ArticlePDF Available

Looking at the soft-bottom around a coastal coral reef: The impact of terrigenous input on Polychaeta (Annelida) community

Authors:

Abstract and Figures

Erosion on coral reefs produces fragments of the constructor organisms that are scattered all around, thus enlarging the reef boundaries. Statistical modelling approach was used to investigate whether the Polychaeta community around Sebastião Gomes reef (Abrolhos Bank, Brazil) is influenced equally by sediment characteristics and/or by position related to the reef, that are variables related to the terrigenous input influence. In July 2007, a period dominated by winds that resuspend fine sediment from the land to coastal reefs, sediment samples were taken on four transects perpendicular to the reef (S, W, N and E) and a total of 121 species of polychaetes were recorded. The most abundant species was the carnivorous Goniadides carolinae and the model selected for it approximates to the best models fitted for both total macrofauna and polychaete abundance. These models represented higher abundance in coarse carbonate sediments on windward reef faces, where there is almost no terrigenous sediment. On the other hand, the Polychaeta richness did not depend on the transects. Sebastião Gomes reef is one of the many coastal reefs from Abrolhos Bank, whose healthy is probably in danger because of the increase of mud related to human activities, as deforestation and, recently, mining waste.
Content may be subject to copyright.
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
79
Looking at the soft-bottom around a coastal coral reef: the impact of
terrigenous input on Polychaeta (Annelida) community
Erosion on coral reefs produces fragments of the
constructor organisms that are scattered all around,
thus enlarging the reef boundaries. Statistical
modelling approach was used to investigate whether
the Polychaeta community around Sebastião Gomes

sediment characteristics and/or by position related to
the reef, that are variables related to the terrigenous


coastal reefs, sediment samples were taken on four
transects perpendicular to the reef (S, W, N and E) and

The most abundant species was the carnivorous
Goniadides carolinae and the model selected for
        
total macrofauna and polychaete abundance. These
models represented higher abundance in coarse
carbonate sediments on windward reef faces, where
there is almost no terrigenous sediment. On the other
hand, the Polychaeta richness did not depend on the
transects. Sebastião Gomes reef is one of the many
coastal reefs from Abrolhos Bank, whose healthy is
probably in danger because of the increase of mud
related to human activities, as deforestation and,
recently, mining waste.
AbstrAct
Michele Quesada-Silva*, Ana Maria Setubal Pires-Vanin



Descriptors: Sebastião Gomes, Abrolhos Bank,
Macrobenthos, Statistical modelling.
Fragmentos dos recifes de coral constituem parte do
sedimento ao redor dos mesmos, ampliando os limites
do recife. Modelos estatísticos foram criados para
  
recife Sebastião Gomes (Banco dos Abrolhos, Brasil)
      
     
      
       
       
recifes, amostras de sedimento foram coletadas em
      
        
foi o carnívoro Goniadides carolinae e o modelo
selecionado para descrever a distribuição desta espécie
foi muito semelhante aos ajustados tanto para a

modelos apresentaram alta abundância em sedimentos
       
       

pela posição dos transectos. Sebastião Gomes é um
dos muitos recifes costeiros do Banco dos Abrolhos,

relacionada a atividades humanas, como desmatamento
e, recentemente, rejeitos da mineração.
resumo
Descritores: Sebastião Gomes, Banco dos Abrolhos,
Macrofauna bentônica, Modelagem estatística.

BJOCE



BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
80
INTRODUCTION

reef structure. They are autogenic engineers as they change
the conditions of the physical environment (e.g., current
speeds and sedimentation rates) by means of their own
  

algae, and destruction via physical and biological erosion

produces fragments of the constructor organisms that are
scattered around the reefs, thus enlarging their boundaries

      
around reefs, few research projects have investigated the
community ecology of the macrofauna in reef complexes.



       
macrofauna of reef complexes started, the main aim has
        
 

        

        

reef habitats (pools, lagoons or the sublittoral zone around
        

more on biological interactions, while larger commonly
      
macrofauna. Another less studied aspect is the variability
of the composition and distribution of the macrofauna due
to its position in relation to the reef, in other words, as to
     


      
of macrobenthic species found throughout the oceans


        
     

respect, the scavengers are the main organisms responsible
for stimulating the biogeochemical processes of nutrient


    
ecosystem constitutes the community structure, while the
description of species traits is related to the functional
      
     
approach is now being increasingly used, mainly when
applied to studies of community responses to disturbances


better understand the dynamics of ecosystem functioning

has been considered a proxy to simplify the understanding
of the functional groups (functional community), even
knowing that the assumption includes other factors such
as mobility of organisms for instance, which is related to


The statistical modelling approach was selected to
investigate whether the structure and function (trophic
habit) of the polychaete community around a coastal reef

sediment characteristics and by position in relation to the
reef or exclusively by one or other. We have also sought to

polychaetes corresponds to that of the total macrofauna,
in order to verify the viability of the use of Polychaeta
as a good indicator of the macrofaunal patterns in reef
sediments. The focus on sediment characteristics was

sedimentation rates may be higher than the maximum of
 day


Studies of the statistical modelling of marine

        
spatial and temporal patterns in benthic communities
are well suited to statistical modelling too. According
    
distribution of invertebrates that, in general, disperse less

to model the habitat preference of a Polychaeta species
     
indicated the need of further research into the modelling
   
       
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
81
species through descriptive models so as later to be able
to create predictive models, important tools for ecosystem
management and conservation.
MATERIAL AND METHODS

The Abrolhos Bank is situated on the East Brazilian
      
     ) and

climate is characterized by two main seasons, summer and
winter. During summer, winds are N/NE and mean water
 
wind direction changes to S/SE due to the Atlantic Polar

  



  

is terrigenous (siliciclastic), whilst around the reefs it is
carbonate, and a mix of both types occurs between the reef
   


cm day

The Sebastião Gomes reef complex is located in the

river mouth, and is part of the Ponta da Baleia/Abrolhos
Marine Protected Area. This reef was chosen because
it lies inside the area with the highest sedimentation
      

          
polychaete community.

       


were placed at increasing distance from the reef, and up to
   



in the laboratory, under the stereomicroscope and the

        
sediment to analyze grain size and percentages of total
organic matter (TOM) and carbonates. Grain size, which
is a variable related to the interstitial space available to
the fauna, was determined using sieving and pipetting
      

       
      

  
variable related to reef origin of sediments, was determined



        
     
modelling approach based on maximum likelihood was
    
(predictor variables) on the macrofauna and Polychaeta
community (response variables). The law of likelihood
states that there are many models (hypotheses) which may
explain the response variable and that each one has some
probability of occurring, and, further, that the model with
     
       

the distance between the proposed model and the true

likelihood and the number of parameters of the model.
         
       
    

       

        
reef distance on community, the sedimentary variables
     
reef, sediment should be more carbonate and coarser
due to fragments of corals, resulting in more interstitial
      

a high content of TOM, a food resource for macrofauna
        
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
82
Figure 1. Location of Abrolhos Bank on the East Brazilian continental shelf (a) and
sample stations around Sebastião Gomes reef (b).
     


models, one of whose premises is that predictor variables
must be independent, in this study. Because of this, score 1

these variables was used to represent the sediment and
 

only the distance between sample stations and the reef
as predictor variable was also created to verify whether

unrelated to sediment.
The generalized linear models created to test whether
sediment and/or the position in relation to the reef (on
transects S, W, N and E) are predictor variables of
community distribution patterns were based on negative
binomial probability distribution. Some ecologists have
realized that count data of aggregate organisms are better


       

     

omnivores, species which have two or more feeding
habits. This same study was used to classify species
according to the feeding habit of their families, but
     

     


       
       
     
       
sediment (Sed) and/or transect (Tr) as predictor variables
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
83
Table 1. Distance from the reef, depth and geographic coordinates of sediment samples around Sebastiao Gomes reef complex.
Transect Station Distance (m) Depth (m) Latitude (S) Longitude (W)
S 1   
S    
S    
S    
S    
S    
W  
W    
W    
W    
W11    
W    
N  
N   
N   
N   
N    
N  11  
E   
E    
E    
E    
E    
E    
Figure 2. Schematic representation showing how interstitial space for
macrofauna inhabits increases with grain size.
       
(trophic groups).
RESULTS

The sediment distribution pattern corresponded to
expectations, i.e., near the reef, sediment contained
more carbonate and was coarser, except on transect S
  
variance of the data and its positive values (hereinafter
referred to as the “Sed” variable) represented carbonate
sediment stations near the reef while the negative values
   

   


       
      
          
were recorded, respectively, in transects S, W, N and
   

other two transects (S and N) it was more uniform along


BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
84
Figure 3. 
Figure 4.    
variables of soft bottom around Sebastião Gomes reef.

which considers only sediment as a predictable variable.
Both abundances of macrofauna and polychaetes were
          
as with the sediment characteristics, those of transect S
  
explain the distribution of macrofauna and polychaetes
took sediment and transect (position in relation to reef)
      
associated with coarser carbonate sediment of the N and E

With regard to the total abundance of polychaetes,
the most abundant species were Goniadides carolinae
  Aphelochaeta   Leodamas
treadwelli   Lumbrineris cf. tetraura 

abundance of polychaetes around Sebastião Gomes reef,
but only the model selected for G. carolinae was similar
  
of the phylum Annelida. The most plausible model to
explain the distribution pattern of G. carolinae presented
  
did total abundance model, but in this case, transect N
was more favorable to this species and no individual was

abundant species, L. treadwelli, sediment with an additive


Aphelochaeta sp. and L. cf.
tetraura were sampled at almost all stations on all four
transects, but only occurred in much greater abundance at


We chose not to calculate models to describe
     
        
        

most abundant species, Goniadides carolinae, represented
        
for carnivore polychaetes was the additive between the
variables “Sed” and “Tr”, with higher abundance in the
coarser sediments on all the transects, mainly to the north

   

  

at one station on each transect, though positioned at


DISCUSSION


     


     
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
85
Table 2. 
Family Species Stations
Ampharetidae Amphicteis sp. 
Amphinomidae Eurythoe complanata 
Amphinomidae Linopherus ambígua 
 Capitellidae sp.1 
 Capitellidae  
 Dasybranchus caducus 
 Mediomastus sp. 
 Neopseudocapitella brasiliensis
 Notomastus hemipodus 
 Notomastus lobatos 
 Scyphoproctus sp.1 
 Scyphoproctus  
 Scyphoproctus  
 Bhawania brunnea
 Aphelochaeta sp. 
 Caulleriella sp.1 
 Caulleriella  
 Caulleriella cf. apícula 
 Caulleriella cf. pacica 
 Chaetozone cf. armata
 Chaetozone sp.1 
 Chaetozone  
 Monticellina sp. 
 Cossura sp. 
Dorvilleidae Meiodorvillea sp. 
Dorvilleidae Schistomeringos pectinata 
Eulepethidae Grubeulepis mbriata 
Eunicidae Eunice cf. vittata 
Eunicidae Euniphysa sp. 
Eunicidae Lysidice hebes 
Eunicidae Marphysa sp. 
Eunicidae Palola sp.
Fabriciidae Fabriciola sp. 
Fabriciidae Novafabricia sp. 
Fauveliopsidae Fauveliopsis sp. 
Flabelligeridae Pherusa sp.
Goniadidae Goniadides carolinae 
Lumbrineridae Lumbrineriopsis cf. mucronata
Lumbrineridae Lumbrineris sp. 
Lumbrineridae Lumbrineris cf. tretaura 
Lumbrineridae Ninoe brasiliensis 
Magelonidae Magelona nonatoi
Magelonidae Magelona papillicornis 
Magelonidae Magelona posterolongata
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
86
Maldanidae Maldanidae sp.1 
Maldanidae Maldanidae  
Nephtyidae Aglaophamus juvenalis 
Nephtyidae Aglaophamus uruguayi 
Nereididae Ceratocephale oculata 
Nereididae Neanthes bruaca 
Nereididae Nereididae sp.1
Nereididae Nereididae  
Nereididae Nereididae  
Nereididae Nereis lanai 
Nereididae Nereis serrata
Nereididae Nicon sp.1
Nereididae Nicon  
Onuphidae Diopatra sp.1 
Onuphidae Diopatra  
Onuphidae Diopatra tridentata
Onuphidae Kinbergonuphis sp.1
Onuphidae Kinbergonuphis 
Onuphidae Kinbergonuphis cf. fauchaldi 
Onuphidae Kinbergonuphis cf. orensanzi 
Opheliidae Armandia maculata 
Opheliidae Ophelina cylindricaudata 
Opheliidae Ophelina sp. 
Opheliidae Polyophthalmus pictus 
Orbiniidae Scoloplos agrestis 
Orbiniidae Scoloplos (Leodamas) rubra 
Orbiniidae Leodamas treadwelli 
Oweniidae Owenia sp. 
Paraonidae Aricidea sp. 
Paraonidae Aricidea (Aricidea) albatrossae 
Paraonidae Aricidea (Acmira) catherinae 
Paraonidae Cirrophorus americanos
Paraonidae Cirrophorus branchiatus 
Paraonidae Levinsenia cf. gracilis 
Paraonidae Paradoneis lyra 
Pectinariidae Pectinariidae sp.1 
Pectinariidae Pectinariidae  
Pholoididae Pholoe sp. 
Phyllodocidae Phyllodoce sp.
Pilargidae Ancistrosyllis jonesi 
Pilargidae Ancistrosyllis sp. 
Pilargidae Cabira incerta 
Pilargidae Litocorsa sp. 
Pilargidae Sigambra sp. 
Polynoidae Eunoe serrata
Polynoidae Harmothoe cf. aculeata 
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
87
Polynoidae Malmgreniella cf. macginitiei 
Polynoidae Ysideria sp. 
Sabellariidae Sabellaria sp.
Sabellidae Amphicorina sp. 
Sabellidae Amphiglena sp. 
Sabellidae Pseudobranchiomma sp. 
Serpullidae Salmacina sp. 
Sigalionidae Fimbriosthenelais marianae 
Sphaerodoridae Sphaerodoropsis sp. 
Spionidae Aonides mayaguezensis 
Spionidae Laonice sp. 
Spionidae Microspio sp. 
Spionidae Prionospio sp. 
Spionidae Prionospio heterobranchia 
Syllidae Exogone sp.1 
Syllidae Exogone  
Syllidae Exogone  
Syllidae Exogone arenosa 
Syllidae Exogone díspar 
Syllidae Exogone simplex 
Syllidae Odontosyllis aracaensis 
Syllidae Perkinsyllis biota 
Syllidae Perkinsyllis augeneri 
Syllidae Sphaerosyllis piriferopsis 
Syllidae Syllis cf. botosaneanui 
Syllidae Syllis cf. cruzi 
Syllidae Syllis garciai 
Syllidae Syllis gracilis
Syllidae Syllis lutea 
Syllidae Syllis magellanica
Terebellidae Polycirrus cf. tenuiseti 
Figure 5. Distribution pattern of Polychaeta richness around Sebastião Gomes reef (circles are

BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
88
Table 3.
Gomes reef, as well as patterns of the most abundant species (Goniadides carolinae, Aphelochaeta sp., Leodamas treadwelli
and Lumbrineris cf. tetraura      


Total
Macrofauna
Total polychaetes   Omnivores
Model Par          
Null          
Dist          
Sed         342.3 0.0
Tr           
  NA NA        
  739.9 0.0 572.9 0.0 431.8 0.0 439.2 0.0 343.1 0.8
Polychaeta richness Goniadides carolinae Aphelochaeta sp. Leodamas treadwelli Lumbrineris cf. tetraura
Model Par          
Null          
Dist           
Sed 394.4 1.2        
Tr      177.8 0.0   238.2 0.0
     179.1 1.3   238.8 0.6
  393.3 0.0 166.8 0.0 178.3 0.5 244.1 0.0 238.2 0.0
associated with the intense hydrodynamics which occur

      
        
station immediately adjacent to face S (station 1) was
      
        


deposit them at the base of reef face S. Nevertheless,
during summer, station 1 was composed of thick and
carbonate sediment (unpublished data), in agreement with
the above postulate.
Percentages of carbonates were calculated for the
entire sample sediment and not for each grain fraction,
ergo, it is impossible to know if all the fractions contain

of the hypothesis of resuspension of sediments to the south

which is the main suspended mineral around Sebastião
   

and so, higher values of TOM were found at stations with
 
  
       
     
of food resources for polychaetes.
      
generated by winds and determine the sediment deposition

        
   


so transects N and E lie to windward.
    


      

Biodiversity Assessment, which consisted in six small
       
Piromis robertii, family Flabelligeridae  
     
Polychaeta family with the largest number of species
      
   
the most richness families were Nereididae, Sabellidae
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
89
Figure 6. Distribution patterns of macrofauna (a) and polychaete (c) abundance around Sebastião Gomes reef
               


  
      
small size of the species of this family, we recommend
that people who work with reef sediment has redoubled
attention during the sorting process.
    
the coarse carbonate sediment is responsible for the
distribution. The two richest transects were W and E, so
        
    

and leeward reef faces.
       
macrofauna and total polychaetes around Sebastião
Gomes reef was composed of higher percentages of

the present results show that the distribution is more
related to grain size than to grain composition. Studies
carried out with ecosystems without carbonate sediments
have shown higher abundance of macrofauna in coarser
  
related to an increased availability of interstitial space
     
composition of coarse grains underlines the importance
of fragments from coral reefs for the establishment of an
abundant macrofauna around coral reefs, mainly in coastal


higher abundance of total macrofauna and polychaetes on

   
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
90
Figure 7. Distribution patterns of Goniadides carolinae (a) and Leodamas treadwelli (c) around Sebastião Gomes


to these latter authors, winds generate topographically
controlled currents that aggregate zooplankton near the

planktonic larvae, so these currents could prevent the
spread of the species.
     
species, the distribution of the most abundant polychaete
Goniadides carolinae was similar to that of the total
macrofauna and of the total polychaetes. G. carolinae is
      
greater abundance in coarse sediments was probably related
to high abundance of macrofauna prey items at these sites.
Leodamas treadwelli was the only case whose selected
 


the general distribution pattern of total polychaetes is not
the same for all abundant polychaete species. L. treadwelli


   
the literature does not indicate any grain size preference of
  L. treadwelli
on the Abrolhos Bank, although other species of the genus
Scoloplos (previous genus of L. treadwelli) are commonly

No distribution pattern was determined for the
 Aphelochaeta sp. and despite its being
       

records of Aphelochaeta are reported for Brazil, none for


Aphelochaeta
their few taxonomic characters. One of the characteristics
of the species of this family is that they succeed in
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
91
Figure 8. Distribution of Aphelochaeta sp. (a) and Lumbrineris cf. tetraura (b) around Sebastião

Figure 9. 
               
         

BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
92
occupying any kind of sediment through employing
        
food with their palps or directly with the mouth while
    

enables them to feed while remaining buried, protecting
themselves from physical disturbance and predation.
        
      
        
oxygenated sediments.
As well as Aphelochaeta sp., the last species studied
Lumbrineris cf. tetraura did not present any distribution
pattern in the Sebastião Gomes reef complex. The same
result was also found in an investigation conducted in a
     
present study, the high abundance of L. cf. tetraura was
found at the station most abundant in total polychaetes,
which might be an indication of a high number of prey items


         
       
macrofauna, their distribution pattern is representative
of that of the global macrofauna, which reinforces the
idea that the taxon can be properly taken to represent
the general distribution pattern of the macrofaunal
    
the most abundant species studied, it is interesting to note
that only G. carolinae followed the same pattern as the
total polychaetes and that other abundant species even
    
to highlight that further research into the behavior and
feeding habits of these species of polychaetes is essential
to understand their distributions.


The carnivores represented the commonest trophic
habit in view of the great abundance of Goniadides
carolinae and Lumbrineris cf. tetraura, which resulted in
the selection of a model similar to that for G. carolinae but

are common in coarse sediments, where interstitial space
is greater and allows the simultaneous presence of both
      

     
important group, although they can generally be the
     
     
      
     Aphelochaeta
   Leodamas treadwelli 
Aricidea albatrossae  Magelona papillicornis 
and Aricidea catherinae   
 
  
expected that their distribution would be similar to the
model selected for L. treadwelli.    
occur and our results were similar to those of others who
  
      
         
feeders can change their habit, feeding on suspended
matter when this supply increases, as the species of the
   
apud      

       

to the input of recent detritus from plankton that sinks
        
Leodamas treadwelli


       
       
abundance of these two trophic groups has also been
        
      
       
them. The presence of carnivores can reduce competition
     
size and allowing the coexistence of species of the same
trophic habit. Thus perhaps L. cf. tetraura is playing this
role on transect E.
       
expected near the reef, where seaweeds are more abundant.
The presence of exclusively herbivorous polychaetes in
     
       
     
        
Even in studies on polychaetes associated with algae,
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
93
    
 

no one family of polychaetes is exclusively herbivorous.

      
  
        
       
considered omnivores.
      
        
expected for species that can change their trophic habit
in accordance with the available food resource and adapt

        
       
representatives around Sebastião Gomes reef were few.



similar to those for macrofauna and total Polychaeta
      
favored by coarse grains and transects related to windward


the fauna, but reef sediment did. This conclusion arises

by polar fronts.


Ecological studies of marine communities through the

approach (e.g., multiple linear regression and p
Generalized linear models (glm) and model selection

the present study showed the same patterns of abundance
as do classic studies based on multivariate analysis of
       
which do not depend of the Gaussian distribution of
       
itself to be a useful method to the study of descriptive
patterns of macrofauna community and should be used
more often, once variables as macrofauna abundance
and richness usually do not present Gaussian distribution
even after logarithmic transformations. We also highlight

     

        
distribution of macrofauna through descriptive models
to then create predictive models based on environmental
changes, which are important for the management and
conservation of reef complexes.
     
experiencing its worst environmental disaster, which
is related to the Samarco mining waste dam collapse

     
 

      

in direction to Abrolhos Bank and reached the area in

the reefs, the abundance and the diversity of macrofauna
community can decrease dramatically, and the coastal
          
Bank. This work is the most detailed study in Sebastião
Gomes reef and we think that these results, previous
   
monitor the area.
These results also can be used in others researches
related to environmental disturbances, as climate change

may be one of the most impacted marine ecosystems
 
builders, e.g., by carbonate dissolution and the decrease of



      
mainly that in coarse sediments.
ACKNOWLEDGMENTS
         
      
  
    
  

    
  

BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
94

is part of the interdisciplinary project called “Productivity,
sustainability and utilization of the Abrolhos Bank
     

REFERENCES
      
 World J. Fish Mar. Sci., v. 1,

        

  

        
        
South West Atlantic. PLoS ONE
          
   Catálogo das espécies
de Annelida Polychaeta do Brasil. 

Biodiversidade bentônica da Região Sudeste – Sul do Brasil
– Plataforma Externa e Talude Superior.

        
      p
      
Bermuda. Aquat. Geochem.

Micronesica
      
      
cryptofaunal communities in a marine life conservation district on
Int. Rev. Hydrobiol.
         
Bol.
Mus. Nac. Zool.
         
      
and ecosystem function on coral reefs. Ecol. Lett.


   
of Bahia – Brazil. An. Acad. Bras. Ciênc.

   Ecological Models and Data in R. 

       Package
bbmle: Tools for general maximum likelihood estimation. 


Gastrolepidia clavigera (Polynoidae) and its interactions with its
hosts. Dokl. Biol. Sci.
      Model selection and
multimodel inference: a practical information-theoretic approach.

          
methods to determining organic carbon in marine sediments, with
suggestion for a standard method. Hydrobiologia 

        
Lumbrineris tetraura (Schmarda) (Lumbrineridae) in a polluted
Bull. Mar. Sci. 

         
      
Atlantic coral reefs, with a comparison of benthic assemblages.
Braz. J. Oceanogr.
              
     
       
       


      
Mar. Biol.
       
      
Mar. Ecol. Prog. Ser.


of Nereis diversicolor (O.F. Müller) (Annelida, Polychaeta) on
      
Portugal. Panam. J. Aquat. Sci.
         
(Annelida). Rev. Biol. Trop.
    

Mar. Ecol. Prog. Ser.


feeding by Pectinaria koreni   Mar.
Ecol. Prog. Ser.

       
       
invertebrate communities. J. North Am. Benthol. Soc.

       
polychaete Sabellaria alveolata (Sabellariidae) to changes in
seston concentration. J. Exp. Mar. Biol. Ecol.


A. A rapid marine biodiversity assessment of the Abrolhos Bank,
Bahia, Brazil: The RAP Bulletin of Biological Assessment.

   
of sediment accumulation on reef corals from Abrolhos, Bahia,
Brazil. J. Coast. Res.
         
       
Atlantic). Zoosymposia
          
polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev.

        
spionid polychaetes to dissolved chemical cues. J. Exp. Mar. Biol.
Ecol.
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
95
        
Neanthes succinea in San Francisco Bay. Pac. Sci.


      
shelf (Antarctica). Polar Biol.
           
Degradation of selected polycyclic aromatic hydrocarbons in

Water Air Soil Poll.

and distribution. Mar. Ecol. Prog. Ser.
     
 
     

Vie et Milieu

Cah. Biol. Mar.

         
Procedures in sedimentary petrology   

      
small sedentary herbivores and their resistance to seaweed
chemical defenses. Oecologia
       
      Science   


        
microhabitat. Mar. Ecol. Prog. Ser.

hotspots, centers of endemicity, and the conservation of coral
reefs. Ecol. Lett.
         
ecosystem engineers. OIKOS
Magelona
sp. Biol. Bull.

   
sand habitats. J. Exp. Mar. Biol. Ecol.
        
     
communities. Ecology
  
       
       
(Eds.). Sítios Geológicos e Paleontológicos do Brasil. 1ª ed.


and the major environmental impacts. An. Acad. Bras. Ciênc., v.


         
      A rapid marine
biodiversity assessment of the Abrolhos Bank, Bahia, Brazil.


on the sediment surface at nocturnal low tides by the polychaete
Phyllodoce mucosa. Mar. Biol.
       
Suspended matter transport in coral reef waters of the Abrolhos
Bank, Brazil. Geo. Mar. Lett.
   
        
J. Mar. Res.

       
         
community responses to disturbances. Trends Ecol. Evol. 

        
      
          
          

planning in the Abrolhos Bank. Cont. Shelf. Res.  


Mar. Biol.

         
 
evidence of a topographically controlled front. Mar. Ecol. Prog.
Ser.
       
and macrobenthic community structure in carbonate sediments of
Estuar. Coast. Shelf Sci.


     Nereis
diversicolorN. virens (omnivorous)
  Mar. Ecol. Prog. Ser.

      

  
sediment. Mar. Ecol. Prog. Ser.
     Aglaophamus neotenus 
Biol. Bull., v.

      

       Vegan: Community
Ecology Package.
        
      
Bol. Inst. Oceanogr.
  
southern Brazil. Cah. Biol. Mar.

        
fauna. Arq. Mus. Nac. (Rio de J.)

Cirriformia ligera 
Braz. J. Biol.
          
Braz. J. Biol.

       
rates along the inner eastern Brazilian continental shelf. Geo. Mar.
Lett.
BRAZILIAN JOURNAL OF OCEANOGRAPHY, 65(1):79-96;2017
Quesada-Silva et al.: Impact of terrigenous input on Polychaeta
96
         
J. Exp. Mar.
Biol. Ecol.
     Pholoe minuta  
Sarsia
       
   Lepidonotus squamatus and Harmothoe
imbricata (Polychaeta, Polynoidae) in the White Sea. Mar. Biol.
Res.
  
    
irrigation by the polychaete Marenzelleria viridis. J. Exp. Mar.
Biol. Ecol.
R: A language and environment
for statistical computing.     



Mar. Ecol. Prog. Ser.

in coral reef sediments on the central Great Barrier reef. Mar. Ecol.
Prog. Ser.
          
          
Macrofaunal biomass and estimates of production. Mar. Biol., v.


Sci. Mar., v.




from the land present challenges and opportunities. Global Ecol.
Biogeogr.
          
sedimentation. Mar. Ecol. Prog. Ser.
Polychaetes.

        
        The nature of
scientic evidence: Statistical, Philosophical, and Empirical
Considerations.    

     
and trophic structure of annelid assemblages in a Caulerpa
prolifera bed from southern Spain. Mar. Biol. Res.


  
Braz. J. Oceanogr.
  
     
sediment benthic community structure in a coral reef lagoon – the
     Mar.
Ecol. Prog. Ser.
        

Bank, Brazil. Braz. J. Oceanogr.
      

   
West Atlantic Ocean/Brazil). Cont. Shelf Res.


larva in the polychaete Owenia collaris. Biol. Bull.

       
Oceanogr. Mar. Biol.,

Introdução à sedimentologia.

      
of suspension feeding in spionid polychaetes by high particulate
Science
Modern applied statistics with S.

 
  Ecology

         
sediments. J. Geol.
       

          induced

Mar. Ecol. Prog. Ser.


         
     Lanice conchilega.
Ecol. Modelling
      
Science

        
Southern
California Coastal Water Research Project. Biennial Report
1979-1980.   

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We studied the spatial distribution of annelids in the intertidal zone of two beaches (Engenho d'Água and Sao Francisco) in Sao Sebastiao Channel, southeastern Brazil, from August 1995 through July 1996. This region is commonly affected by oil spills and sewage waste. The substratum of the two beaches is composed of a mixture of sand and rock fragments. We established three levels (100 m2) in the intertidal zone of each study site: lower, intermediate, and upper. In general, species richness increased from upper towards lower levels. The distribution of species at Engenho d'Água was more homogeneous than at Sao Francisco. Only some individual spatial patterns were recognised at Sao Francisco. The most abundant polychacte species at Engenho d'Água (Nematonereis hebes, Timarete filigera, and Scyphoproctus djiboutiensis) occurred in the intermediate and lower levels. The upper level of Sao Francisco was characterised by a peak of opportunists, with a large number of individuals but few dominant species (Capitella sp., Scolelepis squamata. Laeonereis acuta, and the oligochaete Tubifex sp).
Article
Full-text available
Within the frame work, organized by the National Institute of Oceanography and Fisheries, Alexandria, Egypt. 15 quantitative samples collected by using Van Veen grab from the soft bottom, depth ranging from 12m to 106 m and distributed over two seasons (spring and summer, 2008) were collected during two trips to the Northeastern coast of the Egyptian Mediterranean waters, from El Tina Bay, Balteem, Abokhashaba and Gamasa. The analysis of samples resulted 108 Polychaete species belonging to 25 families and 61 genera. More than 50 species were considered new for Egyptian Mediterranean waters. Data were analyzed with univariate techniques (Diversity, Richness and Eveness or Equitabilty). Results showed that, species richness and abundance were lower in the deeper samples and higher in spring than in summer season. The feeding guild classification was examined. Also the relation between different depths and feeding guild were reported. A total of nine main feeding categories were identified. There were more significant associations between feeding guild and depth. Also the analysis revealed the dominance of surface deposit feeding with slightly fewer Omnivores and micro herbivores. This work, indicating that the polychaetes of the study area are quite diverse and poorly in number of individuals and great number of newly recorded species was reported.
Book
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Article
The food composition of Pholoe minuta, an infaunal polychaete, is described. Aquarium observations and analyses of gut contents and faeces show that the species is carnivorous. Most common prey organisms in the areas investigated are ‘sedentary’ polychaetes, in particular Prionospio sp., and small crustaceans. These are encountered whilst P. minuta moves through the sediment, and are attacked by eversion of the jaw-armed proboscis. The prey organisms are either swallowed whole or in part. A comparison of the food choice of two different size-classes is made. The food choice in a polluted area is also described.
Article
The coast of the State of Bahia has the most extensive and the richest area of coral reefs in Brazil and of all the southwestern Atlantic Ocean. And this aqueous part of the planet harbors but only one percent of the coral reefs around the globe. Studies carried on several areas of coral reef in the State of Bahia, revealed that besides of being rare in the world and the most exuberant in Brazil, the Bahia coral reefs have an undoubtedly importance for scientific studies. These reefs which are distributed into five distinctive areas, are formed by Holocene coral structures significantly different from the well known coral reefs models, as (i) they have a characteristic growth form of mushroom-shaped pinnacles, (ii) the nearshore bank reefs are surrounded and even filled with muddy siliciclastic sediments, and (iii) they are, also, built by a coral fauna rich in endemic species, which major reef builders are archaic forms, remnant of an ancient coral fauna dating back in the Tertiary. They are, thus, a reef ecosystem ecologically unique and are, also, economically valuable for fisheries and ecotourism. Although deterioration of these reefs is not yet quantitatively assessed, it is already detected, as local coral bleaching, extensive soft coral coverage, extremely high density of algae and a catastrophic coral cover decline have been observed in the reefs located nearest the coast.
Article
Sedimentation has previously been considered an important source of impact in coral reefs. We compared 3 sites on the Abrolhos Bank, Brazil, regarding sedimentation rates, carbonate sediment composition, coral cover, and colony size for the commonest local coral species (Mussismilia braziliensis, Siderastrea stellata, and Favia gravida). The sites are located at different distances from the mainland: Pedra de Leste (14 km), Pontas Sul (26 km), and Parcel dos Abrolhos (58 km). Sedimentation was higher in winter (p <0.05), but no difference among sites was noted. Sites differed in sediment type (P <0.05), with Parcel dos Abrolhos showing nearly 90% of carbonate in sediment composition, Pontas Sul nearly 65%, and Pedra de Leste only nearly 50%. The farther from the mainland, where the zoanthid cover was smaller, the higher was the coral cover (p <0.01). Differences in colony sizes were found only for M. braziliensis, with smaller colonies occurring at Pedra de Leste (p <0.05). It is suggested that terrigenous sediment distribution and turbidity may be the main factors controlling reef development at the Abrolhos Reefs.