence,2006)orpromote
the establishment of non-forest vegetation (Stuartetal., 1993; Van
Nieuwstadt,Sheil, &Kartawinata,2001).Hence,speciesgroupsthat
are commonly characterized by species-rich communities in open
habitats,suchascarabidsorepigealspiders,candisplayanoverallin-
creaseinnumbersofspeciesinresponsetosalvagelogging(Figure3a).
Likewise, salvagelogging can cause an increase in herb- and grass-
feedingmothspeciesbutadecreaseinsaproxylicanddetritus-feeding
mothspecies (Thornetal., 2015).Such contrastingresponseswithin
andbetweenspeciesgroupscan masktheoverallimpactofsalvage
logging on biodiversity in coarse-scale analyses (i.e. Thom & Seidl,
2016).Numerousspecies ofhighconservationinterest, suchasthe
Red-cockadedWoodpecker(Leuconotopicus borealis),dependondead
woodin burnedforests(Conner,Rudolph,& Walters,2001).The re-
sultsofourstudythereforeindicatethat thebiodiversityofsaprox-
ylictaxacouldbeenhanced bya modifiedmanagementofnaturally
disturbedforests.Incontrast,populationsofspeciesassociatedwith
open habitats, such as the Sharp-tailed Grouse (Tympanuchus pha-
sianellus)inNorthAmerica,maypersistorevenincreaseinthelarger
remaining area subject to unmodified management, that is, salvage
logging(Radeloff,Mladenoff,&Boyce,2000).
Thetwomajor incentivesfor salvageloggingare toreduceeco-
nomic losses caused by a naturaldisturbance and to omit mass re-
productionand spreadofinsectpests thatdevelop intrees killedor
weakenedbya preceding naturaldisturbance.Forinstance,salvage
logging of storm-felled Norway spruce (Picea abies) decreased new
infestationsofnearbytreesbytheEuropeansprucebarkbeetle (Ips
FIGURE2 Distributionofstudies
investigatingtheeffectsofsalvagelogging
onbiodiversityafterwildfire,windstorms
andinsectoutbreaksaccordingtotheyears
afterdisturbance.[Colourfigurecanbe
viewedatwileyonlinelibrary.com]
    
|
 285
Journal of Applied Ecology
THORN eT al.
typographus) at a landscape scale (Stadelmann, Bugmann, Meier,
Wermelinger,&Bigler,2013).Salvageloggingisthereforethepredom-
inantresponsetonaturaldisturbancesinwoodproductionforests,but
pestcontrolis regularlyusedtojustify salvage logginginprotected
areas.Forinstance,theBiałowieżaForestNationalParkontheborder
betweenPolandandBelarus,whichis thelast primevallowland for-
estinEurope,iscurrentlyobligedtosalvageloggingofareasaffected
by I. typographusonattempttoavoidfurtherinfestations(Chylarecki
&Selva,2016). Suchan approachtodisturbed forestsneglects that
regionalfactors,suchassummerdrought,canpromoteoutbreaksof
I. typographus more strongly than local standvariables (Seidl etal.,
2015).Furthermore,salvageloggedtimberis usuallyofsubstantially
lowereconomicvaluethannormallyharvestedtimberduetoarapid
colonization by wood-inhabiting fungi and to the fact that distur-
bancesaffect forestsofanyage,sothat generalizedsalvagelogging
operationsnecessarilyincludeyoungerstands thatotherwisewould
notbeharvested(Leverkus,Puerta-Pinero,Guzmán-Álvarez,Navarro,
& Castro, 2012). Our results demonstrate that salvage logging has
strongandnegative effects on manytaxonomic groups, particularly
thoseassociatedwith deadwood,and thatitisthus notconsistent
with biodiversity conservation goals.Along with questionable eco-
nomicoutputs andpestreducingeffects,weargue thatsalvagelog-
gingshouldbeexcludedfromprotectedareassuchasnationalparks.
The incidence of stand-replacing natural disturbances remains
spatially and temporally unpredictable (Berry etal., 2015), creating
inherentuncertaintyaboutappropriatemanagementofnaturallydis-
turbedforests.Hence,managementplansneedtobejointlydeveloped
with(andconfirmedby)stakeholders,scientistsandnaturalresource
managers before the nextdisturban ceoccurs (Lindenmayer, Likens,
& Franklin, 2010). Such management plans could,for instance, en-
compassan aprioriidentificationofsalvageloggingexclusionzones
basedonecologicaldata(e.g.Nappietal.,2011).Forestmanagersalso
may targetthe preservation of structural key attributes in naturally
disturbed forests, including snags or tipped uproot plates of wind-
throwntrees(Hutto,2006).Retentionoftreesduringgreen-treehar-
vestshas becomeanincreasingly commontool aroundtheglobe to
helpconserveforestbiodiversity(Fedrowitzetal.,2014;Gustafsson
etal.,2012;Mori&Kitagawa,2014).Toobtainsomeeconomicreturn
whileretainingdeadwood-dependenttaxa,werecommendasimple
expansionofthe green-treeretentionapproach toincludenaturally
disturbedforests.Retentionapproachesinnaturallydisturbedforests
couldbeexpectedtobelesscostlythaningreen-treeharvestdueto
theloweropportunitycostofnotharvestingdisturbance-killedtrees.
Approximately70%ofthestudieswecompiledspannedlessthan
5years; studies addressing the long-term effects of salvage logging
arerare(Figure2). However,deadwood, and particularlysnags, are
long-lastingkeybiologicallegacies,andtheirlosscanhavelong-lasting
effectson biodiversity(Hutto,2006). Hence,future researchshould
target the long-term effects of salvage logging after natural distur-
bances.Therearealsotaxonomicbiasesinexistingstudiesinvestigating
FIGURE3 (a)Estimatedresponse
ofHedges’dbasedon238individual
comparisonsofspeciesnumbersin
salvageloggedandunsalvagedforests
affectedbynaturaldisturbances.Higher
speciesnumbersinsalvageloggedareas
correspondtopositiveHedges’d,whereas
negativevaluesindicatelowerspecies
numbersinsalvageloggedareas.(b)Pseudo
F-valuesofpermutationalmultivariate
analysisofvariancebasedon134individual
speciesabundancematrices.Largerpseudo
F-valuescorrespondtolargerchangesin
communitycompositioninducedbysalvage
logging.Asterisksindicatesignificant
responses(seeTablesS1andS2for
statisticaldetails).Forillustrativepurposes,
greydots(andthegreylinejoiningthemfor
emphasis)representthemeaneffectsizein
eachtaxonomicgroup.[Colourfigurecan
beviewedatwileyonlinelibrary.com]
286 
|
    
Journal of Applied Ecology
THORN eT al.
theeffectsofsalvageloggingafternaturaldisturbances.Inparticular,
saproxylicgroupssuchaswood-inhabitingfungihavebeenunderrep-
resentedin empirical studiesdespitetheir high diversityand impor-
tance for ecosystem functioning. Future research should therefore
targetparticularlysaproxylicspeciesgroups.Incontrast,othergroups
havebeenrelativelywellstudiedinonedisturbancetype(e.g.birdsin
burnedforests),but lessinothers,and studies wereconducted pri-
marilyin NorthAmerica, Europeand Asia,butlacking intropicalre-
gions(Figure1).However,differenttypesofnatural disturbancesin
differentpartsoftheworldcanactatverydifferentspatialscalesand
mayrequiredifferentretentionapproaches(Kulakowskietal.,2016).
Furthermore,coniferousforestsoftheNorthernHemisphere—incon-
trasttotropicalforests—arenaturallypronetolarge-scalenaturaldis-
turbances(Lindenmayeretal.,2008),whereasdisturbancesintropical
forestsmostlyhave anthropogeniccausesassociatedwithlong-term
land-use change (e.g. fire to open space for livestock grazing and
agriculture; Peres,Barlow, & Laurance, 2006). Nevertheless, natural
disturbancessuchaswindstormsaffecttropicalforestsaswellastem-
perateforests,andsalvageloggingeffectson tropicalforestsshould
betargetedinfutureresearch(e.g.Lawton&Putz,1988).
In conclusion, these data from a wide range of studies demon-
strate that salvage logging has a range of effects on species num-
bers and community composition ofvarious taxonomic groups,with
important negative consequences for several groups, especially
saproxylic ones. Whilecurrent policies for enhancing biodiversity and
ecosystemservices,suchasgreen-treeretention(e.g.,Gustafssonetal.,
2012), focus mainly on forestssubjected to traditional logging opera-
tions,suchpolicies are largelyabsent fromnaturallydisturbed forests.
Wethereforecallforanexpansionofthegreen-treeretentionapproach
toincludenaturallydisturbedforestsbyleavingsubstantialamountsof
deadwoodonsitetoreducetheimpactofsalvageloggingonbiodiversity.
ACKNOWLEDGEMENTS
Wethanknumerouscontributorsforclarifyingtheirstudiesandthree
anonymousreviewersfortheircommentsonanearlierversionofthis
manuscript.S.T.andS.S.werefundedbytheGermanEnvironmental
Foundation. R.S. and D.T. acknowledge support from the Austrian
ScienceFund(FWF,STARTgrantY895-B25).J.C.acknowledgessup-
portfromgrantP12-RNM-2705andA.L.fromSpanishMINECO(FJCI-
2015-23687).D.B.L.wassupportedbyanARCLaureateFellowship.
AUTHORS' CONTRIBUTIONS
S.T.andJ.M.initiatedthestudy.S.T.analysedandinterpretedthedata
andwrotethefirstdraftofthepaper.TheauthorsnamedfromS.T.to
J.M.arelistedalphabetically,astheycontributedequallyingathering
fielddata,providingcorrectionstosubsequentmanuscriptdraftsand
discussingideas.
DATA ACCESSIBILITY
All data are from previously published articles, see “Data sources”.
Datafromthesearticlescan bemadeavailable uponreasonable re-
questtooriginaldataowners.Alistofdatasourcesusedinthestudy
isprovidedintheDataSourcessection.
REFERENCES
Berry,L.E.,Driscoll,D.A.,Stein,J.A.,Blanchard,W.,Banks,S.C.,Bradstock,
R.A.,&Lindenmayer,D.B.(2015).Identifyingthelocationoffireref-
ugesinwetforestecosystems.Ecological Applications,25,2337–2348.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.
B.(2016).Disturbancegradientshowsloggingaffectsplantfunctional
groupsmorethanfire.Ecological Applications,26,2280–2301.
FIGURE4 (a)Estimatedresponseandcorrespondingstandard
errorofsaproxylicandnon-saproxylictaxatosalvageloggingbased
on238individualcomparisons(basedonHedges’d)ofnumbers
ofspeciesinburned,storm-andinsect-affectedforests.Negative
estimatescorrespondtoadecreaseinnumbersofspeciesby
salvagelogging(TableS3).(b)Estimatedresponseandcorresponding
standarderrorofcommunitycompositionofsaproxylicand
non-saproxylictaxabasedonpseudoF-valuesofpermutational
multivariateanalysisofvarianceobtainedfrom134individual
speciesabundancematrices.IncreasingF-valuescorrespondto
largerchangesincommunitycompositioninducedbysalvagelogging
(TableS4).Note,insufficientdata(DD)wereavailableforsaproxylic
taxainburnedforests.Asterisksabovedotsindicatesignificant
differencesintheresponsesbetweensaproxylicandnon-saproxylic
taxawithineachdisturbancetype.Numberofunderlyingdatapoints
isindicatedbythesizeofthecircles,with10and100sizeshownfor
reference.[Colourfigurecanbeviewedatwileyonlinelibrary.com]
    
|
 287
Journal of Applied Ecology
THORN eT al.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens,M. H. H.,&White,J.-S.S. (2009). Generalizedlinear mixed
models:Apracticalguideforecologyandevolution.Trends in Ecology &
Evolution,24,127–135.
Castro, J., Moreno-Rueda, G., & Hódar, J. (2010). Experimental test of
postfire management in pine forests:Impact of salvage logging ver-
suspartialcutting and noninterventiononbird-species assemblages.
Conservation Biology,24,810–819.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporal
changes in the breeding bird community caused by post-fire treat-
mentsaftertheSamcheokforestfireinKorea.Landscape and Ecological
Engineering,10,203–214.
Chylarecki,P.,&Selva, N.(2016).Ancient forest:Spareit fromclearance.
Nature,530,419.
Clark,D.A.,Anthony,R.G.,&Andrews,L.S.(2013).Relationshipbetween
wildfire,salvagelogging,andoccupancyofnestingterritoriesbynorth-
ernspottedowls.The Journal of Wildlife Management,77,672–688.
Cobb,T.P.,Langor,D. W.,&Spence,J.R. (2007).Biodiversityandmulti-
pledisturbances: Borealforestgroundbeetle(Coleoptera:Carabidae)
responses to wildfire, harvesting,and herbicide. Canadian Journal of
Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J. L.,Jacobs,J.M.,Koivula,M.J.,Spence,J.R., &
Langor,D.W.(2011).Effectsofpostfiresalvageloggingondeadwood-
associatedbeetles.Conservation Biology,25,94–104.
Conner, R., Rudolph, D. C., & Walters, J. R. (2001). The red-cockated
woodpecker surviving in a fire-maintained ecosystem. Austin, TX: The
UniversityofTexasPress.
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B.,
Rosenvald, R., … Gustafsson, L. (2014). Can retention forestry help
conservebiodiversity?Ameta-analysis.Journal of Applied Ecology,51,
1669–1679.
Franklin,J.F.,Lindenmayer,D.,Macmahon,J.A.,Mckee,A.,Perry,D.A.,
Waide,R.,&Foster,D. (2000).Threadsofcontinuity:Ecosystemdis-
turbances, biological legacies and ecosystem recovery. Conservation
Biology in Practice,1,8–16.
González, M. E., & Veblen, T. T. (2007). Wildfire in Araucaria araucana
forests and ecological considerationsabout salvage logging in areas
recentlyburned.Revista Chilena de Historia Natural,80,243–253.
Gustafsson,L., Baker,S. C.,Bauhus, J.,Beese, W.J.,Brodie,A.,Kouki,J.,
…Franklin,J.F.(2012).Retentionforestrytomaintain multifunctional
forests:Aworldperspective.BioScience,62,633–645.
Halme, P., Toivanen,T., Honkanen,M., Kotiaho, J. S., Mönkkönen, M., &
Timonen, J. (2010). Flawed meta-analysis of biodiversity effects of
forestmanagement.Conservation Biology,24,1154–1156.
Hedges,L.V.,&Olkin, I.(1985).Statistical methods for meta-analysis. San
Diego,CA:AcademicPress.
Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinferenceingen-
eralparametricmodels.Biometrical Journal,50,346–363.
Hutto,R.L. (2006). Towardmeaningfulsnag-management guidelines for
postfiresalvagelogginginNorthAmericanconiferforests.Conservation
Biology,20,984–993.
Hutto,R.L.,&Gallo,S.M.(2006).Theeffectsofpostfiresalvageloggingon
cavity-nestingbirds.Condor,108,817–831.
Inbar,M.,Wittenberg,L.,&Tamir,M.(1997).Soilerosionandforestryman-
agementafterwildfireinamediterraneanwoodland,Mt.Carmel,Israel.
International Journal of Wildland Fire,7,285–294.
Keyser,T.L.,Smith,F.W.,&Shepperd,W.D.(2009).Short-termimpactof
post-firesalvageloggingonregeneration,hazardousfuelaccumulation,
andunderstoreydevelopmentinponderosa pineforestsoftheBlack
Hills,SD,USA.International Journal of Wildland Fire,18,451–458.
Koivula, M., & Spence,J. R. (2006). Effects of post-fire salvage logging
on boreal mixed-wood ground beetle assemblages (Coleoptera,
Carabidae).Forest Ecology and Management,236,102–112.
Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of
meta-analysis in ecology and evolution(edsJ.Koricheva,J.Gurevitch&
K.Mengersen).Princeton,NJ:PrincetonUniversityPress.
Kulakowski,D.,Seidl,R.,Holeksa,J.,Kuuluvainen,T.,Nagel,T.A.,Panayotov,
M.,… Bebi,P.(2016).Awalkon thewild side:Disturbancedynamics
andtheconservationandmanagement ofEuropean mountainforest
ecosystems.Forest Ecology and Management,388,120–131.
Kurz,W.,Dymond,C.C.,Stinson,G.,Rampley,G.J.,Neilson,E.T.,Carroll,
A.L., …Safranyik,L.(2008).Mountainpinebeetle andforest carbon
feedbacktoclimatechange.Nature,452,987–990.
Lain,E.J.,Haney,A.,Burris,J. M.,&Burton,J.(2008).Responseofvege-
tationandbirds tosevere winddisturbance and salvagelogging ina
southernborealforest.Forest Ecology and Management,256,863–871.
Lawton,R.,&Putz,F.E.(1988).Naturaldisturbanceandgap-phaseregen-
erationinawind-exposedtropicalcloudforest.Ecology,69,764–777.
Legendre,P.,&Anderson,M.J.(1999).Distance-basedredundancyanaly-
sis:Testingmultispeciesresponsesinmultifactorialecologicalexperi-
ments.Ecological Monographs,69,1–24.
Leverkus,A. B., Puerta-Pinero, C., Guzmán-Álvarez, J. R., Navarro,J., &
Castro,J.(2012). Post-fire salvageloggingincreasesrestorationcosts
inaMediterraneanmountainecosystem.New Forests,43,601–613.
Lindenmayer,D.,Burton,P.J.,&Franklin,J.F.(2008).Salvage logging and its
ecological consequences.Washington:IslandPress.
Lindenmayer,D.B.,Foster,D.R., Franklin,J.F.,Hunter,M.L.,Noss,R. F.,
Schmiegelow,F.A.,&Perry,D.(2004).Salvageharvestingpoliciesafter
naturaldisturbance.Science,303,1303.
Lindenmayer,D.B.,Likens,G.E.,& Franklin,J.F.(2010).Rapidresponses
tofacilitateecologicaldiscoveriesfrommajordisturbances.Frontiers in
Ecology and the Environment,8,527–532.
Lindenmayer, D. B., & Noss, R. F. (2006). Salvage logging, ecosystem
processes, and biodiversity conservation. Conservation Biology, 20,
946–948.
Lindenmayer,D.B.,&Ough,K.(2007).Salvagelogginginthemontaneash
eucalyptforestsoftheCentralHighlands ofVictoriaand itspotential
impactsonbiodiversity.Conservation Biology,20,1005–1015.
Lindenmayer, D.,Thorn, S., & Banks, S. (2017). Please do not disturb
ecosystemsfurther.Nature Ecology and Evolution,1,1–8.
Macdonald,S.E.(2007).Effectsofpartialpost-firesalvageharvestingon
vegetation communities in the boreal mixedwood forest region of
northeastern Alberta, Canada. Forest Ecology and Management, 239,
21–31.
McArdle,B. H., &Anderson,M. J.(2001).Fitting multivariate modelsto
communitydata:Acommenton distance-basedredundancyanalysis.
Ecology,82,290–297.
McIver, J. D., & Starr, L. (2000). Environmental effects of postfire log-
ging: Literature review and annotated bibliography. Portland, OR: U.S.
DepartmentofAgriculture,ForestService,PacificNorthwestResearch
Station.
Mori,A.S.,&Kitagawa,R.(2014).Retentionforestryasamajorparadigm
forsafeguardingforestbiodiversityinproductivelandscapes:Aglobal
meta-analysis.Biological Conservation,175,65–73.
Morimoto,J.,Morimoto,M.,&Nakamura,F.(2011).Initialvegetationre-
covery following a blowdown of a conifer plantation in monsoonal
EastAsia:Impactsoflegacyretention,salvaging,sitepreparation,and
weeding.Forest Ecology and Management,261,1353–1361.
Nappi,A.,&Drapeau,P.(2009).Reproductivesuccessoftheblack-backed
woodpecker (Picoides arcticus) in burned boreal forests: Are burns
sourcehabitats?Biological Conservation,142,1381–1391.
Nappi,A.,Stéphane,D.,Bujold,F.,Chabot,M.,Dumont,M.-C.,Duval,J.,…
Bergeron,I.(2011).Harvestinginburnedforests–Issuesandorienta-
tionsforecosystem-basedmanagement.MinistèredesRessourcesna-
turellesetdelaFaune,Directiondel’environnementetdelaprotection
desforêts,Québec.
288 
|
    
Journal of Applied Ecology
THORN eT al.
Nikiforuk,A.(2011).Empire of the beetle: How human folly and a tiny bug
are killing North America’s great forests,FirstEdit.Vancouver,Canada:
DavidSuzukiFoundationSeries.
Norvez, O., Hébert, C., Bélanger, L., Hebert, C., & Belanger, L. (2013).
Impact of salvagelogging on stand structure and beetle diversity in
borealbalsamfir forest,20years afteraspruce budworm outbreak.
Forest Ecology and Management,302,122–132.
Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,R.
B.,…Wagner,H.(2016).vegan:CommunityEcologyPackage.Retrieved
fromhttps://cran.r-project.org/package=vegan
Peres,C.A.,Barlow,J.,&Laurance,W.F.(2006).Detectinganthropogenic
disturbance in tropical forests. Trends in Ecology and Evolution, 21,
227–229.
Phillips,I. D.,Cobb,T.P.,Spence,J. R.,&Brigham, R.M. (2006).Salvage
logging,edgeeffects, andcarabidbeetles: Connectionstoconserva-
tionandsustainableforestmanagement.Environmental Entomology,35,
950–957.
Priewasser, K., Brang, P., Bachofen, H., Bugmann, H., & Wohlgemuth, T.
(2013).Impactsofsalvage-loggingonthestatusofdeadwoodafterwind-
throwinSwissforests.European Journal of Forest Research,132,231–240.
Pullin,A. S.,&Stewart, G.B.(2006). Guidelinesforsystematicreviewin
conservation and environmental management. Conservation Biology,
20,1647–1656.
Radeloff,V.C.,Mladenoff,D.J.,&Boyce,M.S.(2000).Effectsofinteracting
disturbancesonlandscapepatterns:Budwormdefoliationandsalvage
logging.Ecological Applications,10,233–247.
Ramage,B.S., Sheil, D.,Salim,H. M. W.,Fletcher,C.,Mustafa, N. Z.A.,
Luruthusamay,J.C.,… Potts,M.D.(2013).Pseudoreplicationintrop-
ical forests and the resulting effects on biodiversity conservation.
Conservation Biology,27,364–372.
Saab,V.,Russell,R.E.,&Dudley,J.G.(2009).Nest-siteselectionbycavity-
nestingbirdsinrelationtopostfiresalvagelogging.Forest Ecology and
Management,257,151–159.
Schmiegelow, F. K.A., Stepnisky, D. P.,Stambaugh, C. A., & Koivula,
M. (2006). Reconciling salvage logging of boreal forests with a
natural-disturbance managementmodel.Conservation Biology, 20,
971–983.
Seidl,R.,Müller,J.,Hothorn,T.,Bässler,C.,Heurich,M.,&Kautz,M.(2015).
Smallbeetle, large-scaledrivers:Howregionaland landscapefactors
affectoutbreaksoftheEuropeansprucebarkbeetle.Journal of Applied
Ecology,53,530–540.
Seidl,R., Schelhaas,M.-J.,Rammer,W.,&Verkerk,P.J.(2014). Increasing
forest disturbances in Europe and their impact on carbon storage.
Nature Climate Change,4,806–810.
Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., & Bigler, C.
(2013).Effectsofsalvageloggingandsanitationfellingonbarkbeetle
(Ips typographusL.) infestations.Forest Ecology and Management,305,
273–281.
Stokstad,E.(2006).Salvageloggingresearchcontinuestogeneratesparks.
Science,311,761.
Stuart,J. D., Grifantini,M.C., Fox,L.III., & Fox,L. (1993). Early succes-
sionalpathwaysfollowingwildfireand subsequentsilvicultural treat-
mentinDouglas-fir/hardwoodforests, NWCalifornia. Forest Science,
39,561–572.
Swanson,M.E.,Franklin,J.F.,Beschta,R.L.,Crisafulli,C.M.,DellaSala,D.
A.,Hutto,R. L.,…Swanson,F.J.(2011).Theforgottenstageofforest
succession:Early-successionalecosystemsonforestsites.Frontiers in
Ecology and the Environment,9,117–125.
Thom, D., & Seidl,R. (2016). Natural disturbance impacts on ecosystem
services and biodiversity in temperate and boreal forests. Biological
Reviews,91,760–781.
Thorn, S., Bässler,C., Bernhardt-Römermann, M., Cadotte, M., Heibl, C.,
Schäfer, H., … Müller, J. (2016). Changes in the dominant assembly
mechanismdrivesspecieslosscausedbydecliningresources.Ecology
Letters,19,163–170.
Thorn, S., Bässler, C., Gottschalk, T., Hothorn, T., Bussler, H., Raffa, K.,
& Müller, J. (2014). New insights into the consequences of post-
windthrowsalvageloggingrevealedbyfunctionalstructureofsaprox-
ylicbeetlesassemblages.PLoS ONE,9,e101757.
Thorn,S.,Bässler,C.,Svoboda,M.,&Müller,J.(2016).Effectsofnatural
disturbancesand salvageloggingonbiodiversity–Lessonsfromthe
BohemianForest.Forest Ecology and Management,388,113–119.
Thorn,S.,Hacker,H.H.,Seibold,S.,Jehl,H.,Bässler,C.,&Müller,J.(2015).
Guild-specificresponsesofforestLepidopterahighlightconservation-
oriented forest management – Implications from conifer-dominated
forests.Forest Ecology and Management,337,41–47.
Thorn,S.,Werner,S.A.B.,Wohlfahrt,J.,Bässler,C.,Seibold,S.,Quillfeldt,
P.,&Müller,J.(2016).Responseofbirdassemblagestowindstormand
salvagelogging—Insightsfromanalysesoffunctionalguildandindica-
torspecies.Ecological Indicators,65,142–148.
VanNieuwstadt,M.G.L.,Sheil,D.,&Kartawinata,K.(2001).Theecologi-
calconsequencesofloggingintheburnedforestsofEastKalimantan,
Indonesia.Conservation Biology,15,1183–1186.
Viechtbauer,W.(2010).Conductingmeta-analysesinRwith themetafor
package.Journal of Statistical Software,36,1–48.
Waldron,K.,Ruel,J.,&Gauthier,S.(2013).Foreststructuralattributesafter
windthrow and consequences ofsalvage logging. Forest Ecology and
Management,289,28–37.
Werner,S.A.B.,Müller,J.,Heurich,M.,&Thorn,S.(2015).Naturalregen-
erationdetermineswinteringbirdpresenceinwind-damagedconifer-
ousforeststandsindependentofpost-disturbance logging.Canadian
Journal of Forest Research,45,1232–1237.
Zmihorski, M. (2010). The effect of windthrow and its managementon
breeding bird communities in a managed forest. Biodiversity and
Conservation,19,1871–1882.
Zmihorski,M.,&Durska,E.(2011).Theeffectofcontrastingmanagement
typesontwodistincttaxonomic groupsin alarge-scaledwindthrow.
European Journal of Forest Research,130,589–600.
DATA SOURCES
Barnouin,T.(2005).ÉvaluationdeL‘ImportanceDesForêtsAffectéesParLaTordeuse
DesBourgeons deLâ€TMÉpinette,ChoristoneuraFumiferana(Clem.),Dans Le
MaintiendeLaDiversitéDesColéoptèresSaproxyliques.UniversitéLavalQuebec.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.B.(2016).
Disturbance gradient shows loggingaffects plant functional groups more than
fire.Ecological Applications,26,2280–2301.
Boucher,D.,Gauthier,S.,Noël,J.,Greene,D.F.,&Bergeron,Y.(2014).Salvagelogging
affectsearlypost-firetreecomposition inCanadianboreal forest.Forest Ecology
and Management,325,118–127.
Bradbury,S.M.(2006).Responseofthepost-firebryophytecommunitytosalvagelog-
ginginborealmixedwoodforestsofnortheasternAlberta,Canada.Forest Ecology
and Management,234,313–322.
Cahall,R.E.,&Hayes,J.P.(2009).Influencesofpostfiresalvageloggingonforestbirdsinthe
EasternCascades,Oregon,USA.Forest Ecology and Management,257,1119–1128.
Castro,J.,Moreno-Rueda,G.,&Hódar,J.(2010).Experimentaltestofpostfiremanage-
mentinpineforests:Impactofsalvageloggingversuspartialcuttingandnoninter-
ventiononbird-speciesassemblages.Conservation Biology,24,810–819.
Choi,C.-Y.(2007).Effectsofpostfireloggingonbirdpopulationsandcommunitiesin
burnedforests.Journal of the Korean Forest Society,96,115–123.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporalchangesin
thebreedingbirdcommunitycausedbypost-firetreatmentsaftertheSamcheok
forestfireinKorea.Landscape and Ecological Engineering,10,203–214.
Cobb,T. P.,Langor, D. W.,& Spence, J. R. (2007). Biodiversity and multiple distur-
bances:Borealforestgroundbeetle(Coleoptera:Carabidae)responsestowildfire,
harvesting,andherbicide.Canadian Journal of Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J.L.,Jacobs,J.M.,Koivula,M.J., Spence,J.R., &Langor, D.
W.(2011). Effectsof postfiresalvageloggingon deadwood-associatedbeetles.
Conservation Biology,25,94–104.
Donato, D. C., Fontaine,J. B., Campbell, J. L., Robinson, W.D., Kauffman, J. B., &
Law,B.E.(2009).Coniferregenerationinstand-replacementportionsofalarge
    
|
 289
Journal of Applied Ecology
THORN eT al.
mixed-severitywildfire in the Klamath-SiskiyouMountains. Canadian Journal of
Forest Research,39,823–838.
Donato,D.C.,Fontaine,J.B.,Kauffman,J.B.,Robinson,D., &Law,B.E.(2013).Fuel
massandforeststructurefollowingstand-replacementfireandpost-firelogging
inamixed-evergreenforest.International Journal of Wildland Fire,22,652–666.
Duelli,P.,Obrist,M.K.,&Wermelinger,B.(2002).Windthrow-induced changesinfau-
nisticbiodiversityinalpinespruceforests.Forest Snow and Landscape Research,131,
117–131.
Durska,E. (2013).Effectsofdisturbanceson scuttleflies (Diptera:Phoridae)in Pine
Forests.Biodiversity and Conservation,22,1991–2021.
Fontaine,J. B.(2007). Influences of high severity fire and postfire logging on avian and
small mammal communities of the Siskiyou Mountains.Corvallis,OR:OregonState
University.
Fontaine,J.B., Donato,D.C.,Robinson,W.D.,Law,B. E.,& Kauffman,J.B. (2009).
Birdcommunitiesfollowinghigh-severityfire:Responsetosingleandrepeatfires
inamixed-evergreenforest,Oregon,USA.Forest Ecology and Management,257,
1496–1504.
Hutto,R. L.,& Gallo,S.M.(2006).The effectsofpostfire salvageloggingoncavity-
nestingbirds.Condor,108,817–831.
Jeffrey,O.(2013).EffetsDesCoupesdeRécupérationSurLesSuccessionsNaturelles
deColéoptèresSaproxyliquesLeLongD’une Chronoséquencede15 AnsAprès
FeuEnForêtBoréaleCommerciale.Univer.
Jonasova,M.,&Prach,K. (2008).Theinfluenceofbark beetlesoutbreakvs. salvage
loggingongroundlayervegetationinCentralEuropeanmountainspruceforests.
Biological Conservation,141,1525–1535.
Koivula, M., & Spence, J.R. (2006). Effects of post-fire salvage logging on boreal
mixed-wood groundbeetle assemblages(Coleoptera,Carabidae).Forest Ecology
and Management,236,102–112.
Kurulok,S. E.,&Macdonald,S.E. (2007).Impacts ofpostfiresalvage loggingonun-
derstoryplantcommunitiesoftheborealmixedwoodforest2and34yearsafter
disturbance.Canadian Journal of Forest Research,37,2637–2651.
Lee,E.L.W.,Hun,S., Rhim,S.-J.,Lee,W.-S.,& Son,S.H.(2011).Differencesinbird
communitiesinpostfiresilviculturalpracticesstandswithinpineforestofSouth
Korea.Landscape and Ecological Engineering,7,137–143.
Lee,E., Lee,W., &Rhim, S.-J.(2008). Characteristics ofsmall rodentpopulations in
post-fire silvicultural management stands within pine forest.Forest Ecology and
Management,255,1418–1422.
Lee,E.-J.,Rhim,S.,Son, S.,&Lee,W.(2012).Differencesinsmall-mammalandstand
structuresbetween unburned andburned pine standssubjectedto twodiffer-
entpost-firesilvicultural managementpractices.Annales Zoologici Fennici,2450,
129–138.
Leverkus,A. B.,Lorite,J., Navarro,F.B., Sánchez-Cañete, E.P.,&Castro, J.(2014).
Post-fire salvage logging alters species composition and reduces cover, rich-
ness,anddiversityin Mediterraneanplantcommunities.Journal of Environmental
Management,133,323–331.
Liepold,K.(2004).VergleichendeUntersuchungenZurFaunistischenUndGenetischen
DiversitätvonKäferzönoseninGenutzten UndUngenutzten Bergmischwäldern
DesBayerischenWaldes.TUMMünchen.
Mehr,M.,Brandl,R.,Kneib,T.,&Müller,J.(2012).Theeffectofbarkbeetleinfestation
andsalvageloggingonbatactivityinanationalpark.Biodiversity and Conservation,
21,2775–2786.
Norvez,O.,Hébert,C., Bélanger,L.,Hebert,C.,& Belanger,L.(2013).Impactofsal-
vageloggingon standstructureand beetlediversityinboreal balsamfirforest,
20yearsafterasprucebudwormoutbreak.Forest Ecology and Management,302,
122–132.
Park,C. (2012).Differences in characteristics of amphibian and reptile communities due
to different forest environment at forest fired area in Samcheok, Gangwon Province.
Seoul,Korea:SeoulNationalUniversity.
Peterson,C.J.,&Leach,A.D.(2008).Salvageloggingafterwindthrowaltersmicrosite
diversity,abundanceandenvironment,butnotvegetation.Forestry,81,361–376.
Rost,J.,Clavero,M.,Brotons,L.,& Pons,P.(2012).Theeffectofpostfiresalvagelog-
gingonbirdcommunitiesinMediterraneanpineforests:Thebenefitsfordeclining
species.Journal of Applied Ecology,49,644–651.
Rumbaitis,C.M., &RumbaitisdelRio, C.M.(2006).Changesinunderstorycomposi-
tionfollowing catastrophicwindthrowand salvagelogging ina subalpineforest
ecosystem.Canadian Journal of Forest Research – Revue Canadienne De Recherche
Forestiere,36,2943–2954.
Thorn,S., Bässler,C.,Bernhardt-Römermann,M.,Cadotte, M.,Heibl, C.,Schäfer,H.,
…Müller,J.(2016).Changesinthedominantassemblymechanismdrivesspecies
losscausedbydecliningresources.Ecology Letters,19,163–170.
Thorn, S., Bässler,C., Gottschalk, T., Hothorn,T., Bussler,H., Raffa, K., & Müller, J.
(2014).New insightsinto theconsequencesofpost-windthrow salvagelogging
revealedbyfunctionalstructureofsaproxylicbeetlesassemblages.PLoS ONE,9,
e101757.
Thorn,S.,Hacker,H.H., Seibold,S.,Jehl, H.,Bässler, C., &Müller, J.(2015). Guild-
specific responses of forestLepidoptera highlight conservation-oriented forest
management – Implications fromconifer-dominated forests. Forest Ecology and
Management,337,41–47.
Thorn, S., Werner, S. A. B., Wohlfahrt,J., Bässler, C., Seibold, S., Quillfeldt, P., &
Müller,J. (2016).Responseof birdassemblages towindstorm and salvagelog-
ging—Insightsfromanalyses offunctionalguildandindicatorspecies.Ecological
Indicators,65,142–148.
Waldron,K.,Ruel,J.-C.,Gauthier,S.,DeGrandpré,L.,&Peterson,C.J.(2014).Effects
ofpost-windthrowsalvageloggingonmicrosites,plantcompositionandregener-
ationed.J. Ewald. Applied Vegetation Science,17,323–337.
Wermelinger,B.,Moretti,M.,Duelli,P.,Lachat,T.,Pezzatti,G.B.,&Obrist,M.K.(2017).
Impactofwindthrowandsalvage-loggingontaxonomicandfunctionaldiversityof
forestarthropods.Forest Ecology and Management,391,9–18.
Winter,M.-B.,Ammer,C.,Baier,R.,Donato,D.C.,Seibold,S., &Müller,J.(2015).Multi-
taxonalphadiversityfollowingbarkbeetledisturbance:Evaluatingmulti-decadeper-
sistenceofadiverseearly-seralphase.Forest Ecology and Management,338,32–45.
Zmihorski,M.(2010).Theeffectofwindthrowanditsmanagementonbreeding bird
communitiesinamanagedforest.Biodiversity and Conservation,19,1871–1882.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:ThornS,BässlerC,BrandlR,etal.
Impactsofsalvageloggingonbiodiversity:Ameta-analysis.
J Appl Ecol. 2018;55:279–289. https://doi.org/10.1111/1365-
2664.12945
... Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally, including in Australia (Lindenmayer 2020). This occurs despite potential negative effects on biodiversity, when salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking (Thorn et al 2018). ...
... Richness of dead wood dependent taxa (that is, saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa. By analysing 134 original species abundance matrices, the researchers also demonstrated that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages (Thorn et al 2018). ...
... In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging, for non-forest vegetation and fauna, thereby significantly changing the local ecosystem (Thorn et al 2018). ...
Article
Full-text available
In early 2015 NSW Opposition leader Luke Foley announced Labor had plans to establish the Great Koala National Park, of 315,000 ha, on the Mid North Coast. Following Labor's election win, in March 2023, the party said the proposed park will be formed within its first term. A key requirement of the proposal for the Great Koala National Park is to help reduce the risk of extinction of native plants and animals, which is an ongoing major issue in Australia. Major specific factors that impact on the survival of Koalas, include increasing risk of bushfires, due to climate change, and diseases. Also, logging of native forests has a negative impact on survival of both Koalas and other species at risk in the native forest ecosystems. Logging of native forests also has negative impacts on managing bushfires, and salvage logging has negative impacts on biodiversity. To do better, I discuss; better managing native forests, including better managing bushfires; transition support for the NSW’s native forest sector; and community consultation on the proposal.
... Nevertheless, the effects on soils are highly dependent on the context, the site characteristics, the soil erodibility, and the way to perform the management (Fernández and Vega, 2016;García-Orenes et al., 2017;Francos et al., 2018). On the other hand, burnt wood is a biological legacy of key relevance in burned forests (Thorn et al., 2018). The burnt wood act as a barrier for sediments against water erosion, constitutes a stock of nutrients that slowly fertilize soil through decomposition, and ameliorates the stress conditions by increasing soil moisture, enabling vegetation and microbial development and sustaining biodiversity and ecosystem services (Baldrian, 2017;Thorn et al., 2018;García-Carmona et al., 2021a;Juan-Ovejero et al., 2021). ...
... On the other hand, burnt wood is a biological legacy of key relevance in burned forests (Thorn et al., 2018). The burnt wood act as a barrier for sediments against water erosion, constitutes a stock of nutrients that slowly fertilize soil through decomposition, and ameliorates the stress conditions by increasing soil moisture, enabling vegetation and microbial development and sustaining biodiversity and ecosystem services (Baldrian, 2017;Thorn et al., 2018;García-Carmona et al., 2021a;Juan-Ovejero et al., 2021). However, timber activities in Mediterranean forests are important from a social perspective, being non-interventionism is highly controversial . ...
Article
Full-text available
Although Mediterranean ecosystems are adapted to fire disturbances, soils are prone to degradation. Therefore, post-fire forest management is a critical step for ecosystem recovery: it can either reduce soil degradation or add a new disturbance. Post-fire management in Mediterranean burnt forests includes interventions with contrasting approaches, including the management of burnt trees, soil protection, or practices devoted to ecosystem restoration via the improvement of components or processes in the affected ecosystem. The consequences of forest management on soils are complex, thereby, in the context of the intensification of fire events and climate change, understanding the response of key soil components in managed ecosystems is critical for prioritizing soil conservation. One interesting component in the early post-fire stages is moss biocrust. The rapid colonization of biocrust-forming mosses in early successional stages post-disturbance stabilizes soils in their most vulnerable period. However, it is completely unknown further implications as active agents in the recovery and resilience of soils, in the transient stage before vascular vegetation regrowth. In combination with the biocrust, the response of soil microbial communities to forest management is crucial for evaluating the soil recovery progress, given their active role in fundamental ecosystem functions. The additive consequences of fires and forest management on biocrust emergence or microbial composition and functionality are usually neglected in the investigation of post-fire systems, although of major relevance to support strategies to preserve soils against functionality loss.
... However, this practice has been demonstrated to negatively affect ecosystem processes in different ways, with consequences potentially lasting for several years, also resulting from the interactions between the natural and anthropogenic disturbance, which has still not been thoroughly investigated [7,33]. It can also lead to a simplification of the post-disturbance habitat structure, producing negative impacts on species diversity, especially for species related to deadwood presence [34]. Moreover, natural regeneration through seed dispersal can be negatively affected in relation to the extent of the salvage logging operations, as this can increase the distance from seed sources [35]. ...
Article
Full-text available
After large and severe wildfires, the establishment of tree regeneration, particularly for species without specific fire-adaptive traits, can be challenging. Within harsh environments, the presence of favorable microsites, as those provided by deadwood, enhancing microclimatic conditions, is crucial to the re-establishment of forest cover and thus to foster recovery dynamics. Active restoration strategies can have an impact on these dynamics, altering or hindering them. The main hypothesis of this study is that manipulating deadwood in terms of quantity and spatial arrangement can result in differences in natural regeneration density and composition. Post-disturbance regeneration dynamics and the role played by deadwood over time in the creation of safe sites for seedling establishment were investigated in an area affected by a high-severity wildfire that underwent different post-fire restoration treatments along a gradient of increasing deadwood manipulation, spanning from salvage logging to non-intervention. Two inventories were performed 5 and 11 years after the fire. Ground cover proportion was significantly different among treatments, with lower values of lying deadwood in salvaged sites. A higher probability of regeneration establishment close to deadwood was found in both surveys, confirming the facilitating role of deadwood on post-fire forest regeneration. Microsite dynamics resulting from deadwood facilitation were highlighted, with establishment probability and anisotropic relationships between deadwood elements and seedlings changing over time, as recovery processes slowly improved environmental conditions. In dry mountain areas affected by stand-replacing wildfires, by removing deadwood, salvage logging reduces the number of safe sites for regeneration, further impairing the ecosystem recovery. Passive management should be the ecologically preferred management strategy in these conditions, although intermediate interventions (e.g., felling without delimbing, leaving deadwood on the ground) could be effective alternatives, accelerating snag fall dynamics and immediately increasing favorable microsite availability.
... For example, managed post-fire recovery efforts can include salvage logging, tree seeding or planting, and associated weed control practices. One can view salvage logging as shortening the ecological lag time by not allowing for processes such as wood decay, and thus all associated ecosystem services to play out longer (Harmon et al., 1986;Thorn et al., 2018). Tree seeding, planting, and weed control practices will shorten the time till fully stocked stands of vigorous trees are established (ecological lag time; Shatford et al., 2007) and thus all ecosystem services associated with these types of stands are provided (ecosystem service lag time), e.g., fast carbon sequestration, habitat for large cavity nesters, and economic values (Bauhus et al., 2009). ...
Article
Full-text available
The increased speed of global change and associated high severity disturbances, in conjunction with the increasing suite of societal expectations on forests, suggest that the timeliness of interventions to encourage the adaptive capacity of ecosystems and to reduce negative impacts in regards to provision of ecosystem services is increasingly relevant. To address this issue, we expand the concept of lag time as used in ecological discussions into a forest management context. In this context, lag times have earlier starting and later ending points and can be separated into different components. These components include the delay till detection, decision making, and implementation, followed by ecological lag time and the time till ecosystem services are provided at acceptable levels. The first three components are influenced by the availability of information, the lack of which can extend lag times. Also, the lengths of components are not simply additive but they interact. For example, treatment preparation due to a quicker detection can lead to shorter decision and implementation lag times. We highlight the benefits of addressing the various components of lag time in forestry operations. Especially when considering adaptive capacity in times of global change, our analysis suggests that all aspects of the forestry sector are challenged to consider how to optimize lag times. Last, we propose that such issues need to be considered with any management action and are especially relevant in discussions whether the best strategy after disturbances or in the light of global change is to adopt a passive approach and let natural ecosystem processes play out on their own or whether active management is better suited to ensure a more rapid and fitting ecosystem response to facilitate the continued provision of ecosystem services. https://authors.elsevier.com/sd/article/S2197562023000623
... Deadwood enrichment as a management strategy plus natural senescence will increase the amount of deadwood and consequently increasing the diversity of saproxylic organisms. However, this will mostly apply for broadleaf deadwood as coniferous deadwood is often removed from forests (Thorn et al. 2018). ...
Article
The conversion from pure coniferous stands to mixed forests is a major goal of forest management strategies in the light of climate change. However, the effects of forest conversion on the associated species diversity and the factors driving diversity changes remain poorly understood. To investigate these effects, we established 54 plots in a managed forest in southern Germany, where large areas have been converted from pure spruce to mixed spruce-beech stands since the middle of the 20th century. Our sampling plots consisted of three different age classes and increasing proportions of beech, measured by the number of stems. We sampled fungi, plants, invertebrates, and birds and combined classical methods (identification by specialists) and metabarcoding for species identification. Furthermore, important forest structure and site parameters were recorded to test their influence on species alpha and beta diversity. Alpha diversity of embryophytes, and therein tracheophytes, increased with increasing availability of light, whereas fungi decreased. With increasing humus thickness alpha diversity of insects, especially dipterans and hymenopterans increased, whereas embryophytes, tracheophytes and fungi decreased. Increasing numbers of habitat trees increased the alpha diversity overall, especially in tracheophytes and hymenopterans. The proportion of beech determined the alpha diversity of one out of 12 taxa and influenced the beta diversity of 10 from 12 taxa. However, factors influencing the diversity are taxa dependent. Our study indicates that the proportion of beech had less impact on alpha diversity but impacts beta diversity. Changes in forest structures and environmental conditions occurring during forest conversion are as important as the introduction of beech for alpha and beta diversity.
... On the other hand, wood-based mulches could promote microbial activity and abundance throughout the softening of microclimatic conditions (e.g., increase soil moisture) or nutrient release, with subsequent shifts in the microbial community composition (Ammitzboll et al., 2022;Goodell et al., 2020). Indeed, after the strong perturbation that a wildfire represents to nutrient cycling, the burnt wood constitutes a nutrient stock that progressively fertilizes the soil, eventually supporting higher soil biodiversity (Juan-Ovejero et al., 2021;Thorn et al., 2018;Thorn et al., 2020;Tláskal et al., 2021). During the decay process, changes in composition and abundance of wood-inhabiting bacteria and fungi affect the diversity and composition of soil microbial communities (Baldrian et al., 2012;Urbanová et al., 2015), a process not examined in fire-affected soils after mulch application. ...
Article
Full-text available
Mulches are highly effective in mitigating the risk of erosion generated after wildfires in fire-prone ecosystems. Despite being a technique commonly used, it remains completely unexplored how mulches interact with the positive effects of the emergent moss biocrust on the recovery and resilience of soils and their microbial communities. For this purpose, the effects of wood-based mulch were assayed on the soil stability and moisture improvement, the nutrient inputs, and the response of microbial biomass, activity, composition, and diversity. Soils were studied after one year of wood mulch application at two rates representing possible scenarios, "Rate 1" (65 % of soil cover), and "Rate 2" (100 % of cover), and "Control" soils without mulch. The biocrust development had a positive impact on soil aggregate stability and moisture retention before mulch application. However, one year after the mulch application the biocrust cover was drastically inhibited, especially at the highest rate of mulch. Independently of the biocrust presence, soils at Rate 1 registered a tendency to higher nitrogen content, available phosphorous, basal respiration, and microbial biomass carbon, suggesting an incipient recovery of soil conditions and soil functionality. However, the microbial community composition became more homogeneous and less diverse under the mulch presence (regardless of the application rate), and the positive effect of moss biocrust emergence on the microbial diversity was diluted after one year. The fungal community was particularly sensitive to the wood mulch presence, increasing in richness in response to fresh wood incorporation to soils, in particular saprotrophs and yeasts. The fungal and bacterial compositional shifts after the mulch application reveal an incipient wood decomposition stage, but the transitory loss in beta diversity after the moss biocrust suppression warns about the necessity of including the microbial diversity information into post-fire management planning. Studying the effects of forest management on the above and belowground soil communities is essential to understanding the resistance and resilience of semi-arid forests to the increasing intensity and severity of wildfires.
... Recently burnt forests also pose safety risks to forest workers, and managing these may further increase costs (IFA 2020). Post-fire logging has also been linked to negative biodiversity outcomes (Lindenmayer et al. 2004, Thorn et al. 2018). ...
Technical Report
Full-text available
This report develops and applies a standardised framework for natural capital risk assessment in forestry, in order to produce the first systematic, evidence-based assessment of natural capital risks for the Australian forestry sector. By providing both a forestry-specific approach and an initial materiality assessment of the Australian forestry sector’s natural capital risks, this report aims to simplify, streamline and standardise the process of natural capital risk assessment for individual forest estates within Australia. The report identifies the main dependency risks (natural capital that forestry businesses depend on) and impact risks (natural capital that forestry businesses impact on) for the Australian forestry industry (sub-divided into softwood plantations, hardwood plantations, and native forests), and rates the materiality of these risks based on evidence from published literature and expert knowledge. Overall, the assessment found that the materiality of risks associated with natural capital dependencies were generally moderate to high. By contrast, the materiality of risks associated with impacts were mostly low to moderate, with softwood and hardwood plantations having similar profiles, slightly different to the profile for native forests. The most material risks for Australian forestry were associated with water availability, temperature, bushfire, extreme storm events, soil quality and pests and diseases (for all sub-sectors), and biodiversity (for native forests). All of these highly material risks arise from natural capital dependencies, apart from biodiversity which was an impact risk for native forests only, and bushfire and soil quality which were both a highly material dependency risk and impact risk. Climate change was identified as an underlying driver of environmental change affecting all of the most highly material dependencies, whilst also potentially exacerbating biodiversity and pests and diseases impacts. Changes in rainfall regimes, temperature regimes and associated changes in fire regimes and the distribution of pests and diseases pose a combination of direct and indirect risks for the industry. In the past, most environmental management attention within primary industries such as forestry has focused on impacts. Our analysis suggests that greater awareness of the importance of dependencies will be important to achieving more comprehensive risk management in future.
... En cas de coupe sanitaire, la méta-analyse de Thorn et al. (2018) ...
Article
Full-text available
Les effets des dépérissements sur la structure des peuplements, la quantité et la qualité des ressources, la composition des paysages et les communautés biologiques ont été analysés. Dans les pessières bavaroises, la richesse spécifique augmente généralement en zones perturbées, où certaines espèces rares réapparaissent. Dans les sapinières pyrénéennes, les effets du dépérissement aux échelles du peuplement et du paysage sont interdépendants. Dans les chênaies de plaine, les réponses des guildes d’insectes des houppiers sont contrastées. Les coupes sanitaires altèrent la structure du peuplement, et modifient la composition initiale des communautés par un effet additif au dépérissement. Les nombreuses incertitudes sur la dynamique des communautés soulignent l’importance de disposer de longues séries temporelles. Des réflexions opérationnelles sont engagées pour une sylviculture de rétention saisissant l’opportunité des crises, dans le respect des équilibres économiques et phytosanitaires. Messages clésLes effets des crises forestières sur la biodiversité sont différents selon le contexte.L’effet des crises forestières sur la biodiversité est amplifié par les récoltes sanitaires.Des suivis sur le long terme sont indispensables pour diminuer l’incertitude sur les prédictions.
Chapter
Full-text available
Insects are the most diverse group of organisms on Earth with 952,794 described species (Roskov et al. in Species 2000 & ITIS catalogue of life, 2021). They account for 85% of arthropod species, 67% of animal species and 47% of all species currently known on the planet (Roskov et al. in Species 2000 & ITIS catalogue of life, 2021).
Article
Full-text available
We investigated the effects of postfire salvage logging on cavity-nesting birds by comparing nest densities and patterns of nest reuse over a three-year period in seven logged and eight unlogged patches of mixed-conifer forest in the Blackfoot-Clearwater Wildlife Management Area, Montana. We found 563 active nests of 18 cavity-nesting birds; all species were found nesting in the uncut burned forest plots, but only eight nested in the salvage-logged plots. All except one species nested at a higher density in the unlogged areas, and half of the species were significantly more abundant in the unlogged plots. Every timber-drilling and timber-gleaning species was less abundant in the salvage-logged plots, including two of the most fire-dependent species in the northern Rocky Mountains—American Three-toed (Picoides dorsalis) and Black-backed (P. arcticus) Woodpeckers. Lower abundances in salvage-logged plots occurred despite the fact that there were still more potential nest snags per hectare than the recommended minimum number needed to support maximum densities of primary cavity-nesters, which suggests that reduced woodpecker densities are more related to a reduction in food (wood-boring beetle larvae) than to nest-site availability. Because cavities were present in only four of 244 randomly selected trees, and because frequency of cavity reuse by secondary cavity-nesters was higher in salvage-logged than in unlogged plots, nest-site limitation may be a more important constraint for secondary cavity-nesters in salvage-logged areas. These results suggest that typical salvage logging operations are incompatible with the maintenance of endemic levels of most cavity-nesting bird populations, especially populations of primary cavity-nesting species.
Article
Full-text available
The vegan package provides tools for descriptive community ecology. It has most basic functions of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools can be used for other data types as well. The functions in the vegan package contain tools for diversity analysis, ordination methods and tools for the analysis of dissimilarities. Together with the labdsv package, the vegan package provides most standard tools of descriptive community analysis. Package ade4 provides an alternative comprehensive package, and several other packages complement vegan and provide tools for deeper analysis in specific fields. Package https://CRAN.R-project.org/package=BiodiversityR provides a Graphical User Interface (GUI) for a large subset of vegan functionality. The vegan package is developed at GitHub (https://github.com/vegandevs/vegan/). GitHub provides up-to-date information and forums for bug reports. Most important changes in vegan documents can be read with news(package="vegan") and vignettes can be browsed with browseVignettes("vegan"). The vignettes include a vegan FAQ, discussion on design decisions, short introduction to ordination and discussion on diversity methods. A tutorial of the package at http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf provides a more thorough introduction to the package. To see the preferable citation of the package, type citation("vegan").
Article
Windthrow is recognized as the most important driver in European forest dynamics and its importance is likely to increase with climate change. Typically, windthrown timber is salvaged for economic and phytosanitary reasons. This markedly affects the natural development of the disturbed areas, in particular by removing important dead wood resources. For a sustainable and ecologically sound management of disturbance effects, more knowledge is needed on the impact of windthrow and salvage logging on animal species communities.
Article
Clearing up after natural disturbances may not always be beneficial for the environment. We argue that a radical change is needed in the way ecosystems are managed; one that acknowledges the important role of disturbance dynamics.
Article
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Article
Severe natural disturbances are common in many forest ecosystems, particularly in the Northern Hemisphere. Attempts to minimize their effects through forest management include salvage logging. In the Bohemian Forest, one of Central Europe’s largest continuous forests, windstorms and bark beetle outbreaks have affected stands of Norway Spruce for centuries. Over the past decades, these natural disturbances and their management in the Bavarian Forest National Park and the adjacent Šumava National Park in the central part of the Bohemian Forest have been scientifically studied. Owing to a benign-neglect strategy, both windstorms and bark beetle outbreaks have increased stand structural heterogeneity, the amount of dead wood and light availability, which contribute to increased populations of nearly-extinct forest specialists. However, the response of a particular taxonomic group or species strongly depends on its relationship to specific legacies that persist after disturbances. Stand climate but not dead wood appears to greatly influence the diversity of epigeal bryophytes, whereas both factors determine the diversity of epixylic bryophytes. Both the amount and heterogeneity of dead wood seems to be more important than stand climate in determining assemblages of wood-inhabiting fungi and lichens. To reduce the population density of bark beetles in the management zones of both national parks, storm-felled spruces are salvage logged, which alters a variety of these legacies and natural successional pathways. Consequently, the numbers of species of wood-inhabiting fungi, saproxylic beetles and epixylic lichens are reduced. Natural levels of biodiversity in salvage-logged areas can be preserved by (1) preserving root plates of storm-felled trees with partly retained trunks; (2) avoiding soil disturbance by using cable yarding instead of harvesters; (3) retaining sun-exposed dry branches of storm-felled trees and snags of beetle-killed spruces; (4) avoiding logging damage of natural regeneration and of large trees that survive disturbances; and (5) bark scratching instead of debarking to avoid bark beetle outbreaks while maintaining biodiversity. Windstorms and bark beetle outbreaks could be utilized to restore intensely managed forests of Central Europe to their natural composition and structure. Furthermore, experimentally mimicked natural disturbances might help in gaining a mechanistic understanding of how natural disturbances affect biodiversity.