ArticlePDF Available

Impacts of salvage logging on biodiversity: A meta-analysis

Authors:
  • Field Station Fabrikschleichach
  • Nationalpark Bayerischer Wald

Abstract

Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organisms. A meta-analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications. Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio-temporal distribution of retained dead wood needed to maintain all components of biodiversity.
J Appl Ecol. 2018;55:279–289. wileyonlinelibrary.com/journal/jpe  
|
 279
© 2017 The Authors. Journal of Applied Ecology
© 2017 British Ecological Society
Received:16January2017 
|
  Accepted:18May2017
DOI: 10.1111/1365-2664.12945
REVIEW
Impacts of salvage logging on biodiversity: A meta- analysis
Simon Thorn1| Claus Bässler2| Roland Brandl3| Philip J. Burton4| Rebecca
Cahall5| John L. Campbell5| Jorge Castro6| Chang-Yong Choi7| Tyler Cobb8|
Daniel C. Donato9| Ewa Durska10| Joseph B. Fontaine11| Sylvie Gauthier12|
Christian Hebert12| Torsten Hothorn13| Richard L. Hutto14| Eun-Jae Lee15|
Alexandro B. Leverkus16 | David B. Lindenmayer17 | Martin K. Obrist18|
Josep Rost19,20| Sebastian Seibold2,21 | Rupert Seidl22| Dominik Thom22|
Kaysandra Waldron23| Beat Wermelinger24| Maria-Barbara Winter25|
Michal Zmihorski26| Jörg Müller1,2
1FieldStationFabrikschleichach,DepartmentofAnimalEcologyandTropicalBiology(ZoologyIII),Julius-Maximilians-UniversityWürzburg,Rauhenebrach,Germany
2BavarianForestNationalPark,Grafenau,Germany
3DepartmentofEcology,AnimalEcology,FacultyofBiology,Philipps-UniversitätMarburg,Marburg,Germany
4UniversityofNorthernBritishColumbia,Terrace,BC,Canada
5DepartmentofForestEcosystemsandSociety,OregonStateUniversity,Corvallis,OR,USA
6DepartmentofEcology,UniversityofGranada,Granada,Spain
7DepartmentofForestSciences,SeoulNationalUniversity,Seoul,Korea
8RoyalAlbertaMuseum,Edmonton,AB,Canada
9SchoolofEnvironmental&ForestSciences,UniversityofWashington,Seattle,WA,USA
10DepartmentofEcologyandBiodiversity,MuseumandInstituteofZoology,PolishAcademyofSciences,Warsaw,Poland
11SchoolofVeterinaryandLifeSciences,MurdochUniversity,Murdoch,WA,Australia
12NaturalResourcesCanada,CanadianForestService,LaurentianForestryCentre,Quebec,QC,Canada
13DivisionofBiostatistics,UniversityofZürich,Zürich,Switzerland
14DivisionofBiologicalSciences,UniversityofMontana,Missoula,MT,USA
15UrbanPlanningResearchGroup,DaejeonSejongResearchInstitute,Daejeon,Korea
16EcologyUnit,DepartmentofLifeSciences,UniversityofAlcalá,AlcaládeHenares,Madrid,Spain
17FennerSchoolofEnvironmentandSociety,TheAustralianNationalUniversity,Canberra,ACT,Australia
18WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,BiodiversityandConservationBiology,Birmensdorf,Switzerland
19DepartmentofEnvironmentalSciencesandFoodIndustries,UniversityofVic-CentralUniversityofCatalonia,Catalonia,Vic.,Spain
20DepartmentofEnvironmentalSciences,UniversityofGirona,Girona,Spain
21DepartmentofEcologyandEcosystemManagement,ChairforTerrestrialEcology,TechnischeUniversitätMünchen,Freising,Germany
22InstituteofSilviculture,DepartmentofForest-andSoilSciences,UniversityofNaturalResourcesandLifeSciencesVienna,Vienna,Austria
23DepartmentofWoodandForestSciences,LavalUniversity,Québec,QC,Canada
24WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,ForestDynamics–ForestEntomology,Birmensdorf,Switzerland
25ForestResearchInstituteofBaden-Württemberg(FVA),Freiburg,Germany
26DepartmentofEcology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden
280 
|
    
Journal of Applied Ecology
THORN eT al.
1 | INTRODUCTION
The frequency and extent of stand-replacing natural disturbances,
such as wildfires, windstorms and insect outbreaks, has increased
considerably during recent decades, particularly in the Northern
Hemisphere(Kurz etal.,2008;Seidl, Schelhaas,Rammer,&Verkerk,
2014).Naturaldisturbancescanenhancethestructuralheterogeneity
offorests,createhabitatsforspecies-richassemblagesofhighconser-
vationvalueandincreasethelong-termresilienceofforeststofuture
stressors(Swansonetal.,2011).However,societaldemandfortimber
and/orpestreductioncompelsforestmanagersto“salvage”timberby
logging before it deteriorates,a common practice even in locations
otherwise exempt from conventional green-tree harvesting, such
as national parks orwilderness areas (Figure1) (Chylarecki & Selva,
2016;Thorn etal., 2014).Suchsalvage loggingreducesthe amount
of dead wood, alters successional trajectories, affects biodiversity,
and can influence restoration costs and subsequent fire hazards
(Lindenmayer,Burton, & Franklin, 2008; Waldron,Ruel, & Gauthier,
2013).Consequently,conflictsoftenemergebetweennaturalresource
managers,policy-makersandconservationistsonhowtohandlenatu-
rallydisturbedforests(González&Veblen,2007;Lindenmayer,Thorn,
& Banks, 2017; Lindenmayer etal., 2004; Schmiegelow, Stepnisky,
Stambaugh,& Koivula,2006).This hasresultedinintensepublicde-
bates(Lindenmayeretal.,2017;Nikiforuk,2011;Stokstad,2006).
Differentnaturaldisturbance regimesleavedistincttypesofbio-
logicaland/orstructural legacies(Franklinetal.,2000).Forinstance,
forestskilledbywildfireorinsectoutbreaksarecharacterizedbylarge
numbersofsnags,whilewindstormscreateuprootedtrees(Swanson
etal., 2011). Salvage logging typicallyremoves or alters these lega-
cies.Theresponsesofsaproxylicandnon-saproxylicspeciesgroupsto
salvageloggingthusdependontheirrelationto(deadwood)legacies
affectedbysalvagelogging(Lindenmayeretal.,2008).Consequently,
differenttaxonomicgroupsindifferenttypesofnaturaldisturbances
may respond differently to salvage logging (Zmihorski & Durska,
2011).Numerousstudieshavefocusedontheeffectsofsalvagelog-
gingafternaturaldisturbancesonspeciesrichnessandthecommunity
compositionofvarioustaxasuchasvascularplants(Blair,McBurney,
Blanchard, Banks, & Lindenmayer, 2016; Macdonald, 2007; Stuart,
Correspondence
SimonThorn
Email:simon@thornonline.de
Funding information
GermanEnvironmentalFoundation;Austrian
Science Fund
HandlingEditor:MatthewStruebig
Abstract
1. Loggingto“salvage”economicreturnsfromforestsaffectedbynaturaldisturbances
hasbecomeincreasingly prevalentglobally.Despite potentialnegativeeffects on
biodiversity,salvageloggingisoftenconducted,eveninareasotherwiseexcluded
from logging and reserved for nature conservation, inter alia because
strategicprioritiesforpost-disturbancemanagementarewidelylacking.
2. Areviewoftheexistingliteraturerevealedthatmoststudiesinvestigatingtheef-
fects of salvage logging on biodiversity have been conducted less than 5years
followingnaturaldisturbances,andfocusedonnon-saproxylicorganisms.
3. Ameta-analysisacross24speciesgroupsrevealedthatsalvageloggingsignificantly
decreasesnumbers ofspecies ofeighttaxonomicgroups.Richnessofdeadwood
dependenttaxa(i.e.saproxylicorganisms)decreasedmorestronglythanrichnessof
non-saproxylictaxa.Incontrast, taxonomicgroupstypically associatedwithopen
habitatsincreasedinthenumberofspeciesaftersalvagelogging.
4. Byanalysing134originalspeciesabundancematrices,wedemonstratethatsalvage
logging significantly alters community composition in 7 of 17 species groups,
particularlyaffectingsaproxylicassemblages.
5. Synthesis and applications.Ourresultssuggestthatsalvageloggingisnotconsistent
withthe managementobjectivesofprotectedareas. Substantialchanges,suchas
theretentionofdeadwoodin naturallydisturbedforests, areneededto support
biodiversity.Futureresearchshouldinvestigatetheamountandspatio-temporal
distribution of retained dead wood needed to maintain all components of
biodiversity.
KEYWORDS
barkbeetle,climatechange,deadwood,disturbedforest,fire,naturaldisturbance,post-
disturbancelogging,salvagelogging,saproxylictaxa,windstorm
    
|
 281
Journal of Applied Ecology
THORN eT al.
Grifantini,Fox,&Fox,1993),carabids(Cobb,Langor,&Spence,2007;
Koivula & Spence, 2006; Phillips, Cobb,Spence, & Brigham, 2006),
birds(Castro,Moreno-Rueda,&Hódar,2010;Choi,Lee,Nam,Lee,&
Lim,2014;Nappi&Drapeau, 2009; Saab, Russell,&Dudley, 2009;
Thorn,Werner,etal.,2016; Zmihorski,2010),and saproxylicorgan-
isms(i.e.thosedependingon dead wood during somepartoftheir
life cycles; Cobb etal., 2011; Norvez, Hébert, Bélanger, Hebert, &
Belanger,2013).
Twomain effects of salvage logging on biodiversityarise recur-
rentlyfrom the existing bodyofliterature. First,salvageloggingre-
duces the richness of taxonomicgroups or abundance of particular
speciesthatdependondeadwood.Forinstance,salvageloggingde-
creasednestingdensity ofcavity-nesting-birdsthat usuallybreedin
fire-killedtrees(Hutto&Gallo,2006).Similarly,post-stormloggingde-
creasedthetotalnumberofsaproxylicbeetlespeciesandthenumber
ofthreatenedspecies(Thornetal.,2014).Second,studiesthatinves-
tigateasetofdifferenttaxonomicgroupshavedemonstratedthatsal-
vageloggingcanalterthecommunitycompositionofbothsaproxylic
andnon-saproxylicorganisms,whiletheeffectsontheoverallnumber
ofspeciescanbesmall(Thorn,Bässler,Bernhardt-Römermann,etal.,
2016).Forinstance, post-stormsalvagelogginginMinnesota greatly
diminishedbirdcommunities,whilefewerdifferencesinthetreecover
weredetected(Lain,Haney,Burris,&Burton,2008).However,previ-
ousattemptstosummarizeknowledgeontheeffectsofsalvagelog-
gingonbiodiversityhavefocusedmainlyonsalvageloggingofburned
forests(Lindenmayer&Noss,2006;Lindenmayeretal.,2008;McIver
&Starr,2000;Thorn,Bässler,Svoboda,&Müller,2016),andaquan-
titativeassessment ofsalvagelogging impactsonbiodiversityisstill
lacking,particularlyacrossdifferenttaxonomicgroupsandinresponse
todifferenttypesofdisturbances(Figure1).
FIGURE1 Salvagelogging(SL)iscommonlyappliedafterwildfires,windstormsorinsectoutbreaks,andleadstochangesinhabitatsand
communitycompositionsinvariousforestecosystemsaroundtheworld(ashighlightedbythestudiesillustratedinpanels(a–l).Studylocations
(colouredcircles)representstudysitesthatcontributeddatatoourmeta-analysis.Photographsbyauthors.[Colourfigurecanbeviewedat
wileyonlinelibrary.com]
282 
|
    
Journal of Applied Ecology
THORN eT al.
Here,wereviewedthescientificliteratureandcompiledexisting
data to quantify the effectsof salvage logging after wildfire,wind-
storms and insect outbreaks on (1) species numbers via a meta-
analysisof238individualcomparisonsofsalvaged/unsalvagedareas;
and (2) community composition, based on a subset of134 original
speciesabundancematrices.Wealsotestedthehypothesisthat the
impactsofsalvagelogging aremorepronouncedfor saproxylicspe-
ciesgroups thanfor non-saproxylicgroupsregardingthenumber of
speciesandcommunitycompositionwithindifferenttypesofnatural
disturbances.
2 | MATERIALS AND METHODS
2.1 | Literature search
We followed guidelines for systematic literature reviews (Pullin &
Stewart,2006) tocompile comparisonsofspeciesrichnessbetween
salvagedandunsalvagedfire-, wind- or insect-affectedforests.We
screenedtheelectronicdatabasesWebofScience,ScopusandGoogle
Scholaron15 February 2016 byusingthe simplified search strings
[salvageloggingORpost$disturbance*ORsalvaging]and[forest$OR
vegetationORdisturbanceORecosystem].Fromthis bodyoflitera-
ture(>2,000articles),weretainedonlyfield-basedstudiesafterhav-
ingscreenedthetitleandabstract.Modellingstudieswereexcluded.
Wealsoaddedrelevantpapersfromreferencelistsinpublishedstud-
ies. We restricted studies to those providing comparisons between
completely salvage logged plots and completely unsalvaged control
plotsaccordingtotheinformationgivenintherespectivestudies.This
meansthatonsalvageloggedplots,morethan75%ofthetreeswere
affectedbynatural disturbanceandthen completelysalvage logged
withoutfurthertreatment suchastree plantingorlegacy retention.
Lowerintensitiesofnaturaldisturbanceshavebeenrarelytargetedby
scientificstudies.Salvageloggingoperationsthusresembledconven-
tionalclear-cutting.Unsalvaged control plots hadtobeaffected by
thesamenaturaldisturbanceeventbutwithoutanyhumaninterven-
tion.Salvageloggedplotshadtobeofsimilarsize,surveyedwiththe
samefieldmethodsduringthesamestudyperiodandwiththesame
samplingeffortasunsalvagedcontrolplots.
Toexaminewhetherpseudo-replication(i.e.allplotsnestedwithin
onearea)mightbiasthe resultsofour meta-analysis(Ramage etal.,
2013), we carefullyselected the studies according to their designs,
andweusedstatisticsthataccountforpseudo-replication(seebelow).
Thespatialarrangementofplotsinallstudieswascheckedbasedon
methoddescriptionsand/ororiginalgeographiccoordinates.Wecon-
tactedauthorstoprovidedataortoclarifytheirstudydesignswhere
necessary(seeDatasourcessection).Studieswithouttrue replicates
(e.g.allsalvagedplotsnestedandseparatedfromunsalvagedcontrol
plots) were excluded from the analysis to ensure valid effect sizes
(Halme etal., 2010). Studies using the same set offield plots and/
orthesame studyarea(e.g.Samcheok Forest,Korea)wereidentified
andnestedinallsubsequentstatisticalanalysestocontrolforpseudo-
replicationwithinstudyareas.Wealsoexcludedstudiesthatsampled
forests undergoing multiple types of disturbances. Salvage logging
hadtobe conducted immediately(<12months)afternaturaldistur-
bancetookplace.Meannumberofspeciesandstandarddeviationval-
uespersamplingunitwereextractedfrompublishedtextandtables,
or from figures using PLOT DIGITIZER 2.6.2. (www.plotdigitizer.
sourceforge.net). Last, we compiled data on covariates by extract-
ing information on the disturbance type and the time since distur-
bance, and the time since subsequent salvage logging. In addition,
we compiled original species abundance matrices that underpinned
the published papers, which allowed us to explore the effects of
salvageloggingoncommunitycomposition.
2.2 | Meta- analysis
Allanalyseswereconductedinr3.3.1(www.r-project.org).Priortosta-
tisticalanalysis,specieswereassignedtooneofthefollowingtaxonomic
groupsandtoassociationwithdeadwood(i.e.saproxylic/non-saproxylic)
basedonthedescriptioninthearticles.Thesewhere:amphibians,ants,
bats, bees and wasps, birds, carabids, epigeal lichens, epigeal mosses,
epigealspiders,epixyliclichens,epixylicmosses,harvestmen,hoverflies,
landsnails,nocturnalmoths,non-saproxylicbeetles(excludingcarabids),
reptiles,rodents,saproxylic beetles,scuttleflies, springtails, truebugs,
vascular plants and wood-inhabiting fungi. For the analysis compar-
ingresponses ofsaproxylicand non-saproxylicspecies groups,wede-
finedsaproxylicbeetles,wood-inhabitingfungi,andepixyliclichensand
mossesassaproxylicandallotherspeciesgroupsasnon-saproxylic.
Forcomparing numbersofspecies betweensalvagedand unsal-
vagednaturallydisturbedplotsdescribedin thepublished literature,
weusedHedges’d,whichaccountsfordifferencesinsamplingeffort
across studies and for small sample sizes (Hedges & Olkin, 1985).
PositivevaluesofHedges’dindicatehighernumbersofspeciesinsal-
vageloggedplots,whereasnegativevaluesindicatealossinnumbers
ofspeciesattributedtosalvagelogging(i.e.highernumbersofspecies
inunsalvagednaturallydisturbedplots).Meanabsoluteeffectsizesof
d=0.2indicateasmalleffect,d=0.5amoderateeffect,andd = 0.8 a
largeeffect(Koricheva,Gurevitch,&Mengersen,2013).
We used multi-level linear mixed-effectsmodels, provided by
the r function “rma.mv” in the “metafor” package (Viechtbauer,
2010),totest theeffectoftaxonomicgroup asacategorical pre-
dictor and year since disturbance as a numerical covariate on
Hedges’dastheresponsevariable.Hedges’dvalueswereweighted
bythecorrespondingsamplingvariancewithinthestatisticalmodel.
Furthermore,thestudysitewasincludedasarandomeffectinthe
model (i.e. moderator term) to control for unmeasured site spec-
ificities and repeated measurements (pseudo-replication) within
onestudysite.Thismeansthatmultipledatapointsperstudywere
possibleifstudiesexaminedmultipletaxonomicgroupsorifstudies
lastedformorethan1year.Wesubtracted theinterceptfromthe
effectsizes (byincluding “−1”in themodelformula)to evaluateif
observedHedges’ddifferedsignificantlyfrom zero(fordetails and
modelformulaseeTableS1).
Toevaluate theeffectsof salvagelogging on saproxylicvs.non-
saproxylic groups, we fitted a second model with Hedges’d as re-
sponsevariable.Weagainincludedtheyearafternaturaldisturbance
    
|
 283
Journal of Applied Ecology
THORN eT al.
andsubsequentlogging as a numericalpredictorvariable andstudy
siteas wellastaxonomicgroupasrandomfactors. Furthermore,we
addedtheinteractionofdeadwooddependence(i.e.saproxylic/non-
saproxylic)withnaturaldisturbancetypeaspredictorstotestwhether
theeffectofsalvageloggingonthe numberofspecies insaproxylic
andnon-saproxylicgroups differedwithin different typesofnatural
disturbances. Weimplemented a simultaneous inference procedure
tocomparesaproxylicandnon-saproxylicspeciesgroupswithineach
disturbancetype(Hothorn, Bretz,& Westfall,2008). Thisprocedure
allowedus totest ifresponsesofsaproxylicandnon-saproxylictaxa
varyamong fire-,wind-and insect-disturbedforests(fordetails and
model formula see TableS2). Last, we conducted funnel plots by
meansofthefunction“funnel”fromthe“metafor”packagetoassess
publicationbias(Korichevaetal.,2013;FigureS1).
2.3 | Analysis of community composition
Based on the reviewed literature, we compiled original species
abundance matrices to quantify changes in community composi-
tioninducedby salvage logging.Quantifyingchangesin community
compositionamong largeheterogeneousdatasetsischallenging and
requires statistical methods able to deal with issues such as unbal-
ancedsamplingeffortandwhichgenerateastandardizedeffect size
thatis comparableamong differentspecies groupsand surveytech-
niques.Thus,weusedpermutationalmultivariateanalysisofvariance
usingdistance matrices(Legendre&Anderson,1999),performedby
meansofthefunction“adonis”inthepackage“vegan”(Oksanenetal.,
2016).ThisanalysisprovidesapseudoF-value,basedon999permu-
tations,thatquantifies thedeviancefrom thenull-hypothesis,while
simultaneouslyaccounting forimbalanced studydesigns (McArdle&
Anderson,2001).Consequently,largevaluesofFcorrespondtolarge
changesin communitycompositioninducedbysalvagelogging.This
F-value represents the standardized difference between communi-
tiesinsalvageloggedandunsalvagednaturallydisturbedplotswithin
onespeciesabundancematrix(e.g. differences in bird communities
6yearsafterwildfire andsalvagelogging inOregon).We rigorously
restrictedthisanalysistothoseabundancematricesthatyieldedvalid
pseudoF-values overthe courseof permutations;that is,those ma-
triceswhichgeneratedlessthan99realpermutationswereexcluded.
Theserestrictions resultedin atotal numberof 134matrices, which
suppliedF-valuesfortheanalysisoutlinedbelow.
Totestifsalvageloggingchangedcommunitycompositionindif-
ferenttaxonomicgroups,wemodelledpseudoF-valuesinlinearmixed
modelsprovidedbythefunction“lmer”inthe“lme4”packageassum-
ingaGaussianerrordistribution(Bolkeretal.,2009).Weincludedthe
taxonomicgroupasacategoricalpredictorand theyearsincedistur-
banceas a numericalcovariate. Furthermore,weincludedthe study
siteasarandomeffecttocontrolforpossibledifferencesamongstudy
sitesand repeatedmeasurementswithin onestudysite.Weomitted
theinterceptfromthemodelformulatodetermineifF-valuesdiffered
significantlyfromzero.Thus,significant changesin communitycom-
positionofataxonomicgroupduetosalvageloggingwereindicated
by F-valuessignificantlylargerthanzero(fordetailsandmodelformula
seeTableS3).
AsfortheanalysisofHedges’d,asecondmodelwasfittedtotest
whether the effects of salvage logging on community composition
differed between saproxylic and non-saproxylic species groups in
differenttypesofdisturbances.Therefore,weincludedtheyearafter
disturbance and the interaction of saproxylic/non-saproxylic with
disturbancetypeaspredictors.Taxonomicgroupandstudysitewere
includedasrandomfactorsinthismodel.Weimplementedasimulta-
neousinferenceproceduretocomparesaproxylicandnon-saproxylic
species groups within each disturbance type (for details and model
formulaseeTableS4).
3 | RESULTS
Our meta-analysis showed that the effects of salvage logging have
been studied primarily for birds, vascular plants and carabids, par-
ticularly in burned forests. Studies were conducted primarily in
NorthAmerica andEurope, butlackingintropicalregions(Figure1).
Furthermore,therewasaclearlackofstudiesinvestigatingsaproxylic
taxa.Ofthe238compileddatapoints,170coveredaperiodof5years
or less after disturbance, with studies addressing the long-term ef-
fectsofsalvageloggingbeingrare(Figure2).Onlyonestudy(Hutto&
Gallo,2006)wasavailablethatprovideddataontheeffectsofsalvage
loggingformorethan20yearsafterdisturbances(Figure2).
Halfofthe individual comparisonsproducedvalues ofHedges’d
lowerthanzero,indicatinghighernumbers ofspeciesinnon-salvage
loggedareasthan salvageloggedareas (Figure3).Wefoundsignifi-
cantly lowerspecies numbers of epigeal and epixylic mosses, birds,
wood-inhabiting fungi, saproxylic beetles, springtails and epixylic
aswellas epigeallichensin salvage loggedareas comparedtonon-
salvagelogged areas(Figure3a).Incontrast,thenumbers ofspecies
of land snails, epigeal spiders and carabids were higher in salvage
logged areas than in unsalvaged areas (Figure3a). Thirteen of the
24 taxonomic groups, includingvascular plants, exhibited no signif-
icantresponsein numbers ofspeciestosalvage logging (Figure3a).
The numbers of species of saproxylic taxa significantly decreased
compared to non-saproxylic taxa in storm-affected and burned for-
ests(Figure4a).Thenegativeeffectofsalvageloggingonnumberof
speciesincreasedwithtimeelapsedsincedisturbanceandsubsequent
salvagelogging,althoughlong-termdataonsalvageloggingarescarce.
Salvageloggingwas associatedwithsignificant changes incom-
munitycompositionin 7 of 17taxonomicgroups(Figure3b).These
seven groups were epigeal spiders, carabids, vascular plants, birds,
wood-inhabiting fungi, saproxylic beetles and epixylic lichens
(Figure3b). Time elapsed since disturbance had no effect on the
strength of logging-induced changes to community composition
(TableS3).Furthermore,logging-inducedchangesincommunitycom-
positionwerestrongerforsaproxylictaxathanfornon-saproxylictaxa
in storm-disturbed forests. However, data availabilitywas scarce in
insect-affectedforestandlackinginburnedforests(Figure4b).
284 
|
    
Journal of Applied Ecology
THORN eT al.
4 | DISCUSSION
Our study revealed that salvage logging can result in significant
changes in species numbers and/or in altered community composi-
tion.Negativeeffects were particularlystrongfor taxa thatdepend
ondeadwood. Incontrast,thenumbers ofspeciesof taxa thatare
commonly characterized by species-rich communities in open habi-
tats, such as carabids and epigeal spiders, responded positively to
salvage logging. Despite positive effects of salvage logging on taxa
associated with open habitats, strong negative effects on saprox-
ylicgroupscall forsubstantialchanges inhowdisturbed forestsare
routinelymanaged.
Naturallydisturbedforestsarecharacterizedbylargevolumesof
deadwoodwithhighstructuraldiversity(Swansonetal.,2011).Incon-
trast,salvageloggingtypicallyreducestheamountandheterogeneity
of deadwood by removing tree trunks (Keyser, Smith, & Shepperd,
2009;Priewasser,Brang,Bachofen,Bugmann,&Wohlgemuth,2013).
Notsurprisingly, salvageloggingreduced thenumbersof speciesof
saproxylicgroups (Figures3and4). However,not onlyadecreasing
deadwoodamountbutlikewisealogging-inducedshiftindeadwood
qualitymay haveadditionalimpacts onsaproxylictaxa. Salvagelog-
gingnotonlyreducestheamountoflargetreetrunksbutalsoalters
characteristicconditions,such as decaystages or diameterdistribu-
tions,oftheremainingdeadwood(Waldronetal.,2013).Forinstance,
branchescutduringpost-stormloggingremainonthegroundbutare
overgrownbygroundvegetation.Theresultingshiftin microclimatic
conditionsthenmodifiesresourcequality,leadingtoalossofsaprox-
ylicbeetles thatdependon sun-exposed, drybranches (Thornetal.,
2014).
It is important to note that losses of saproxylic species can be
presentalso within taxonomicgroups thatdisplayedno responsein
theiroverallspeciesnumbers(Figure3a).Forinstance,birds(themost
studiedvertebrategroup)wereslightlynegativelyaffectedbysalvage
logging(Figure3a),despitefewspeciesbeing directlydependent on
dead wood. Nevertheless, several forest-dwelling bird species de-
pend on snags, cavities or natural regenerationin post-disturbance
forest stands. The removal of such legacies bysalvage logging can
causealossofassociated bird speciesandconsequentlyan overall
lowernumber ofbirdspecies in loggedareas(Hutto &Gallo,2006;
Werner,Müller,Heurich,&Thorn,2015).Althoughtheoverallnumber
ofbirdspeciesdecreasedlessstronglythan,forinstance,thenumber
ofsaproxylic beetlespecies(Figure3a),birdspecies thatdependon
post-disturbancehabitatcharacteristicsareoftenofhighconservation
interest.Forinstance,salvageloggingafterhighseveritywildfirescan
leadtolowersite occupanciesofNorthernSpottedOwls(Strix occi-
dentalis caurina)onlogged than onunloggedsites in Oregon(Clark,
Anthony,&Andrews,2013).
Ourstudyrevealedthatsalvageloggingcausedsignificantchanges
incommunitycomposition forsevenspeciesgroups(Figure3b),with
saproxylic species groups being affected most strongly (Figure4b).
Suchalterationsin community compositionmightreflect the estab-
lishmentofopen-habitatspeciesand/orasimultaneouslossofforest
specialists.Forinstance, salvagelogging canincreasetheabundance
ofopen-habitatcarabidbeetles(Koivula&Spence,2006)orpromote
the establishment of non-forest vegetation (Stuartetal., 1993; Van
Nieuwstadt,Sheil, &Kartawinata,2001).Hence,speciesgroupsthat
are commonly characterized by species-rich communities in open
habitats,suchascarabidsorepigealspiders,candisplayanoverallin-
creaseinnumbersofspeciesinresponsetosalvagelogging(Figure3a).
Likewise, salvagelogging can cause an increase in herb- and grass-
feedingmothspeciesbutadecreaseinsaproxylicanddetritus-feeding
mothspecies (Thornetal., 2015).Such contrastingresponseswithin
andbetweenspeciesgroupscan masktheoverallimpactofsalvage
logging on biodiversity in coarse-scale analyses (i.e. Thom & Seidl,
2016).Numerousspecies ofhighconservationinterest, suchasthe
Red-cockadedWoodpecker(Leuconotopicus borealis),dependondead
woodin burnedforests(Conner,Rudolph,& Walters,2001).The re-
sultsofourstudythereforeindicatethat thebiodiversityofsaprox-
ylictaxacouldbeenhanced bya modifiedmanagementofnaturally
disturbedforests.Incontrast,populationsofspeciesassociatedwith
open habitats, such as the Sharp-tailed Grouse (Tympanuchus pha-
sianellus)inNorthAmerica,maypersistorevenincreaseinthelarger
remaining area subject to unmodified management, that is, salvage
logging(Radeloff,Mladenoff,&Boyce,2000).
Thetwomajor incentivesfor salvageloggingare toreduceeco-
nomic losses caused by a naturaldisturbance and to omit mass re-
productionand spreadofinsectpests thatdevelop intrees killedor
weakenedbya preceding naturaldisturbance.Forinstance,salvage
logging of storm-felled Norway spruce (Picea abies) decreased new
infestationsofnearbytreesbytheEuropeansprucebarkbeetle (Ips
FIGURE2 Distributionofstudies
investigatingtheeffectsofsalvagelogging
onbiodiversityafterwildfire,windstorms
andinsectoutbreaksaccordingtotheyears
afterdisturbance.[Colourfigurecanbe
viewedatwileyonlinelibrary.com]
    
|
 285
Journal of Applied Ecology
THORN eT al.
typographus) at a landscape scale (Stadelmann, Bugmann, Meier,
Wermelinger,&Bigler,2013).Salvageloggingisthereforethepredom-
inantresponsetonaturaldisturbancesinwoodproductionforests,but
pestcontrolis regularlyusedtojustify salvage logginginprotected
areas.Forinstance,theBiałowieżaForestNationalParkontheborder
betweenPolandandBelarus,whichis thelast primevallowland for-
estinEurope,iscurrentlyobligedtosalvageloggingofareasaffected
by I. typographusonattempttoavoidfurtherinfestations(Chylarecki
&Selva,2016). Suchan approachtodisturbed forestsneglects that
regionalfactors,suchassummerdrought,canpromoteoutbreaksof
I. typographus more strongly than local standvariables (Seidl etal.,
2015).Furthermore,salvageloggedtimberis usuallyofsubstantially
lowereconomicvaluethannormallyharvestedtimberduetoarapid
colonization by wood-inhabiting fungi and to the fact that distur-
bancesaffect forestsofanyage,sothat generalizedsalvagelogging
operationsnecessarilyincludeyoungerstands thatotherwisewould
notbeharvested(Leverkus,Puerta-Pinero,Guzmán-Álvarez,Navarro,
& Castro, 2012). Our results demonstrate that salvage logging has
strongandnegative effects on manytaxonomic groups, particularly
thoseassociatedwith deadwood,and thatitisthus notconsistent
with biodiversity conservation goals.Along with questionable eco-
nomicoutputs andpestreducingeffects,weargue thatsalvagelog-
gingshouldbeexcludedfromprotectedareassuchasnationalparks.
The incidence of stand-replacing natural disturbances remains
spatially and temporally unpredictable (Berry etal., 2015), creating
inherentuncertaintyaboutappropriatemanagementofnaturallydis-
turbedforests.Hence,managementplansneedtobejointlydeveloped
with(andconfirmedby)stakeholders,scientistsandnaturalresource
managers before the nextdisturban ceoccurs (Lindenmayer, Likens,
& Franklin, 2010). Such management plans could,for instance, en-
compassan aprioriidentificationofsalvageloggingexclusionzones
basedonecologicaldata(e.g.Nappietal.,2011).Forestmanagersalso
may targetthe preservation of structural key attributes in naturally
disturbed forests, including snags or tipped uproot plates of wind-
throwntrees(Hutto,2006).Retentionoftreesduringgreen-treehar-
vestshas becomeanincreasingly commontool aroundtheglobe to
helpconserveforestbiodiversity(Fedrowitzetal.,2014;Gustafsson
etal.,2012;Mori&Kitagawa,2014).Toobtainsomeeconomicreturn
whileretainingdeadwood-dependenttaxa,werecommendasimple
expansionofthe green-treeretentionapproach toincludenaturally
disturbedforests.Retentionapproachesinnaturallydisturbedforests
couldbeexpectedtobelesscostlythaningreen-treeharvestdueto
theloweropportunitycostofnotharvestingdisturbance-killedtrees.
Approximately70%ofthestudieswecompiledspannedlessthan
5years; studies addressing the long-term effects of salvage logging
arerare(Figure2). However,deadwood, and particularlysnags, are
long-lastingkeybiologicallegacies,andtheirlosscanhavelong-lasting
effectson biodiversity(Hutto,2006). Hence,future researchshould
target the long-term effects of salvage logging after natural distur-
bances.Therearealsotaxonomicbiasesinexistingstudiesinvestigating
FIGURE3 (a)Estimatedresponse
ofHedges’dbasedon238individual
comparisonsofspeciesnumbersin
salvageloggedandunsalvagedforests
affectedbynaturaldisturbances.Higher
speciesnumbersinsalvageloggedareas
correspondtopositiveHedges’d,whereas
negativevaluesindicatelowerspecies
numbersinsalvageloggedareas.(b)Pseudo
F-valuesofpermutationalmultivariate
analysisofvariancebasedon134individual
speciesabundancematrices.Largerpseudo
F-valuescorrespondtolargerchangesin
communitycompositioninducedbysalvage
logging.Asterisksindicatesignificant
responses(seeTablesS1andS2for
statisticaldetails).Forillustrativepurposes,
greydots(andthegreylinejoiningthemfor
emphasis)representthemeaneffectsizein
eachtaxonomicgroup.[Colourfigurecan
beviewedatwileyonlinelibrary.com]
286 
|
    
Journal of Applied Ecology
THORN eT al.
theeffectsofsalvageloggingafternaturaldisturbances.Inparticular,
saproxylicgroupssuchaswood-inhabitingfungihavebeenunderrep-
resentedin empirical studiesdespitetheir high diversityand impor-
tance for ecosystem functioning. Future research should therefore
targetparticularlysaproxylicspeciesgroups.Incontrast,othergroups
havebeenrelativelywellstudiedinonedisturbancetype(e.g.birdsin
burnedforests),but lessinothers,and studies wereconducted pri-
marilyin NorthAmerica, Europeand Asia,butlacking intropicalre-
gions(Figure1).However,differenttypesofnatural disturbancesin
differentpartsoftheworldcanactatverydifferentspatialscalesand
mayrequiredifferentretentionapproaches(Kulakowskietal.,2016).
Furthermore,coniferousforestsoftheNorthernHemisphere—incon-
trasttotropicalforests—arenaturallypronetolarge-scalenaturaldis-
turbances(Lindenmayeretal.,2008),whereasdisturbancesintropical
forestsmostlyhave anthropogeniccausesassociatedwithlong-term
land-use change (e.g. fire to open space for livestock grazing and
agriculture; Peres,Barlow, & Laurance, 2006). Nevertheless, natural
disturbancessuchaswindstormsaffecttropicalforestsaswellastem-
perateforests,andsalvageloggingeffectson tropicalforestsshould
betargetedinfutureresearch(e.g.Lawton&Putz,1988).
In conclusion, these data from a wide range of studies demon-
strate that salvage logging has a range of effects on species num-
bers and community composition ofvarious taxonomic groups,with
important negative consequences for several groups, especially
saproxylic ones. Whilecurrent policies for enhancing biodiversity and
ecosystemservices,suchasgreen-treeretention(e.g.,Gustafssonetal.,
2012), focus mainly on forestssubjected to traditional logging opera-
tions,suchpolicies are largelyabsent fromnaturallydisturbed forests.
Wethereforecallforanexpansionofthegreen-treeretentionapproach
toincludenaturallydisturbedforestsbyleavingsubstantialamountsof
deadwoodonsitetoreducetheimpactofsalvageloggingonbiodiversity.
ACKNOWLEDGEMENTS
Wethanknumerouscontributorsforclarifyingtheirstudiesandthree
anonymousreviewersfortheircommentsonanearlierversionofthis
manuscript.S.T.andS.S.werefundedbytheGermanEnvironmental
Foundation. R.S. and D.T. acknowledge support from the Austrian
ScienceFund(FWF,STARTgrantY895-B25).J.C.acknowledgessup-
portfromgrantP12-RNM-2705andA.L.fromSpanishMINECO(FJCI-
2015-23687).D.B.L.wassupportedbyanARCLaureateFellowship.
AUTHORS' CONTRIBUTIONS
S.T.andJ.M.initiatedthestudy.S.T.analysedandinterpretedthedata
andwrotethefirstdraftofthepaper.TheauthorsnamedfromS.T.to
J.M.arelistedalphabetically,astheycontributedequallyingathering
fielddata,providingcorrectionstosubsequentmanuscriptdraftsand
discussingideas.
DATA ACCESSIBILITY
All data are from previously published articles, see “Data sources”.
Datafromthesearticlescan bemadeavailable uponreasonable re-
questtooriginaldataowners.Alistofdatasourcesusedinthestudy
isprovidedintheDataSourcessection.
REFERENCES
Berry,L.E.,Driscoll,D.A.,Stein,J.A.,Blanchard,W.,Banks,S.C.,Bradstock,
R.A.,&Lindenmayer,D.B.(2015).Identifyingthelocationoffireref-
ugesinwetforestecosystems.Ecological Applications,25,2337–2348.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.
B.(2016).Disturbancegradientshowsloggingaffectsplantfunctional
groupsmorethanfire.Ecological Applications,26,2280–2301.
FIGURE4 (a)Estimatedresponseandcorrespondingstandard
errorofsaproxylicandnon-saproxylictaxatosalvageloggingbased
on238individualcomparisons(basedonHedges’d)ofnumbers
ofspeciesinburned,storm-andinsect-affectedforests.Negative
estimatescorrespondtoadecreaseinnumbersofspeciesby
salvagelogging(TableS3).(b)Estimatedresponseandcorresponding
standarderrorofcommunitycompositionofsaproxylicand
non-saproxylictaxabasedonpseudoF-valuesofpermutational
multivariateanalysisofvarianceobtainedfrom134individual
speciesabundancematrices.IncreasingF-valuescorrespondto
largerchangesincommunitycompositioninducedbysalvagelogging
(TableS4).Note,insufficientdata(DD)wereavailableforsaproxylic
taxainburnedforests.Asterisksabovedotsindicatesignificant
differencesintheresponsesbetweensaproxylicandnon-saproxylic
taxawithineachdisturbancetype.Numberofunderlyingdatapoints
isindicatedbythesizeofthecircles,with10and100sizeshownfor
reference.[Colourfigurecanbeviewedatwileyonlinelibrary.com]
    
|
 287
Journal of Applied Ecology
THORN eT al.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens,M. H. H.,&White,J.-S.S. (2009). Generalizedlinear mixed
models:Apracticalguideforecologyandevolution.Trends in Ecology &
Evolution,24,127–135.
Castro, J., Moreno-Rueda, G., & Hódar, J. (2010). Experimental test of
postfire management in pine forests:Impact of salvage logging ver-
suspartialcutting and noninterventiononbird-species assemblages.
Conservation Biology,24,810–819.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporal
changes in the breeding bird community caused by post-fire treat-
mentsaftertheSamcheokforestfireinKorea.Landscape and Ecological
Engineering,10,203–214.
Chylarecki,P.,&Selva, N.(2016).Ancient forest:Spareit fromclearance.
Nature,530,419.
Clark,D.A.,Anthony,R.G.,&Andrews,L.S.(2013).Relationshipbetween
wildfire,salvagelogging,andoccupancyofnestingterritoriesbynorth-
ernspottedowls.The Journal of Wildlife Management,77,672–688.
Cobb,T.P.,Langor,D. W.,&Spence,J.R. (2007).Biodiversityandmulti-
pledisturbances: Borealforestgroundbeetle(Coleoptera:Carabidae)
responses to wildfire, harvesting,and herbicide. Canadian Journal of
Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J. L.,Jacobs,J.M.,Koivula,M.J.,Spence,J.R., &
Langor,D.W.(2011).Effectsofpostfiresalvageloggingondeadwood-
associatedbeetles.Conservation Biology,25,94–104.
Conner, R., Rudolph, D. C., & Walters, J. R. (2001). The red-cockated
woodpecker surviving in a fire-maintained ecosystem. Austin, TX: The
UniversityofTexasPress.
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B.,
Rosenvald, R., … Gustafsson, L. (2014). Can retention forestry help
conservebiodiversity?Ameta-analysis.Journal of Applied Ecology,51,
1669–1679.
Franklin,J.F.,Lindenmayer,D.,Macmahon,J.A.,Mckee,A.,Perry,D.A.,
Waide,R.,&Foster,D. (2000).Threadsofcontinuity:Ecosystemdis-
turbances, biological legacies and ecosystem recovery. Conservation
Biology in Practice,1,8–16.
González, M. E., & Veblen, T. T. (2007). Wildfire in Araucaria araucana
forests and ecological considerationsabout salvage logging in areas
recentlyburned.Revista Chilena de Historia Natural,80,243–253.
Gustafsson,L., Baker,S. C.,Bauhus, J.,Beese, W.J.,Brodie,A.,Kouki,J.,
…Franklin,J.F.(2012).Retentionforestrytomaintain multifunctional
forests:Aworldperspective.BioScience,62,633–645.
Halme, P., Toivanen,T., Honkanen,M., Kotiaho, J. S., Mönkkönen, M., &
Timonen, J. (2010). Flawed meta-analysis of biodiversity effects of
forestmanagement.Conservation Biology,24,1154–1156.
Hedges,L.V.,&Olkin, I.(1985).Statistical methods for meta-analysis. San
Diego,CA:AcademicPress.
Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinferenceingen-
eralparametricmodels.Biometrical Journal,50,346–363.
Hutto,R.L. (2006). Towardmeaningfulsnag-management guidelines for
postfiresalvagelogginginNorthAmericanconiferforests.Conservation
Biology,20,984–993.
Hutto,R.L.,&Gallo,S.M.(2006).Theeffectsofpostfiresalvageloggingon
cavity-nestingbirds.Condor,108,817–831.
Inbar,M.,Wittenberg,L.,&Tamir,M.(1997).Soilerosionandforestryman-
agementafterwildfireinamediterraneanwoodland,Mt.Carmel,Israel.
International Journal of Wildland Fire,7,285–294.
Keyser,T.L.,Smith,F.W.,&Shepperd,W.D.(2009).Short-termimpactof
post-firesalvageloggingonregeneration,hazardousfuelaccumulation,
andunderstoreydevelopmentinponderosa pineforestsoftheBlack
Hills,SD,USA.International Journal of Wildland Fire,18,451–458.
Koivula, M., & Spence,J. R. (2006). Effects of post-fire salvage logging
on boreal mixed-wood ground beetle assemblages (Coleoptera,
Carabidae).Forest Ecology and Management,236,102–112.
Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of
meta-analysis in ecology and evolution(edsJ.Koricheva,J.Gurevitch&
K.Mengersen).Princeton,NJ:PrincetonUniversityPress.
Kulakowski,D.,Seidl,R.,Holeksa,J.,Kuuluvainen,T.,Nagel,T.A.,Panayotov,
M.,… Bebi,P.(2016).Awalkon thewild side:Disturbancedynamics
andtheconservationandmanagement ofEuropean mountainforest
ecosystems.Forest Ecology and Management,388,120–131.
Kurz,W.,Dymond,C.C.,Stinson,G.,Rampley,G.J.,Neilson,E.T.,Carroll,
A.L., …Safranyik,L.(2008).Mountainpinebeetle andforest carbon
feedbacktoclimatechange.Nature,452,987–990.
Lain,E.J.,Haney,A.,Burris,J. M.,&Burton,J.(2008).Responseofvege-
tationandbirds tosevere winddisturbance and salvagelogging ina
southernborealforest.Forest Ecology and Management,256,863–871.
Lawton,R.,&Putz,F.E.(1988).Naturaldisturbanceandgap-phaseregen-
erationinawind-exposedtropicalcloudforest.Ecology,69,764–777.
Legendre,P.,&Anderson,M.J.(1999).Distance-basedredundancyanaly-
sis:Testingmultispeciesresponsesinmultifactorialecologicalexperi-
ments.Ecological Monographs,69,1–24.
Leverkus,A. B., Puerta-Pinero, C., Guzmán-Álvarez, J. R., Navarro,J., &
Castro,J.(2012). Post-fire salvageloggingincreasesrestorationcosts
inaMediterraneanmountainecosystem.New Forests,43,601–613.
Lindenmayer,D.,Burton,P.J.,&Franklin,J.F.(2008).Salvage logging and its
ecological consequences.Washington:IslandPress.
Lindenmayer,D.B.,Foster,D.R., Franklin,J.F.,Hunter,M.L.,Noss,R. F.,
Schmiegelow,F.A.,&Perry,D.(2004).Salvageharvestingpoliciesafter
naturaldisturbance.Science,303,1303.
Lindenmayer,D.B.,Likens,G.E.,& Franklin,J.F.(2010).Rapidresponses
tofacilitateecologicaldiscoveriesfrommajordisturbances.Frontiers in
Ecology and the Environment,8,527–532.
Lindenmayer, D. B., & Noss, R. F. (2006). Salvage logging, ecosystem
processes, and biodiversity conservation. Conservation Biology, 20,
946–948.
Lindenmayer,D.B.,&Ough,K.(2007).Salvagelogginginthemontaneash
eucalyptforestsoftheCentralHighlands ofVictoriaand itspotential
impactsonbiodiversity.Conservation Biology,20,1005–1015.
Lindenmayer, D.,Thorn, S., & Banks, S. (2017). Please do not disturb
ecosystemsfurther.Nature Ecology and Evolution,1,1–8.
Macdonald,S.E.(2007).Effectsofpartialpost-firesalvageharvestingon
vegetation communities in the boreal mixedwood forest region of
northeastern Alberta, Canada. Forest Ecology and Management, 239,
21–31.
McArdle,B. H., &Anderson,M. J.(2001).Fitting multivariate modelsto
communitydata:Acommenton distance-basedredundancyanalysis.
Ecology,82,290–297.
McIver, J. D., & Starr, L. (2000). Environmental effects of postfire log-
ging: Literature review and annotated bibliography. Portland, OR: U.S.
DepartmentofAgriculture,ForestService,PacificNorthwestResearch
Station.
Mori,A.S.,&Kitagawa,R.(2014).Retentionforestryasamajorparadigm
forsafeguardingforestbiodiversityinproductivelandscapes:Aglobal
meta-analysis.Biological Conservation,175,65–73.
Morimoto,J.,Morimoto,M.,&Nakamura,F.(2011).Initialvegetationre-
covery following a blowdown of a conifer plantation in monsoonal
EastAsia:Impactsoflegacyretention,salvaging,sitepreparation,and
weeding.Forest Ecology and Management,261,1353–1361.
Nappi,A.,&Drapeau,P.(2009).Reproductivesuccessoftheblack-backed
woodpecker (Picoides arcticus) in burned boreal forests: Are burns
sourcehabitats?Biological Conservation,142,1381–1391.
Nappi,A.,Stéphane,D.,Bujold,F.,Chabot,M.,Dumont,M.-C.,Duval,J.,…
Bergeron,I.(2011).Harvestinginburnedforests–Issuesandorienta-
tionsforecosystem-basedmanagement.MinistèredesRessourcesna-
turellesetdelaFaune,Directiondel’environnementetdelaprotection
desforêts,Québec.
288 
|
    
Journal of Applied Ecology
THORN eT al.
Nikiforuk,A.(2011).Empire of the beetle: How human folly and a tiny bug
are killing North America’s great forests,FirstEdit.Vancouver,Canada:
DavidSuzukiFoundationSeries.
Norvez, O., Hébert, C., Bélanger, L., Hebert, C., & Belanger, L. (2013).
Impact of salvagelogging on stand structure and beetle diversity in
borealbalsamfir forest,20years afteraspruce budworm outbreak.
Forest Ecology and Management,302,122–132.
Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,R.
B.,…Wagner,H.(2016).vegan:CommunityEcologyPackage.Retrieved
fromhttps://cran.r-project.org/package=vegan
Peres,C.A.,Barlow,J.,&Laurance,W.F.(2006).Detectinganthropogenic
disturbance in tropical forests. Trends in Ecology and Evolution, 21,
227–229.
Phillips,I. D.,Cobb,T.P.,Spence,J. R.,&Brigham, R.M. (2006).Salvage
logging,edgeeffects, andcarabidbeetles: Connectionstoconserva-
tionandsustainableforestmanagement.Environmental Entomology,35,
950–957.
Priewasser, K., Brang, P., Bachofen, H., Bugmann, H., & Wohlgemuth, T.
(2013).Impactsofsalvage-loggingonthestatusofdeadwoodafterwind-
throwinSwissforests.European Journal of Forest Research,132,231–240.
Pullin,A. S.,&Stewart, G.B.(2006). Guidelinesforsystematicreviewin
conservation and environmental management. Conservation Biology,
20,1647–1656.
Radeloff,V.C.,Mladenoff,D.J.,&Boyce,M.S.(2000).Effectsofinteracting
disturbancesonlandscapepatterns:Budwormdefoliationandsalvage
logging.Ecological Applications,10,233–247.
Ramage,B.S., Sheil, D.,Salim,H. M. W.,Fletcher,C.,Mustafa, N. Z.A.,
Luruthusamay,J.C.,… Potts,M.D.(2013).Pseudoreplicationintrop-
ical forests and the resulting effects on biodiversity conservation.
Conservation Biology,27,364–372.
Saab,V.,Russell,R.E.,&Dudley,J.G.(2009).Nest-siteselectionbycavity-
nestingbirdsinrelationtopostfiresalvagelogging.Forest Ecology and
Management,257,151–159.
Schmiegelow, F. K.A., Stepnisky, D. P.,Stambaugh, C. A., & Koivula,
M. (2006). Reconciling salvage logging of boreal forests with a
natural-disturbance managementmodel.Conservation Biology, 20,
971–983.
Seidl,R.,Müller,J.,Hothorn,T.,Bässler,C.,Heurich,M.,&Kautz,M.(2015).
Smallbeetle, large-scaledrivers:Howregionaland landscapefactors
affectoutbreaksoftheEuropeansprucebarkbeetle.Journal of Applied
Ecology,53,530–540.
Seidl,R., Schelhaas,M.-J.,Rammer,W.,&Verkerk,P.J.(2014). Increasing
forest disturbances in Europe and their impact on carbon storage.
Nature Climate Change,4,806–810.
Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., & Bigler, C.
(2013).Effectsofsalvageloggingandsanitationfellingonbarkbeetle
(Ips typographusL.) infestations.Forest Ecology and Management,305,
273–281.
Stokstad,E.(2006).Salvageloggingresearchcontinuestogeneratesparks.
Science,311,761.
Stuart,J. D., Grifantini,M.C., Fox,L.III., & Fox,L. (1993). Early succes-
sionalpathwaysfollowingwildfireand subsequentsilvicultural treat-
mentinDouglas-fir/hardwoodforests, NWCalifornia. Forest Science,
39,561–572.
Swanson,M.E.,Franklin,J.F.,Beschta,R.L.,Crisafulli,C.M.,DellaSala,D.
A.,Hutto,R. L.,…Swanson,F.J.(2011).Theforgottenstageofforest
succession:Early-successionalecosystemsonforestsites.Frontiers in
Ecology and the Environment,9,117–125.
Thom, D., & Seidl,R. (2016). Natural disturbance impacts on ecosystem
services and biodiversity in temperate and boreal forests. Biological
Reviews,91,760–781.
Thorn, S., Bässler,C., Bernhardt-Römermann, M., Cadotte, M., Heibl, C.,
Schäfer, H., … Müller, J. (2016). Changes in the dominant assembly
mechanismdrivesspecieslosscausedbydecliningresources.Ecology
Letters,19,163–170.
Thorn, S., Bässler, C., Gottschalk, T., Hothorn, T., Bussler, H., Raffa, K.,
& Müller, J. (2014). New insights into the consequences of post-
windthrowsalvageloggingrevealedbyfunctionalstructureofsaprox-
ylicbeetlesassemblages.PLoS ONE,9,e101757.
Thorn,S.,Bässler,C.,Svoboda,M.,&Müller,J.(2016).Effectsofnatural
disturbancesand salvageloggingonbiodiversity–Lessonsfromthe
BohemianForest.Forest Ecology and Management,388,113–119.
Thorn,S.,Hacker,H.H.,Seibold,S.,Jehl,H.,Bässler,C.,&Müller,J.(2015).
Guild-specificresponsesofforestLepidopterahighlightconservation-
oriented forest management – Implications from conifer-dominated
forests.Forest Ecology and Management,337,41–47.
Thorn,S.,Werner,S.A.B.,Wohlfahrt,J.,Bässler,C.,Seibold,S.,Quillfeldt,
P.,&Müller,J.(2016).Responseofbirdassemblagestowindstormand
salvagelogging—Insightsfromanalysesoffunctionalguildandindica-
torspecies.Ecological Indicators,65,142–148.
VanNieuwstadt,M.G.L.,Sheil,D.,&Kartawinata,K.(2001).Theecologi-
calconsequencesofloggingintheburnedforestsofEastKalimantan,
Indonesia.Conservation Biology,15,1183–1186.
Viechtbauer,W.(2010).Conductingmeta-analysesinRwith themetafor
package.Journal of Statistical Software,36,1–48.
Waldron,K.,Ruel,J.,&Gauthier,S.(2013).Foreststructuralattributesafter
windthrow and consequences ofsalvage logging. Forest Ecology and
Management,289,28–37.
Werner,S.A.B.,Müller,J.,Heurich,M.,&Thorn,S.(2015).Naturalregen-
erationdetermineswinteringbirdpresenceinwind-damagedconifer-
ousforeststandsindependentofpost-disturbance logging.Canadian
Journal of Forest Research,45,1232–1237.
Zmihorski, M. (2010). The effect of windthrow and its managementon
breeding bird communities in a managed forest. Biodiversity and
Conservation,19,1871–1882.
Zmihorski,M.,&Durska,E.(2011).Theeffectofcontrastingmanagement
typesontwodistincttaxonomic groupsin alarge-scaledwindthrow.
European Journal of Forest Research,130,589–600.
DATA SOURCES
Barnouin,T.(2005).ÉvaluationdeL‘ImportanceDesForêtsAffectéesParLaTordeuse
DesBourgeons deLâ€TMÉpinette,ChoristoneuraFumiferana(Clem.),Dans Le
MaintiendeLaDiversitéDesColéoptèresSaproxyliques.UniversitéLavalQuebec.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.B.(2016).
Disturbance gradient shows loggingaffects plant functional groups more than
fire.Ecological Applications,26,2280–2301.
Boucher,D.,Gauthier,S.,Noël,J.,Greene,D.F.,&Bergeron,Y.(2014).Salvagelogging
affectsearlypost-firetreecomposition inCanadianboreal forest.Forest Ecology
and Management,325,118–127.
Bradbury,S.M.(2006).Responseofthepost-firebryophytecommunitytosalvagelog-
ginginborealmixedwoodforestsofnortheasternAlberta,Canada.Forest Ecology
and Management,234,313–322.
Cahall,R.E.,&Hayes,J.P.(2009).Influencesofpostfiresalvageloggingonforestbirdsinthe
EasternCascades,Oregon,USA.Forest Ecology and Management,257,1119–1128.
Castro,J.,Moreno-Rueda,G.,&Hódar,J.(2010).Experimentaltestofpostfiremanage-
mentinpineforests:Impactofsalvageloggingversuspartialcuttingandnoninter-
ventiononbird-speciesassemblages.Conservation Biology,24,810–819.
Choi,C.-Y.(2007).Effectsofpostfireloggingonbirdpopulationsandcommunitiesin
burnedforests.Journal of the Korean Forest Society,96,115–123.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporalchangesin
thebreedingbirdcommunitycausedbypost-firetreatmentsaftertheSamcheok
forestfireinKorea.Landscape and Ecological Engineering,10,203–214.
Cobb,T. P.,Langor, D. W.,& Spence, J. R. (2007). Biodiversity and multiple distur-
bances:Borealforestgroundbeetle(Coleoptera:Carabidae)responsestowildfire,
harvesting,andherbicide.Canadian Journal of Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J.L.,Jacobs,J.M.,Koivula,M.J., Spence,J.R., &Langor, D.
W.(2011). Effectsof postfiresalvageloggingon deadwood-associatedbeetles.
Conservation Biology,25,94–104.
Donato, D. C., Fontaine,J. B., Campbell, J. L., Robinson, W.D., Kauffman, J. B., &
Law,B.E.(2009).Coniferregenerationinstand-replacementportionsofalarge
    
|
 289
Journal of Applied Ecology
THORN eT al.
mixed-severitywildfire in the Klamath-SiskiyouMountains. Canadian Journal of
Forest Research,39,823–838.
Donato,D.C.,Fontaine,J.B.,Kauffman,J.B.,Robinson,D., &Law,B.E.(2013).Fuel
massandforeststructurefollowingstand-replacementfireandpost-firelogging
inamixed-evergreenforest.International Journal of Wildland Fire,22,652–666.
Duelli,P.,Obrist,M.K.,&Wermelinger,B.(2002).Windthrow-induced changesinfau-
nisticbiodiversityinalpinespruceforests.Forest Snow and Landscape Research,131,
117–131.
Durska,E. (2013).Effectsofdisturbanceson scuttleflies (Diptera:Phoridae)in Pine
Forests.Biodiversity and Conservation,22,1991–2021.
Fontaine,J. B.(2007). Influences of high severity fire and postfire logging on avian and
small mammal communities of the Siskiyou Mountains.Corvallis,OR:OregonState
University.
Fontaine,J.B., Donato,D.C.,Robinson,W.D.,Law,B. E.,& Kauffman,J.B. (2009).
Birdcommunitiesfollowinghigh-severityfire:Responsetosingleandrepeatfires
inamixed-evergreenforest,Oregon,USA.Forest Ecology and Management,257,
1496–1504.
Hutto,R. L.,& Gallo,S.M.(2006).The effectsofpostfire salvageloggingoncavity-
nestingbirds.Condor,108,817–831.
Jeffrey,O.(2013).EffetsDesCoupesdeRécupérationSurLesSuccessionsNaturelles
deColéoptèresSaproxyliquesLeLongD’une Chronoséquencede15 AnsAprès
FeuEnForêtBoréaleCommerciale.Univer.
Jonasova,M.,&Prach,K. (2008).Theinfluenceofbark beetlesoutbreakvs. salvage
loggingongroundlayervegetationinCentralEuropeanmountainspruceforests.
Biological Conservation,141,1525–1535.
Koivula, M., & Spence, J.R. (2006). Effects of post-fire salvage logging on boreal
mixed-wood groundbeetle assemblages(Coleoptera,Carabidae).Forest Ecology
and Management,236,102–112.
Kurulok,S. E.,&Macdonald,S.E. (2007).Impacts ofpostfiresalvage loggingonun-
derstoryplantcommunitiesoftheborealmixedwoodforest2and34yearsafter
disturbance.Canadian Journal of Forest Research,37,2637–2651.
Lee,E.L.W.,Hun,S., Rhim,S.-J.,Lee,W.-S.,& Son,S.H.(2011).Differencesinbird
communitiesinpostfiresilviculturalpracticesstandswithinpineforestofSouth
Korea.Landscape and Ecological Engineering,7,137–143.
Lee,E., Lee,W., &Rhim, S.-J.(2008). Characteristics ofsmall rodentpopulations in
post-fire silvicultural management stands within pine forest.Forest Ecology and
Management,255,1418–1422.
Lee,E.-J.,Rhim,S.,Son, S.,&Lee,W.(2012).Differencesinsmall-mammalandstand
structuresbetween unburned andburned pine standssubjectedto twodiffer-
entpost-firesilvicultural managementpractices.Annales Zoologici Fennici,2450,
129–138.
Leverkus,A. B.,Lorite,J., Navarro,F.B., Sánchez-Cañete, E.P.,&Castro, J.(2014).
Post-fire salvage logging alters species composition and reduces cover, rich-
ness,anddiversityin Mediterraneanplantcommunities.Journal of Environmental
Management,133,323–331.
Liepold,K.(2004).VergleichendeUntersuchungenZurFaunistischenUndGenetischen
DiversitätvonKäferzönoseninGenutzten UndUngenutzten Bergmischwäldern
DesBayerischenWaldes.TUMMünchen.
Mehr,M.,Brandl,R.,Kneib,T.,&Müller,J.(2012).Theeffectofbarkbeetleinfestation
andsalvageloggingonbatactivityinanationalpark.Biodiversity and Conservation,
21,2775–2786.
Norvez,O.,Hébert,C., Bélanger,L.,Hebert,C.,& Belanger,L.(2013).Impactofsal-
vageloggingon standstructureand beetlediversityinboreal balsamfirforest,
20yearsafterasprucebudwormoutbreak.Forest Ecology and Management,302,
122–132.
Park,C. (2012).Differences in characteristics of amphibian and reptile communities due
to different forest environment at forest fired area in Samcheok, Gangwon Province.
Seoul,Korea:SeoulNationalUniversity.
Peterson,C.J.,&Leach,A.D.(2008).Salvageloggingafterwindthrowaltersmicrosite
diversity,abundanceandenvironment,butnotvegetation.Forestry,81,361–376.
Rost,J.,Clavero,M.,Brotons,L.,& Pons,P.(2012).Theeffectofpostfiresalvagelog-
gingonbirdcommunitiesinMediterraneanpineforests:Thebenefitsfordeclining
species.Journal of Applied Ecology,49,644–651.
Rumbaitis,C.M., &RumbaitisdelRio, C.M.(2006).Changesinunderstorycomposi-
tionfollowing catastrophicwindthrowand salvagelogging ina subalpineforest
ecosystem.Canadian Journal of Forest Research – Revue Canadienne De Recherche
Forestiere,36,2943–2954.
Thorn,S., Bässler,C.,Bernhardt-Römermann,M.,Cadotte, M.,Heibl, C.,Schäfer,H.,
…Müller,J.(2016).Changesinthedominantassemblymechanismdrivesspecies
losscausedbydecliningresources.Ecology Letters,19,163–170.
Thorn, S., Bässler,C., Gottschalk, T., Hothorn,T., Bussler,H., Raffa, K., & Müller, J.
(2014).New insightsinto theconsequencesofpost-windthrow salvagelogging
revealedbyfunctionalstructureofsaproxylicbeetlesassemblages.PLoS ONE,9,
e101757.
Thorn,S.,Hacker,H.H., Seibold,S.,Jehl, H.,Bässler, C., &Müller, J.(2015). Guild-
specific responses of forestLepidoptera highlight conservation-oriented forest
management – Implications fromconifer-dominated forests. Forest Ecology and
Management,337,41–47.
Thorn, S., Werner, S. A. B., Wohlfahrt,J., Bässler, C., Seibold, S., Quillfeldt, P., &
Müller,J. (2016).Responseof birdassemblages towindstorm and salvagelog-
ging—Insightsfromanalyses offunctionalguildandindicatorspecies.Ecological
Indicators,65,142–148.
Waldron,K.,Ruel,J.-C.,Gauthier,S.,DeGrandpré,L.,&Peterson,C.J.(2014).Effects
ofpost-windthrowsalvageloggingonmicrosites,plantcompositionandregener-
ationed.J. Ewald. Applied Vegetation Science,17,323–337.
Wermelinger,B.,Moretti,M.,Duelli,P.,Lachat,T.,Pezzatti,G.B.,&Obrist,M.K.(2017).
Impactofwindthrowandsalvage-loggingontaxonomicandfunctionaldiversityof
forestarthropods.Forest Ecology and Management,391,9–18.
Winter,M.-B.,Ammer,C.,Baier,R.,Donato,D.C.,Seibold,S., &Müller,J.(2015).Multi-
taxonalphadiversityfollowingbarkbeetledisturbance:Evaluatingmulti-decadeper-
sistenceofadiverseearly-seralphase.Forest Ecology and Management,338,32–45.
Zmihorski,M.(2010).Theeffectofwindthrowanditsmanagementonbreeding bird
communitiesinamanagedforest.Biodiversity and Conservation,19,1871–1882.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:ThornS,BässlerC,BrandlR,etal.
Impactsofsalvageloggingonbiodiversity:Ameta-analysis.
J Appl Ecol. 2018;55:279–289. https://doi.org/10.1111/1365-
2664.12945
... These initial results in China are consistent with those from a larger body of research on forest biodiversity and ecosystem functioning in Central Europe, where professional silviculture has long promoted plantations, which have now grown to be dominated by dense tree stands with few canopy gaps and low volumes of deadwood (Doerfler et al., 2018;Thorn et al., 2018Thorn et al., , 2019. Such forests support a low diversity of plants and animals, especially of saproxylic species (Thorn et al., , 2019 and are more vulnerable to large-scale bark-beetle (Curculionidae, Scolytinae) outbreaks because the forests are even-aged and thus grow to provide an extensive and continuous cover of the large trees that are ideal hosts for bark beetles . ...
... The initial goal of our study was to study the ecological impact of bark-beetle-induced dieback on flying insect diversity. In particular, we were interested in whether patterns of forest insect diversity in Yunnan plantations are similar to those in Central Europe, where impacts of tree-dieback on habitat structure and salvage logging have been extensively studied (Doerfler et al., 2018;Hilmers et al., 2018;Müller et al., 2010;Seibold et al., 2016aSeibold et al., , 2016bSeibold et al., , 2018Thorn et al., 2018). If similar, then this increases our confidence in applying lessons learned there to Yunnan and neighboring provinces (e. g. the efficacy of deadwood enrichment as a means of promoting saproxylic taxa; Doerfler et al., 2018;Seibold et al., 2016aSeibold et al., , 2016b. ...
... However, with limited taxonomic information, we are unable to carry out functional (trait-based) analyses to try to explain why particular taxa are favoured or disfavoured under different silvicultural regimes (e.g. Cours et al., 2020;Thorn et al., 2018). We also note that our dataset represents only a single time point, while temporal turnover of forest arthropod communities appears to be high (Barsoum et al., 2019). ...
Article
Full-text available
China has recently announced a reform of forestry policy, with a major goal being to transform from plantation to heterogeneous forests, which have higher resistance to pests and disease and house more biodiversity. One driver of reform is increased intensity and frequency of pest-induced tree-dieback events. To inform management, we ask what effects these events have on insect biodiversity in Pinus yunnanensis monocultures in Yunnan province, the province with one of the highest proportions of forest cover in China. We sampled aerial arthropods (mostly insect) biodiversity along gradients of Pinus yunnanensis dieback severity using Malaise traps and used meta-barcoding to characterise the insect community. We used MS-GDM ('multi-site generalized dissimilarity modelling of zeta diversity'), zeta-decline analysis, and iNEXT ('Interpolation and extrapolation for species di-versity') to assess community change as functions of forest-structure covariates. Metabarcoding of Malaise-trapped insects reveals that bark-beetle induced forest dieback does not result in detectable differences in species diversity but does result in compositional change, with the biggest turnover occurring between 0% and infested-0%-open-canopy forests and 20%-infested-20%-open-canopy forests. Zeta-decline analysis found that the insect community in low-infestation forests is characterized by a stochastic assembly, while in high-infestation forests, the community structure is consistent with niche assembly. Our results thus suggest that bark-beetle dieback mimics natural forest-gap dynamics, consistent with the interpretation of bark beetles as a keystone species in European conifer forests, where it has been proposed that forest heterogeneity can be created efficiently by allowing natural disturbances, including bark-beetle outbreaks, to proceed naturally, without being mitigated by deadwood removal and dense replanting. In Yunnan's situation, and given predicted increases in bark-beetle dieback severity and frequency, this strategy should probably be supplemented with anthropogenic treatments, such as deadwood enhancement and planting of multiple tree species, to accelerate the succession of plantations into heterogeneous forests.
... Following large disturbance events such as megafires, windstorms and droughts, land managers will often engage in post-fire management such as salvage logging and reforestation to recover some economic loss and attempt to rebuild resilient forest ecosystems . Salvage logging, in particular, is a controversial practice because of its negative effects on certain taxa and ecosystem processes (Lindenmayer et al., 2008;Thorn et al., 2018). In some cases, scientists have debated whether it is the disturbance itself (e.g., fire) or the subsequent management activities (e.g., salvage logging) that has caused estimated effects on sensitive wildlife species such as spotted owls (Hanson, Bond, & Lee, 2018;. ...
... In some cases, sites that experienced greater salvage logging had higher post-fire occupancy than sites that had experienced less salvage logging, with differences in occupancy instead being clearly linked to variation in severe fire extent and pyrodiversity, not salvage (Fig. 5). Thus, while it is well known that salvage logging can have negative consequences for spotted owls (Lee et al., 2013;Jones et al., 2020) and biodiversity more broadly (Lindenmayer & Noss, 2006;Thorn et al., 2018), the pattern and extent of salvage logging had no measurable effects on spotted owl occupancy dynamics in this study and was transcended by the extreme nature of the King Fire. It is likely that in other cases where post-fire management (such as salvage logging) is more spatially extensive, determining whether fire or post-fire management caused declines would be challenged because the effects would be confounded. ...
Article
Full-text available
Climate change and a long legacy of fire suppression are leading to an increased prevalence of 'mega-disturbances' such as drought and wildfire in terrestrial ecosystems. Evidence for the immediate effects of these novel disturbances on wildlife is accumulating, but little information exists on longer term impacts to species and ecosystems. We studied the occurrence dynamics of an iconic old-forest species, the spotted owl (Strix occidentalis), on a long-term study area in the Sierra Nevada, CA, USA from 1989 to 2020 to evaluate their multi-scale population response following a 2014 megafire (the 'King' Fire) that affected a portion of our study area. We found that extensive severe fire within spotted owl sites resulted in both immediate site abandonment and prolonged lack of re-colonization by owls six years post-fire. Sites that experienced high pyrodiversity-a mosaic of burn severities-were more likely to persist after the fire, but this effect was only apparent at finer spatial scales. A potentially confounding factor, post-fire salvage logging, did not explain variability in the probability of either owls persisting at sites or sites becoming re-colonized; effects could be attributed only to severe fire extent and pyrodiversity. Our study demonstrates the prolonged effects of severe fire on the occupancy of this forest-dependent species, suggesting that forest restoration that reduces megafires could benefit spotted owls. Our work emphasizes that long-term monitoring can offer surprising learning opportunities and provide unparalleled value for understanding and addressing emerging environmental concerns .
... Intensive forestry was also identified in our scanning as a prevalent national problem. Intensive forestry is also related to habitat loss and fragmentation at this scale (Mikusiński et al. 2018;Thorn et al. 2018). ...
Article
Full-text available
The anthropogenic pressure on the environment depends on the spatial scale. It is crucial to prioritise conservation actions at different spatial scales to be cost-efficient. Using horizon scanning with the Delphi technique, we asked what the most important conservation problems are in Poland at local and national scales. Twenty-six participants, PhD students, individually identified conservation issues important at the local and national scales. Each problem was then scored and classified into broader categories during the round discussions. Text mining, cross-sectional analyses, and frequency tests were used to compare the context, importance scores, and frequency of identified problems between the two scales, respectively. A total of 115 problems were identified at the local scale and 122 at the national scale. Among them, 30 problems were identical for both scales. Importance scores were higher for national than local problems; however, this resulted from different sets of problems identified at the two scales. Problems linked to urbanisation, education, and management were associated with the local scale. Problems related to policy, forestry, and consumerism were more frequent at the national scale. An efficient conservation policy should be built hierarchically (e.g. introducing adaptive governance), implementing solutions at a national scale with the flexibility to adjust for local differences and to address the most pressing issues.
... The pervasive impacts of clear-cut logging and post-fire salvage logging on individual ecological components have been demonstrated across forest ecosystems globally (Leverkus et al. 2018). For instance, compounding disturbances like post-fire salvage logging can alter plant (Blair et al. 2016;Thorn et al. 2018), mammal (Lindenmayer & Ough 2006), microbial (Holden & Treseder 2013) and bird communities (Lindenmayer et al. 2019a), alter soil properties (Cambi et al. 2015;Bowd et al. 2019) and remove key structural elements of habitat, such as hollow-bearing trees (Lindenmayer & Ough 2006). ...
Article
Human and natural disturbances are key drivers of change in forest ecosystems. Yet, the direct and indirect mechanisms which underpin these changes remain poorly understood at the ecosystem level. Here, using structural equation modelling across a 150+ year chronosequence, we disentangle the direct and indirect effects of major disturbances in a temperate forest ecosystem. We show that wildfires, logging and post‐fire (salvage) logging can affect plant and microbial communities and abiotic soil properties both directly and indirectly through plant–soil–microbial interactions. We quantified 68 direct and indirect disturbance effects across these components, with the majority resulting in ecosystem‐wide adverse effects. Indirect disturbance effects accounted for 43% of total disturbance effects, with some amplifying or partially mitigating direct disturbance effects. Overall, human disturbances were associated with more negative effects than natural disturbances. Our analyses provide novel insights into the multifaceted dynamics of forest disturbances and the mechanisms which underpin their relative impacts. Using structural equation modelling we show that wildfires, logging and post‐fire (salvage) logging can affect plant and microbial communities and abiotic soil properties both directly and indirectly through plant‐soil‐microbial interactions in forests. We quantified 68 direct and indirect disturbance effects across these abiotic and biotic components, with the majority resulting in ecosystem‐wide adverse effects.
Article
Full-text available
We analyzed the main trends of the change in the species richness of plant communities after catastrophic natural (beetle outbreaks, windfalls) and anthropogenic (clear cutting) disturbances. We examined the dynamics of the structural diversity of species richness of herb-dwarf scrubs layer with different reforestation technologies after the death of spruce stands. The study of similarity and ordination of vegetation showed the proximity of the undamaged forest to the unharvested stand, and the difference of these plant communities from clear-cut. The main determining factor of species richness was the intensity of plant community disturbance after catastrophes. We analyzed the reforestation dynamics of plant communities after catastrophic disturbances. Clear cutting led to the formation of grassy communities with a sharp increase in the species and structural diversity of plant community.
Article
1. Spatial connections between habitats are important to allow movement of organisms across heterogeneous landscapes with diverse disturbances and management. Similarly, species providing functional connections between subnetworks of species interactions (modules) are important for ecosystem services across these landscapes. These functional connectors have received less study. 2. In post‐wildfire landscapes, we investigated the influence of salvage logging, a common management technique, on plant‐pollinator network modularity. We measured the composition, strength, and characteristics of forb and bee connector species across spatial and temporal scales. 3. Salvage logging influenced the structure of plant‐pollinator interaction networks. Network modularity was higher in salvage logged areas compared to unlogged areas, indicating that logging functionally fragmented these species interactions. There were compositional differences in connectors, especially of plants, between logged and unlogged areas. Plant species, but not bee species, had weaker connections across modules in salvage logged areas, suggesting that although some plant species were serving as connectors after salvage logging, they were performing worse in this role. While some suites of species formed spatial connections, others formed temporal connections (linking interactions across the growing season), indicating that disparate groups of species are likely needed to provide these critical functions across space and time. 4. Synthesis and applications. Investigating species’ roles as connectors can provide a more complete understanding of the implications of management and provide insight into how best to conserve or restore the structure and function of species interactions across landscape mosaics. Bees may be more capable of readily responding to changes in their plant partner’s spatial or temporal distributions due to salvage logging. As a result, bees may be better poised to maintain stable connections across modules compared to plants, and management actions supporting highly mobile connector species (like bees) may help offset detrimental effects of salvage logging or other disturbances. This work also indicates that minimizing the spatial extent of salvage logging relative to the proximity of other habitat types will likely aid species in forming spatial connections. Applying this framework of species as network connectors may help maintain the spatial and temporal continuity of floral resources and pollination services, even when management reduces biodiversity.
Article
Forests host most terrestrial biodiversity and provide important ecosystem services, including the provision of drinking water. Increasing frequency and intensity of natural disturbances and subsequent salvage logging may impact both biodiversity and drinking-water quality. However, empirical evidence and particularly that generated from long-term studies, is scarce. Using data obtained from the monitoring of streamwater between 1985 and 2018 and mid-term data on biodiversity of twelve species groups, we quantified the combined effects of natural disturbances and salvage logging. We used generalized additive models to test the effects of cumulative disturbed and salvage-logged areas on annual maximum nitrate and dissolved organic carbon (DOC) concentrations. We used generalized mixed-effects models to test the effect of management (disturbed unlogged, disturbed logged and undisturbed, intact forest) on species numbers of studied taxa. We found that forest disturbances led to a temporal increase of nitrate concentration in streamwater, yet remaining far below 50 mg L − 1 , the limits recommended by the World Health Organization. Salvage logging did not exert any additional impact on nitrate and DOC concentrations, and hence did not affect streamwater quality. Natural disturbances increased the biodiversity in eight out of twelve species groups. Salvage logging additionally increased the biodiversity of five species groups related to open habitats, but decreased the biodiversity of three deadwood-dependent species groups. We conclude that neither natural forest disturbances in watersheds nor associated salvage logging have a harmful effect on the quality of the streamwater, which is used for drinking water. Setting aside naturally disturbed areas would promote the conservation of deadwood-dependent species.
Technical Report
Full-text available
This report has been prepared by independent experts as a discussion paper for the workshop series with the following three objectives:1.Review and assess definitions relating to primary forests;2.Collate and evaluate datasets and methods currently available for measuring the extent of primary forests; and 3.Provide options for defining, assessing and reporting on primary forests.
Article
Full-text available
Changing forest disturbance regimes pose a major challenge for current day forestry. Yet our understanding of the economic impacts of disturbances remains incomplete. Existing valuations of losses from natural disturbances commonly exclude extreme events and neglect impacts on standing timber. Here we develop a new methodology to assess the economic impact of natural disturbances addressing these limitations. We couple an empirical function of forest growth with survival modelling for the example of Norway spruce (Picea abies), using Monte-Carlo simulations to quantify the economic losses from natural disturbances. We illustrate the effect of extreme disturbance events by analyzing the lowest (worst) 5% of simulated economic returns. Ranging between €-2611 and -34416 per hectare, disturbance-induced economic losses varied greatly, depending on the valuation approach applied. Accounting for extreme events and disturbance impacts on standing timber resulted in 262-1218% higher losses compared to damages derived with common valuation approaches that neglect these aspects. Furthermore, we demonstrate that refraining from salvage logging after extreme disturbances does not necessarily result in major economic losses for forest owners, indicating a potential cost-effective avenue to improve forest biodiversity. Our approach presents an important step towards quantifying the economic impacts of changing forest disturbance regimes.
Article
Full-text available
We investigated the effects of postfire salvage logging on cavity-nesting birds by comparing nest densities and patterns of nest reuse over a three-year period in seven logged and eight unlogged patches of mixed-conifer forest in the Blackfoot-Clearwater Wildlife Management Area, Montana. We found 563 active nests of 18 cavity-nesting birds; all species were found nesting in the uncut burned forest plots, but only eight nested in the salvage-logged plots. All except one species nested at a higher density in the unlogged areas, and half of the species were significantly more abundant in the unlogged plots. Every timber-drilling and timber-gleaning species was less abundant in the salvage-logged plots, including two of the most fire-dependent species in the northern Rocky Mountains—American Three-toed (Picoides dorsalis) and Black-backed (P. arcticus) Woodpeckers. Lower abundances in salvage-logged plots occurred despite the fact that there were still more potential nest snags per hectare than the recommended minimum number needed to support maximum densities of primary cavity-nesters, which suggests that reduced woodpecker densities are more related to a reduction in food (wood-boring beetle larvae) than to nest-site availability. Because cavities were present in only four of 244 randomly selected trees, and because frequency of cavity reuse by secondary cavity-nesters was higher in salvage-logged than in unlogged plots, nest-site limitation may be a more important constraint for secondary cavity-nesters in salvage-logged areas. These results suggest that typical salvage logging operations are incompatible with the maintenance of endemic levels of most cavity-nesting bird populations, especially populations of primary cavity-nesting species.
Article
Full-text available
Windthrow is recognized as the most important driver in European forest dynamics and its importance is likely to increase with climate change. Typically, windthrown timber is salvaged for economic and phytosanitary reasons. This markedly affects the natural development of the disturbed areas, in particular by removing important dead wood resources. For a sustainable and ecologically sound management of disturbance effects, more knowledge is needed on the impact of windthrow and salvage logging on animal species communities.
Article
Full-text available
Severe natural disturbances are common in many forest ecosystems, particularly in the Northern Hemisphere. Attempts to minimize their effects through forest management include salvage logging. In the Bohemian Forest, one of Central Europe’s largest continuous forests, windstorms and bark beetle outbreaks have affected stands of Norway Spruce for centuries. Over the past decades, these natural disturbances and their management in the Bavarian Forest National Park and the adjacent Šumava National Park in the central part of the Bohemian Forest have been scientifically studied. Owing to a benign-neglect strategy, both windstorms and bark beetle outbreaks have increased stand structural heterogeneity, the amount of dead wood and light availability, which contribute to increased populations of nearly-extinct forest specialists. However, the response of a particular taxonomic group or species strongly depends on its relationship to specific legacies that persist after disturbances. Stand climate but not dead wood appears to greatly influence the diversity of epigeal bryophytes, whereas both factors determine the diversity of epixylic bryophytes. Both the amount and heterogeneity of dead wood seems to be more important than stand climate in determining assemblages of wood-inhabiting fungi and lichens. To reduce the population density of bark beetles in the management zones of both national parks, storm-felled spruces are salvage logged, which alters a variety of these legacies and natural successional pathways. Consequently, the numbers of species of wood-inhabiting fungi, saproxylic beetles and epixylic lichens are reduced. Natural levels of biodiversity in salvage-logged areas can be preserved by (1) preserving root plates of storm-felled trees with partly retained trunks; (2) avoiding soil disturbance by using cable yarding instead of harvesters; (3) retaining sun-exposed dry branches of storm-felled trees and snags of beetle-killed spruces; (4) avoiding logging damage of natural regeneration and of large trees that survive disturbances; and (5) bark scratching instead of debarking to avoid bark beetle outbreaks while maintaining biodiversity. Windstorms and bark beetle outbreaks could be utilized to restore intensely managed forests of Central Europe to their natural composition and structure. Furthermore, experimentally mimicked natural disturbances might help in gaining a mechanistic understanding of how natural disturbances affect biodiversity.
Article
Clearing up after natural disturbances may not always be beneficial for the environment. We argue that a radical change is needed in the way ecosystems are managed; one that acknowledges the important role of disturbance dynamics.
Article
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Article
Understanding the impacts of natural and human disturbances on forest biota is critical for improving forest management. Many studies have examined the separate impacts on fauna and flora of wildfire, conventional logging, and salvage logging, but empirical comparisons across a broad gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of occurrence of vascular plants, and functional group responses, across a gradient of disturbances that occurred concurrently in 2009 in the mountain ash forests of southeastern Australia. Our study encompassed replicated sites in undisturbed forest (∼70 yr post fire), forest burned at low severity, forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high severity that was clearcut salvage logged post-fire. All sites were sampled 2 and 3 yr post fire. Mean species richness decreased across the disturbance gradient from 30.1 species/site on low-severity burned sites and 28.9 species/site on high-severity burned sites, to 25.1 species/site on clearcut sites and 21.7 species/site on salvage logged sites. Low-severity burned sites were significantly more species-rich than clearcut sites and salvage logged sites; high-severity burned sites supported greater species richness than salvage logged sites. Specific traits influenced species' sensitivity to disturbance. Resprouting species dominated undisturbed mountain ash forests, but declined significantly across the gradient. Fern and midstory trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High-severity burned sites supported a greater frequency of occurrence and species richness of midstory trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees than any other disturbance category, and were distinctly different from clearcut sites. Plant life form groups, including midstory trees, shrubs, and ferns, were dominated by very few species on logged sites. The differences in biotic response across the gradient of natural and human disturbances have significant management implications, particularly the need to reduce mechanical disturbance overall and to leave specific areas with no mechanical disturbance across the cut area during logging operations, to ensure the persistence of resprouting taxa.
Article
The scientific literature on logging after wildfire is reviewed, with a focus on environmental effects of logging and removal of large woody structure. Rehabilitation, the practice of planting or seeding after logging, is not reviewed here. Several publications are cited that can be described as "commentaries," intended to help frame the public debate. We review 21 postfire logging studies and interpret them in the context of how wildfire itself affects stands and watersheds. Results of this review are summarized in 16 major conclusions at the end of the text, most of which are based on results of no more than a handful of studies. The review is followed by an annotated bibliography and an index. Copies of all papers reviewed here are held by the Blue Mountains Natural Resources Institute, at the Forestry and Range Sciences Laboratory, Pacific Northwest Research Station, La Grande, Oregon.