ArticlePublisher preview available

Continuous separation, with microfluidics, of the components of a ternary mixture: from vacuum to purge gas pervaporation

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

The general objective of this paper is to investigate the separation, with microfluidics, of the components of a ternary mixture, when using vacuum or purge gas pervaporation. The ternary mixture considered is a mixture of methanol (MeOH), water (H2O) and hydrogen peroxide (H2O2). In a previous work (Ziemecka in Lab Chip 15:504–511, 2015), we presented the proof of concept of a microfluidic device, which was able to partially separate MeOH from the other components of such a mixture, by using vacuum pervaporation. Here, our goal is to optimize the operation of this device, by considering vacuum pervaporation, but also purge gas pervaporation. First, we provide a mathematical model of the device. This model is used to discuss the influence of the operating parameters on the device operation. To apply this model to the considered mixture, we determined the MeOH and H2O permeability coefficients of PDMS membranes prepared from different concentrations of the curing agent. The model is then successfully compared to experimental data. The model and the experiments show that high efficiencies can be reached for both vacuum and purge gas pervaporation, provided a fine-tuning of the operating parameters. For instance, a good efficiency of the vacuum pervaporation is reached at high temperature and low pressure. For purge gas pervaporation, it is reached for low temperature and high pressure.
This content is subject to copyright. Terms and conditions apply.
1 3
Microfluid Nanofluid (2017) 21:84
DOI 10.1007/s10404-017-1915-6
RESEARCH PAPER
Continuous separation, with microfluidics, of the components of a
ternary mixture: from vacuum to purge gas pervaporation
Iwona Ziemecka1 · Benoît Haut1 · Benoit Scheid1
Received: 9 January 2017 / Accepted: 4 April 2017 / Published online: 18 April 2017
© Springer-Verlag Berlin Heidelberg 2017
high temperature and low pressure. For purge gas pervapo-
ration, it is reached for low temperature and high pressure.
Keywords Hydrogen peroxide · Microfluidics · Ternary
mixture · Separation · Membrane · Vacuum pervaporation ·
Purge gas pervaporation
1 Introduction
Hydrogen peroxide (H2O2) has both reducing and oxidizing
properties and is used in a wide spectrum of applications
ranging from cosmetic products to military technology.
Hydrogen peroxide is widely used in industry for bleaching
purposes (paper, tissues) and water treatment. It can also
be used as a source of green energy because when H2O2
is used as a fuel, it decomposes into water and oxygen, i.e.
products with no environmental impact. It is produced in
very high concentration (up to 70 wt% in water) through
the anthraquinone process. The problems of that way of
preparation are effective quinone recycling and formation
of by-products, which have to be disposed.
In recent years, a new high-yield process has been
developed (Bloomfield and Dhaese 2013) based on an
optimized distribution of anthraquinone isomers for the
production of solutions with 100% H2O2 content. This
new process led to the construction of mega-scale plants
able to produce massive amount of H2O2 per year, which
should direct towards reductions in production costs.
Nevertheless, another issue needing to be addressed lies
on the fact that the manufacture of concentrated H2O2
cannot be performed where it is meant to be used. Indeed,
the H2O2 production plants require specific authoriza-
tion and are usually far from urban centres. Therefore,
in most cases, dilution before transportation is needed.
Abstract The general objective of this paper is to investi-
gate the separation, with microfluidics, of the components
of a ternary mixture, when using vacuum or purge gas
pervaporation. The ternary mixture considered is a mix-
ture of methanol (MeOH), water (H2O) and hydrogen per-
oxide (H2O2). In a previous work (Ziemecka in Lab Chip
15:504–511, 2015), we presented the proof of concept of
a microfluidic device, which was able to partially sepa-
rate MeOH from the other components of such a mixture,
by using vacuum pervaporation. Here, our goal is to opti-
mize the operation of this device, by considering vacuum
pervaporation, but also purge gas pervaporation. First, we
provide a mathematical model of the device. This model is
used to discuss the influence of the operating parameters on
the device operation. To apply this model to the considered
mixture, we determined the MeOH and H2O permeability
coefficients of PDMS membranes prepared from different
concentrations of the curing agent. The model is then suc-
cessfully compared to experimental data. The model and
the experiments show that high efficiencies can be reached
for both vacuum and purge gas pervaporation, provided
a fine-tuning of the operating parameters. For instance, a
good efficiency of the vacuum pervaporation is reached at
* Iwona Ziemecka
Iwona.Ziemecka@ulb.ac.be
Benoît Haut
bhaut@ulb.ac.be
Benoit Scheid
bscheid@ulb.ac.be
1 TIPs - Fluid Physics, Ecole polytechnique de Bruxelles,
Université libre de Bruxelles, C.P. 165/67, avenue F.D.
Roosevelt 50, 1050 Brussels, Belgium
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... As a result of the improvements of mass transport processes in confined systems, pervaporation has been succesfully translated to microfluidic settings [37][38][39][40]. PDMS membranes ranging between a few tens or hundreads of micrometers have been integrated and used to remove methanol [37,40], or acetone [38] from water solutions. ...
... As a result of the improvements of mass transport processes in confined systems, pervaporation has been succesfully translated to microfluidic settings [37][38][39][40]. PDMS membranes ranging between a few tens or hundreads of micrometers have been integrated and used to remove methanol [37,40], or acetone [38] from water solutions. Methanol amount was decreased in the liquid phase by a factor of four at 85°C [37] as well as acetone removal efficiency of 81% was achieved for 3 min of residence time at room temperature [38]. ...
... Methanol amount was decreased in the liquid phase by a factor of four at 85°C [37] as well as acetone removal efficiency of 81% was achieved for 3 min of residence time at room temperature [38]. The efficiency of the pervaporation process has been related to operating conditions such as the geometry of the chip (length and width of the channels), the thickness of the membrane, the flow rate of the inlet mixture and the permeability of the membrane [40]. ...
Article
A pervaporation process was implemented into microfluidic chips to purify radiopharmaceuticals for Positron Emission Tomography in continuos-flow. The chip consists of a serpentine microreactor interfaced to a polydimethylsiloxane (PDMS) 10 μm thick membrane. Thanks to different volatility of the components present in the radiopharmaceutical matrix, ethanol (EtOH) is readily removed under gentle heating and nitrogen flow conditions. Three classes of chips with different membrane surface areas (S) and internal volumes (V) have been produced and quantified their pervaporative efficiency at different residence times (Rt) and temperatures. Higher S/V chips (̴ 70 mm⁻¹) apperared the most efficient at a very low residence time (Rt ̴ 10 s) allowing reduction of 67% at 80 °C. Chips of intermediate S/V ratios (̴ 30 mm⁻¹) decreased the EtOH amount up to ̴ 90% at longer residence time (Rt ≥ 26 s). The halving of EtOH concentration in a solution of a radiotracer was obtained at 50 °C with Rt of 25 s. After the pervaporation treatment, the EtOH content in the final radiopharmaceutical formulation was demonstrated to be reduced below 10% v/v as required by the European Pharmacopea current edition.
... Des travaux avec une phase continue gazeuse, mais une phase discrète liquide, ont été rapportés : la génération de gouttes d'eau dans l'air au niveau d'une jonction en T 46 ou des manipulations par électromouillage réalisées dans une atmosphère de dihydrogène 47 ; les auteurs s'en servent pour faire des réductions des composés dans les gouttes. Ziemecka et al.48 ont proposé un système microfluidique liquide/gaz permettant la séparation d'un mélange liquide de méthanol, eau et peroxyde d'hydrogène. Le liquide s'écoule le long d'une membrane en PDMS, avec de l'autre côté de la membrane un canal vide : en manipulant les conditions de température et de pression ils arrivent à séparer le mélange: la membrane en PDMS est perméable aux gaz mais pas aux liquides, et il est possible que les gaz la traversent, c'est un procédé dit de pervaporation. ...
Thesis
La microfluidique consiste en la manipulation de fluides dans des canaux de taille micrométrique ou submillimétrique. Une branche de la microfluidique s’est particulièrement développée ces dernières années, la microfluidique digitale, qui consiste en l’utilisation d’opérations simples, synchronisées et programmables pour réaliser des opérations plus complexes sur des objets microfluidiques. En microfluidique liquide, les objets manipulés sont en général des gouttes formées à l’aide de deux fluides non miscibles.Quatre grandes opérations élémentaires sont employées : déplacer les échantillons, les immobiliser, les mélanger et les séparer. Ces opérations élémentaires peuvent ensuite être combinées pour réaliser des opérations plus complexes, telles que l’analyse d’échantillons ou leur traitement. Des opérations plus originales sont aussi possibles, telles que la réalisation de portes logiques avec des cartes microfluidiques.Toutes les avancées de la microfluidique digitale ont été réalisées en employant des objets microfluidiques liquides dispersés dans une phase liquide. Précédemment, les travaux sur des gouttes ont été évoqués, mais des travaux avec des bulles ont aussi été publiés. A notre connaissance aucun travail n’a concerné la manipulation d’échantillons gazeux dans une phase gazeuse.L’objet de cette thèse est de développer une plateforme microfluidique digitale pour la manipulation des échantillons gazeux dispersés dans des phases continues gazeuses.Pour cela, des microcomposants en silicium ont été développés au laboratoire : les micropréconcentrateurs. Ces composants comportent une cavité remplie par un adsorbant capable de piéger à froid les composés chimiques et de les libérer à chaud. Une résistance chauffante gravée sur la face arrière du concentrateur permet de contrôler sa température.Ces micropréconcentrateurs peuvent être assemblées dans un circuit fluidique, en y ajoutant des pompes pour créer des flux de gaz, des vannes pour contrôler et diriger les flux, et des micro-détecteurs à conductivité thermique développés au laboratoire.A l’aide de ce montage, les quatre opérations élémentaires de la microfluidique digitale ont pu être démontrées. Une opération plus complexe a pu être réalisée : la mesure du volume de perçage de plusieurs alcanes linéaires sur le Tenax TA, l’adsorbant utilisé dans les concentrateurs. Les résultats ont été publiés dans Lab on Chip1.D’autres opérations plus complexes sont en cours d’étude : la séparation d’un échantillon, pour l’instant difficile à réaliser et à modéliser, la possibilité de réaliser des réactions chimiques en ligne en phase gaz (estérification) ou la préconcentration digitale. Cette dernière, plus avancée, repose sur l’utilisation de plusieurs préconcentrateurs pour la détection de composés volatils à l’état de traces dans un échantillon: dans une première étape le composé est capté et concentré sur un premier préconcentrateur avec un flux inférieur au volume de perçage, puis transféré ponctuellement, dans une deuxième étape, vers un deuxième préconcentrateur placé sur un autre chemin fluidique ; ce second préconcentrateur n’est donc pas balayé par le flux de prélèvement et le volume de gaz mis en œuvre dans cette seconde étape est très inférieur à celui qui est nécessaire à la première. En répétant les étapes de prélèvement et de transfert, il est alors possible d’augmenter fortement le facteur de préconcentration de ce montage sans risquer le perçage du composé. Ce fonctionnement a donc l’avantage de s’affranchir du volume de perçage : il suffit que le premier concentrateur arrive à piéger l’échantillon, même peu efficacement, pour pouvoir augmenter le facteur de concentration en répétant les opérations. Ceci permet la détection de composés très volatils qui ne le seraient pas en une seule étape de préconcentration.
... • Continuous separation of ternary mixtures by microfluidics • Recovery of organic components from wastewater [69,70] Condensable carrier gas purging PV ...
Article
Full-text available
Membrane separation technologies have attracted great attentions in chemical engineering, food science, analytical science, and environmental science. Compared to traditional membrane separation techniques like reverse osmosis (RO), ultrafiltration (UF), electrodialysis (ED) and others, pervaporation (PV)-based membrane separation shows not only mutual advantages such as small floor area, simplicity, and flexibility, but also unique characteristics including low cost as well as high energy and separation efficiency. Recently, different polymer, ceramic and composite membranes have shown promising separation applications through the PV-based techniques. To show the importance of PV for membrane separation applications, we present recent advances in the fabrication, properties and performances of polymeric membranes for PV separation of various chemicals in petrochemical, desalination, medicine, food, environmental protection, and other industrial fields. To promote the easy understanding of readers, the preparation methods and the PV separation mechanisms of various polymer membranes are introduced and discussed in detail. This work will be helpful for developing novel functional polymer-based membranes and facile techniques to promote the applications of PV techniques in different fields.
Article
Full-text available
In most situations, drying is accompanied with the development of strong concentration gradients. Here, we evidence theoretically and experimentally that there exist microfluidic geometries for which confined drying becomes homogeneous, i.e., with no concentration gradient regardless the type of solutes involved in the process: ions, molecules, and colloids do concentrate the same way providing a limited set of assumptions concerning the microfluidic geometry. It thus makes possible the establishment of phase diagrams of multi-component mixtures at the nanoliter scale.
Article
Full-text available
Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide/water/methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.
Article
We present an original microfluidic technique coupling pervaporation and Quake valves to fabricate microscale materials (10x100 µm2 x 1 cm) with gradients of composition along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to pump continuously solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates the solutes (or the particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose a controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nano-particles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to 50 µm, can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to 1 mm owing to molecular diffusion.
Article
We investigate the dynamics of solidification of a charged colloidal dispersion using an original microfluidic technique referred to as micro-pervaporation. This technique exploits pervaporation within a microfluidic channel to extract the solvent of a dilute colloidal dispersion. Pervaporation concentrates the colloids in a controlled way up to the tip of the channel until a wet solid made of closely-packed colloids grows and invades the microfluidic channel. For the charged dispersion under study, we however evidence a Liquid to Solid Transition (LST) preceding the formation of the solid, owing to the presence of long range electrostatic interactions. This LST is associated to the nucleation and growth of domains confined in the channel. These domains are then compacted anisotropically up to forming a wet solid of closely-packed colloids. This solid then invades the whole channel as in directional drying with a growth rate which depends on the microfluidic geometry. In the final steps of the solidification, we observed the occurrence of cracks and shear bands, the delamination of the wet solid from the channel walls, and its invasion by a receding air front. Interestingly, this air front follows specific patterns within the solid which reveal different microscopic colloidal organizations.
Article
Solvent extraction (SX) is an important separation method with countless applications in the chemical industry. The water/oil interface is an essential feature of SX systems. Microfluidic technology is ideally suited for exploitation in SX due to intrinsic advantages of the micro dimensions that result in laminar flow conditions, high surface-to-volume ratio and the reduced chemical quantities needed. This review describes the use of microfluidic devices in SX. © 2014 Society of Chemical Industry.
Article
The transport of chemical components in pervaporation membranes prepared from various polymeric materials has been studied. The permeation rates of four different alcohols, water and acetone were measured in two different types of polymers: polydimethylsiloxane, a hydrophobic rubbery polymer, and cellulose, a hydrophilic glassy polymer. The solubility, diffusion coefficient, and permeability (both for single components and mixtures) of each permeant and polymer were determined. The relationship between the molecular dimensions and chemical properties of the permeating components as well as the structural properties of the polymer and the separation characteristics of pervaporation membranes are discussed. Polydimethylsiloxane and cellulose show significant differences in their mass transport behavior. The permeability of the various components in the rubbery polymer is determined mainly by their solubility in the polymer phase. In a glassy polymer, however, the permeability of the components is controlled by their diffusivity in the polymer matrix.
Article
A glass-fabricated microreactor was applied to the direct synthesis of hydrogen peroxide from hydrogen and oxygen. The direct synthesis reaction is a three-phase reaction, with gas (hydrogen and oxygen), liquid (reaction solution) and solid (catalyst) being involved. We designed an advanced microreactor in which an ideal gas–liquid distribution could be accomplished throughout the catalyst packed bed. We also set up a reaction system that enables the reaction operation at more than 2 MPa over 1 week. With these efforts, more than 3 wt% of hydrogen peroxide was successfully produced using the microreactor technology.