Offshore wind energy leverages the high intensity and consistency of oceanic winds, playing a key role in the transition to renewable energy. As energy demands grow, larger turbines are required to optimize power generation and reduce the Levelized Cost of Energy (LCoE), which represents the average cost of electricity over a project's lifetime. However, upscaling turbines introduces engineering challenges, particularly in the design of supporting structures, especially towers. These towers must support increased loads while maintaining structural integrity, cost-efficiency, and transportability, making them essential to offshore wind projects' success. This paper presents a comprehensive review of the latest advancements, challenges, and future directions driven by Artificial Intelligence (AI) in the design optimization of Offshore Wind Turbine (OWT) structures, with a focus on towers. It provides an in-depth background on key areas such as design types, load types, analysis methods, design processes, monitoring systems, Digital Twin (DT), software, standards, reference turbines, economic factors, and optimization techniques. Additionally, it includes a state-of-the-art review of optimization studies related to tower design optimization, presenting a detailed examination of turbine, software, loads, optimization method, design variables and constraints, analysis, and findings, motivating future research to refine design approaches for effective turbine upscaling and improved efficiency. Lastly, the paper explores future directions where AI can revolutionize tower design optimization, enabling the development of efficient, scalable, and sustainable structures. By addressing the upscaling challenges and supporting the growth of renewable energy, this work contributes to shaping the future of offshore wind turbine towers and others supporting structures.