ArticlePDF Available

Impacts of salvage logging on biodiversity: A meta-analysis

Wiley
Journal of Applied Ecology
Authors:
  • Hessian Agency for Nature Conservation, Environment and Geology (HLNUG)
  • Nationalpark Bayerischer Wald

Abstract

Logging to “salvage” economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post‐disturbance management are widely lacking. A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non‐saproxylic organisms. A meta‐analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups. Richness of dead wood dependent taxa (i.e. saproxylic organisms) decreased more strongly than richness of non‐saproxylic taxa. In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage logging. By analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblages. Synthesis and applications . Our results suggest that salvage logging is not consistent with the management objectives of protected areas. Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity. Future research should investigate the amount and spatio‐temporal distribution of retained dead wood needed to maintain all components of biodiversity.
J Appl Ecol. 2018;55:279–289. wileyonlinelibrary.com/journal/jpe  
|
 279
© 2017 The Authors. Journal of Applied Ecology
© 2017 British Ecological Society
Received:16January2017 
|
Accepted:18May2017
DOI: 10.1111/1365-2664.12945
REVIEW
Impacts of salvage logging on biodiversity: A meta- analysis
Simon Thorn1| Claus Bässler2| Roland Brandl3| Philip J. Burton4| Rebecca
Cahall5| John L. Campbell5| Jorge Castro6| Chang-Yong Choi7| Tyler Cobb8|
Daniel C. Donato9| Ewa Durska10| Joseph B. Fontaine11| Sylvie Gauthier12|
Christian Hebert12| Torsten Hothorn13| Richard L. Hutto14| Eun-Jae Lee15|
Alexandro B. Leverkus16 | David B. Lindenmayer17 | Martin K. Obrist18|
Josep Rost19,20| Sebastian Seibold2,21 | Rupert Seidl22| Dominik Thom22|
Kaysandra Waldron23| Beat Wermelinger24| Maria-Barbara Winter25|
Michal Zmihorski26| Jörg Müller1,2
1FieldStationFabrikschleichach,DepartmentofAnimalEcologyandTropicalBiology(ZoologyIII),Julius-Maximilians-UniversityWürzburg,Rauhenebrach,Germany
2BavarianForestNationalPark,Grafenau,Germany
3DepartmentofEcology,AnimalEcology,FacultyofBiology,Philipps-UniversitätMarburg,Marburg,Germany
4UniversityofNorthernBritishColumbia,Terrace,BC,Canada
5DepartmentofForestEcosystemsandSociety,OregonStateUniversity,Corvallis,OR,USA
6DepartmentofEcology,UniversityofGranada,Granada,Spain
7DepartmentofForestSciences,SeoulNationalUniversity,Seoul,Korea
8RoyalAlbertaMuseum,Edmonton,AB,Canada
9SchoolofEnvironmental&ForestSciences,UniversityofWashington,Seattle,WA,USA
10DepartmentofEcologyandBiodiversity,MuseumandInstituteofZoology,PolishAcademyofSciences,Warsaw,Poland
11SchoolofVeterinaryandLifeSciences,MurdochUniversity,Murdoch,WA,Australia
12NaturalResourcesCanada,CanadianForestService,LaurentianForestryCentre,Quebec,QC,Canada
13DivisionofBiostatistics,UniversityofZürich,Zürich,Switzerland
14DivisionofBiologicalSciences,UniversityofMontana,Missoula,MT,USA
15UrbanPlanningResearchGroup,DaejeonSejongResearchInstitute,Daejeon,Korea
16EcologyUnit,DepartmentofLifeSciences,UniversityofAlcalá,AlcaládeHenares,Madrid,Spain
17FennerSchoolofEnvironmentandSociety,TheAustralianNationalUniversity,Canberra,ACT,Australia
18WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,BiodiversityandConservationBiology,Birmensdorf,Switzerland
19DepartmentofEnvironmentalSciencesandFoodIndustries,UniversityofVic-CentralUniversityofCatalonia,Catalonia,Vic.,Spain
20DepartmentofEnvironmentalSciences,UniversityofGirona,Girona,Spain
21DepartmentofEcologyandEcosystemManagement,ChairforTerrestrialEcology,TechnischeUniversitätMünchen,Freising,Germany
22InstituteofSilviculture,DepartmentofForest-andSoilSciences,UniversityofNaturalResourcesandLifeSciencesVienna,Vienna,Austria
23DepartmentofWoodandForestSciences,LavalUniversity,Québec,QC,Canada
24WSLSwissFederalInstituteforForest,SnowandLandscapeResearch,ForestDynamics–ForestEntomology,Birmensdorf,Switzerland
25ForestResearchInstituteofBaden-Württemberg(FVA),Freiburg,Germany
26DepartmentofEcology,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden
280 
|
    
Journal of Applied Ecology
THORN eT al.
1 | INTRODUCTION
The frequency and extent of stand-replacing natural disturbances,
such as wildfires, windstorms and insect outbreaks, has increased
considerably during recent decades, particularly in the Northern
Hemisphere(Kurz etal.,2008;Seidl, Schelhaas,Rammer,&Verkerk,
2014).Naturaldisturbancescanenhancethestructuralheterogeneity
offorests,createhabitatsforspecies-richassemblagesofhighconser-
vationvalueandincreasethelong-termresilienceofforeststofuture
stressors(Swansonetal.,2011).However,societaldemandfortimber
and/orpestreductioncompelsforestmanagersto“salvage”timberby
logging before it deteriorates,a common practice even in locations
otherwise exempt from conventional green-tree harvesting, such
as national parks orwilderness areas (Figure1) (Chylarecki & Selva,
2016;Thorn etal., 2014).Suchsalvage loggingreducesthe amount
of dead wood, alters successional trajectories, affects biodiversity,
and can influence restoration costs and subsequent fire hazards
(Lindenmayer,Burton, & Franklin, 2008; Waldron,Ruel, & Gauthier,
2013).Consequently,conflictsoftenemergebetweennaturalresource
managers,policy-makersandconservationistsonhowtohandlenatu-
rallydisturbedforests(González&Veblen,2007;Lindenmayer,Thorn,
& Banks, 2017; Lindenmayer etal., 2004; Schmiegelow, Stepnisky,
Stambaugh,& Koivula,2006).This hasresultedinintensepublicde-
bates(Lindenmayeretal.,2017;Nikiforuk,2011;Stokstad,2006).
Differentnaturaldisturbance regimesleavedistincttypesofbio-
logicaland/orstructural legacies(Franklinetal.,2000).Forinstance,
forestskilledbywildfireorinsectoutbreaksarecharacterizedbylarge
numbersofsnags,whilewindstormscreateuprootedtrees(Swanson
etal., 2011). Salvage logging typicallyremoves or alters these lega-
cies.Theresponsesofsaproxylicandnon-saproxylicspeciesgroupsto
salvageloggingthusdependontheirrelationto(deadwood)legacies
affectedbysalvagelogging(Lindenmayeretal.,2008).Consequently,
differenttaxonomicgroupsindifferenttypesofnaturaldisturbances
may respond differently to salvage logging (Zmihorski & Durska,
2011).Numerousstudieshavefocusedontheeffectsofsalvagelog-
gingafternaturaldisturbancesonspeciesrichnessandthecommunity
compositionofvarioustaxasuchasvascularplants(Blair,McBurney,
Blanchard, Banks, & Lindenmayer, 2016; Macdonald, 2007; Stuart,
Correspondence
SimonThorn
Email:simon@thornonline.de
Funding information
GermanEnvironmentalFoundation;Austrian
Science Fund
HandlingEditor:MatthewStruebig
Abstract
1. Loggingto“salvage”economicreturnsfromforestsaffectedbynaturaldisturbances
hasbecomeincreasingly prevalentglobally.Despite potentialnegativeeffects on
biodiversity,salvageloggingisoftenconducted,eveninareasotherwiseexcluded
from logging and reserved for nature conservation, inter alia because
strategicprioritiesforpost-disturbancemanagementarewidelylacking.
2. Areviewoftheexistingliteraturerevealedthatmoststudiesinvestigatingtheef-
fects of salvage logging on biodiversity have been conducted less than 5years
followingnaturaldisturbances,andfocusedonnon-saproxylicorganisms.
3. Ameta-analysisacross24speciesgroupsrevealedthatsalvageloggingsignificantly
decreasesnumbers ofspecies ofeighttaxonomicgroups.Richnessofdeadwood
dependenttaxa(i.e.saproxylicorganisms)decreasedmorestronglythanrichnessof
non-saproxylictaxa.Incontrast, taxonomicgroupstypically associatedwithopen
habitatsincreasedinthenumberofspeciesaftersalvagelogging.
4. Byanalysing134originalspeciesabundancematrices,wedemonstratethatsalvage
logging significantly alters community composition in 7 of 17 species groups,
particularlyaffectingsaproxylicassemblages.
5. Synthesis and applications.Ourresultssuggestthatsalvageloggingisnotconsistent
withthe managementobjectivesofprotectedareas. Substantialchanges,suchas
theretentionofdeadwoodin naturallydisturbedforests, areneededto support
biodiversity.Futureresearchshouldinvestigatetheamountandspatio-temporal
distribution of retained dead wood needed to maintain all components of
biodiversity.
KEYWORDS
barkbeetle,climatechange,deadwood,disturbedforest,fire,naturaldisturbance,post-
disturbancelogging,salvagelogging,saproxylictaxa,windstorm
    
|
 281
Journal of Applied Ecology
THORN eT al.
Grifantini,Fox,&Fox,1993),carabids(Cobb,Langor,&Spence,2007;
Koivula & Spence, 2006; Phillips, Cobb,Spence, & Brigham, 2006),
birds(Castro,Moreno-Rueda,&Hódar,2010;Choi,Lee,Nam,Lee,&
Lim,2014;Nappi&Drapeau, 2009; Saab, Russell,&Dudley, 2009;
Thorn,Werner,etal.,2016; Zmihorski,2010),and saproxylicorgan-
isms(i.e.thosedependingon dead wood during somepartoftheir
life cycles; Cobb etal., 2011; Norvez, Hébert, Bélanger, Hebert, &
Belanger,2013).
Twomain effects of salvage logging on biodiversityarise recur-
rentlyfrom the existing bodyofliterature. First,salvageloggingre-
duces the richness of taxonomicgroups or abundance of particular
speciesthatdependondeadwood.Forinstance,salvageloggingde-
creasednestingdensity ofcavity-nesting-birdsthat usuallybreedin
fire-killedtrees(Hutto&Gallo,2006).Similarly,post-stormloggingde-
creasedthetotalnumberofsaproxylicbeetlespeciesandthenumber
ofthreatenedspecies(Thornetal.,2014).Second,studiesthatinves-
tigateasetofdifferenttaxonomicgroupshavedemonstratedthatsal-
vageloggingcanalterthecommunitycompositionofbothsaproxylic
andnon-saproxylicorganisms,whiletheeffectsontheoverallnumber
ofspeciescanbesmall(Thorn,Bässler,Bernhardt-Römermann,etal.,
2016).Forinstance, post-stormsalvagelogginginMinnesota greatly
diminishedbirdcommunities,whilefewerdifferencesinthetreecover
weredetected(Lain,Haney,Burris,&Burton,2008).However,previ-
ousattemptstosummarizeknowledgeontheeffectsofsalvagelog-
gingonbiodiversityhavefocusedmainlyonsalvageloggingofburned
forests(Lindenmayer&Noss,2006;Lindenmayeretal.,2008;McIver
&Starr,2000;Thorn,Bässler,Svoboda,&Müller,2016),andaquan-
titativeassessment ofsalvagelogging impactsonbiodiversityisstill
lacking,particularlyacrossdifferenttaxonomicgroupsandinresponse
todifferenttypesofdisturbances(Figure1).
FIGURE1 Salvagelogging(SL)iscommonlyappliedafterwildfires,windstormsorinsectoutbreaks,andleadstochangesinhabitatsand
communitycompositionsinvariousforestecosystemsaroundtheworld(ashighlightedbythestudiesillustratedinpanels(a–l).Studylocations
(colouredcircles)representstudysitesthatcontributeddatatoourmeta-analysis.Photographsbyauthors.[Colourfigurecanbeviewedat
wileyonlinelibrary.com]
282 
|
    
Journal of Applied Ecology
THORN eT al.
Here,wereviewedthescientificliteratureandcompiledexisting
data to quantify the effectsof salvage logging after wildfire,wind-
storms and insect outbreaks on (1) species numbers via a meta-
analysisof238individualcomparisonsofsalvaged/unsalvagedareas;
and (2) community composition, based on a subset of134 original
speciesabundancematrices.Wealsotestedthehypothesisthat the
impactsofsalvagelogging aremorepronouncedfor saproxylicspe-
ciesgroups thanfor non-saproxylicgroupsregardingthenumber of
speciesandcommunitycompositionwithindifferenttypesofnatural
disturbances.
2 | MATERIALS AND METHODS
2.1 | Literature search
We followed guidelines for systematic literature reviews (Pullin &
Stewart,2006) tocompile comparisonsofspeciesrichnessbetween
salvagedandunsalvagedfire-, wind- or insect-affectedforests.We
screenedtheelectronicdatabasesWebofScience,ScopusandGoogle
Scholaron15 February 2016 byusingthe simplified search strings
[salvageloggingORpost$disturbance*ORsalvaging]and[forest$OR
vegetationORdisturbanceORecosystem].Fromthis bodyoflitera-
ture(>2,000articles),weretainedonlyfield-basedstudiesafterhav-
ingscreenedthetitleandabstract.Modellingstudieswereexcluded.
Wealsoaddedrelevantpapersfromreferencelistsinpublishedstud-
ies. We restricted studies to those providing comparisons between
completely salvage logged plots and completely unsalvaged control
plotsaccordingtotheinformationgivenintherespectivestudies.This
meansthatonsalvageloggedplots,morethan75%ofthetreeswere
affectedbynatural disturbanceandthen completelysalvage logged
withoutfurthertreatment suchastree plantingorlegacy retention.
Lowerintensitiesofnaturaldisturbanceshavebeenrarelytargetedby
scientificstudies.Salvageloggingoperationsthusresembledconven-
tionalclear-cutting.Unsalvaged control plots hadtobeaffected by
thesamenaturaldisturbanceeventbutwithoutanyhumaninterven-
tion.Salvageloggedplotshadtobeofsimilarsize,surveyedwiththe
samefieldmethodsduringthesamestudyperiodandwiththesame
samplingeffortasunsalvagedcontrolplots.
Toexaminewhetherpseudo-replication(i.e.allplotsnestedwithin
onearea)mightbiasthe resultsofour meta-analysis(Ramage etal.,
2013), we carefullyselected the studies according to their designs,
andweusedstatisticsthataccountforpseudo-replication(seebelow).
Thespatialarrangementofplotsinallstudieswascheckedbasedon
methoddescriptionsand/ororiginalgeographiccoordinates.Wecon-
tactedauthorstoprovidedataortoclarifytheirstudydesignswhere
necessary(seeDatasourcessection).Studieswithouttrue replicates
(e.g.allsalvagedplotsnestedandseparatedfromunsalvagedcontrol
plots) were excluded from the analysis to ensure valid effect sizes
(Halme etal., 2010). Studies using the same set offield plots and/
orthesame studyarea(e.g.Samcheok Forest,Korea)wereidentified
andnestedinallsubsequentstatisticalanalysestocontrolforpseudo-
replicationwithinstudyareas.Wealsoexcludedstudiesthatsampled
forests undergoing multiple types of disturbances. Salvage logging
hadtobe conducted immediately(<12months)afternaturaldistur-
bancetookplace.Meannumberofspeciesandstandarddeviationval-
uespersamplingunitwereextractedfrompublishedtextandtables,
or from figures using PLOT DIGITIZER 2.6.2. (www.plotdigitizer.
sourceforge.net). Last, we compiled data on covariates by extract-
ing information on the disturbance type and the time since distur-
bance, and the time since subsequent salvage logging. In addition,
we compiled original species abundance matrices that underpinned
the published papers, which allowed us to explore the effects of
salvageloggingoncommunitycomposition.
2.2 | Meta- analysis
Allanalyseswereconductedinr3.3.1(www.r-project.org).Priortosta-
tisticalanalysis,specieswereassignedtooneofthefollowingtaxonomic
groupsandtoassociationwithdeadwood(i.e.saproxylic/non-saproxylic)
basedonthedescriptioninthearticles.Thesewhere:amphibians,ants,
bats, bees and wasps, birds, carabids, epigeal lichens, epigeal mosses,
epigealspiders,epixyliclichens,epixylicmosses,harvestmen,hoverflies,
landsnails,nocturnalmoths,non-saproxylicbeetles(excludingcarabids),
reptiles,rodents,saproxylic beetles,scuttleflies, springtails, truebugs,
vascular plants and wood-inhabiting fungi. For the analysis compar-
ingresponses ofsaproxylicand non-saproxylicspecies groups,wede-
finedsaproxylicbeetles,wood-inhabitingfungi,andepixyliclichensand
mossesassaproxylicandallotherspeciesgroupsasnon-saproxylic.
Forcomparing numbersofspecies betweensalvagedand unsal-
vagednaturallydisturbedplotsdescribedin thepublished literature,
weusedHedges’d,whichaccountsfordifferencesinsamplingeffort
across studies and for small sample sizes (Hedges & Olkin, 1985).
PositivevaluesofHedges’dindicatehighernumbersofspeciesinsal-
vageloggedplots,whereasnegativevaluesindicatealossinnumbers
ofspeciesattributedtosalvagelogging(i.e.highernumbersofspecies
inunsalvagednaturallydisturbedplots).Meanabsoluteeffectsizesof
d=0.2indicateasmalleffect,d=0.5amoderateeffect,andd = 0.8 a
largeeffect(Koricheva,Gurevitch,&Mengersen,2013).
We used multi-level linear mixed-effectsmodels, provided by
the r function “rma.mv” in the “metafor” package (Viechtbauer,
2010),totest theeffectoftaxonomicgroup asacategorical pre-
dictor and year since disturbance as a numerical covariate on
Hedges’dastheresponsevariable.Hedges’dvalueswereweighted
bythecorrespondingsamplingvariancewithinthestatisticalmodel.
Furthermore,thestudysitewasincludedasarandomeffectinthe
model (i.e. moderator term) to control for unmeasured site spec-
ificities and repeated measurements (pseudo-replication) within
onestudysite.Thismeansthatmultipledatapointsperstudywere
possibleifstudiesexaminedmultipletaxonomicgroupsorifstudies
lastedformorethan1year.Wesubtracted theinterceptfromthe
effectsizes (byincluding “−1”in themodelformula)to evaluateif
observedHedges’ddifferedsignificantlyfrom zero(fordetails and
modelformulaseeTableS1).
Toevaluate theeffectsof salvagelogging on saproxylicvs.non-
saproxylic groups, we fitted a second model with Hedges’d as re-
sponsevariable.Weagainincludedtheyearafternaturaldisturbance
    
|
 283
Journal of Applied Ecology
THORN eT al.
andsubsequentlogging as a numericalpredictorvariable andstudy
siteas wellastaxonomicgroupasrandomfactors. Furthermore,we
addedtheinteractionofdeadwooddependence(i.e.saproxylic/non-
saproxylic)withnaturaldisturbancetypeaspredictorstotestwhether
theeffectofsalvageloggingonthe numberofspecies insaproxylic
andnon-saproxylicgroups differedwithin different typesofnatural
disturbances. Weimplemented a simultaneous inference procedure
tocomparesaproxylicandnon-saproxylicspeciesgroupswithineach
disturbancetype(Hothorn, Bretz,& Westfall,2008). Thisprocedure
allowedus totest ifresponsesofsaproxylicandnon-saproxylictaxa
varyamong fire-,wind-and insect-disturbedforests(fordetails and
model formula see TableS2). Last, we conducted funnel plots by
meansofthefunction“funnel”fromthe“metafor”packagetoassess
publicationbias(Korichevaetal.,2013;FigureS1).
2.3 | Analysis of community composition
Based on the reviewed literature, we compiled original species
abundance matrices to quantify changes in community composi-
tioninducedby salvage logging.Quantifyingchangesin community
compositionamong largeheterogeneousdatasetsischallenging and
requires statistical methods able to deal with issues such as unbal-
ancedsamplingeffortandwhichgenerateastandardizedeffect size
thatis comparableamong differentspecies groupsand surveytech-
niques.Thus,weusedpermutationalmultivariateanalysisofvariance
usingdistance matrices(Legendre&Anderson,1999),performedby
meansofthefunction“adonis”inthepackage“vegan”(Oksanenetal.,
2016).ThisanalysisprovidesapseudoF-value,basedon999permu-
tations,thatquantifies thedeviancefrom thenull-hypothesis,while
simultaneouslyaccounting forimbalanced studydesigns (McArdle&
Anderson,2001).Consequently,largevaluesofFcorrespondtolarge
changesin communitycompositioninducedbysalvagelogging.This
F-value represents the standardized difference between communi-
tiesinsalvageloggedandunsalvagednaturallydisturbedplotswithin
onespeciesabundancematrix(e.g. differences in bird communities
6yearsafterwildfire andsalvagelogging inOregon).We rigorously
restrictedthisanalysistothoseabundancematricesthatyieldedvalid
pseudoF-values overthe courseof permutations;that is,those ma-
triceswhichgeneratedlessthan99realpermutationswereexcluded.
Theserestrictions resultedin atotal numberof 134matrices, which
suppliedF-valuesfortheanalysisoutlinedbelow.
Totestifsalvageloggingchangedcommunitycompositionindif-
ferenttaxonomicgroups,wemodelledpseudoF-valuesinlinearmixed
modelsprovidedbythefunction“lmer”inthe“lme4”packageassum-
ingaGaussianerrordistribution(Bolkeretal.,2009).Weincludedthe
taxonomicgroupasacategoricalpredictorand theyearsincedistur-
banceas a numericalcovariate. Furthermore,weincludedthe study
siteasarandomeffecttocontrolforpossibledifferencesamongstudy
sitesand repeatedmeasurementswithin onestudysite.Weomitted
theinterceptfromthemodelformulatodetermineifF-valuesdiffered
significantlyfromzero.Thus,significant changesin communitycom-
positionofataxonomicgroupduetosalvageloggingwereindicated
by F-valuessignificantlylargerthanzero(fordetailsandmodelformula
seeTableS3).
AsfortheanalysisofHedges’d,asecondmodelwasfittedtotest
whether the effects of salvage logging on community composition
differed between saproxylic and non-saproxylic species groups in
differenttypesofdisturbances.Therefore,weincludedtheyearafter
disturbance and the interaction of saproxylic/non-saproxylic with
disturbancetypeaspredictors.Taxonomicgroupandstudysitewere
includedasrandomfactorsinthismodel.Weimplementedasimulta-
neousinferenceproceduretocomparesaproxylicandnon-saproxylic
species groups within each disturbance type (for details and model
formulaseeTableS4).
3 | RESULTS
Our meta-analysis showed that the effects of salvage logging have
been studied primarily for birds, vascular plants and carabids, par-
ticularly in burned forests. Studies were conducted primarily in
NorthAmerica andEurope, butlackingintropicalregions(Figure1).
Furthermore,therewasaclearlackofstudiesinvestigatingsaproxylic
taxa.Ofthe238compileddatapoints,170coveredaperiodof5years
or less after disturbance, with studies addressing the long-term ef-
fectsofsalvageloggingbeingrare(Figure2).Onlyonestudy(Hutto&
Gallo,2006)wasavailablethatprovideddataontheeffectsofsalvage
loggingformorethan20yearsafterdisturbances(Figure2).
Halfofthe individual comparisonsproducedvalues ofHedges’d
lowerthanzero,indicatinghighernumbers ofspeciesinnon-salvage
loggedareasthan salvageloggedareas (Figure3).Wefoundsignifi-
cantly lowerspecies numbers of epigeal and epixylic mosses, birds,
wood-inhabiting fungi, saproxylic beetles, springtails and epixylic
aswellas epigeallichensin salvage loggedareas comparedtonon-
salvagelogged areas(Figure3a).Incontrast,thenumbers ofspecies
of land snails, epigeal spiders and carabids were higher in salvage
logged areas than in unsalvaged areas (Figure3a). Thirteen of the
24 taxonomic groups, includingvascular plants, exhibited no signif-
icantresponsein numbers ofspeciestosalvage logging (Figure3a).
The numbers of species of saproxylic taxa significantly decreased
compared to non-saproxylic taxa in storm-affected and burned for-
ests(Figure4a).Thenegativeeffectofsalvageloggingonnumberof
speciesincreasedwithtimeelapsedsincedisturbanceandsubsequent
salvagelogging,althoughlong-termdataonsalvageloggingarescarce.
Salvageloggingwas associatedwithsignificant changes incom-
munitycompositionin 7 of 17taxonomicgroups(Figure3b).These
seven groups were epigeal spiders, carabids, vascular plants, birds,
wood-inhabiting fungi, saproxylic beetles and epixylic lichens
(Figure3b). Time elapsed since disturbance had no effect on the
strength of logging-induced changes to community composition
(TableS3).Furthermore,logging-inducedchangesincommunitycom-
positionwerestrongerforsaproxylictaxathanfornon-saproxylictaxa
in storm-disturbed forests. However, data availabilitywas scarce in
insect-affectedforestandlackinginburnedforests(Figure4b).
284 
|
    
Journal of Applied Ecology
THORN eT al.
4 | DISCUSSION
Our study revealed that salvage logging can result in significant
changes in species numbers and/or in altered community composi-
tion.Negativeeffects were particularlystrongfor taxa thatdepend
ondeadwood. Incontrast,thenumbers ofspeciesof taxa thatare
commonly characterized by species-rich communities in open habi-
tats, such as carabids and epigeal spiders, responded positively to
salvage logging. Despite positive effects of salvage logging on taxa
associated with open habitats, strong negative effects on saprox-
ylicgroupscall forsubstantialchanges inhowdisturbed forestsare
routinelymanaged.
Naturallydisturbedforestsarecharacterizedbylargevolumesof
deadwoodwithhighstructuraldiversity(Swansonetal.,2011).Incon-
trast,salvageloggingtypicallyreducestheamountandheterogeneity
of deadwood by removing tree trunks (Keyser, Smith, & Shepperd,
2009;Priewasser,Brang,Bachofen,Bugmann,&Wohlgemuth,2013).
Notsurprisingly, salvageloggingreduced thenumbersof speciesof
saproxylicgroups (Figures3and4). However,not onlyadecreasing
deadwoodamountbutlikewisealogging-inducedshiftindeadwood
qualitymay haveadditionalimpacts onsaproxylictaxa. Salvagelog-
gingnotonlyreducestheamountoflargetreetrunksbutalsoalters
characteristicconditions,such as decaystages or diameterdistribu-
tions,oftheremainingdeadwood(Waldronetal.,2013).Forinstance,
branchescutduringpost-stormloggingremainonthegroundbutare
overgrownbygroundvegetation.Theresultingshiftin microclimatic
conditionsthenmodifiesresourcequality,leadingtoalossofsaprox-
ylicbeetles thatdependon sun-exposed, drybranches (Thornetal.,
2014).
It is important to note that losses of saproxylic species can be
presentalso within taxonomicgroups thatdisplayedno responsein
theiroverallspeciesnumbers(Figure3a).Forinstance,birds(themost
studiedvertebrategroup)wereslightlynegativelyaffectedbysalvage
logging(Figure3a),despitefewspeciesbeing directlydependent on
dead wood. Nevertheless, several forest-dwelling bird species de-
pend on snags, cavities or natural regenerationin post-disturbance
forest stands. The removal of such legacies bysalvage logging can
causealossofassociated bird speciesandconsequentlyan overall
lowernumber ofbirdspecies in loggedareas(Hutto &Gallo,2006;
Werner,Müller,Heurich,&Thorn,2015).Althoughtheoverallnumber
ofbirdspeciesdecreasedlessstronglythan,forinstance,thenumber
ofsaproxylic beetlespecies(Figure3a),birdspecies thatdependon
post-disturbancehabitatcharacteristicsareoftenofhighconservation
interest.Forinstance,salvageloggingafterhighseveritywildfirescan
leadtolowersite occupanciesofNorthernSpottedOwls(Strix occi-
dentalis caurina)onlogged than onunloggedsites in Oregon(Clark,
Anthony,&Andrews,2013).
Ourstudyrevealedthatsalvageloggingcausedsignificantchanges
incommunitycomposition forsevenspeciesgroups(Figure3b),with
saproxylic species groups being affected most strongly (Figure4b).
Suchalterationsin community compositionmightreflect the estab-
lishmentofopen-habitatspeciesand/orasimultaneouslossofforest
specialists.Forinstance, salvagelogging canincreasetheabundance
ofopen-habitatcarabidbeetles(Koivula&Spence,2006)orpromote
the establishment of non-forest vegetation (Stuartetal., 1993; Van
Nieuwstadt,Sheil, &Kartawinata,2001).Hence,speciesgroupsthat
are commonly characterized by species-rich communities in open
habitats,suchascarabidsorepigealspiders,candisplayanoverallin-
creaseinnumbersofspeciesinresponsetosalvagelogging(Figure3a).
Likewise, salvagelogging can cause an increase in herb- and grass-
feedingmothspeciesbutadecreaseinsaproxylicanddetritus-feeding
mothspecies (Thornetal., 2015).Such contrastingresponseswithin
andbetweenspeciesgroupscan masktheoverallimpactofsalvage
logging on biodiversity in coarse-scale analyses (i.e. Thom & Seidl,
2016).Numerousspecies ofhighconservationinterest, suchasthe
Red-cockadedWoodpecker(Leuconotopicus borealis),dependondead
woodin burnedforests(Conner,Rudolph,& Walters,2001).The re-
sultsofourstudythereforeindicatethat thebiodiversityofsaprox-
ylictaxacouldbeenhanced bya modifiedmanagementofnaturally
disturbedforests.Incontrast,populationsofspeciesassociatedwith
open habitats, such as the Sharp-tailed Grouse (Tympanuchus pha-
sianellus)inNorthAmerica,maypersistorevenincreaseinthelarger
remaining area subject to unmodified management, that is, salvage
logging(Radeloff,Mladenoff,&Boyce,2000).
Thetwomajor incentivesfor salvageloggingare toreduceeco-
nomic losses caused by a naturaldisturbance and to omit mass re-
productionand spreadofinsectpests thatdevelop intrees killedor
weakenedbya preceding naturaldisturbance.Forinstance,salvage
logging of storm-felled Norway spruce (Picea abies) decreased new
infestationsofnearbytreesbytheEuropeansprucebarkbeetle (Ips
FIGURE2 Distributionofstudies
investigatingtheeffectsofsalvagelogging
onbiodiversityafterwildfire,windstorms
andinsectoutbreaksaccordingtotheyears
afterdisturbance.[Colourfigurecanbe
viewedatwileyonlinelibrary.com]
    
|
 285
Journal of Applied Ecology
THORN eT al.
typographus) at a landscape scale (Stadelmann, Bugmann, Meier,
Wermelinger,&Bigler,2013).Salvageloggingisthereforethepredom-
inantresponsetonaturaldisturbancesinwoodproductionforests,but
pestcontrolis regularlyusedtojustify salvage logginginprotected
areas.Forinstance,theBiałowieżaForestNationalParkontheborder
betweenPolandandBelarus,whichis thelast primevallowland for-
estinEurope,iscurrentlyobligedtosalvageloggingofareasaffected
by I. typographusonattempttoavoidfurtherinfestations(Chylarecki
&Selva,2016). Suchan approachtodisturbed forestsneglects that
regionalfactors,suchassummerdrought,canpromoteoutbreaksof
I. typographus more strongly than local standvariables (Seidl etal.,
2015).Furthermore,salvageloggedtimberis usuallyofsubstantially
lowereconomicvaluethannormallyharvestedtimberduetoarapid
colonization by wood-inhabiting fungi and to the fact that distur-
bancesaffect forestsofanyage,sothat generalizedsalvagelogging
operationsnecessarilyincludeyoungerstands thatotherwisewould
notbeharvested(Leverkus,Puerta-Pinero,Guzmán-Álvarez,Navarro,
& Castro, 2012). Our results demonstrate that salvage logging has
strongandnegative effects on manytaxonomic groups, particularly
thoseassociatedwith deadwood,and thatitisthus notconsistent
with biodiversity conservation goals.Along with questionable eco-
nomicoutputs andpestreducingeffects,weargue thatsalvagelog-
gingshouldbeexcludedfromprotectedareassuchasnationalparks.
The incidence of stand-replacing natural disturbances remains
spatially and temporally unpredictable (Berry etal., 2015), creating
inherentuncertaintyaboutappropriatemanagementofnaturallydis-
turbedforests.Hence,managementplansneedtobejointlydeveloped
with(andconfirmedby)stakeholders,scientistsandnaturalresource
managers before the nextdisturban ceoccurs (Lindenmayer, Likens,
& Franklin, 2010). Such management plans could,for instance, en-
compassan aprioriidentificationofsalvageloggingexclusionzones
basedonecologicaldata(e.g.Nappietal.,2011).Forestmanagersalso
may targetthe preservation of structural key attributes in naturally
disturbed forests, including snags or tipped uproot plates of wind-
throwntrees(Hutto,2006).Retentionoftreesduringgreen-treehar-
vestshas becomeanincreasingly commontool aroundtheglobe to
helpconserveforestbiodiversity(Fedrowitzetal.,2014;Gustafsson
etal.,2012;Mori&Kitagawa,2014).Toobtainsomeeconomicreturn
whileretainingdeadwood-dependenttaxa,werecommendasimple
expansionofthe green-treeretentionapproach toincludenaturally
disturbedforests.Retentionapproachesinnaturallydisturbedforests
couldbeexpectedtobelesscostlythaningreen-treeharvestdueto
theloweropportunitycostofnotharvestingdisturbance-killedtrees.
Approximately70%ofthestudieswecompiledspannedlessthan
5years; studies addressing the long-term effects of salvage logging
arerare(Figure2). However,deadwood, and particularlysnags, are
long-lastingkeybiologicallegacies,andtheirlosscanhavelong-lasting
effectson biodiversity(Hutto,2006). Hence,future researchshould
target the long-term effects of salvage logging after natural distur-
bances.Therearealsotaxonomicbiasesinexistingstudiesinvestigating
FIGURE3 (a)Estimatedresponse
ofHedges’dbasedon238individual
comparisonsofspeciesnumbersin
salvageloggedandunsalvagedforests
affectedbynaturaldisturbances.Higher
speciesnumbersinsalvageloggedareas
correspondtopositiveHedges’d,whereas
negativevaluesindicatelowerspecies
numbersinsalvageloggedareas.(b)Pseudo
F-valuesofpermutationalmultivariate
analysisofvariancebasedon134individual
speciesabundancematrices.Largerpseudo
F-valuescorrespondtolargerchangesin
communitycompositioninducedbysalvage
logging.Asterisksindicatesignificant
responses(seeTablesS1andS2for
statisticaldetails).Forillustrativepurposes,
greydots(andthegreylinejoiningthemfor
emphasis)representthemeaneffectsizein
eachtaxonomicgroup.[Colourfigurecan
beviewedatwileyonlinelibrary.com]
286 
|
    
Journal of Applied Ecology
THORN eT al.
theeffectsofsalvageloggingafternaturaldisturbances.Inparticular,
saproxylicgroupssuchaswood-inhabitingfungihavebeenunderrep-
resentedin empirical studiesdespitetheir high diversityand impor-
tance for ecosystem functioning. Future research should therefore
targetparticularlysaproxylicspeciesgroups.Incontrast,othergroups
havebeenrelativelywellstudiedinonedisturbancetype(e.g.birdsin
burnedforests),but lessinothers,and studies wereconducted pri-
marilyin NorthAmerica, Europeand Asia,butlacking intropicalre-
gions(Figure1).However,differenttypesofnatural disturbancesin
differentpartsoftheworldcanactatverydifferentspatialscalesand
mayrequiredifferentretentionapproaches(Kulakowskietal.,2016).
Furthermore,coniferousforestsoftheNorthernHemisphere—incon-
trasttotropicalforests—arenaturallypronetolarge-scalenaturaldis-
turbances(Lindenmayeretal.,2008),whereasdisturbancesintropical
forestsmostlyhave anthropogeniccausesassociatedwithlong-term
land-use change (e.g. fire to open space for livestock grazing and
agriculture; Peres,Barlow, & Laurance, 2006). Nevertheless, natural
disturbancessuchaswindstormsaffecttropicalforestsaswellastem-
perateforests,andsalvageloggingeffectson tropicalforestsshould
betargetedinfutureresearch(e.g.Lawton&Putz,1988).
In conclusion, these data from a wide range of studies demon-
strate that salvage logging has a range of effects on species num-
bers and community composition ofvarious taxonomic groups,with
important negative consequences for several groups, especially
saproxylic ones. Whilecurrent policies for enhancing biodiversity and
ecosystemservices,suchasgreen-treeretention(e.g.,Gustafssonetal.,
2012), focus mainly on forestssubjected to traditional logging opera-
tions,suchpolicies are largelyabsent fromnaturallydisturbed forests.
Wethereforecallforanexpansionofthegreen-treeretentionapproach
toincludenaturallydisturbedforestsbyleavingsubstantialamountsof
deadwoodonsitetoreducetheimpactofsalvageloggingonbiodiversity.
ACKNOWLEDGEMENTS
Wethanknumerouscontributorsforclarifyingtheirstudiesandthree
anonymousreviewersfortheircommentsonanearlierversionofthis
manuscript.S.T.andS.S.werefundedbytheGermanEnvironmental
Foundation. R.S. and D.T. acknowledge support from the Austrian
ScienceFund(FWF,STARTgrantY895-B25).J.C.acknowledgessup-
portfromgrantP12-RNM-2705andA.L.fromSpanishMINECO(FJCI-
2015-23687).D.B.L.wassupportedbyanARCLaureateFellowship.
AUTHORS' CONTRIBUTIONS
S.T.andJ.M.initiatedthestudy.S.T.analysedandinterpretedthedata
andwrotethefirstdraftofthepaper.TheauthorsnamedfromS.T.to
J.M.arelistedalphabetically,astheycontributedequallyingathering
fielddata,providingcorrectionstosubsequentmanuscriptdraftsand
discussingideas.
DATA ACCESSIBILITY
All data are from previously published articles, see “Data sources”.
Datafromthesearticlescan bemadeavailable uponreasonable re-
questtooriginaldataowners.Alistofdatasourcesusedinthestudy
isprovidedintheDataSourcessection.
REFERENCES
Berry,L.E.,Driscoll,D.A.,Stein,J.A.,Blanchard,W.,Banks,S.C.,Bradstock,
R.A.,&Lindenmayer,D.B.(2015).Identifyingthelocationoffireref-
ugesinwetforestecosystems.Ecological Applications,25,2337–2348.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.
B.(2016).Disturbancegradientshowsloggingaffectsplantfunctional
groupsmorethanfire.Ecological Applications,26,2280–2301.
FIGURE4 (a)Estimatedresponseandcorrespondingstandard
errorofsaproxylicandnon-saproxylictaxatosalvageloggingbased
on238individualcomparisons(basedonHedges’d)ofnumbers
ofspeciesinburned,storm-andinsect-affectedforests.Negative
estimatescorrespondtoadecreaseinnumbersofspeciesby
salvagelogging(TableS3).(b)Estimatedresponseandcorresponding
standarderrorofcommunitycompositionofsaproxylicand
non-saproxylictaxabasedonpseudoF-valuesofpermutational
multivariateanalysisofvarianceobtainedfrom134individual
speciesabundancematrices.IncreasingF-valuescorrespondto
largerchangesincommunitycompositioninducedbysalvagelogging
(TableS4).Note,insufficientdata(DD)wereavailableforsaproxylic
taxainburnedforests.Asterisksabovedotsindicatesignificant
differencesintheresponsesbetweensaproxylicandnon-saproxylic
taxawithineachdisturbancetype.Numberofunderlyingdatapoints
isindicatedbythesizeofthecircles,with10and100sizeshownfor
reference.[Colourfigurecanbeviewedatwileyonlinelibrary.com]
    
|
 287
Journal of Applied Ecology
THORN eT al.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R.,
Stevens,M. H. H.,&White,J.-S.S. (2009). Generalizedlinear mixed
models:Apracticalguideforecologyandevolution.Trends in Ecology &
Evolution,24,127–135.
Castro, J., Moreno-Rueda, G., & Hódar, J. (2010). Experimental test of
postfire management in pine forests:Impact of salvage logging ver-
suspartialcutting and noninterventiononbird-species assemblages.
Conservation Biology,24,810–819.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporal
changes in the breeding bird community caused by post-fire treat-
mentsaftertheSamcheokforestfireinKorea.Landscape and Ecological
Engineering,10,203–214.
Chylarecki,P.,&Selva, N.(2016).Ancient forest:Spareit fromclearance.
Nature,530,419.
Clark,D.A.,Anthony,R.G.,&Andrews,L.S.(2013).Relationshipbetween
wildfire,salvagelogging,andoccupancyofnestingterritoriesbynorth-
ernspottedowls.The Journal of Wildlife Management,77,672–688.
Cobb,T.P.,Langor,D. W.,&Spence,J.R. (2007).Biodiversityandmulti-
pledisturbances: Borealforestgroundbeetle(Coleoptera:Carabidae)
responses to wildfire, harvesting,and herbicide. Canadian Journal of
Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J. L.,Jacobs,J.M.,Koivula,M.J.,Spence,J.R., &
Langor,D.W.(2011).Effectsofpostfiresalvageloggingondeadwood-
associatedbeetles.Conservation Biology,25,94–104.
Conner, R., Rudolph, D. C., & Walters, J. R. (2001). The red-cockated
woodpecker surviving in a fire-maintained ecosystem. Austin, TX: The
UniversityofTexasPress.
Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B.,
Rosenvald, R., … Gustafsson, L. (2014). Can retention forestry help
conservebiodiversity?Ameta-analysis.Journal of Applied Ecology,51,
1669–1679.
Franklin,J.F.,Lindenmayer,D.,Macmahon,J.A.,Mckee,A.,Perry,D.A.,
Waide,R.,&Foster,D. (2000).Threadsofcontinuity:Ecosystemdis-
turbances, biological legacies and ecosystem recovery. Conservation
Biology in Practice,1,8–16.
González, M. E., & Veblen, T. T. (2007). Wildfire in Araucaria araucana
forests and ecological considerationsabout salvage logging in areas
recentlyburned.Revista Chilena de Historia Natural,80,243–253.
Gustafsson,L., Baker,S. C.,Bauhus, J.,Beese, W.J.,Brodie,A.,Kouki,J.,
…Franklin,J.F.(2012).Retentionforestrytomaintain multifunctional
forests:Aworldperspective.BioScience,62,633–645.
Halme, P., Toivanen,T., Honkanen,M., Kotiaho, J. S., Mönkkönen, M., &
Timonen, J. (2010). Flawed meta-analysis of biodiversity effects of
forestmanagement.Conservation Biology,24,1154–1156.
Hedges,L.V.,&Olkin, I.(1985).Statistical methods for meta-analysis. San
Diego,CA:AcademicPress.
Hothorn,T.,Bretz,F.,&Westfall,P.(2008).Simultaneousinferenceingen-
eralparametricmodels.Biometrical Journal,50,346–363.
Hutto,R.L. (2006). Towardmeaningfulsnag-management guidelines for
postfiresalvagelogginginNorthAmericanconiferforests.Conservation
Biology,20,984–993.
Hutto,R.L.,&Gallo,S.M.(2006).Theeffectsofpostfiresalvageloggingon
cavity-nestingbirds.Condor,108,817–831.
Inbar,M.,Wittenberg,L.,&Tamir,M.(1997).Soilerosionandforestryman-
agementafterwildfireinamediterraneanwoodland,Mt.Carmel,Israel.
International Journal of Wildland Fire,7,285–294.
Keyser,T.L.,Smith,F.W.,&Shepperd,W.D.(2009).Short-termimpactof
post-firesalvageloggingonregeneration,hazardousfuelaccumulation,
andunderstoreydevelopmentinponderosa pineforestsoftheBlack
Hills,SD,USA.International Journal of Wildland Fire,18,451–458.
Koivula, M., & Spence,J. R. (2006). Effects of post-fire salvage logging
on boreal mixed-wood ground beetle assemblages (Coleoptera,
Carabidae).Forest Ecology and Management,236,102–112.
Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of
meta-analysis in ecology and evolution(edsJ.Koricheva,J.Gurevitch&
K.Mengersen).Princeton,NJ:PrincetonUniversityPress.
Kulakowski,D.,Seidl,R.,Holeksa,J.,Kuuluvainen,T.,Nagel,T.A.,Panayotov,
M.,… Bebi,P.(2016).Awalkon thewild side:Disturbancedynamics
andtheconservationandmanagement ofEuropean mountainforest
ecosystems.Forest Ecology and Management,388,120–131.
Kurz,W.,Dymond,C.C.,Stinson,G.,Rampley,G.J.,Neilson,E.T.,Carroll,
A.L., …Safranyik,L.(2008).Mountainpinebeetle andforest carbon
feedbacktoclimatechange.Nature,452,987–990.
Lain,E.J.,Haney,A.,Burris,J. M.,&Burton,J.(2008).Responseofvege-
tationandbirds tosevere winddisturbance and salvagelogging ina
southernborealforest.Forest Ecology and Management,256,863–871.
Lawton,R.,&Putz,F.E.(1988).Naturaldisturbanceandgap-phaseregen-
erationinawind-exposedtropicalcloudforest.Ecology,69,764–777.
Legendre,P.,&Anderson,M.J.(1999).Distance-basedredundancyanaly-
sis:Testingmultispeciesresponsesinmultifactorialecologicalexperi-
ments.Ecological Monographs,69,1–24.
Leverkus,A. B., Puerta-Pinero, C., Guzmán-Álvarez, J. R., Navarro,J., &
Castro,J.(2012). Post-fire salvageloggingincreasesrestorationcosts
inaMediterraneanmountainecosystem.New Forests,43,601–613.
Lindenmayer,D.,Burton,P.J.,&Franklin,J.F.(2008).Salvage logging and its
ecological consequences.Washington:IslandPress.
Lindenmayer,D.B.,Foster,D.R., Franklin,J.F.,Hunter,M.L.,Noss,R. F.,
Schmiegelow,F.A.,&Perry,D.(2004).Salvageharvestingpoliciesafter
naturaldisturbance.Science,303,1303.
Lindenmayer,D.B.,Likens,G.E.,& Franklin,J.F.(2010).Rapidresponses
tofacilitateecologicaldiscoveriesfrommajordisturbances.Frontiers in
Ecology and the Environment,8,527–532.
Lindenmayer, D. B., & Noss, R. F. (2006). Salvage logging, ecosystem
processes, and biodiversity conservation. Conservation Biology, 20,
946–948.
Lindenmayer,D.B.,&Ough,K.(2007).Salvagelogginginthemontaneash
eucalyptforestsoftheCentralHighlands ofVictoriaand itspotential
impactsonbiodiversity.Conservation Biology,20,1005–1015.
Lindenmayer, D.,Thorn, S., & Banks, S. (2017). Please do not disturb
ecosystemsfurther.Nature Ecology and Evolution,1,1–8.
Macdonald,S.E.(2007).Effectsofpartialpost-firesalvageharvestingon
vegetation communities in the boreal mixedwood forest region of
northeastern Alberta, Canada. Forest Ecology and Management, 239,
21–31.
McArdle,B. H., &Anderson,M. J.(2001).Fitting multivariate modelsto
communitydata:Acommenton distance-basedredundancyanalysis.
Ecology,82,290–297.
McIver, J. D., & Starr, L. (2000). Environmental effects of postfire log-
ging: Literature review and annotated bibliography. Portland, OR: U.S.
DepartmentofAgriculture,ForestService,PacificNorthwestResearch
Station.
Mori,A.S.,&Kitagawa,R.(2014).Retentionforestryasamajorparadigm
forsafeguardingforestbiodiversityinproductivelandscapes:Aglobal
meta-analysis.Biological Conservation,175,65–73.
Morimoto,J.,Morimoto,M.,&Nakamura,F.(2011).Initialvegetationre-
covery following a blowdown of a conifer plantation in monsoonal
EastAsia:Impactsoflegacyretention,salvaging,sitepreparation,and
weeding.Forest Ecology and Management,261,1353–1361.
Nappi,A.,&Drapeau,P.(2009).Reproductivesuccessoftheblack-backed
woodpecker (Picoides arcticus) in burned boreal forests: Are burns
sourcehabitats?Biological Conservation,142,1381–1391.
Nappi,A.,Stéphane,D.,Bujold,F.,Chabot,M.,Dumont,M.-C.,Duval,J.,…
Bergeron,I.(2011).Harvestinginburnedforests–Issuesandorienta-
tionsforecosystem-basedmanagement.MinistèredesRessourcesna-
turellesetdelaFaune,Directiondel’environnementetdelaprotection
desforêts,Québec.
288 
|
    
Journal of Applied Ecology
THORN eT al.
Nikiforuk,A.(2011).Empire of the beetle: How human folly and a tiny bug
are killing North America’s great forests,FirstEdit.Vancouver,Canada:
DavidSuzukiFoundationSeries.
Norvez, O., Hébert, C., Bélanger, L., Hebert, C., & Belanger, L. (2013).
Impact of salvagelogging on stand structure and beetle diversity in
borealbalsamfir forest,20years afteraspruce budworm outbreak.
Forest Ecology and Management,302,122–132.
Oksanen,J.,Blanchet,F.G.,Kindt,R.,Legendre,P.,Minchin,P.R.,O’Hara,R.
B.,…Wagner,H.(2016).vegan:CommunityEcologyPackage.Retrieved
fromhttps://cran.r-project.org/package=vegan
Peres,C.A.,Barlow,J.,&Laurance,W.F.(2006).Detectinganthropogenic
disturbance in tropical forests. Trends in Ecology and Evolution, 21,
227–229.
Phillips,I. D.,Cobb,T.P.,Spence,J. R.,&Brigham, R.M. (2006).Salvage
logging,edgeeffects, andcarabidbeetles: Connectionstoconserva-
tionandsustainableforestmanagement.Environmental Entomology,35,
950–957.
Priewasser, K., Brang, P., Bachofen, H., Bugmann, H., & Wohlgemuth, T.
(2013).Impactsofsalvage-loggingonthestatusofdeadwoodafterwind-
throwinSwissforests.European Journal of Forest Research,132,231–240.
Pullin,A. S.,&Stewart, G.B.(2006). Guidelinesforsystematicreviewin
conservation and environmental management. Conservation Biology,
20,1647–1656.
Radeloff,V.C.,Mladenoff,D.J.,&Boyce,M.S.(2000).Effectsofinteracting
disturbancesonlandscapepatterns:Budwormdefoliationandsalvage
logging.Ecological Applications,10,233–247.
Ramage,B.S., Sheil, D.,Salim,H. M. W.,Fletcher,C.,Mustafa, N. Z.A.,
Luruthusamay,J.C.,… Potts,M.D.(2013).Pseudoreplicationintrop-
ical forests and the resulting effects on biodiversity conservation.
Conservation Biology,27,364–372.
Saab,V.,Russell,R.E.,&Dudley,J.G.(2009).Nest-siteselectionbycavity-
nestingbirdsinrelationtopostfiresalvagelogging.Forest Ecology and
Management,257,151–159.
Schmiegelow, F. K.A., Stepnisky, D. P.,Stambaugh, C. A., & Koivula,
M. (2006). Reconciling salvage logging of boreal forests with a
natural-disturbance managementmodel.Conservation Biology, 20,
971–983.
Seidl,R.,Müller,J.,Hothorn,T.,Bässler,C.,Heurich,M.,&Kautz,M.(2015).
Smallbeetle, large-scaledrivers:Howregionaland landscapefactors
affectoutbreaksoftheEuropeansprucebarkbeetle.Journal of Applied
Ecology,53,530–540.
Seidl,R., Schelhaas,M.-J.,Rammer,W.,&Verkerk,P.J.(2014). Increasing
forest disturbances in Europe and their impact on carbon storage.
Nature Climate Change,4,806–810.
Stadelmann, G., Bugmann, H., Meier, F., Wermelinger, B., & Bigler, C.
(2013).Effectsofsalvageloggingandsanitationfellingonbarkbeetle
(Ips typographusL.) infestations.Forest Ecology and Management,305,
273–281.
Stokstad,E.(2006).Salvageloggingresearchcontinuestogeneratesparks.
Science,311,761.
Stuart,J. D., Grifantini,M.C., Fox,L.III., & Fox,L. (1993). Early succes-
sionalpathwaysfollowingwildfireand subsequentsilvicultural treat-
mentinDouglas-fir/hardwoodforests, NWCalifornia. Forest Science,
39,561–572.
Swanson,M.E.,Franklin,J.F.,Beschta,R.L.,Crisafulli,C.M.,DellaSala,D.
A.,Hutto,R. L.,…Swanson,F.J.(2011).Theforgottenstageofforest
succession:Early-successionalecosystemsonforestsites.Frontiers in
Ecology and the Environment,9,117–125.
Thom, D., & Seidl,R. (2016). Natural disturbance impacts on ecosystem
services and biodiversity in temperate and boreal forests. Biological
Reviews,91,760–781.
Thorn, S., Bässler,C., Bernhardt-Römermann, M., Cadotte, M., Heibl, C.,
Schäfer, H., … Müller, J. (2016). Changes in the dominant assembly
mechanismdrivesspecieslosscausedbydecliningresources.Ecology
Letters,19,163–170.
Thorn, S., Bässler, C., Gottschalk, T., Hothorn, T., Bussler, H., Raffa, K.,
& Müller, J. (2014). New insights into the consequences of post-
windthrowsalvageloggingrevealedbyfunctionalstructureofsaprox-
ylicbeetlesassemblages.PLoS ONE,9,e101757.
Thorn,S.,Bässler,C.,Svoboda,M.,&Müller,J.(2016).Effectsofnatural
disturbancesand salvageloggingonbiodiversity–Lessonsfromthe
BohemianForest.Forest Ecology and Management,388,113–119.
Thorn,S.,Hacker,H.H.,Seibold,S.,Jehl,H.,Bässler,C.,&Müller,J.(2015).
Guild-specificresponsesofforestLepidopterahighlightconservation-
oriented forest management – Implications from conifer-dominated
forests.Forest Ecology and Management,337,41–47.
Thorn,S.,Werner,S.A.B.,Wohlfahrt,J.,Bässler,C.,Seibold,S.,Quillfeldt,
P.,&Müller,J.(2016).Responseofbirdassemblagestowindstormand
salvagelogging—Insightsfromanalysesoffunctionalguildandindica-
torspecies.Ecological Indicators,65,142–148.
VanNieuwstadt,M.G.L.,Sheil,D.,&Kartawinata,K.(2001).Theecologi-
calconsequencesofloggingintheburnedforestsofEastKalimantan,
Indonesia.Conservation Biology,15,1183–1186.
Viechtbauer,W.(2010).Conductingmeta-analysesinRwith themetafor
package.Journal of Statistical Software,36,1–48.
Waldron,K.,Ruel,J.,&Gauthier,S.(2013).Foreststructuralattributesafter
windthrow and consequences ofsalvage logging. Forest Ecology and
Management,289,28–37.
Werner,S.A.B.,Müller,J.,Heurich,M.,&Thorn,S.(2015).Naturalregen-
erationdetermineswinteringbirdpresenceinwind-damagedconifer-
ousforeststandsindependentofpost-disturbance logging.Canadian
Journal of Forest Research,45,1232–1237.
Zmihorski, M. (2010). The effect of windthrow and its managementon
breeding bird communities in a managed forest. Biodiversity and
Conservation,19,1871–1882.
Zmihorski,M.,&Durska,E.(2011).Theeffectofcontrastingmanagement
typesontwodistincttaxonomic groupsin alarge-scaledwindthrow.
European Journal of Forest Research,130,589–600.
DATA SOURCES
Barnouin,T.(2005).ÉvaluationdeL‘ImportanceDesForêtsAffectéesParLaTordeuse
DesBourgeons deLâ€TMÉpinette,ChoristoneuraFumiferana(Clem.),Dans Le
MaintiendeLaDiversitéDesColéoptèresSaproxyliques.UniversitéLavalQuebec.
Blair,D.P.,McBurney,L.M.,Blanchard,W.,Banks,S.C.,&Lindenmayer,D.B.(2016).
Disturbance gradient shows loggingaffects plant functional groups more than
fire.Ecological Applications,26,2280–2301.
Boucher,D.,Gauthier,S.,Noël,J.,Greene,D.F.,&Bergeron,Y.(2014).Salvagelogging
affectsearlypost-firetreecomposition inCanadianboreal forest.Forest Ecology
and Management,325,118–127.
Bradbury,S.M.(2006).Responseofthepost-firebryophytecommunitytosalvagelog-
ginginborealmixedwoodforestsofnortheasternAlberta,Canada.Forest Ecology
and Management,234,313–322.
Cahall,R.E.,&Hayes,J.P.(2009).Influencesofpostfiresalvageloggingonforestbirdsinthe
EasternCascades,Oregon,USA.Forest Ecology and Management,257,1119–1128.
Castro,J.,Moreno-Rueda,G.,&Hódar,J.(2010).Experimentaltestofpostfiremanage-
mentinpineforests:Impactofsalvageloggingversuspartialcuttingandnoninter-
ventiononbird-speciesassemblages.Conservation Biology,24,810–819.
Choi,C.-Y.(2007).Effectsofpostfireloggingonbirdpopulationsandcommunitiesin
burnedforests.Journal of the Korean Forest Society,96,115–123.
Choi,C.-Y.,Lee,E.-J.,Nam,H.-Y.,Lee,W.-S.,&Lim,J.-H.(2014).Temporalchangesin
thebreedingbirdcommunitycausedbypost-firetreatmentsaftertheSamcheok
forestfireinKorea.Landscape and Ecological Engineering,10,203–214.
Cobb,T. P.,Langor, D. W.,& Spence, J. R. (2007). Biodiversity and multiple distur-
bances:Borealforestgroundbeetle(Coleoptera:Carabidae)responsestowildfire,
harvesting,andherbicide.Canadian Journal of Forest Research,37,1310–1323.
Cobb,T.P.,Morissette,J.L.,Jacobs,J.M.,Koivula,M.J., Spence,J.R., &Langor, D.
W.(2011). Effectsof postfiresalvageloggingon deadwood-associatedbeetles.
Conservation Biology,25,94–104.
Donato, D. C., Fontaine,J. B., Campbell, J. L., Robinson, W.D., Kauffman, J. B., &
Law,B.E.(2009).Coniferregenerationinstand-replacementportionsofalarge
    
|
 289
Journal of Applied Ecology
THORN eT al.
mixed-severitywildfire in the Klamath-SiskiyouMountains. Canadian Journal of
Forest Research,39,823–838.
Donato,D.C.,Fontaine,J.B.,Kauffman,J.B.,Robinson,D., &Law,B.E.(2013).Fuel
massandforeststructurefollowingstand-replacementfireandpost-firelogging
inamixed-evergreenforest.International Journal of Wildland Fire,22,652–666.
Duelli,P.,Obrist,M.K.,&Wermelinger,B.(2002).Windthrow-induced changesinfau-
nisticbiodiversityinalpinespruceforests.Forest Snow and Landscape Research,131,
117–131.
Durska,E. (2013).Effectsofdisturbanceson scuttleflies (Diptera:Phoridae)in Pine
Forests.Biodiversity and Conservation,22,1991–2021.
Fontaine,J. B.(2007). Influences of high severity fire and postfire logging on avian and
small mammal communities of the Siskiyou Mountains.Corvallis,OR:OregonState
University.
Fontaine,J.B., Donato,D.C.,Robinson,W.D.,Law,B. E.,& Kauffman,J.B. (2009).
Birdcommunitiesfollowinghigh-severityfire:Responsetosingleandrepeatfires
inamixed-evergreenforest,Oregon,USA.Forest Ecology and Management,257,
1496–1504.
Hutto,R. L.,& Gallo,S.M.(2006).The effectsofpostfire salvageloggingoncavity-
nestingbirds.Condor,108,817–831.
Jeffrey,O.(2013).EffetsDesCoupesdeRécupérationSurLesSuccessionsNaturelles
deColéoptèresSaproxyliquesLeLongD’une Chronoséquencede15 AnsAprès
FeuEnForêtBoréaleCommerciale.Univer.
Jonasova,M.,&Prach,K. (2008).Theinfluenceofbark beetlesoutbreakvs. salvage
loggingongroundlayervegetationinCentralEuropeanmountainspruceforests.
Biological Conservation,141,1525–1535.
Koivula, M., & Spence, J.R. (2006). Effects of post-fire salvage logging on boreal
mixed-wood groundbeetle assemblages(Coleoptera,Carabidae).Forest Ecology
and Management,236,102–112.
Kurulok,S. E.,&Macdonald,S.E. (2007).Impacts ofpostfiresalvage loggingonun-
derstoryplantcommunitiesoftheborealmixedwoodforest2and34yearsafter
disturbance.Canadian Journal of Forest Research,37,2637–2651.
Lee,E.L.W.,Hun,S., Rhim,S.-J.,Lee,W.-S.,& Son,S.H.(2011).Differencesinbird
communitiesinpostfiresilviculturalpracticesstandswithinpineforestofSouth
Korea.Landscape and Ecological Engineering,7,137–143.
Lee,E., Lee,W., &Rhim, S.-J.(2008). Characteristics ofsmall rodentpopulations in
post-fire silvicultural management stands within pine forest.Forest Ecology and
Management,255,1418–1422.
Lee,E.-J.,Rhim,S.,Son, S.,&Lee,W.(2012).Differencesinsmall-mammalandstand
structuresbetween unburned andburned pine standssubjectedto twodiffer-
entpost-firesilvicultural managementpractices.Annales Zoologici Fennici,2450,
129–138.
Leverkus,A. B.,Lorite,J., Navarro,F.B., Sánchez-Cañete, E.P.,&Castro, J.(2014).
Post-fire salvage logging alters species composition and reduces cover, rich-
ness,anddiversityin Mediterraneanplantcommunities.Journal of Environmental
Management,133,323–331.
Liepold,K.(2004).VergleichendeUntersuchungenZurFaunistischenUndGenetischen
DiversitätvonKäferzönoseninGenutzten UndUngenutzten Bergmischwäldern
DesBayerischenWaldes.TUMMünchen.
Mehr,M.,Brandl,R.,Kneib,T.,&Müller,J.(2012).Theeffectofbarkbeetleinfestation
andsalvageloggingonbatactivityinanationalpark.Biodiversity and Conservation,
21,2775–2786.
Norvez,O.,Hébert,C., Bélanger,L.,Hebert,C.,& Belanger,L.(2013).Impactofsal-
vageloggingon standstructureand beetlediversityinboreal balsamfirforest,
20yearsafterasprucebudwormoutbreak.Forest Ecology and Management,302,
122–132.
Park,C. (2012).Differences in characteristics of amphibian and reptile communities due
to different forest environment at forest fired area in Samcheok, Gangwon Province.
Seoul,Korea:SeoulNationalUniversity.
Peterson,C.J.,&Leach,A.D.(2008).Salvageloggingafterwindthrowaltersmicrosite
diversity,abundanceandenvironment,butnotvegetation.Forestry,81,361–376.
Rost,J.,Clavero,M.,Brotons,L.,& Pons,P.(2012).Theeffectofpostfiresalvagelog-
gingonbirdcommunitiesinMediterraneanpineforests:Thebenefitsfordeclining
species.Journal of Applied Ecology,49,644–651.
Rumbaitis,C.M., &RumbaitisdelRio, C.M.(2006).Changesinunderstorycomposi-
tionfollowing catastrophicwindthrowand salvagelogging ina subalpineforest
ecosystem.Canadian Journal of Forest Research – Revue Canadienne De Recherche
Forestiere,36,2943–2954.
Thorn,S., Bässler,C.,Bernhardt-Römermann,M.,Cadotte, M.,Heibl, C.,Schäfer,H.,
…Müller,J.(2016).Changesinthedominantassemblymechanismdrivesspecies
losscausedbydecliningresources.Ecology Letters,19,163–170.
Thorn, S., Bässler,C., Gottschalk, T., Hothorn,T., Bussler,H., Raffa, K., & Müller, J.
(2014).New insightsinto theconsequencesofpost-windthrow salvagelogging
revealedbyfunctionalstructureofsaproxylicbeetlesassemblages.PLoS ONE,9,
e101757.
Thorn,S.,Hacker,H.H., Seibold,S.,Jehl, H.,Bässler, C., &Müller, J.(2015). Guild-
specific responses of forestLepidoptera highlight conservation-oriented forest
management – Implications fromconifer-dominated forests. Forest Ecology and
Management,337,41–47.
Thorn, S., Werner, S. A. B., Wohlfahrt,J., Bässler, C., Seibold, S., Quillfeldt, P., &
Müller,J. (2016).Responseof birdassemblages towindstorm and salvagelog-
ging—Insightsfromanalyses offunctionalguildandindicatorspecies.Ecological
Indicators,65,142–148.
Waldron,K.,Ruel,J.-C.,Gauthier,S.,DeGrandpré,L.,&Peterson,C.J.(2014).Effects
ofpost-windthrowsalvageloggingonmicrosites,plantcompositionandregener-
ationed.J. Ewald. Applied Vegetation Science,17,323–337.
Wermelinger,B.,Moretti,M.,Duelli,P.,Lachat,T.,Pezzatti,G.B.,&Obrist,M.K.(2017).
Impactofwindthrowandsalvage-loggingontaxonomicandfunctionaldiversityof
forestarthropods.Forest Ecology and Management,391,9–18.
Winter,M.-B.,Ammer,C.,Baier,R.,Donato,D.C.,Seibold,S., &Müller,J.(2015).Multi-
taxonalphadiversityfollowingbarkbeetledisturbance:Evaluatingmulti-decadeper-
sistenceofadiverseearly-seralphase.Forest Ecology and Management,338,32–45.
Zmihorski,M.(2010).Theeffectofwindthrowanditsmanagementonbreeding bird
communitiesinamanagedforest.Biodiversity and Conservation,19,1871–1882.
SUPPORTING INFORMATION
Additional Supporting Information may be found online in the
supportinginformationtabforthisarticle.
How to cite this article:ThornS,BässlerC,BrandlR,etal.
Impactsofsalvageloggingonbiodiversity:Ameta-analysis.
J Appl Ecol. 2018;55:279–289. https://doi.org/10.1111/1365-
2664.12945
... Further, wildfires are more likely to generate heterogenous patterns of regeneration due to variation in post-fire environments (including seed availability and regeneration niches), whereas logging typically produces more uniform, homogenous regrowth patterns due to extensive aerial reseeding or replanting operations (Blair et al., 2016;Trouvé et al., 2021). In the event of compounding disturbances such as high-severity wildfire, followed by clearcut logging (salvage logging), regeneration patterns may be most different from those generated in response to natural disturbance due to the novel conditions established after this sequence of disturbance events (Lindenmayer & Noss, 2006;Thorn et al., 2018). ...
... Salvage logging is widely recognized as one of the most intensive disturbances in forests and can produce adverse effects on forest biodiversity (Lindenmayer & Noss, 2006;Thorn et al., 2018). Consistent with previous work (Blair et al., 2016;Bowd, McBurney, Blair, et al., 2021;Lindenmayer & Noss, 2006;Thorn et al., 2018), and with our third and final prediction, we found evidence that salvage logging can alter early-successional trajectories of post-disturbance recovery that differ from those observed after clearcut logging and wildfire. ...
... Salvage logging is widely recognized as one of the most intensive disturbances in forests and can produce adverse effects on forest biodiversity (Lindenmayer & Noss, 2006;Thorn et al., 2018). Consistent with previous work (Blair et al., 2016;Bowd, McBurney, Blair, et al., 2021;Lindenmayer & Noss, 2006;Thorn et al., 2018), and with our third and final prediction, we found evidence that salvage logging can alter early-successional trajectories of post-disturbance recovery that differ from those observed after clearcut logging and wildfire. Notably, while plant diversity increased with time since disturbance after wildfire and clearcut logging, the opposite occurred with salvage logging with respect to diversity across all strata (groundlevel, understorey, overstorey), total plant richness, and the richness of seeding and resprouting species. ...
Article
Full-text available
Increases in forest disturbances have altered global forest demography rates, with many regions now characterized by extensive areas of early‐successional forest. Heterogeneity in the structure, diversity, and composition of early‐successional forests influence their inherent ecological values from immediately following disturbance to later successional stages, including values for biodiversity and carbon storage. Here, using 14 years of longitudinal data, we describe patterns in the structure, richness, and composition of early‐successional forests subject to one of three different disturbance types: (1) clearcut logging followed by slash burn, (2) severe wildfire followed by salvage logging, and (3) severe wildfire only, in the Mountain Ash (Eucalyptus regnans) and Alpine Ash (Eucalyptus delegatensis) forests of southeastern Australia. We also documented the influence of disturbance intervals (short, medium, and long) on early‐successional forests. Our analyses revealed several key differences between forests that regenerated from wildfire versus two different anthropogenic perturbations. Most ash‐type plant communities were resilient to wildfire within historical fire‐regimes (75–150 years), exhibiting temporal trends of recovery in plant structure, richness, and composition within the first decade. In contrast, the richness, occurrence, and abundance of some plant lifeforms and life history traits were negatively associated with clearcut logging and salvage logging, relative to forests disturbed by wildfire alone. These included resprouting species, such as tree ferns and ground ferns. However, Acacia spp. and shrubs were more abundant after clearcut logging. Our findings also provide evidence of the pronounced negative impact of salvage logging on early‐successional plant communities, relative to that of both clearcut logging and wildfire. Notably, plant richness declined for over a decade after salvage logging, rather than increased as occurred following other disturbance types. Early‐successional forests provide the template for the stand structure and composition of mature forests. Therefore, altered patterns of recovery with different disturbance types will likely shape the structure and function of later‐successional stages. Predicted increases in wildfire will increase the generation of early‐successional forests and subsequent salvage logging. Therefore, it is pertinent that management consider how different disturbance types can produce alternate states of forest composition and structure early in succession, and the implications for mature stands.
... However, the adopted management strategy emerged as a critical determinant of soil properties after six years. While soils subjected to logging were expected to show strong negative legacies due to the potential physical disturbance caused by logging operations (Pereg et al., 2018;Thorn et al., 2018;Wagenbrenner et al., 2016), mulched soils were anticipated to improve biological response thanks to their protective effect (Bautista et al., 2009;García-Carmona et al., 2023b). However, mulched soils revealed a neutral response to mulch application with only small differences between the two -markedly different -mulching rates, while logged soils showed few indicators of degradation, thus revealing notable resilience to both fire and physical disturbances. ...
Article
Full-text available
Understanding the role of biocrust-forming mosses in soil recovery after wildfires is necessary for assessing the resilience of managed ecosystems. The purpose of this study was to investigate the mid-term impacts of two contrasting post-fire management strategies on soil recovery in eucalypt plantations in north-central Portugal, where a high cover of biocrust-forming mosses developed post-fire, contributing to erosion control. Six years after a wildfire, we examined the legacy effects of salvage logging and two rates of mulch application using logging residues (a standard rate of 8.0 Mg ha-1 and a reduced rate of 2.6 Mg ha-1) on soil properties, and explored the interaction between moss biocrusts and forest management practices on soils. Our findings reveal the resilience of soils to physical disturbance after logging operations, with no persistent negative effects on their physicochemical properties. Although forest residue mulches showed minimal influence on soils after six years, an interesting interaction with moss biocrusts was observed. In the absence of moss cover, direct contact of wood residues with soil at the standard mulch rate promoted higher nutrient content and biochemical activity, potentially attributed to accelerated decomposition processes. Regardless of the management applied, our study highlights the role of moss biocrusts in improving soil aggregation and biochemical processes in the mid-term. However, the severe water repellency observed in these soils may have impeded further biocrust expansion. Understanding the implications of forest management practices on soil recovery after wildfires is imperative for guiding strategies aimed at promoting ecosystem recovery and resilience in fire-prone managed forest ecosystems.
... Our current understanding of forest ecosystem succession following disturbance events remains incomplete, and there is substantial uncertainty regarding the outcomes of post-disturbance management. While our study is among the lengthiest, it still covers only a fraction of the time needed for the full regeneration of a temperate forest (Hilmers et al., 2018;Thorn et al., 2018). Single long-term studies often do not encompass the diversity of European forests and frequently overlook the broader landscape context . ...
Article
Full-text available
Post‐disturbance forest management is known to impair biodiversity, including bird communities, but most studies focus on short‐term effects of salvage logging, without recognition of the cumulative, lasting impact of collective post‐disturbance silvicultural practices. We tracked bird community succession in a temperate pine forest from 5 to 19 years after wind disturbance in managed and unmanaged windthrow areas, covering the period from gap creation to early canopy regeneration and comparing it to nearby production forest unaffected by wind disturbance. Bird communities of unmanaged windthrow were consistently the richest in terms of bird abundance and richness. They hosted comparable forest bird diversity to unaffected production stands throughout the study period, as well as a substantial diversity of farmland birds. Managed and unmanaged windthrows followed two distinct successional pathways and did not converge. Despite the bird communities in both windthrows gradually resembling those found in undisturbed forests as the canopy regenerated, each type of windthrow and the unaffected production forest maintained distinct communities until the end of the study. Synthesis and applications. Restraining from any active post‐windthrow management sets bird succession on a distinct pathway, leading to unique and diverse bird communities. We advocate viewing natural disturbances as cost‐effective ecosystem restoration tools, provided no active management is implemented. Furthermore, we advise against using the term ‘salvage logging’ to refer to collective post‐disturbance silvicultural practices, as its varying interpretation may lead to growing confusion as the number of long‐term studies increase.
Article
Full-text available
Primary forests are of paramount importance for biodiversity conservation and the provision of ecosystem services. In Europe, these forests are scarce and threatened by human activities. However, a comprehensive assessment of the magnitude of disturbances in these forests is lacking, due in part to their incomplete mapping. We sought to provide a systematic assessment of disturbances in primary forests in Europe based on remotely sensed imagery from 1986 to 2020. We assessed the total area disturbed, rate of area disturbed, and disturbance severity, at the country, biogeographical, and continental level. Maps of potential primary forests were used to mitigate gaps in maps of documented primary forests. We found a widespread and significant increase in primary forest disturbance rates across Europe and heightened disturbance severity in many biogeographical regions. These findings are consistent with current evidence and associate the ongoing decline of primary forests in Europe with human activity in many jurisdictions. Considering the limited extent of primary forests in Europe and the high risk of their further loss, urgent and decisive measures are imperative to ensure the strict protection of remnants of these invaluable forests. This includes the establishment of protected areas around primary forests, expansion of old‐growth zones around small primary forest fragments, and rewilding efforts.
Article
Full-text available
Key Message Medetera (Fischer von Waldheim) flies, natural enemies of the spruce bark beetle Ips typographus (L.), were attracted to synthetic blends of compounds produced by infested spruce trees. A subset of trapped specimens revealed sixteen Medetera species. Most abundant were M. signaticornis , M. infumata , and M. prjachinae . Only blends containing beetle-produced compounds significantly attracted Medetera spp. and I. typographus . Context Fly species of the genus Medetera (Fischer von Waldheim) (Diptera: Dolichopodidae) represent one of the most important groups of natural enemies of the Eurasian bark beetle Ips typographus (L.), which infests Norway spruce Picea abies (L.) Karst. In a previous study, we showed that adult Medetera flies exploit semiochemicals to find beetle-infested trees however, the exact nature of those attractive compounds has not yet been determined. Aims The aim of this follow-up study was to investigate the behavioral responses of Medetera spp. and I. typographus , to different combinations of semiochemicals. Methods In this study, 22 volatile compounds identified from I. typographus -infested Norway spruce were divided into five groups (A–E) based on being primarily produced by the bark beetle I. typographus (group A), bark beetle-associated microorganisms (groups B and C), or spruce tree (groups D and E). The effect of the compounds in these groups in the attraction of Medetera species and I. typographus was tested in two different subtractive field trapping assays . Results In the first subtractive assay, the full blend (ABCDE), and the blends lacking microbial compounds of group C, or spruce tree compounds of group D led to significant attraction of Medetera flies. Morphological identification of a subset of the specimens collected revealed that sixteen species were attracted to the synthetic blends, with M. signaticornis Loew being the most abundant. In the second subtractive assay, high attraction of Medetera flies and I. typographus was found for a 12-component synthetic blend. Conclusion The insights gained provide a basis for developing synthetic attractants to facilitate monitoring of Medetera flies. Future testing and optimization of these attractants will enhance our ability to monitor, conserve and utilize Medetera flies, thereby enabling us to better protect forests from the damaging effects of spruce bark beetles.
Article
The growing demand for woody biomass to meet the environmental and climate objectives of the European Green Deal raises concerns about the capacity of forest ecosystems to sustain their diverse services and functions. Deadwood, an often-overlooked source of biomass, exemplifies this dilemma, yet the evidence needed to enhance its management is sparse. Here, we put the role of deadwood into perspective through a literature review and comparison of estimates in managed and unmanaged forests. We demonstrate that deadwood intersects many overlapping and sometimes conflicting policies, playing a multifaceted role in the bioeconomy, biodiversity conservation, soil health, fire mitigation, bioenergy, and carbon storage. Given the increasing pressure on deadwood and the ecosystem services it provides, we argue that coherent and mutually supportive policies are needed to develop multifunctional pathways that reconcile deadwood management with biodiversity, bioenergy, and climate objectives. Therefore, we suggest that harmonized data and monitoring are essential, along with transdisciplinary collaboration, to identify trade-offs between biomass uses and values and ensure the maintenance of functional forest ecosystems.
Article
Full-text available
Boreal forests undergo rapid transformation from more or less intact states to even-aged production stands, due to the expanding clearcutting practice. Deepened knowledge on how species diversity and composition vary with local resource availability, such as dead wood, as well with remaining never clearcut forest (having long continuity = ‘continuity forest’) in the surrounding landscape, is essential for the formulation of conservation strategies. In each of six 15 × 15 km study areas in mid-boreal Sweden (12 000 km²) we sampled saproxylic beetles through sieving of bark from Picea abies logs in early stages of decay with bark still attached, within 5 production forests and 5 woodland key habitats (biodiversity hotspots, used as reference; ‘WKH’). A total number of 5147 individuals and 78 taxa were found. Beetle diversity related positively to the local factor of sieved bark area, while the share of continuity forest in the surroundings (5 km buffer; varying 5 − 29% among study stands) was less important, and even showed negative relationships. Species richness was higher in > 60 years old than 0–60 years old production forests but we did not detect a change with age in species composition. The production forests > 60 years old and WKH were similar regarding species richness and composition. WKH had more species of conservation concern than the production forests.
Article
Full-text available
We investigated the effects of postfire salvage logging on cavity-nesting birds by comparing nest densities and patterns of nest reuse over a three-year period in seven logged and eight unlogged patches of mixed-conifer forest in the Blackfoot-Clearwater Wildlife Management Area, Montana. We found 563 active nests of 18 cavity-nesting birds; all species were found nesting in the uncut burned forest plots, but only eight nested in the salvage-logged plots. All except one species nested at a higher density in the unlogged areas, and half of the species were significantly more abundant in the unlogged plots. Every timber-drilling and timber-gleaning species was less abundant in the salvage-logged plots, including two of the most fire-dependent species in the northern Rocky Mountains—American Three-toed (Picoides dorsalis) and Black-backed (P. arcticus) Woodpeckers. Lower abundances in salvage-logged plots occurred despite the fact that there were still more potential nest snags per hectare than the recommended minimum number needed to support maximum densities of primary cavity-nesters, which suggests that reduced woodpecker densities are more related to a reduction in food (wood-boring beetle larvae) than to nest-site availability. Because cavities were present in only four of 244 randomly selected trees, and because frequency of cavity reuse by secondary cavity-nesters was higher in salvage-logged than in unlogged plots, nest-site limitation may be a more important constraint for secondary cavity-nesters in salvage-logged areas. These results suggest that typical salvage logging operations are incompatible with the maintenance of endemic levels of most cavity-nesting bird populations, especially populations of primary cavity-nesting species.
Article
Full-text available
The vegan package provides tools for descriptive community ecology. It has most basic functions of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools can be used for other data types as well. The functions in the vegan package contain tools for diversity analysis, ordination methods and tools for the analysis of dissimilarities. Together with the labdsv package, the vegan package provides most standard tools of descriptive community analysis. Package ade4 provides an alternative comprehensive package, and several other packages complement vegan and provide tools for deeper analysis in specific fields. Package https://CRAN.R-project.org/package=BiodiversityR provides a Graphical User Interface (GUI) for a large subset of vegan functionality. The vegan package is developed at GitHub (https://github.com/vegandevs/vegan/). GitHub provides up-to-date information and forums for bug reports. Most important changes in vegan documents can be read with news(package="vegan") and vignettes can be browsed with browseVignettes("vegan"). The vignettes include a vegan FAQ, discussion on design decisions, short introduction to ordination and discussion on diversity methods. A tutorial of the package at http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf provides a more thorough introduction to the package. To see the preferable citation of the package, type citation("vegan").
Article
Windthrow is recognized as the most important driver in European forest dynamics and its importance is likely to increase with climate change. Typically, windthrown timber is salvaged for economic and phytosanitary reasons. This markedly affects the natural development of the disturbed areas, in particular by removing important dead wood resources. For a sustainable and ecologically sound management of disturbance effects, more knowledge is needed on the impact of windthrow and salvage logging on animal species communities.
Article
Clearing up after natural disturbances may not always be beneficial for the environment. We argue that a radical change is needed in the way ecosystems are managed; one that acknowledges the important role of disturbance dynamics.
Article
Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future climatic change. Increasing disturbances, along with trends of less intense land use, will promote further increases in coarse woody debris, with cascading positive effects on biodiversity, edaphic conditions, biogeochemical cycles, and increased heterogeneity across a range of spatial scales. Together, this may translate to disturbance-mediated resilience of forest landscapes and increased biodiversity, as long as climate and disturbance regimes remain within the tolerance of relevant species. Understanding ecological variability, even imperfectly, is integral to anticipating vulnerabilities and promoting ecological resilience, especially under growing uncertainty. Allowing some forests to be shaped by natural processes may be congruent with multiple goals of forest management, even in densely settled and developed countries.
Article
Severe natural disturbances are common in many forest ecosystems, particularly in the Northern Hemisphere. Attempts to minimize their effects through forest management include salvage logging. In the Bohemian Forest, one of Central Europe’s largest continuous forests, windstorms and bark beetle outbreaks have affected stands of Norway Spruce for centuries. Over the past decades, these natural disturbances and their management in the Bavarian Forest National Park and the adjacent Šumava National Park in the central part of the Bohemian Forest have been scientifically studied. Owing to a benign-neglect strategy, both windstorms and bark beetle outbreaks have increased stand structural heterogeneity, the amount of dead wood and light availability, which contribute to increased populations of nearly-extinct forest specialists. However, the response of a particular taxonomic group or species strongly depends on its relationship to specific legacies that persist after disturbances. Stand climate but not dead wood appears to greatly influence the diversity of epigeal bryophytes, whereas both factors determine the diversity of epixylic bryophytes. Both the amount and heterogeneity of dead wood seems to be more important than stand climate in determining assemblages of wood-inhabiting fungi and lichens. To reduce the population density of bark beetles in the management zones of both national parks, storm-felled spruces are salvage logged, which alters a variety of these legacies and natural successional pathways. Consequently, the numbers of species of wood-inhabiting fungi, saproxylic beetles and epixylic lichens are reduced. Natural levels of biodiversity in salvage-logged areas can be preserved by (1) preserving root plates of storm-felled trees with partly retained trunks; (2) avoiding soil disturbance by using cable yarding instead of harvesters; (3) retaining sun-exposed dry branches of storm-felled trees and snags of beetle-killed spruces; (4) avoiding logging damage of natural regeneration and of large trees that survive disturbances; and (5) bark scratching instead of debarking to avoid bark beetle outbreaks while maintaining biodiversity. Windstorms and bark beetle outbreaks could be utilized to restore intensely managed forests of Central Europe to their natural composition and structure. Furthermore, experimentally mimicked natural disturbances might help in gaining a mechanistic understanding of how natural disturbances affect biodiversity.