Beitrag Zür Kenntnis der peruanischen Kakteen-vegetation
Chapters (2)
Die einleitend angedeutete Zonierung peruanischer Kakteen steht in enger Beziehung zur orographischen Gliederung, die wohl in kaum einem Lande Südamerikas so ausgeprägt ist wie gerade in Peru. Es erscheint deshalb notwendig, der speziellen Darstellung einige Worte zur Orographie Perus vorauszuschicken1.
Es wurde bereits im I. Teil der vorliegenden Studie darauf hingewiesen, daß wir auf den im Jahre 1954 und 1956 durchgeführten Studienreisen in Peru unter anderem eine Anzahl neuer, in der Literatur bisher nicht beschriebener Kakteen sammeln und von einigen, bisher nur unvollständig bekannten Arten und Gattungen die systematische Zugehörigkeit klären konnten. Ziel und Zweck der folgenden Ausführungen ist es, Diagnosen1 der Neufunde auf Grund eigener Standortsbeobachtungen zu geben und durch Bilder der am natürlichen Standort gewachsenen Pflanzen zu belegen. Dies erscheint mir um so notwendiger, als bekannt ist, daß viele Kakteen unter normalen Kulturbedingungen ihren ursprünglichen Habitus, insbesondere Bestachelung und Behaarung so weitgehend verändern, daß die kultivierte und am natürlichen Standort gewachsene Pflanze erheblich voneinander abweichen, und eine nach einer Kulturpflanze gegebene Diagnose eine sichere Bestimmung nicht immer zuläßt. Da auf Grund eigener Beobachtungen immer wieder festgestellt wurde, daß Jugend- und Altersform der gleichen Art, sogar oft der gleichen Pflanze, hinsichtlich der Bestachelung und der Stachelfarbe sich nicht unwesentlich voneinander unterscheiden, sind zur Aufstellung der Diagnosen stets nur blühfähige Pflanzen herangezogen worden.
... La diversidad de especies de la familia Cactaceae es discutido, sin embargo, se refiere que posee 1500-1816 especies (Barthlott & Hunt, 1993;Hunt, 1999;Anderson, 2001Anderson, , 2005Hunt et al., 2006;Hunt, 2016); en el caso de Perú se refiere la presencia de 186-330 especies (Rauh, 1958;Backeberg, 1977;Ritter 1981;Brako & Zarucchi, 1993;Hunt 1999;Anderson, 2001Anderson, , 2005Hunt et al., 2006;Ostolaza, 2019) y para el departamento de Arequipa, se indica 26-54 especies (Backeberg, 1958(Backeberg, -1961Rauh, 1958;Ritter, 1981;Brako & Zarucchi, 1993;Anderson, 2001;Hunt et al., 2006;Ostolaza, 2019;Pauca & Quipuscoa, 2017), de los cuales 20-21 endémicos (Arakaki et al., 2006;Pauca & Quipuscoa, 2017). ...
... La diversidad de especies de la familia Cactaceae es discutido, sin embargo, se refiere que posee 1500-1816 especies (Barthlott & Hunt, 1993;Hunt, 1999;Anderson, 2001Anderson, , 2005Hunt et al., 2006;Hunt, 2016); en el caso de Perú se refiere la presencia de 186-330 especies (Rauh, 1958;Backeberg, 1977;Ritter 1981;Brako & Zarucchi, 1993;Hunt 1999;Anderson, 2001Anderson, , 2005Hunt et al., 2006;Ostolaza, 2019) y para el departamento de Arequipa, se indica 26-54 especies (Backeberg, 1958(Backeberg, -1961Rauh, 1958;Ritter, 1981;Brako & Zarucchi, 1993;Anderson, 2001;Hunt et al., 2006;Ostolaza, 2019;Pauca & Quipuscoa, 2017), de los cuales 20-21 endémicos (Arakaki et al., 2006;Pauca & Quipuscoa, 2017). ...
... En el caso de Perú, Cactaceae está ampliamente distribuida, no obstante, la zona costera y andina presentan la mayor diversidad de especies (Brako & Zarucchi, 1993). En particular, los valles que atraviesan la zona andina y costera, han sido documentados como zonas de alta riqueza de especies de cactus, tal vez debido a una rápida variación de la altitud, que condiciona cambios en la temperatura y precipitación (Rauh, 1958;Ritter, 1981;Ostolaza, 1998;Ostolaza et al., 2003;Ostolaza et al., 2005). ...
Cactaceae es una familia americana muy diversa en los Andes occidentales, no obstante, aún su diversidad y distribución no es precisa, es necesario realizar inventarios exhaustivos de especies en localidades potencialmente biodiversas. Es por ello que, esta investigación busca determinar la diversidad y distribución de Cactaceae en el Valle de Cháparra. Se realizaron visitas de campo desde el año 2015 al 2019, abarcando toda la extensión del valle (zona de costa, valle y zona alta), desde 100 hasta 3500 m; se realizaron búsquedas intensivas, con recolecciones botánicas, se tomaron datos geográficos (coordenadas, altitud), fotografías y los taxones fueron determinados con bibliografía especializada. Se registra un total de 23 taxones, siendo 18 endémicos de Perú y dos exclusivos de Arequipa, en cuanto a la distribución, Cactaceae se presenta desde 170 hasta >3000 m, en la zona de costa se registran seis taxones localizándose desde 170 hasta los 700 m, la zona del valle la cual abarca desde 300 hasta 3000 m, presenta 17 taxones, encontrándose la mayor diversidad en el intervalo de 1500-1800 m, finalmente, la zona alta, la cual se encuentra por encima de los 3000 m, presenta cuatro taxones.
... Según lo observado, C. crassicylindrica se distingue fácilmente de C. sphaerica por la forma de los artejos (generalmente fusiformes en C. crassicylindrica, esféricos en C. sphaerica); posición, número y forma de las espinas (hasta 6 espinas rectas en C. crassicylindrica, hasta 22 espinas curvadas en C. sphaerica) y, cantidad de espinas en las areolas del pericarpelo y frutos (generalmente hasta 6 espinas en C. crassicylindrica, hasta 17 espinas en C. sphaerica). En cuanto al holotipo, Backeberg (1957) y Rauh (1958) mencionan que fue depositado bajo el código K 152, sin embargo, Iliff (2002) precisa que este no existe, porque en la revisión de la base de datos del HEID, la muestra K 152 no pudo ser ubicada, no obstante, una muestra de Tephrocactus crassicylindricus preservada en alcohol fue encontrada bajo el código K 52. Realizando la consulta a C. N. Schröder (com. ...
... Observaciones. Esta nueva combinación y tipificación se realiza en concordancia al análisis del protólogo (Förster, 1861), revisión bibliográfica (Backeberg, 1958;Rauh, 1958, Aragón, 1982Leighthon-Boyce & Iliff, 1973;Iliff, 2002) y caracterización de las poblaciones encontradas en las visitas de campo. ...
... Se resalta la peculiaridad de los artejos, que presentan un color verde claro y son de forma ovoide o fusiformes. El nombre O. dimorpha casi no ha sido usado, porque muchos autores la consideraron como un sinónimo de O. sphaerica (Britton & Rose, 1919;Ritter, 1980;Brako & Zarucchi, 1993;Hunt, 1999;2005;Hunt et al., 2006;Ostolaza, 2014); sin embargo, Backeberg (1958), Rauh (1958) y Aragón (1982) aceptan la especie como correcta (como Tephrocactus dimorphus). ...
En el presente trabajo se reportan 12 especies de Cumulopuntia para el Departamento de Arequipa, Perú. Se realizan tres nuevas combinaciones: Cumulopuntia dimorpha, C. ignota y C. unguispina, estas dos últimas corresponden a correcciones en combinaciones hechas con anterioridad, inválidas según el código de nomenclatura. Se designan neotipos para Opuntia dimorpha, O. unguispina, Tephrocactus mistiensis, T. multiareolatus y lectotipos para Opuntia ignota y O. rauppiana. En este trabajo se presenta una clave de identificación de las especies presentes en Arequipa, junto con fotografías e ilustraciones y se discute la taxonomía de cada especie.
... central Andes (Weberbauer 1945;Rauh 1958;Britton & Rose 1919, 1920Ritter 1981;Aragón 1982;Hunt 1992Hunt , 2006Lombardi 1995;Galán de Mera & Vicente Orellana 1996;Sahley 1996;Mariño et al. 1998;Galán de Mera & Gómez Carrión 2001;Mauseth et al. 2002;Arakaki 2003;Arakaki et al. 2006;Galán de Mera et al. 2009, 2011bMontesinos 2010Montesinos , 2011Montesinos , 2012aOstolaza 2011Ostolaza , 2014. Notwithstanding their diversity, abundance and competitiveness, hardly anything is known about their ecology, especially under extreme climatic conditions. ...
... tropicos.org). Weberbauerocereus weberbaueri is endemic to the Arequipa province and has not been found outside this region (Rauh 1958;Ritter 1981;Aragón 1982;Brako & Zarucchi 1993;Sahley 1996;Mariño et al. 1998;Arakaki 2003). Despite the high abundance of annual and biannual species encountered within the Weberbauerocereus weberbaueri communities, it is most unlikely that the majority of character species of the associations occur in scrubland units. ...
We present a phytosociological overview of the arid and semi-arid montane vegetation of the province of Arequipa in southern Peru. The xerophytic vegetation was studied after extreme rainfall had promoted exceptionally lush vegetation and a high aboveground floristic diversity. We used TWINSPAN for classification and Detrended Correspondence Analysis for gradient analysis of our releves. PC-ORD was used to show the hierarchical similarity structure of the syntaxa, and to compare them with related communities in Peru and surrounding countries from literature. We present a synoptic table, and describe the physiognomy, floristic composition, ecology and spatial distribution of the plant communities. In total, we recorded 187 plant species, including 50 endemics, in 196 phytosociological releves distributed over 2030 km(2) at an elevation between 2020 and 3260 m a.s.l. The releves were assigned to three alliances in the class Opuntietea sphaericae. The vegetation consists mainly of native species of trees, shrubs, grasses, succulents, annual herbs, and ferns. The most diverse families were Asteraceae, Cactaceae, Solanaceae, Malvaceae, Boraginaceae, Fabaceae, Poaceae, Amaranthaceae and Pteridaceae. Within the class Opuntietea sphaericae, three alliances have been distinguished of which two are new. The Ambrosio artemisioidis-Weberbauerocerion web erbaueri comprising six associations was recorded on barren hillsides between 2000 and 2900 m a.s.l. in the Arequipa city boundary zones. The Corryocaction brevistyli defines xerophytic scrub between 2700 and 3200 m a.s.l. in semi-dry regions bordering the puna grasslands. It contains the Balbisio weberbaueri-Ambrosietum artemisioidis and the Aloysio spathulatae-Corryocactetum brevistyli, all in need of further investigation as they lack diagnostic species. A unit clearly distinguished by Weberbauerocereus rauhii and Neoraimondia arequipensis is here described as a new alliance, Neoraimondio are quipensis-Weberbauerocerion rauhii. It grows in inter-Andean valleys in dry regions (1100-2200 m a.s.l.), with abundant cacti accompanied by few xerophytes.
... Der Jahresniederschlag liegt nach RAUH (1958, 14) zwischen 100 und 200 mm (Loma de Lachay, 11°19'S 77°22'W). Im Sommer kommt es durch die stärkere Aufheizung des Andenvorlandes (Sonnenstand) nicht zur Kondensation, es herrscht jedoch weiterhin eine hohe Luftfeuchtigkeit (RAUH 1958). ...
... Der hohe Grad des Endemismus der Kakteen zeigt deshalb einerseits, dass im Pleistozän die Umweltverhältnisse im Arbeitsgebiet für den Fortbestand der Arten weiterhin günstig gewesen sein müssen, wenn auch auf einer niedrigeren Höhenstufe, andererseits durch die Einstellung nivaler Verhältnisse in höheren Lagen eine Trennung in west-und ostandine Arten erfolgte. Auch in Nord-Süd-Richtung kann die Vegetation differenziert werden: So reicht nach RAUH (1958) die Übergangszone von mittel-und südperuanischer Flora vom Tal des Rio Pisco bis zum Tal des Rio Nazca. Zusammenfassend stellt RAUH (1958) fest, dass sich im Gebiet Nazca -Puquio auf der Andenwestseite ein auffallender Florenwechsel vollzieht, der sich darin ausdrückt, dass einige vegetationsbestimmende Pflanzen mit süd-bis südöstlicher Verbreitung hier ihre Nordgrenze erreichen. ...
The initial objective of this study was the reconstruction of the palaeoenvironment
in the area of Palpa (northern Atacama desert, southern Peru, 14°15’S)
during Precolumbian times, based on geomorphologic and pedological investigations.
Research was done within the joint-project „New Technologies of Natural
Sciences in the Humanities“ (NTG), granted by the German Federal Ministry
of Education and Research (BMBF).
During the studies, the diversity and number of geoarchives allowed the reconstruction
of a more comprehensive period, ranging from the Late Pleistocene
to the Little Ice Age. The results made it possible to outline several periods of
hygric fluctuations on the western flank of the Andes mountains, resulting in
desert-margin oscillations. The development of Precolumbian cultures was coupled
with these hydrological fluctuations and the thereby varying water supply
of the river oases.
During a wet period in the Late Pleistocene and ending � 45 kyr ago, the
Andean foreland was affected by sheetfloods, which overprinted widespread pediments.
Afterwards, under more arid conditions these „Pampas“ were dissected
by rivers and actually dry valleys (Quebradas). They were fed by more distant
rainfalls in the catchment areas in the western cordillera of the Andes.
Increased runoff and incision formed a pediment terrace � 26 kyr ago. Subsequently,
these deposits were eroded again and the recent river oases evolved.
The transition from the Late Pleistocene to the Holocene was characterised by
more humid conditions, leading to a westward shift of the desert margin. 13 kyr
ago, during the Allerød, small debris flows provide evidence of geomorphologic
reorganisation. Increasing humidity (up to � 200 mm/yr) allowed a mollusc fauna
even in the Andean foreland, which point to a landscape covered by grasses
and cacti.
... The cactus family (Cactaceae) has a high level of endemism in Peru and a large number of species are found in the valleys of the western slopes of the Andes mountain range. The cacti in some valleys have been well documented, initially by Rauh (1958) and later by Ritter (1981), based on fieldwork undertaken in the 1950s through to the 1970s. Both authors described many new species. ...
A new species of Cumulopuntia (C. mollispina) is described and illustrated. The species is a narrow endemic from the Valley of the Rio Yauca, in the Department of Ayacucho near the frontier with the Department of Arequipa. It is known only from a small geographical area with a narrow elevation range of 1,700–1,800m. It is a member of the informal ‘Cumulopuntia sphaerica’ clade (=Sphaeropuntia Guiggi) but differs from all other members by growing as a hemispherical or slightly flattened cushion of tightly packed segments with soft flexible spination. We compare the new taxon with three other Cumulopuntia species: C. leucophaea, C. multiareolata and C. zehnderi, which all grow within 60km of C. mollispina.
... Areas supplied with water predominantly by fog are called loma formations or fog oasis (e.g. Rauh, 1958;Cereceda et al., 1999;Rundel et al., 1991). Species diversity of plants and animals is surprisingly high in these landscapes, and the Chilean Atacama Desert is home for approximately 550 vascular plant species, many of them endemic (~60%) and threatened (Schulz, 2009;Dillon and Hoffman, 1997). ...
Among the fascinating and highly specialized vascular plants in the hyperarid core of the Chilean and Peruvian Atacama Desert there are few Tillandsia species from the bromeliad family (Bromeliaceae). These grow epiarenically on bare sand without a functional root system, and in some rare cases they build up a monospecific and often the only landscape characterizing vegetation type, which is called Tillandsiales or Tillandsia loma. Tillandsia landbeckii is the dominating epiarenic species in Chile totally dependent on fog serving as the only water resource. Herein we elaborate on the hypothesis that migration and multiple colonization in concert with putative introgression from other Tillandsia species build up the present day phylogeographic distribution pattern and may contribute to the evolutionary dynamics and long-term success in hyperarid desert systems. Genomic analyses using GBS (genotyping-by-sequencing) data from the nuclear and plastid genome were conducted at the population level. A genome skimming approach was used to generate reference plastome data. The results indicate that both, multiple colonization and secondary contact of old gene pools and interspecies geneflow, contribute to present-day population genetic structure. Local-scale analysis also indicates that these past footprints of evolutionary history do contribute to present-day local adaptive potential of the species.
... Vegetation occurs in disjunct patches, which are called lomas or fog oases (Cereceda et al., 1999;Rauh, 1958), and may be considered evolutionary remnants. Vascular plant species richness is high, and most of the 400-550 Atacama Desert species in Chile are endemic and threatened (Dillon & Hoffmann, 1997;Schulz, 2009). ...
• Ecosystem dry limits have been studied in the context of species biology, fitness, and interactions with biotic and abiotic parameters, but the interactive effects of these parameters remain underexplored. Therefore, information on the putative effects of global climate change on these ecosystems is often lacking.
• We analyzed the interplay between fine‐scale landscape genetics and biotic and abiotic factors of terrestrial Tillandsia lomas in the hyperarid Atacama Desert, characterized by a fog‐dependent vegetation type almost entirely dominated by one single vascular plant species.
• We showed that metapopulations of Tillandsia landbeckii are genetically connected over many hundreds of square kilometers, and despite having a large potential for clonal propagation, genetic diversity is regionally and locally structured. At the landscape level, genetic diversity correlates well with fitness parameters such as growth, flowering, and vegetation density. We also observed fine‐scale correlation with a 3‐D landscape model indicating a positive feedback with seasonal fog occurrence and availability. The various interactions of biotic and abiotic factors resulted in regular linear banding patterns of vegetation arranged orthogonally toward the landscape slope. Ex situ growth experiments indicated that T. landbeckii grows at optimal rates in this extreme hyperarid environment, and we can extrapolate mean biomass production for this ecosystem.
• Synthesis. Our results suggest that the unique ecosystem of terrestrial Tillandsia lomas in the hyperarid Atacama Desert is an evolutionarily balanced and fine‐scaled system. The vegetation itself is composed of long‐lived and persistent modules. We developed a descriptive model of the various interacting factors, thereby also highlighting the severe threat caused by global climate change potentially associated with fog disturbance patterns along the Chilean Pacific coast.
... Hyperarid conditions were formed in the Atacama Deserts not earlier than during the Pleistocene (Hartley et al. 2005) and were intensified by an expansion of coastal upwelling in the southeast Pacific, the abrupt cooling of surface water temperatures along the coast of Ecuador and a global cooling trend (Ibaraki 1997;Zachos et al. 2001). Vegetation today occurs in disjunct patches, the so-called fog oases or lomas assumed to be the remnants of a continuous vegetation belt during the Pleistocene (Cereceda et al. 1999;Rauh 1958). These are made up of at least 300-400 vascular plant species in Chile (Schulz 2009)-many of them endemic and/or threatened (Schulz 2009)-and c. 850 species in Peruvian loma formations (Dillon et al. 2011). ...
The northern Chilean Atacama Desert is among those regions on Earth where life exists at its dry limits. There is almost zero rainfall in its core zone, and the only source of water is a spatio-temporally complex fog system along the Pacific coast, which is reaching far into the hyperarid mainland. Hardly any vascular plants grow in these areas, and, thus, it is intriguing to be faced with a vegetation-type build-up by one single and highly specialized bromeliad species, Tillandsia landbeckii Phil., forming regular linear structures in a sloped landscape. We studied the genetic make-up of a population system extending an area of approximately 1500 km² and demonstrated a fine-scale correlation of genetic diversity with spatial population structure and following an elevational gradient of approximately 150 m. Increase in genetic diversity is correlated with increased fitness as measured by flowering frequency, and evidence is provided that outbreeding is linked with a large-distance flying pollinator feeding occasionally as generalist on its flowers, but not using the plant as source for larvae feeding. Our data demonstrate that establishment of linear vegetation structure is in principle a process driven by clonal growth and propagation of ramets over short distances. However, optimal conditions (slope, elevation, fog occurrence) for linear growth pattern formation also increase sexual plant reproductive fitness, thus providing the reservoir for newly combined genetic variation and counteracting genetic uniformity. Our study highlights the Tillandsia vegetation, also called Tillandsia lomas, as unique and genetically diverse system, which is highly threatened by global climate change and disturbance of the coastal fog system.
... Piso termotropical Asociación interandina termotropical árida (1800-1900 m) que se asienta en sus menores altitudes sobre calizas jurásico-cretácicas, y en las partes más altas sobre cuarcitas y conglomerados. Su estructura, bastante cerrada, es debida al dominio del endemismo peruano Browningia viridis ("judío sanki"), que se distribuye por las áreas interandinas de Arequipa, en el cañón de Cotahuasi (Linares Perea, 2005), Ayacucho, en el valle de Puccacocha (Ritter, 1981), y en los valles de los ríos Pampas, Pachachaca y Apurimac entre los departamentos de Ayacucho y Apurimac (Rauh, 1958;Ritter, 1981 Las comunidades de Cactáceas termotropicales áridas en el occidente del departamento de Arequipa pertenecen a las asociaciones Weberbauerocereo weberbaueri-Browningietum candelaris, desde el valle del Chili hacia el sur, y Weberbauerocereo rauhii-Browningietum candelaris en el resto del departamento (Galán de Mera et al., 2009). En los alrededores de Aplao ésta última se enriquece con Larrea divaricata en áreas con afl oramientos precámbricos y avalanchas volcánicas procedentes de erupciones del Terciario inferior. ...
En el presente trabajo, damos a conocer algunas novedades fi tosociológicas interesantes para la interpretación de la biodiversidad y el paisaje del departamento de Arequipa, en el SW del Perú. Como resultado del trabajo de campo, describimos 6 nuevas asociaciones y 8 subasociaciones, ordenadas por pisos bioclimáticos y formaciones vegetales: piso termotropical—comunidades de Cactáceas (Neoraimondio arequipensis-Browningietum viridis, Armatocereo riomajensis-Neoraimondietum arequipensis, Weberbauerocereo rauhii-Browningietum candelaris larreetosum divaricatae), arbustedas y pastizales sobre suelos salinos (Lycio distichum-Baccharidetum unifl orae, Distichlietum humilis, schoenoplectetosum olneyii)—, piso mesotropical—matorrales (Balbisio weberbaueri-Ambrosietum artemisioidis)—, piso supratropical—arbustedas sobre suelos profundos (Dunalio spinosae-Baccharidetum latifoliae, dodonaeetosum viscosae, echinopsietosum cuzcoensis, adesmietosum verrucosae)—, y piso orotropical—matorrales (“tolares”)(Senecio nutantis-Parastrephietum quadrangularis) y pastizales (“pajonal-tolares”) (Parastrephio quadrangularis-Festucetum dolichophyllae, agrostietosum gelidae, festucetosum orthophyllae, Parastrephio lucidae-Festucetum orthophyllae deyeuxietosum cabrerae)—. Además, se comenta la distribución de la vegetación de turberas (Sisyrincho tinctorii-Plantaginetum australis) y saladares (clase Distichlio humilis-Anthobryetea triandri) en el SW del Perú.
In this work, we present some phytosociological interesting novelties for biodiversity and landscape interpretation of the Arequipa department in Southwestern Peru. As a result of our fi eld work, we describe 6 new associations and 8 sub-associations arranged according to bioclimatic belts and plant communities: Thermotropical belt –Cactus plant communities (Neoraimondio arequipensis-Browningietum viridis, Armatocereo riomajensis-Neoraimondietum arequipensis, Weberbauerocereo rauhii-Browningietum candelaris larreetosum divaricatae), shrublands and grasslands on salty soils (Lycio distichum-Baccharidetum uniflorae, Distichlietum humilis, schoenoplectetosum olneyii)—, mesotropical belt—scrubs (Balbisio weberbaueri-Ambrosietum artemisioides)—, supratropical belt—shrublands on deep soils (Dunalio spinosae-Baccharidetum latifoliae, dodonaeetosum viscosae, echinopsietosum cuzcoensis, adesmietosum verrucosae)—, and orotropical belt–scrubs (“tolares”)(Senecio nutantis-Parastrephietum quadrangularis), and grasslands (“pajonal-tolares”) (Parastrephio quadrangularis-Festucetum dolichophyllae, agrostietosum gelidae, festucetosum orthophyllae, Parastrephio lucidae-Festucetum orthophyllae deyeuxietosum cabrerae)—. The distribution of peat bogs vegetation (Sisyrincho tinctorii-Plantaginetum australis), and plant communities on salty soils (Distichlio humilis-Anthobryetea triandri class) in Southwestern Peru are also commented.
... He noted its use as grafting stock. Rauh (1958) made no reference to T. macrogonus in his book on Peruvian cacti, but described some very closely related species (see next paragraph). ...
This paper clarifies the identity of Cereus macrogonus Salm-Dyck, the type species of the genus Trichocereus (Berger) Riccob., and specifies its synonyms and affinities. It is also intended to contribute toward stabilizing the generic nomenclature. An examination of Salm-Dyck's original description of C. macrogonus leads to an interpretation of the species, very plausibly of Peruvian origin, as a cactus which was later also named Trichocereus peruvianus Britton & Rose. A Neotype is designated that is consistent with the protologue. That interpretation coincides with the use of this name (C. macrogonus) in the botanical literature and in horticulture, which has been adhered to up to now. Trichocereus pachanoi Britton & Rose is here presented as a variety of T. macrogonus (Salm-Dyck) Riccob.: T. macrogonus var. pachanoi (Britton & Rose) S.Albesiano & R.Kiesling, nov. comb., and a lectotype for it is designated.
... There are a few previous classification attempts of seasonally dry tropical forests in Peru, most of them from a physiognomic point of view and the result of several years of fieldwork (e.g. Ferreyra, 1957Ferreyra, , 1983Koepcke, 1961;Rauh, 1958;Sagástegui Alva, 1989;Tovar, 1990). The most impressive study is El mundo vegetal de los Andes peruanos (Weberbauer, 1945), still a primary source of information for any plant scientist working on the Peruvian flora. ...
... Different hypotheses have been put forward for the causes of these disjunctions. They might be the result of (recent) long-distance dispersal, or relics of formerly continuous distributions either before the Andean uplift (Rauh, 1958) and/or under mostly drier conditions during the Pleistocene ( Prado and Gibbs, 1993;Pennington et al., 2000Pennington et al., , 2004López et al., 2006). ...
The Huaynaputina eruption (1600 AD, Moquegua, S Peru) in the northern Atacama Desert denuded the Omate area of all vegetation and deposited deep pumice layers. Data on the flora, climate and soil characteristics of these slopes near Omate at 1600–2600 m a.s.l. are provided. Fifty-nine angiosperm species established themselves on the pumice slopes in the past ca. 400 years, with the bulk of the small and herbaceous species and several species new records for Peru. Three Omate sites were sampled in both a dry and a wet year and species numbers differed widely (14 versus 45 spp.). Among areas compared floristic composition is most similar to the Lomas de Tacna, and has less in common with geographically closer Lomas or Sierra formations. Nine species represent highly disjunct populations (200–>700 km) from their nearest known living populations in central Peru, Chile, or Argentina/Bolivia and appear to have reached the area via long-distance dispersal. Abiotic conditions may have played an important role in limiting the establishment of species from the neighboring vegetation. Four taxa on the pumice slopes show clear morphological differences to populations elsewhere, two of them may represent neoendemics of the Omate pumice, indicating rapid morphological divergence.
Taxonomic treatments of Pilosocereus in the Andean and Caribbean regions have varied widely. Recent authors often recognized three species only (P. lanuginosus, P. polygonus, and P. royenii), while Britton & Rose in 1920 (sub Cephalocereus) recognized 18 species in the same region. A revision of Pilosocereus is necessary, and it was carried out by the study of both herbarium specimens and living plants. Twelve species of Pilosocereus are recognized in the present paper for the Andean and Caribbean regions, including one new combination, i.e. P. curtisii, and one new species, i.e. P. jamaicensis. Typifications are provided for several names, including the Linnaean basionym Cactus royenii. Morphological descriptions, distributions, and an identification key of the recognized species are provided.
The ephemeral and fragmented nature of plant communities in the desert region of Ica, Peru have contributed to the poor documentation of its flora. This study provides the first comprehensive checklist and analysis of the vascular plants and habitats of the region, based on over 1800 herbarium collections, site-specific vegetation surveys and monitoring (2001–2017). Here, we report 501 taxa belonging to 283 genera in 68 families, with an outstanding number of taxa (297) representing new records for the region; over 10% of the flora (52 taxa) is categorised as threatened (CR, EN, VU). Asteraceae is the largest family in the checklist, followed by Poaceae, Fabaceae and Solanaceae. The highest species richness is found in quebradas and huaycos (170 taxa), followed by lomas (137 taxa) and huertas (115). Of the lomas taxa, 28% are assessed nationally as threatened, and 95 taxa (68%) are endemic to Peru. Across all habitats five species are restricted to the Ica region (Cleistocactus clavispinus, Haageocereus icensis, Onoseris humboldtiana, Nolana willeana, Tecoma fulva subsp. guarume). Nolana willeana, not collected since 1956, was rediscovered in 2006. We provide insights into habitat and taxonomic delimitation of enigmatic species in the following genera: Bulnesia, Capparis, Eremocharis, Hoffmannseggia, Leptoglossis, Lomanthus Maytenus, Poissonia and Weberbauerella, among others. We support the reinstatement of Prosopis limensis as a valid species and provide information for its identification in the field. Analysis of Inga feuillei as an ancient domestication vital to agriculture, is provided, and we report an additional 127 cultivated species associated with traditional agriculture, assessing origins and conservation priority. We present climatic and geological observations for the region with spatial and ENSO-related research from data, plots and transects. A vegetation map and niche model are provided. Threatened lomas species are detailed to support conservation and policy. To aid identification we provide photographs of 155 plant species and all key habitats. The sustainable wellbeing of the Ica region depends on concerted collaboration to monitor, conserve and restore native plants wisely for the natural resources they provide to people and agriculture.
The Peruvian genus Machaerophorus has long been reduced to synonymy of several genera of various tribes. With the discovery of two new species described below, M. arequipa and M. laticarpus, and availability of material for molecular phylogenetic studies, the genus is reinstated for the first time in over a century and included within the South American “Cremolobeae-Eudemeae-Schizopetaleae” clade.
Why are some dry plant formations rich in tree- or shrub-succulents and others not, in spite of similar amounts of rainfall and similar numbers of arid months per year? This question is discussed in detail in the German text, mainly concentrating on Cactaceae in America and succulent Euphorbiaceae in Africa (Fig. 1 and 2). In the main it may be answered as follows.
The known occurrences of Austrocylindropuntia pachypus (K. Schumann) Backeberg in Peru are a series of isolated populations in the coastal valleys from the Rio Eulalia in the south of the range near to the type locality, to the Cordillera Blanca east of Casma. From recent observations, it is now possible to extend the distribution north into La Libertad where very extensive new populations have been found.
Seit dem Jahre 1954 hat der Verfasser mehrere Studienreisen in die Anden, vorwiegend Perus, unternommen, die von der Deutschen Forschungsgemeinschaft, der Heidelberger Akademie der Wissenschaften, der Akademie der Wissenschaften und der Literatur in Mainz unterstützt und gefördert worden sind. Ziel dieser Reisen war die Erforschung der andinen Vegetation, Klärung pflanzengeographischer, morphologischer und systematischer Fragen.
The application of the names Cactus icosagonus Kunth and Cactus huinboldtii Kunth is discussed with reference to their historical treatment compared with the various forms of these taxa seen in habitat today. Plants were found in Ecuador which closely match the description of Akersia roseiflora Buining, suggesting that its original type locality in southern Peru was incorrectly stated. The division of Borzicactus icosagonus into three subspecies is proposed and an epitype for one of them is designated.
Werner Rauh (1913–2000) war einer der bedeutendsten deutschen Feldbotaniker und Pflanzenjäger im 20. Jahrhundert. Sein Interesse galt zunächst der Archäologie, dennoch entschied er sich Botanik, Zoologie, Chemie und Geologie zu studieren. Nach der Dissertation in Halle (Saale) und der Habilitation in Heidelberg nahm Rauh seine Lehrtätigkeit an der Universität Heidelberg auf, wo er bis zu seiner Emeritierung 1982 und darüber hinaus lehrte. Dabei war die Morphologie, d.h. die Lehre vom Bau der Pflanzen, sein erster Schwerpunkt. Mindestens 36 große Expeditionen führten ihn u.a. nach Peru und Madagaskar, aber auch in zahlreiche andere Länder der Alten und Neuen Welt. Im „Werner Rauh Heritage
Project“ werden seit 2009 die Feldbücher von Werner Rauh mit seinen Aufsammlungen lebender und herbarisierter Pflanzen aufgearbeitet, die heute den Grundstock von Botanischem Garten und Herbarium Heidelberg (HEID) bilden.
The genus Haageocereus (Cactaceae) is almost endemic to Peru, occupying arid areas of river valleys draining westwards off the Andes. Extensive fieldwork, morphological studies, literature revision and a study of the types led to the delimitation of 9 species and 6 heterotypic sub-species. Nomenclatural innovations include H. acranthus subsp. backebergii N. Calderón subsp. nov., H. versicolor subsp. pseudoversicolor (Rauh & Backeb.) N. Calderón comb. nov. and the recognition of H. repens Rauh & Backeb. Descriptions and keys are accompanied by line drawings and plates including SEM photos of the seeds for almost every taxon. Exsiccata prepared during this study constitute approximately 80% of existing Haageocereus herbarium samples from wild origin. Conservation assessments based on the IUCN Red List categories (2001) determined 3 taxa as Critically Endangered (CR), 8 taxa as Endangered (EN) and 5 taxa as Vulnerable (VU) in Peru. Zusammenfassung: Die Gattung Haageocereus (Cactaceae) ist mehrheitlich in Peru endemisch und kommt in den trockenen Teilen der die Anden nach Westen entwässernden Flusstäler vor. Ausgedehnte Feldstudien, morphologische Untersuchungen und Literaturauswertungen sowie die Unterschung der Typmaterialien ver-anlassen uns, 9 Arten und 6 heterotypische Unterarten zu unterscheiden. H. acranthus subsp. backebergii N. Calderón subsp. nov., H. versicolor subsp. pseudoversicolor (Rauh & Backeb.) N. Calderón comb. nov. sowie die Anerkennung von H. repens Rauh & Backeb. sind nomenklatorische Innovationen. Beschreibungen und Bestimmungsschüssel werden für fast alle Taxa von Strichzeichnungen sowie SEM-Samenfotos begleitet. Die während des Projektes präparierten Herbarbelege machen ungefähr 80% aller Haageocereus-Herbarbelege vom natürlichen Fundort aus. Auf der Basis der Rote-Listen-Kategorien der IUCN (2001) werden 3 peruanische Taxa als Critically Endangered (CR), 8 als Endangered (EN) und 5 als Vulnerable (VU) eingestuft.
Succulent perennials of diverse habit, trees, shrubs, climbers, epiphytes or geophytes; roots fibrous or tuberous; stems columnar, terete, globular, tubercled, ribbed, winged or flattened, often segmented, mostly leafless and variously spiny; leaves, where present, spirally arranged, simple, entire, exstipulate, but usually rudimentary or vestigial; axillary buds developing a persistent cushion-like indumentum of multicellular trichomes (areole), and usually leaves transformed into spines. Flowers solitary or rarely clustered, usually sessile at the areoles, rarely pedicellate in paniculate or cymose inflorescences (Pereskia) or terminal (e.g. Pterocactus), zoophilous, often conspicuous, nearly always bisexual, usually actinomorphic; receptacle enclosing, and more or less produced beyond the zone around the ovary (“pericarpel”) and between ovary and perianth (epigynous hypanthium; “tube”), naked or invested with bractlike scales and aréoles, areolar trichomes, hairs and/or spines, the upper scales often intergrading with the outer tepals; tepals usually numerous in a graded series; stamens often very numerous; anthers 2-locullar, tetrasporangiate, dehiscing longitudinally; ovary inferior (except some Pereskia spp.), unilocular, 3–20-carpellate, placentation usually hypanthial, rarely basal-laminal, ovules numerous; style usually long; stigma 3–20-lobed.
Prof. Werner Rauh (1913–2000) was the director at Heidelberg Botanical Garden and Herbarium for several decades and until his retirement in 1994, he undertook more than 36 expeditions, mainly to South and Central America as well as to southern Africa and in particular to Madagascar. From these journeys, he brought back innumerable plants to the Botanical Garden Heidelberg, especially succulents, bromeliads and orchids, which are a valuable part of today’s living collection and of the Herbarium. During his expeditions, he wrote more than 90 booklets with detailed information not only about the plants collected, but also about the vegetation and geology of the regions he visited. The heart of the presented Werner Rauh Heritage project is a relational database to store the heterogeneous information found in these field books, as well as to link the information to actual taxonomy and to the garden’s existing database, the living collection and numerous plant type material. A number of powerful tools are being developed to enable researchers to search the database for cross-linked information including Rauh’s original field numbers and the place of collection. The central part of the Werner Rauh Heritage Project database is a look-up table with the geo-referenced itineraries of Werner Rauh’s journeys and another table with all taxa entries listed in any field book. Tables with synonyms, basionyms and protologue data are included as well as numerous images and links to other taxonomic databases such as IPNI and TROPICOS.
Auf Grund eingehender morphologischer Untersuchungen wird die Einheitlichkeit der GattungenEspostoa,Br. et R.,Facheiroa
Br. et R.Thrixanthocereus
Backeb. undVatricania
Backeb. bewiesen. Alle Arten sind daher in die aus Prioritätsgründen gültige GattungEspostoa zu stellen.
Zusammenfassung Im Bereich des Gesamtareals der Wildkartoffeln stellen die “Lomas” der peruanischen Kste eine besondere pflanzengeographische
Formation dar. Ihre Vegetationsperiode fllt in den Sdwinter (Mai-Oktober), zu welcher Zeit die Lomas durch Nebel eine gewisse
Feuchtigkeit erhalten. Die stets sehr hohe Luftfeuchtigkeit und die relativ gnstige Temperatur von 18–20 C lsst vermuten,
dass die dort vorkommendenSolanum species eine Resistenz gegenPhytophthora infestans entwickelt haben.
In den Jahren 1965 und 1966 wurde in den Lomas jeweils fr einige Wochen von Prof. C. Ochoa, Ing. C. Lopez und dem Verfasser
gesammelt, wobei folgende Arten gefunden wurden, die nunmehr der wissenschaftlichen Untersuchung zugnglich sind:S. chancayense, S. earl-smithii, S. immite, S. medians, S. mochicense, S. neoweberbaueri, S. wittmackii, sowie zwei noch unbestimmte Formen.
Die vorliegende Publikation gibt einen Überblick über die Ruderalflora und -vegetation der zentralperuanischen Städte Lima und Huanuco. Nach der Darstellung der Standortsverhältnisse wird die Zusammensetzung der Ruderalflora beider Städte analysiert und, basierend auf 143 phytosoziologischen Aufnahmen, ein Überblick über die Ruderalpflanzengesellschaften gegeben. Von jeder Pflanzengemeinschaft werden die Standortsansprüche, der Gesellschaftsaufbau und die Untergesellschaften besprochen. Die Gesellschaften werden, soweit möglich, syntaxonomisch eingeordnet. Als neue Assoziationen werden das Boerhaavio caribaeae-Sidetum paniculatae, das Flaverio bidentis-Chenopodietum muralis, das Cenchro echinati-Chloridetum virgatae und das Alternanthero pungentis-Cynodontetum dactyli beschrieben. Das Cynodontion dactyli wird als neuer Verband von Trittpflanzengesellschaften vorgeschlagen. Von den bei Gutte (1978) veröffentlichten Assoziationen werden die Typusaufnahmen festgelegt.
This publication deals with the nitrophilous flora and vegetation of the two centralperuvian towns of Lima and Huanuco. After the description of the habitats the author analyses the floristical composition of the ruderal vegetation.
Based on 143 phytosociological records a survey of the ruderal plant communities of both towns is given.
The habitats, the combination of species and the subcommunities of each association are described.
As far as possible attempts are made to classify the associations in the phytosociological system.
The following new syntaxa are described: Boerhaavio caribaeae-Sidetum paniculatae, Flaverio bidentis-Chenopodietum muralis, Cenchro echinati-Chloridetum virgatae and Alternanthero pungentis-Cynodontetum dactyli.
Besides a new alliance of roadside growing plant communities, the Cynodontion dactyli, is suggested.
Finally the types of the associations published by Gutte (1978) are indicated.
Contribución al conocimiento de algunos furnariidos (Furnariidae, Aves) de la costa y de las vertientes occidentales andinas del Perú (con descripciones originales de nuevas subespecies), por Maria Koepcke.Estudiando el grupo de los Furnariidae en el lado occidental de los Andes peruanos hemos encontrado algunas nuevas razas geográficas; adernás hemos conseguido nuevos datos respecto a la posición sistemática, distribución geográfica y biologia de algunas especies, de los que tratamos aquí.En Geositta crassirostris se distingue como dos subespécies distintas los ejemplares costeños y los que habitan las vertientes occidentales andinas. Las áreas de distribución de cada una estan separadas por una zona de desierto. Las aves costeñas (Geositta c. crassirostris) que viven en las lomas rocosas, difieren de las aves andinas por su colo‐ración más oscura y menos rojiza, y por tener la tendencia a la poseción de alas y colas más cortas. Por esta razón, fortis (Berlepsch & Stolzmann) se reconoce de nuevo pero no como especie separada como lo han tratado en la descripción original sino como raza geográfica de G. crassirostris.Se caracteriza brevemente todas las subespécies de Geositta cunicularia conocidas del Perú, además se aporta datos de su distribución geográfica. Se describe una nueva subespecie, Geositta cunicularia georgei nov. subspec., que es una ave característica de las lomas arenosas de la costa Sur del Perú, con su centro de distribución en las lomas de Chala y Atiquipa (Departamento de Arequipa). Esta nueva raza difiere de deserticolor, otra raza costeña que vive al sur de georgei nov. subspec, por su coloración más oscura, parte ventral algo ocreamarillenta en vez de ser completamente blanca, manchas más oscuras en el pecho, marcas pardo‐rojizas más oscuras en ala y cola, y por su ala, cola y pico más cortos.Se discuta las relaciones entre Geositta cunicularia y Geositta paytensis. En sus campos vitales costeños ambas son bastante similares ecológicamente, además, en la parte sureña del Departamento de Ica una reemplaza a la otra de manera típica para razas geográficas de una sola especie. Sin embargo, no podemos juntarias como pertenecientes a una sola especie porqué difieren principalmente por la forma del pico, la coloración de los tarsos, que son blanquecinos en G. paytensis y negros en G. cunicularia, por la coloración de la cola, por su voz y modo de caminar en el suelo. Ambas especies forman razas geográficas que armonizan con la coloración del suelo porqué habitan campos vitales que presentan cambios de coloración del suelo en grandes superficies a lo largo de la costa peruana. Así, el suelo de los semidesiertos norperuanos y del área de Pisco/Ica es más claro que el de las lomas arenosas cuya coloración más oscura es debido a las cianofíceas, lichenes y restos de plantas anuales. Los campos vitales de la Geositta marítima, sin embargo, la que también se presenta en la costa peruana, no presentan tales cambios del color del suelo, y por esta razón no podemos observar tales variaciones de coloración en esta especie de pampero.Leptasthenura pileata latistriata nov. subspec. difiere de la raza pileata por tener las estrias longitudinales blancas más anchas y por la coloración más oscura de pecho y vientre. Hasta ahora es conocida solamente de las vertientes occidentales andinas a la latitud de Pisco, limitando enfonces por el Sur el área de distribución de la raza pileata.El área de distribución de Asthenes cactorum se extiende por lo menos sobre 6 grados de latitud. Está adaptada íntimamente a la existencia de cactáceas altas, sobre todo a cactáceas columnares. Casi cada población estudiada de esta especie tiene pequeñas pecu‐laridades sea en su coloración o en caracteres estructurales, lo que demuestra la estrecha ligación de esta ave a su biotopo. Podemos distinguir tres subespecies de Asthenes cactorum una de las cuales habita las vertientes occidentales andinas entre los 700 y 2400 m de altura, mientras que las otras dos viven en la costa Centro y Sur del Perú, y parece que se han desarrollado independientemente una de otra. La raza nominal, cactorum, que se encuentra en la costa y parte baja de las vertientes occidentales andinas del Sur del Perú, se caracteriza por su coloración ocrácea y relativamente pálida. Asthenes cactorum monticola nov. subspec. difiere de cactorum por su tendencia a dimensiones más largas, coloración menos ocrácea (más parduzca), rectrices centrales más oscuras, coloración menos uniforme del lado inferior, siendo el color del vientre posterior y de las subcaudales más oscuro, contrastando así más con la parte anterior blanquecina, y por su banda alar y mancha guiar algo más oscuras. Vive en las vertientes occidentales andinas desde el Departamento de Lima hasta el Departamento de Arequipa, por lo menos. Asthenes cactorum lachayensis nov. subspec. se distingue sobre todo por el tinte grisrosado en todo su plumaje, dimensiones pequenas, y rectrices centrales muy oscuras con bordes laterales pardo‐rojizo oscuros. Hasta hoy solamente se conoce esta nueva subespecie de las Lomas de Lachay en la costa del Perú Central. Se discute ciertas variaciones individuals en la coloración del ala y de la cola, las que no tienen valor para consideraciones taxionómicas. Además, se trata las relaciones entre Asthenes cactorum y Asthenes modesta, ambas espécies distintas por sus diferencias estructurales en la forma del pico y de las patas, y por sus campos vitales y costumbres de vida diferentes. Se aporta, finalmente, datos nuevos sobre el comportamiento, los diversos tipos de nidos, tiempo de anidación, huevos etc. de Asthenes cactorum.Se señala por primera vez para el Perú la raza loaensis del Totorero Phleocryptes melanops. Esta raza geográfica costeña que se caracteriza por su coloración oscura y tamaño pequeño, era conocida hasta ahora solamente del Norte de Chile. Sin embargo, a base de dos hallazgos en la costa Sur del Perú (Mejía, Mollendo) sabemos que su área de distribución se extiende más hacia el norte, hasta el Departamento de Arequipa, Perú.
The epiphytic Rhipsalis riocampanensis from the upper montane rain forest of the Podocarpus National Park is described as a new species. A large columnar cactus previously known from N Peru, Browningia microsperma. is here recorded from the Loja province in southern Ecuador. It is the first time Browningia has been reported from Ecuador. Espostoa lanata ssp. roseiflora is described as a new subspecies based on a population in the Catamayo valley. It is suggested that Armatocereus rupicola is an older name for Armatocereus brevispinus.
Herbaceous lomas in the Peruvian coastal desert, of South America establish in spring, and its habitat is limited to the southern
or southwestern slopes along the coast that are affected by thick fog. The time of appearance, the duration and the thickness
of the fog vary greatly from year to year, so the lomas can grow only in habitats with enough water to, sustain seed germination
and plant growth. This paper studies the species composition and density of the buried seed population, of the herbaceous
lomas of Loma Ancon in order to clarify the mechanisms of the lomas' establishment. The mean number of species with viable
seeds was about, 12 spp. m−2 and that of dead seeds was about 22 spp. m−2. The dominant species wereSolanum tuberiferum, S. pinnatifidum andNolana humifusa, both in viable and dead seeds. Viable seed density was about 5000–8000 seeds m−2, which is comparable with the seed densities of other herbaceous communities. Dead seed density was about 15000–27000 seeds
m−2, or nearly three times the viable seed density, because the rate of decomposition was slow in the extremely dry conditions.
The net increase of viable seeds by seed production was estimated at about 5000 seeds m−2 in 1980, and the increase in the number of dead seeds was 2200 seeds m−2.
La vegetación de la alta montaña andina del sur del Perú. El presente artículo es un estudio fitosociológico de la vegetación de la alta montaña del sur del Perú (departamentos de Arequipa, Moquegua, Puno y Tacna). En base a la relación existente entre geomorfología, litología, altitud, pisos bioclimáticos, intervalos de precipitación, descripción bioclimática, y la combinación florística en determinados biotopos, fueron diferenciadas las comunidades de 9 clases (Anthochloo-Dielsiochloetea, Calamagrostietea vicunarum, Lantano-Chusqueetea, Lemnetea minoris, Notholaene-tea niveae, Phragmito-Magnocaricetea, Plantaginetea australi-s, Plantagini rigidae-Distichietea muscoidis y Potametea). Como resultado, fueron descritos 2 nuevos órdenes (Calamagrostietalia nitidulae y Salpichroetalia glandulosae), 7 alianzas (Azorello-Festucion, Belloo-Salpichroion, Chaetantherion sphaeroidalis, Cortaderion jubatae, Fabianion stephanii, Hypsello-Plantaginion y Nototrichion obcuneatae), 10 asociaciones (Belloo-Dissanthelietum, Chersodomo-Valerianetum, Cortaderietum jubatae, Diplostephio-Parastrephietum, Dunalio-Baccharidetum, Nototricho-Xenophylletum, Parastrephio-Festucetum, Ranunculetum limoselloidis, Stuckenietum punensis y Wernerio-Puccinellietum) y 16 subasociaciones y comunidades fragmentarias (comunidades basales, BC y comunidades derivadas, DC).
ResearchGate has not been able to resolve any references for this publication.