ArticlePDF Available

Abstract and Figures

This study examined the longitudinal trends of mobile learning (M-Learning) research using text mining techniques in a more comprehensive manner. One hundred and forty four (144) refereed journal articles were retrieved and analyzed from the Social Science Citation Index database selected from top six major educational technology-based learning journals based on Google Scholar metrics in the period from January, 2010 to December, 2015. Content analysis was implemented for further analysis based on (a) category of research purpose, (b) learning domain, (c) sample group, (d) device used, (e) research design, (f) educational contexts (i.e., formal learning and informal learning), (g) learning outcome (i.e., positive, negative and neutral), (h) periodic journal, (i) country, and (j) publisher. This review study of M-Learning presents findings, which can become a layover platform and guidance for researcher, educators, policy maker or even journal publisher for future research or reference in the realm of M-Learning regarding the latest trends.
Content may be subject to copyright.
Chee, K. N., Yahaya, N., Ibrahim, N. H., & Noor Hassan, M. (2017). Review of Mobile Learning Trends 2010-2015: A
Meta-Analysis. Educational Technology & Society, 20 (2), 113126.
113
ISSN 1436-4522 (online) and 1176-3647 (print). This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC
3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Journal Editors at ets-ed itors@ifets.info.
Review of Mobile Learning Trends 2010-2015: A Meta-Analysis
Ken Nee Chee1*, Noraffandy Yahaya1, Nor Hasniza Ibrahim1 and Mohamed Noor
Hasan2
1Department of Educational Science, Mathematics and Creative Multimedia, Faculty of Education, Universiti
Teknologi Malaysia // 2Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia //
knchee2@live.utm.my // p-afandy@utm.my // p-norhaniza@utm.my // mnoor@utm.my
*Corresponding author
(Submitted October 20, 2015; Revised March 22, 2016; Accepted June 2, 2016)
ABSTRACT
This study examined the longitudinal trends of mobile learning (M-Learning) research using text mining
techniques in a more comprehensive manner. One hundred and forty four (144) refereed journal articles
were retrieved and analyzed from the Social Science Citation Index database selected from top six major
educational technology-based learning journals based on Google Scholar metrics in the period from
January, 2010 to December, 2015. Content analysis was implemented for further analysis based on (a)
category of research purpose, (b) learning domain, (c) sample group, (d) device used, (e) research design,
(f) educational contexts (i.e., formal learning and informal learning), (g) learning outcome (i.e., positive,
negative and neutral), (h) periodic journal, (i) country, and (j) publisher. This review study of M-Learning
presents findings, which can become a layover platform and guidance for researcher, educators, policy
maker or even journal publisher for future research or reference in the realm of M-Learning regarding the
latest trends.
Keywords
Mobile learning, M-Learning, Research trends
Introduction
With the advent of mobile technologies, new paradigm of teaching and learning with technology aid had been
emerged, that is mobile learning (M-Learning). Mobile technologies purvey opportunities to hold new and
interesting methods of teaching and learning, both beyond and inside the classroom. Apropos to the teaching-
learning process, the integration of mobile devices into educational context has considerable benefits and
profoundly potential which consistence with Valero et al. (2012) who claimed that the technological features of
M-Learning are portability, immediacy, connectivity, ubiquity and adaptability. It enables collaboration among
pupils, knowledge creation, information searching and improved interaction and communication between teacher
and student. Moreover, it facilitates access to learning anytime and anywhere by enabling connectivity and the
employ of multiple apps for educational purposes (Fundación Telefónica, 2013). In short, M-Learning has been
recognized as one of the most influential technologies for education (Johnson, Adams, & Cummins, 2012).
Therefore, this paper intends to provide insights into the research trends and issues in the studies of M-Learning
through content analysis of selected journals from January, 2010 to December, 2015, covering six major
journals: (1) Computer & Education (C&E), (2) British Journal of Educational Technology (BJET), (3)
Educational Technology & Society (JETS), (4) Journal of Computer Assisted Learning (JCAL), (5) The Internet
and Higher Education (IHE) and (6) The International Review of Research in Open and Distance Learning
(IRODL).
This study reported herein, investigated longitudinal trends of M-Learning research with text mining techniques.
In sum, this study systematically reviews and synthesizes the relevant literature through a meta-analysis
(Creswell, 2002, pp. 351-353) to provide a more comprehensive analysis of previous studies.
Specifically, the present study poses the four research questions:
What are the sources of the article regarding periodic journal, publisher and country that were related to M-
Learning that were published in these selected journals from 2010 2015?
What are the main research purposes, sampling and outcome/conclusion that was related to M-Learning that
were published in these selected journals from 2010 2015?
What are the learning domains, device used, and educational context related to M-Learning that were
published in these selected journals from 2010 2015?
What types of research design have been applied in article research of M-Learning that were published in
these selected journals from 2010 2015?
114
Literature review
Definition of M-Learning
M-Learning, which means learning through mobile devices (such as smart mobile phones and tablet PCs), is
changing the educational environment by offering learners the opportunity to engage in asynchronous,
ubiquitous instruction (Hyman et al., 2014). M-learning is a teaching method that has the intersection between
mobile computing and e-learning (Quinn, 2000; Keengwe, 2014) that integrates several software and firmware
technology in multimedia applications (Lavín-Mera et al., 2008) which facilitate learning through a variety of
wireless mobile devices (Kukulska-Hulme, 2005; Stevens & Kitchenham, 2011) using wireless networks (WiFi)
or broadband services (Caudill, 2007) without limit in terms of location or time. (Kukulska-Hulme, 2005; Hussin
et al., 2012; Quinn, 2000). Furthermore, Keegan (2002) contemplates the possibility of M-Learning as a
harbinger of the future of learning.
M-Learning research
The use of mobile devices for educational purposes, recognized as M-Learning has gained substantial attention
from researchers in the technology-enhanced learning discipline. Recent research findings on using mobile
devices in different learning environments have exemplified their ability to effectively enhance students’ learning
knowledge. Understanding and experience in divergent subject areas such as science (Looi et al., 2011; Hwang
Wu, & Ke, 2011; Ahmed & Parsons, 2013), mathematics (Huang et al., 2012; Mahamad et al., 2010; Lan et al.,
2010), language and art (Yu et al., 2013; Martin & Ertzberger, 2013), social science (Shih et al., 2010),
engineering (Yang et al., 2013) and others. This promising role in education can tremendously be noticeable
within the informal and formal learning context, such as guiding an interactive tour with museum visits (Sung et
al., 2010; Hou et al., 2014) facilitating knowledge acquisition in field trips (Menkhoff & Bengtsson, 2012),
game-based learning (Young et al., 2012), in-class collaboration learning (Echeverría et al., 2011). Nevertheless,
there is always a contrasting scenario in every context, including M-Learning as Chu (2014) argued that the
performance of students, known to be “effective,” might be disappointing or may even negatively affect the
students” learning achievements if without proper treatment employed.
Previous review paper on M-Learning
In recent years, there were three literature reviews with high citation as in December, 2015 in Google scholar
studied on research trends in M-Learning. Literature review paper with the title, “Examining M-Learning trends
20032008: a categorical meta-trend analysis using text mining techniques” which written by Hung and Zhang
(2012) and cited 45 times according to Google Scholar, used text mining techniques to investigate research
trends in 144 academic articles based on five journal include Lecture Notes in Computer Science (LNCS), JETS,
JCAL, C&E, and International Journal of Engineering Education on mobile learning (IJEEML) from 2003 to
2008 taken from the SCI/SSCI database. In general, they investigated publication date, publication category,
taxonomy, article clusters, and country, university and journal of origin. Results showed that articles on M-
Learning increased from 8 in 2003 to 36 in 2008; the most popular domains in M-Learning studies are
effectiveness, evaluation, and personalized systems and studies on strategies and frameworks are more likely to
be published. Apart from that, they found that Taiwan is the most contributing country and university regarding
journal publications on M-Learning.
Another review paper entitled “Research trends in mobile and ubiquitous learning: a review of publications in
selected journals from 2001 to 2010” which written by Hwang and Tsai (2011) and cited 121 times according to
google scholar, reviews the advancement of mobile and ubiquitous learning research from 2001 to 2010 by
selecting 154 articles on mobile and ubiquitous learning based on the articles published in six major SSCI
journals included BJET, C&E, JETS, Educational Technology Research & Development (ETRD), JCAL and
Innovations in Education and Teaching International (IETI). It is found that the number of articles has
significantly increased during the past 10 years; moreover, researchers from other countries have contributed to
the related field in recent years. Scope of the review included a number of articles published, research sample
groups selected, research learning domains, and country of origin. They found out that research in mobile and
ubiquitous learning increase drastically in number between 2006 and 2010; higher education students were the
most frequent research sample, followed by elementary school students and high school students; most studies
did not explicitly focus on any particular learning domain but rather investigated the motivation, perceptions and
attitudes of students toward mobile and ubiquitous learning, along with course-orientation for engineering
115
(including computers), language and art, and science; and most articles were contributed from US-based authors,
followed by authors in the UK and Taiwan for the first five years and it was vice versa for the another second
five years.
Following these two literature reviews-based studies, another review paper entitled “Review of trends from M-
Learning studies: A meta-analysis” which written by Wu et al. (2012) and cited 162 times according to Google
scholar comes about to step into the breach since there were issues that still needed to be examined from other
directions such as the distribution of research purposes. This study takes a meta-analysis approach to
systematically review the literature of 144 studies based on the articles published in six major SSCI journals
included JCAL, Computer in Human Behavior (CHB), BJET, JETS, and IRODL from 2003 to 2010. Major
findings include that most studies of M-Learning focus on effectiveness, followed by M-Learning system design,
and surveys and experiments were used as the primary research methods. Apart from that, mobile phones and
PDAs are currently the most widely used devices for M-Learning, but these may be displaced by emerging
technologies. Moreover, most M-Learning studies feature positive outcomes and M-Learning is more prevalent
at higher education institutions, followed by elementary schools. In addition, the most highly-cited articles are
found to focus on M-Learning system design, followed by system effectiveness.
Apart from the above mentioned on high cited review paper, there were another review paper that ought to be
included in this section which is review paper entitled “Applications, impacts and trends of mobile technology-
enhanced learning: a review of 20082012 publications in selected SSCI journals” which written by Hwang and
Wu (2014) and cited 26 times according to Google scholar, reviews the 214 publications from 2008 to 2012 in
seven well-known SSCI journals of technology-enhanced learning included C&E, JETS, Educational
Technology Research and Development (ETRD), IETI, BJET, JCAL and Interactive Learning Environments
(ILE) as to examine on the applications and impacts of mobile technology-enhanced learning. It is found that M-
Learning is promising in improving students” learning achievements, motivations and interests with proper use
of mobile technologies and education design together with proper support and strategy; top four applications
were language learning, environmental and ecological education, engineering and computer education and
historical and cultural education; most of the applications were conducted both indoor and outdoor activities
indoors, followed by indoor and then outdoor; smartphones and followed by Personal Digital Assistants (PDAs)
are the most frequently used M-Learning devices, and only then tablet PCs, but smartphones and tablet PCs had
replaced on the use of PDAs in educational settings which started from 2011 and 2012; mobile technologies have
been increasingly applied to formal and informal.
After all, recent literature review paper seems to be filling in the breach of previous review papers, which were
incomplete and act as complementary. This study adopts a meta-analysis method in examining trends in M-
Learning studies in term of the various criteria across years in the period under review comprehensively all in
one as to refine and update with the most present M-Learning trend. These findings may provide insights for
researchers and educators, even policy makers into research trends in M-Learning.
Method
Data sources and search strategies
This study examines the M-Learning papers published in the SSCI database from 2010 to 2015. Top six major
educational technology-based learning journals were selected to analyze the research trends, including the (1)
C&E, (2) BJET, (3) JETS, (4) JCAL, (5) IHE and (6) IRODL. These journals are widely accessed with high
impact factors based on top publication reports released by the Google Scholar metrics. The thorough and
plenary searching were through manual electronic searches of the following databases: Science Direct for journal
(1) and (5), ProQuest for journal (3) and (6) and Wiley Online Library for journal (2) and (4).
Two researchers who have had years of experience carrying out studies in this area were asked to filter the M-
Learning studies from the 1338 papers published by these six journals (378 from BJET, 61 from JCAL, 492 from
C&E, 70 from IHE, 243 from JETS, and 94 from IRODL) from 2010 to 2015. Only papers that were identified
as being of the type “articles” in the SSCI were considered; that is, publications such as “book reviews,
“letters, “colloquium, “conference paper, “workshop paper, “presentation paper, “book chapter,”
proceeding,” “thesis,“dissertation” and “editorial materials” were all excluded from this study. We intend to
include all of the papers published in these journals about Mobile Learning and M-Learning without utilizing
other filtering criteria. It is expected that such a review can provide a more thorough view of M-Learning
research. To be more precise in selecting the M-Learning articles from the candidate pool, the articles selected by
116
the two researchers were compared to see if there were inconsistent selections, and if so, these selections were
shown to the researchers for further discussion. A total of 144 studies concerning M-Learning were selected after
two iterations of filtering the papers and discussing on the inconsistency of decisions.
Data coding and analysis
Ten features related to the quality of study research methodology were coded, including (a) category of research
purpose, (b) learning domain, (c) sample group, (d) device used, (e) research design, (f) educational contexts
(i.e., formal learning and informal learning), (g) learning outcome (i.e., positive, negative and neutral), (h)
periodic journal, (i) country, and (j) publisher.
This study uses the methodology of content analysis to analyze trends and issue about M-Learning. Stemler
(2001) confirmed that content analysis indeed is a powerful method for examining trends and patterns in
documents. It is also a useful technique to discover and describe the focus of individual, group, institutional or
social attention (Weber, 1990). By conducting a content analysis from the 144 selected journals in the timeframe
of 2010 to 2015, this study will look out for issues and trend that underlies the studies of M-Learning currently.
Besides that, this study cross-examines papers related to M-Learning; published in six selected journals from
2010 to 2015. Three databases were chosen for the cross-examine purpose. The different databases were chosen
due to the availability of certain journals and accessibility of the abstract and full text of the selected articles. The
databases were; ProQuest Education Journals, Science Direct and Wiley Online Library. Google scholar as a
search engine was also used for the purpose above.
The first procedure in conducting this research is setting three items to search for the related articles in all
databases above. They are; (1) Selected Journal Name for Journal Name, Publication Title or Journal Title
column, (2) mobile learning for Topic or Title column and (3) 2010-2015 in Time span, Year or Coverage
column. This step is important to ensure standardization in order to search the related articles in spite of the
different interface between all databases.
There were 162 articles have been identified from the first procedure. The next procedure consists of further
comprehensive review, which needs the researchers to examine 162 articles carefully to determine the articles
which is related to M-Learning. Finally, a total of 144 articles were selected for the analysis.
Trend analysis
Trend analysis of an article can show the periodic discussion taking place in a knowledge discipline (Erford et
al., 2010). In the analysis of trend and frequency, justification for selection of articles is found in the BJET,
JETS, C&E, ETS, IHE and IRODL only.
Content analysis
Based on content analysis or the process of summarizing and reporting of written data (Hsieh & Shannon, 2005).
The research topics in the articles selected for analysis were categorized involves counting and comparisons
according to key words in the given abstracts and content, issues discussed as well as research scope followed by
the interpretation of the underlying context. Throughout the data analysis carried out, each category identified
was further clarified using thematic analysis.
Result
Research question 1
Trend of periodic journal contributing to M-Learning field across the years
As depicted in Figure1 and Table 1, out of top six major educational technology-based learning journals that
were selected to analyze the research trends, which including the C&E, BJET, JETS, JCAL, IHE and IRODL, it
is obvious that JETS (26.39%) were the most contributing journal towards M-Learning field till peak in 2014
then drop abruptly in 2015, which causes BJET (27.78%) leads in front for the six year period due to its sudden
117
increment in 2015. This rank is followed by C&E (23.61%), IRODL (13.89%), JCAL (6.26%) and IHE (2.08%).
BJET and C&E saw a dramatically growth between the six year period. The rest fluctuated unevenly over the
years. Overall, there is a tremendous increment in total from year to year except in 2011.
Table 1. Distribution of M-Learning studies by periodical journal across years from 2010 to 2015
Year
Periodical Journal
2010
2011
2013
2014
2015
Sum
C&E
1
3
6
3
15
34
BJET
1
2
5
11
13
40
JETS
12
2
6
14
2
38
JCAL
2
2
1
2
1
9
IHE
0
0
1
0
2
3
IRODL
1
5
3
3
5
20
Sum
17
14
22
33
38
144
Figure 1. Distribution of M-Learning studies by periodical journal across years from 2010 to 2015
Trend of publishers that contributing to M-Learning field across the years
Two periodic journals embodied in each publisher database. Science Direct consist of journal C&E and IHE,
while ProQuest comprises of journal JETS and IRODL and whereas Wiley Online Library contain journal BJET
and JCAL. Since database sources are linked to the periodic journal, it is acceptable that ProQuest headed up all
the rest and so violently increase in between 2012 to 2014 due to the proliferation of total number of journal
JETS and IRODL followed by Wiley Online Library and Science Direct as illustrated in Figure 2. Apart from
that, Wiley Online Library rises gradually along these years while Science Direct shown considerable fall in
2014 and then increase tremendously in 2015 due to the proliferation of journal C&E in 2015.
Figure 2. Distribution of M-Learning studies by publisher database across years from 2010 to 2015
Trend of countries that contributing to M-Learning field across the years
As indicated in Figure 3, it is perceivable that more country has contributed their research on M-Learning as
there are new emerging country like China, Malaysia, Sri Lanka, Pakistan, Iran and several more. This may due
to the existence of awareness on the significance of M-Learning as a new and trendy teaching and learning
paradigm in this advent of the technology era. Conspicuously, Taiwan is the most dominance country
contributing to M-Learning research with the total up across the years at 25.30%, followed by USA (15.06%),
118
United Kingdom (7.23%), Singapore (6.63%), Turkey (6.02%), Canada (5.42%), and others country with
percentage less than five percent.
Figure 3. Distribution of M-Learning studies by country across years from 2010 to 2015
Research question 2
Trend of issue category regarding M-Learning across the years
Articles were categorized into one of four categories according to its research purpose: (1) evaluating the effects
of M-Learning, (2) designing a mobile system for learning, (3) elicit perceptions of M-Learning, (4) review on
M-Learning or (5) evaluate or explore the factor towards M-Learning. As delineated in Figure 4, evaluating the
effects of M-Learning was the most common research purpose (52.53%) which mainly covered large portion of
the stacked area line chart across years, followed by review on M-Learning (17.09%), evaluate or explore the
factor towards M-Learning (15.82%), elicit perceptions of M-Learning (7.59%) and designing a mobile system
for learning (6.96%). Category of evaluating the effects of M-Learning start to increase progressively in 2012 till
2015. For the category of evaluating or explore the factor towards M-Learning, it showed gradually rising along
these years. Nevertheless, the rest categories had shown fluctuation along these years.
Figure 4. Distribution of M-Learning studies by issue category across years from 2010 to 2015
Trend of sampling taken regarding M-Learning across the years
By exclusion from review paper, Figure 5 shows that M-Learning research mainly focuses on higher education
institution (36.17%), followed by not specific (35.11%), elementary or primary school (21.28%), High or
Secondary School (6.38%) and the rest were working adult. There was a sharp shoot up in 2014 for the number
119
of articles using higher education as sample institution while the rest was showing up and down unstably.
Besides, Fig. 6 indicates that higher education student leads the trend (50.75%), followed by elementary or
primary school student (19.40%), elementary or primary school teacher (13.43%), high or secondary school
student (7.46%) and lastly tailed by higher education instructor (1.49%). A number of articles that were utilizing
higher education students as the sample are topping all others sample, but it's shown unstably fluctuate as others
sample except in year 2015.
Figure 5. Distribution of M-Learning studies by sample institution across years from 2010 to 2015
Figure 6. Distribution of M-Learning studies by sample individual across years from 2010 to 2015
Trend of outcome/conclusion resulting in M-Learning across the years
Despite of irrelevant outcome (37.66%) synthesized by others from the evaluating effect purpose, Figure 7
indicates that 52.60% of studies reported positive research outcomes, while only 6.49% and 3.25% respectively
reported neutral and negative outcomes generated from the journal with evaluating effect purpose. All the
outcomes showed a steady increase along the period.
120
Figure 7. Distribution of M-Learning studies by outcome across years from 2010 to 2015
Research question 3
Trend of learning domain regarding M-Learning across the years
Regardless of journal without specific on learning domain with reach 53.06%, a majority of published M-
Learning studies focused on two subject areas: Science (12.24%) and Language and Art (12.93%). Additional
studies were conducted in fields like Social Science (8.16%), others (6.80%), Engineering (4.08%), and
Mathematics (2.72%). Despite of that, Science, and Language and Art peaked in 2015 although all categories
shown up down pattern.
Figure 8. Distribution of M-Learning studies of learning domain across the years from 2010 to 2015
Trend of device used regarding M-Learning across the years
Mobile phone in this study referred to the basic cell phone without the function that exist in a smartphone, which
included 3G/4G, or Wi-Fi connection. Term of smartphone used in this study is a general term without specifying
in android or iOS as a platform. In spite of journal without specific stated device used (57.02%), Fig. 9 indicates
that, among the 144 studies, smart phone was most commonly used for M-Learning (14.09%), followed by
PDAs (8.05%), mobile phone (7.38%), tablet (5.37%), iPad (4.70%), iPhone (2.68%), and iPod (1.34%) in total.
All the line moves unstable along the period as the preferred device used in M-Learning research, however, it
can be observed that PDA has shown a sharp drop starting in the year 2013.
121
Figure 9. Distribution of M-Learning studies by device used across the years from 2010 to 2015
Trend of educational context regarding M-Learning across the years
As can be seen in Figure 10, informal learning (11.11%) was predominant in the M-Learning studies compared
to formal (8.33%) and a combination of both (6.25%). Formal line and informal line showed gradual increase
along these years while a combination of formal and informal line shown up and down.
Figure 10. Distribution of M-Learning studies by educational context across years from 2010 to 2015
Research question 4
Trend of research design regarding M-Learning across the years
Quantitative approach (47.92%) is the most employed research designs for M-Learning research studies,
followed by a mixed method (18.75%) and Qualitative (14.58%) as depicted in Figure 11. Out of 144 articles
analyzed, there were 18.75% articles with no specific approach due to the existence of the review paper. There
was a dramatically shot up shown by the quantitative design line in 2012, whereas others shown unstable rise
and fall across the years.
122
Figure 11. Distribution of M-Learning studies by research design across the years from 2010 to 2015
Discussion
Based on several studies selected and merely four literature review papers as reference, this review paper can be
produced in a more detailed and refined even up-to-dated all in one version. This is because in the previous three
review papers on M-Learning recently authored by Hwang and Tsai (2011), Hung and Zhang (2012), Wu et al.
(2012), and Hwang and Wu (2014) are just a compliment to each other with the older version of the newborn.
Wu et al. (2012) reproved on the previous two is still incomplete in their criteria and the topic being further
explored from different directions. This study imparts comprehensive results and new findings. For example, this
research found that most M-Learning research paper could be obtained in certain journals like JETS, BJET and
C&E whereas in a database like ProQuest based on the frequency count and even country that most M-Learning
research is derived from Taiwan followed by the USA which in line with Hung and Zhang (2012). There were
more findings that will further describe at below.
Taiwan is the most dominance country contributing to M-Learning research
As claimed by Hung and Zhang (2012) in the research period, and Hwang and Tsai (2011) in the second half
period, Taiwan has become the top country regarding M-Learning research which corresponds with finding in
this paper.
BJET and JETS are the most Periodic Journal while ProQuest is the most Publisher Contributing to M-
Learning Field
From the result, it is affirmed that BJET and JETS are the most Periodic Journal while ProQuest is the most
Publisher Contributing to M-Learning Field.
Most studies of M-Learning focus on effectiveness, followed by M-Learning review
Out of the 144 studies, 52.53% took evaluating the effectiveness of M-Learning as the main research purpose as
depicted in Figure 4. This focus on effectiveness evaluation is in line with Wu et al. (2012), and Hung and Zhang
(2012). The second-most frequently cited research purpose was M-Learning review, which is also a new finding
which is contrary to Wu et al. (2012), and Hung and Zhang (2012). More importantly, we found that the number
of studies devoted to all M-Learning research increased over time, which supported by Hwang and Tsai (2011)
and Hung and Zhang (2012). This may be due to the advent of mobile technology and the enormous advantages
that bring along with and mean that the trends are still keep increasing till to date.
123
Most M-Learning studies took samples from a higher education institution, followed by the elementary or
primary school
As seen in Figure 5, the result which consistent with Wu et al. (2012) revealed that higher education institution is
the main sampling pool regarding to M-Learning research may be due to the convenience factor. This is because
researchers mostly were originated in university or college. Primary school is the next most sampling taken
from. Reason behind this need to be justified in the future research. As a result, there is tremendous room for
research to be carried out for others sample such as secondary or high school and working adult.
Most M-Learning studies took higher education students as sample, followed by elementary or primary
school student
As shown in Figure 6, the result which consistent with Hwang and Tsai (2011) revealed that higher education
student is the main sampling pool regarding to M-Learning research may be due to the convenience factor, the
same reason as a sampling institution above. Again, this is because researchers mostly were originated in
university or college. The primary school student is the next most sampling taken from. Reason behind this need
to be justified in the future research. As a result, there are tremendous room for research to be carried out for
others sample such as working adult, primary or elementary school teacher, secondary or high school teacher and
student.
Most M-Learning studies feature positive outcomes
Figure 7 shows that most of the 144 M-Learning studies present positive outcomes. This finding corresponds to
the finding from (Wu et al., 2012). Neutral outcome ranked next and negative outcome ranked the least.
M-Learning most frequently support learning in the Language and Art, followed by Science
Figure 8 illustrates that studies on M-Learning in educational contexts, most frequently focus on use in
supporting subject Language and Art, followed by the Science, Social Science, others, Engineering and
Mathematics. In terms of M-Learning activity in various sub-disciplines, our findings partially support those of
Wu et al. (2012), and Hwang and Wu (2014) but fully support to Hwang and Tsai (2011). For instance, Wu et al.
(2012), and Hwang and Wu (2014) showed M-Learning was often used in language courses. Profoundly, the
present study found that M-Learning is also widely used in courses related to Science, Social Science,
engineering and others but considerably less in other courses such as Mathematics. Nevertheless, there is scarcity
of M-Learning research in the related fields should be emphasized in the future research conducted as to fill in
the gap.
Smartphone currently is the most widely used devices for M-Learning
The type of devices that were used in the context of M-Learning is influenced by the mobile consumer
preference. Figure 9 indicates that smartphones are most widely used as teaching and learning tool in educational
contexts corresponds with the Mobile Consumer Report (Nielson, 2013) which stated that smartphone owners
may be the majority of mobile users in countries like the US and UK PDAs ranked second as it has been used as
learning tools a decade ago and thus supporting the result from Wu et al. (2012), and Hwang and Wu (2014) but
it is shown a sharp drop starting in year 2013 due to displacement of smartphones and tablet PCs as emerging
technologies over the use of PDAs in educational settings consistent with Wu et al. (2012), and Hwang and Wu
(2014).
McQuiggan et al. (2015) affirmed that it is widely predicted that mobile devices are the wave of the
foreseeable future in educational technology. Thus, through the advancement of technology, the invention of new
mobile devices will never come to an end and it will be applied to the educational context if its efficacy towards
the field. This is supported when Martin et al. (2011) used predictions from 2004 to 2010 (i.e., from seven
Horizon Reports), which cover the period 20042014, to analyze the technologies that have impacted education
in the past or are likely to have an impact in the future. Horizon report 2007 predicted that the use of mobile
phones in M-Learning, particularly in higher education, would increase dramatically after 2009, which
corresponds with our findings.
124
Informal learning is the most preferred approach carried out along with M-Learning
As depicted in Figure 10, informal learning dominates the M-Learning context which in line with Traxler (2007)
claimed that M-Learning definition can emphasize those unique attributes that position it within informal
learning, rather than formal.
Most M-Learning studies adopted quantitative method as the primary research design
Figure 11 shows that, among the 144 studies, quantitative approaches were favored over mixed method approach
and qualitative approaches. This finding corresponds with finding from Wu et al. (2012).
Conclusions
Three previous literature review-based studies on the use of M-Learning in academic contexts provided valuable
insights, but they were just a compliment amongst them to cover up their incompleteness. This study was
conducted a systematic meta-analysis to provide more comprehensive analysis of past studies, refined on
previous review studies, and discusses the implications of new findings.
The current study presents nine new findings: (1) Taiwan is the most dominance country contributing to M-
Learning research. (2) BJET and JETS are the most periodic journal while ProQuest is the most publisher,
contributing to the M-Learning field. (3) Most studies of M-Learning focus on effectiveness, followed by M-
Learning review. (4) Most M-Learning studies took sample from higher education institution, followed by
elementary or primary school. (5) Most M-Learning studies took higher education students as sample, followed
by elementary or primary school student. (6) Most M-Learning studies feature positive outcomes. (7) M-
Learning most frequently supports learning in the Language and Art, followed by Science. (8) Smartphone
currently is the most widely used devices for M-Learning. (9) Informal learning is the most preferred approach
carried out along with M-Learning. (10) Most M-Learning studies adopted quantitative method as the primary
research design. As a conclusion, this study of issues in M-Learning presents findings, which can become a
layover platform and guidance for researchers, educators, policy makers or even journal publishers for future
research or reference in the realm of M-Learning.
Implications for research and practice
The findings of this study contribute to an in-depth understanding of M-Learning, by providing a broad and a
longitudinal overview of reputable publications according to Google Scholar metrics. It provides a quick,
comprehensive overview for scholars interested in publications on M-Learning. For instance, researchers know
which journal to be targeted on when M-Learning take its place. It has also identified the topics and areas that
have been studied more intensively regarding M-Learning. Furthermore, the findings suggest topics and areas
needing additional research to fill in the gap. Thus, researchers should pay more attention to the gap that is a
scarcity of research and development of M-Learning in order to synthesize knowledge in the field.
As an emerging research method, text mining enables researchers to obtain summative information in virtually
any given field. This study illustrates the power and potential of text mining techniques to discover research
patterns, themes, and trends. These techniques enable scholars to pay more attention to data interpretation and
pattern analysis, comparing to traditional information processing or data (content) analysis.
For government policy makers, the findings will provide supporting information to enhance understanding of
research strengths and weaknesses, which in turn can influence decision-making and policy change towards the
advancement in educational discipline.
For researchers, this finding will give a bigger picture on how importance of M-Learning as it gains more and
more attention from all over the world due to the proliferation of country that have embarked on this new and
trendy paradigm of teaching and learning method in education fields. Researchers and educators will ascertain
on where to find about and target on M-Learning research with remarkable quantity and quality articles.
For journal publishers, this finding will notify on the statistics about M-Learning research published in their
journal or even their database so that call for paper on M-Learning will be ushered in as to lure more papers
125
regarding M-Learning into particular journal publisher if it is necessary and create a healthy competition in the
publication battlefield.
Limitation of the study
The results and conclusion are limited and not intended to be exclusive. SSCI journals adopt stringent journal
reviewing criteria. Articles might take 2 years from submission to publication. In addition, the SSCI database
does not collect conference proceedings in education. Therefore, the findings in this study may not reflect the
most recent research trends.
This study used only two search terms to analyze M-Learning publications from the beginning of 2010 to year
end of 2015 collected in the SSCI databases at that time. Future studies with greater resources, using more search
terms, are needed to expand these findings.
References
Ahmed, S., & Parsons, D. (2013). Abductive science inquiry using mobile devices in the classroom. Computers &
Education, 63, 62-72.
Caudill, J. G. (2007). The Growth of M-Learning and the growth of mobile computing: Parallel developments. The
International Review of Research in Open and Distributed Learning, 8(2). doi:10.19173/irrodl.v8i2.348
Chu, H. C. (2014). Potential negative effects of mobile learning on students’ learning achievement and cognitive loada
format assessment perspective. Journal of Educational Technology & Society, 17(1), 332-344.
Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative. Upper Saddle River, NJ:
Prentice Hall.
Echeverría, A., Nussbaum, M., Calderón, J. F., Bravo, C., Infante, C., & Vásquez, A. (2011). Face-to-face collaborative
learning supported by mobile phones. Interactive Learning Environments, 19(4), 351-363.
Erford, B. T., Miller, E. M., Duncan, K., & Erford, B. M. (2010). Submission patterns: Measurement and Evaluation in
Counseling and Development Author and article characteristics from 1990 to 2009. Measurement and Evaluation in
Counseling and Development, 42, 296 307. doi:10.1177/0748175609354619
Fundación Telefónica (2013). Guía mobile learning [Mobile Learning Guide]. Retrieved from
http://curalia.fundaciontelefonica.com/wp-content/uploads/2013/01/Guia_MobLearning.pdf
Hou, H. T., Wu, S. Y., Lin, P. C., Sung, Y. T., Lin, J. W., & Chang, K. E. (2014). A Blended mobile learning environment for
museum learning. Journal of Educational Technology & Society, 17(2), 207-218.
Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9),
1277-1288.
Huang, S. H., Wu, T. T., Chen, H. R., Yang, P. C., & Huang, Y. M. (2012). Mathematics Assisted Instruction System of M/U-
Learning Environment. In Wireless, Mobile and Ubiquitous Technology in Education (WMUTE), 2012 IEEE Seventh
International Conference on (pp. 301-305). doi:10.1109/WMUTE.2012.72
Hung, J. L., & Zhang, K. (2012). Examining mobile learning trends 20032008: A Categorical meta-trend analysis using text
mining techniques. Journal of Computing in Higher education, 24(1), 1-17.
Hussin, S., Manap, M. R., Amir, Z., & Krish, P. (2012). Mobile learning readiness among Malaysian students at higher
learning institutes. Asian Social Science, 8(12), 276-283. doi:10.5539/ass.v8n12p276
Hwang, G. J., & Tsai, C. C. (2011). Research trend in mobile and ubiquitous learning: a review of publications in selected
journal from 2001 to 2010. British Journal of Education Technology, 42(4), E65E70.
Hwang, G. J., Wu, P. H., & Ke, H. R. (2011). An Interactive concept map approach to supporting mobile learning activities
for natural science courses. Computers & Education, 57(4), 2272-2280.
Hwang, G. J., & Wu, P. H. (2014). Applications, impacts and trends of mobile technology-enhanced learning: A Review of
20082012 publications in selected SSCI journals. International Journal of Mobile Learning and Organisation, 8(2), 83-95.
Hyman, J. A., Moser, M. T., & Segala, L. N. (2014). Electronic reading and digital library technologies: Understanding
learner expectation and usage intent for mobile learning. Educational Technology Research and Development, 62, 35- 52
Johnson, L., Adams, S., & Cummins, M. (2012). The NMC horizon report: 2012 higher education edition. Austin, Texas: The
New Media Consortium.
126
Keegan, D. (2002). The Future of learning: From eLearning to mLearning. Hagen, Germany: FernUniversity. (ERIC
Document Reproduction Service No. ED 472 435)
Keengwe, J. & Maxfield, M. B. (2014). Advancing higher education with mobile learning technologies: Cases, trends, and
inquiry-based methods. Hershey, PA: IGI Global.
Kukulska-Hulme, A. (2005). Mobile learning: A Handbook for educators and trainers. Psychology Press.
Lan, Y. J., Sung, Y. T., Tan, N. C., Lin, C. P., & Chang, K. E. (2010). Mobile-device-supported problem-based computational
estimation instruction for elementary school students. Journal of Educational Technology & Society, 13(3), 55-69.
Lavín-Mera, P., Moreno-Ger, P., & Fernández-Manjón, B. (2008). Development of educational videogames in M-Learning
contexts. In Digital Games and Intelligent Toys Based Education, 2008 Second IEEE International Conference on (pp. 44-
51). doi:10.1109/DIGITEL.2008.21
Looi, C. K., Zhang, B., Chen, W., Seow, P., Chia, G., Norris, C., & Soloway, E. (2011). 1: 1 mobile inquiry learning
experience for primary science students: A Study of learning effectiveness. Journal of Computer Assisted Learning, 27(3),
269-287.
Mahamad, S., Ibrahim, M. N., & Taib, S. M. (2010). M-learning: A New paradigm of learning mathematics in
Malaysia. International Journal of Computer Science and Information Technology, 2(4), 76-86. doi:10.5121/ijcsit.2010.2407
Martin, F., & Ertzberger, J. (2013). Here and now mobile learning: An Experimental study on the use of mobile
technology. Computers & Education, 68, 76-85.
Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: Seven years
of forecasts and convergence. Computers & Education, 57(3), 1893-1906.
McQuiggan, S., McQuiggan, J., Sabourin, J., & Kosturko, L. (2015). Mobile learning: A Handbook for developers,
educators, and learners. Hoboken, NJ: John Wiley & Sons.
Menkhoff, T., & Bengtsson, M. L. (2012). Engaging students in higher education through mobile learning: Lessons learnt in a
Chinese entrepreneurship course. Educational Research for Policy and Practice, 11(3), 225-242.
Nielson. (2013). The Mobile consumer: A Global snapshot. Retrieved from
http://www.nielsen.com/content/dam/corporate/uk/en/documents/Mobile-Consumer-Report-2013.pdf
Quinn, C. (2000). mLearning: Mobile, wireless, in-your-pocket learning. LiNE Zine, 2006. Retrieved from
http://www.linezine.com/2.1/features/cqmmwiyp.htm
Shih, J. L., Chuang, C. W., & Hwang, G. J. (2010). An Inquiry-based mobile learning approach to enhancing social science
learning effectiveness. Journal of Educational Technology & Society, 13(4), 50-62.
Stemler, S. (2001). An Overview of content analysis. Practical assessment, research & evaluation, 7(17), 137-146.
Stevens, D., & Kitchenham, A. (2011). An Analysis of mobile learning in education, business and medicine. In Models for
interdisciplinary mobile learning: Delivering information to students (pp. 1-25). doi:10.4018/978-1-60960-511-7.ch001
Sung, Y. T., Hou, H. T., Liu, C. K., & Chang, K. E. (2010). Mobile guide system using problem‐solving strategy for museum
learning: a sequential learning behavioural pattern analysis. Journal of computer assisted learning, 26(2), 106-115.
Traxler, J. (2007). Defining, discussing and evaluating mobile learning: The Moving finger writes and having writ.... The
International Review of Research in Open and Distributed Learning, 8(2). doi:10.19173/irrodl.v8i2.346
Valero, C. C., Redondo, M. R., & Palacín, A. S. (2012). Tendencias actuales en el uso de dispositivos móviles en educación
[Current trends in the use of mobile devices in education]. La Educación Digital Magazine, 147, 1-21. Retrieved from
http://educoas.org/portal/la_educacion_digital/147/pdf/ ART_UNNED_EN.pdf
Weber, R. P. (1990). Basic content analysis (No. 49). Newbury Park, CA: Sage.
Wu, W. H., Wu, Y. C. J., Chen, C. Y., Kao, H. Y., Lin, C. H., & Huang, S. H. (2012). Review of trends from mobile learning
studies: A Meta-analysis. Computers & Education, 59(2), 817-827.
Yang, G., Chen, N. S., Sutinen, E., Anderson, T., & Wen, D. (2013). The Effectiveness of automatic text summarization in
mobile learning contexts. Computers & Education, 68, 233-243.
Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., Simeoni, Z., Tran, M., & Yukhymenko, M. (2012). Our
princess is in another castle a review of trends in serious gaming for education. Review of educational research, 82(1), 61-89.
Yu, Y. S., Lin, Y. Y., Huang, Y. L., & Hsieh, W. H. (2013). The Evaluation of use the mobile phone learning English in
Taiwan. International Journal of Information and Education Technology, 3(2), 189-191.
... These results, which are confirmed by the Greek and international relevant literature, can form the basis of future studies that will focus on the use of smart mobile devices in Secondary Education, in the context of formal Σήμερα, ο σύγχρονος κόσμος βιώνει τη διάχυση της κινητής (φορητής) τεχνολογίας σε πληθώρα πεδίων της καθημερινής ζωής, όπως στην οικονομία, στη διασκέδαση, στον τουρισμό, στην υγειονομική περίθαλψη και στην εκπαίδευση (Kanaki et al., 2022;Νικολοπούλου & Χατζηγεωργίου, 2019). Τα τελευταία χρόνια, τα έξυπνα κινητά τηλέφωνα και οι ταμπλέτες αποτελούν τα πιο διαδεδομένα προϊόντα ψηφιακής τεχνολογίας, με τα έξυπνα κινητά τηλέφωνα να είναι ιδιαίτερα δημοφιλή στους εφήβους (Bernacki, Greene, & Crompton, 2020;Chee, Yahaya, Ibrahim, & Hasan, 2017;Nikolopoulou, 2018). Το γεγονός αυτό, πυροδότησε την εμφάνιση και την ενίσχυση σύγχρονων μορφών μάθησης, όπως αυτές της ηλεκτρονικής μάθησης (eleanring) και της κινητής μάθησης (m-leanring), που ενσωματώνουν και αξιοποιούν τη φορητή τεχνολογία στην εκπαιδευτική διαδικασία, με απώτερο σκοπό την ενίσχυση της μάθησης μέσα και έξω από το σχολείο (Chee et al., 2017;Leem & Sung, 2019;Nikolopoulou, 2020;Papadakis, Zaranis, & Kalogiannakis, 2019;Statti & Villegas, 2020;Ανδρεδάκης & Καλογιαννάκης, 2022). ...
... Τα τελευταία χρόνια, τα έξυπνα κινητά τηλέφωνα και οι ταμπλέτες αποτελούν τα πιο διαδεδομένα προϊόντα ψηφιακής τεχνολογίας, με τα έξυπνα κινητά τηλέφωνα να είναι ιδιαίτερα δημοφιλή στους εφήβους (Bernacki, Greene, & Crompton, 2020;Chee, Yahaya, Ibrahim, & Hasan, 2017;Nikolopoulou, 2018). Το γεγονός αυτό, πυροδότησε την εμφάνιση και την ενίσχυση σύγχρονων μορφών μάθησης, όπως αυτές της ηλεκτρονικής μάθησης (eleanring) και της κινητής μάθησης (m-leanring), που ενσωματώνουν και αξιοποιούν τη φορητή τεχνολογία στην εκπαιδευτική διαδικασία, με απώτερο σκοπό την ενίσχυση της μάθησης μέσα και έξω από το σχολείο (Chee et al., 2017;Leem & Sung, 2019;Nikolopoulou, 2020;Papadakis, Zaranis, & Kalogiannakis, 2019;Statti & Villegas, 2020;Ανδρεδάκης & Καλογιαννάκης, 2022). Η κινητή μάθηση από πολλούς ερευνητές θεωρείται η επέκταση της ηλεκτρονικής μάθησης. ...
... Τα έξυπνα κινητά τηλέφωνα, τα οποία αντικατέστησαν τους προσωπικούς ψηφιακούς βοηθούς που χρησιμοποιούνταν ευρύτατα την προηγούμενη δεκαετία, είναι οι πιο διαδεδομένες κινητές συσκευές που χρησιμοποιούνται ως εργαλεία μάθησης και διδασκαλίας (Chee et al., 2017). Πρόκειται για κινητές συσκευές που παρέχουν τη δυνατότητα σε εκπαιδευόμενους και εκπαιδευτικούς να έχουν πρόσβαση στο προσωπικό τους ηλεκτρονικό ταχυδρομείο, σε βίντεο, σε πληροφορίες στο Διαδίκτυο και σε μαθησιακό υλικό, ενώ ταυτόχρονα τους επιτρέπουν να υλοποιούν ομαδικές εργασίες (Nikolopoulou, 2018). ...
Article
Full-text available
Στις μέρες μας, η καθημερινότητα των παραγωγικών μελών των σύγχρονων κοινωνιών είναι δομημένη γύρω από τις έξυπνες φορητές συσκευές και τις εφαρμογές τους, οι οποίες εξυπηρετούν κοινωφελείς υπηρεσίες και αγαθά, όπως η υγεία και η εκπαίδευση. Όσον αφορά στην εκπαίδευση, τα τελευταία χρόνια παρατηρούμε την εκπαιδευτική, ερευνητική και ακαδημαϊκή κοινότητα να εξετάζει επισταμένως μεθόδους αξιοποίησης και ενσωμάτωσης των έξυπνων φορητών συσκευών στην εκπαιδευτική διαδικασία, στοχεύοντας στην αναβάθμιση της μαθησιακής εμπειρίας. Το παρόν άρθρο παρουσιάζει σχετική έρευνα μικρής κλίμακας, στην οποία υιοθετήθηκαν οι αρχές της ποσοτικής μεθοδολογίας για τη συλλογή δεδομένων. Η έρευνα διεξήχθη στο Ηράκλειο της Κρήτης το εαρινό εξάμηνο του σχολικού έτους 2021-2022, με συμμετέχοντες και 127 εκπαιδευτικούς Δευτεροβάθμιας Εκπαίδευσης. Ως ερευνητικός στόχος τέθηκε η διερεύνηση των αντιλήψεων των εκπαιδευτικών Γυμνασίων και Λυκείων σχετικά με την ενσωμάτωση της κινητής μάθησης στο εκπαιδευτικό γίγνεσθαι. Επιπλέον, εξετάστηκαν το φύλο, η ηλικία, η διδακτική εμπειρία και η ειδικότητα των εκπαιδευτικών ως πιθανοί παράγοντες διαμόρφωσης των αντιλήψεών τους. Η στατιστική ανάλυση των ερευνητικών δεδομένων ανέδειξε ότι οι εκπαιδευτικοί αναγνωρίζουν τα οφέλη που απορρέουν από την αξιοποίηση της κινητής τεχνολογίας στη σχολική τάξη. Επιπλέον, διαφάνηκε ότι οι αντιλήψεις των εκπαιδευτικών για την κινητή μάθηση δεν επηρεάζονται από το φύλο, την ηλικία, τη διδακτική εμπειρία και την ειδικότητά τους. Αυτά τα αποτελέσματα μπορούν να αποτελέσουν τη βάση μελλοντικών μελετών που θα επικεντρώνονται στην αξιοποίηση των έξυπνων φορητών συσκευών στη Δευτεροβάθμια Εκπαίδευση, στα πλαίσια της τυπικής μάθησης.
... In the digital age, technology plays a crucial role in supporting the learning process and is rapidly expanding worldwide (Alqahtani, 2019;Jie & Sunze, 2023). Integrating technology in education has led to innovative teaching and learning approaches, leveraging advanced tools to enhance educational paradigms (Chee et al., 2017). Twenty-first-century citizens now live in a world where AI is universal and widely confirmed as a tool that can improve and progress every aspect of our lives (Gorriz et al., 2020). ...
... In the digital age, technology is viewed as an efficient way to support the learning process (Alqahtani, 2019), which is quickly spreading throughout the world (Jie & Sunze, 2023). According to Chee et al. (2017), the rise of technology has catalyzed the advent of innovative approaches to teaching and learning, leveraging advanced technological support to enhance educational paradigms. Therefore, technology integration in language education has emerged as a crucial area of focus in contemporary pedagogy. ...
Article
Artificial Intelligence (AI) presents different opportunities for enhancing personalized learning experiences within the field of English as a Foreign Language (EFL) education. Its capacity for adaptive learning is particularly noteworthy, as it caters to individual students’ unique styles. In this context, the purpose of this study was to investigate the impact of Fliki AI videos on EFL teaching and learning and determine students’ perceptions of their use. The participants included 84 pre-service EFL teachers at a private university in Ecuador. A mixed-method design was used to analyze quantitative and qualitative data. Instruments were diagnostic and perception questionnaires and an interview. The main findings revealed that Fliki AI videos effectively enhanced student engagement and comprehension. Additionally, participants reported improved understanding of linguistic and pedagogical concepts through clear explanations and visual representations provided by the videos. The adaptability of Fliki AI videos allowed for personalized learning experiences, while supplementary activities reinforced learning outcomes. Further research could explore optimal design features and instructional strategies for maximizing the effectiveness of these resources.
... Asia contributed the most to the publication of studies, and most of the studies were performed in a collectivist culture. These findings are consistent with previous review studies on m-learning (e.g., Al-Emran et al., 2018;Chee et al., 2017;Sung et al., 2016;Tao et al., 2020), which not only reveal the current state of the m-learning acceptance research but also identify existing gaps. Given the widespread popularity, mobility, and ubiquity of m-learning in today's education, m-learning acceptance research should encompass a more diverse range of learner groups, regions, cultures, and education levels. ...
... These further support the idea that perceived ease of use is more important in non-Western cultures (Schepers & Wetzels, 2007). Most of the m-learning studies are contributed by Asian countries (Al-Emran et al., 2018;Chee et al., 2017). Therefore, it is logical to believe that Asian learners are more familiar with m-learning and have experienced its advantages in supporting learning, leading to a stronger relationship between perceived usefulness and behavioral intention. ...
Article
Full-text available
Mobile learning has gained significant recognition for its beneficial effects on learning across various dimensions. Nonetheless, ensuring consistent learner acceptance of mobile learning remains a critical factor to address. This meta-analysis study is the first comprehensive examination of critical antecedents impacting learners’ perceived usefulness and perceived ease of use of mobile learning within the Technology Acceptance Model. This study undertook a comprehensive analysis of prior research conducted in both English and Chinese languages during the last 22 years. The aim was to build the Integrated Mobile Learning Acceptance Model utilizing a one-stage meta-analysis structural equation model. Five major antecedents of perceived usefulness and perceived ease of use were identified, and the moderating effects of education level, region, and culture were revealed. The resulting model provides a cohesive framework for understanding the factors that influence learners’ intention to use mobile learning across various contexts. At the same time, the results of the study contribute to the advancement of theory in mobile learning acceptance and have practical implications for the design and evaluation of mobile learning.
... These easily navigable platforms enable educators to design unique mobile applications that meet learning objectives, assessment needs, and course objectives. These tools provide the potential for the seamless integration of interactive multimedia content, gamification aspects, real-world simulations, and collaborative features by taking advantage of students' familiarity with and ubiquity with mobile devices (Chee et al., 2017). As a result, students can actively create knowledge through inquirybased research, decision-making, creating tasks and situations that reflect real-world corporate environments, and solving problems. ...
Conference Paper
Full-text available
ABSTRACT: Effective learning outcomes depend heavily on student participation, especially in business education, where real-world relevance and practical application are crucial. Conventional teaching approaches frequently fail to enthrall and inspire students, which results in disengagement and less-thanideal learning outcomes. This study explores how creating dynamic and immersive learning applications with JotForm App Builder, a potent no-code application development platform, can improve student engagement in business education. The primary goal is to evaluate JotForm App Builder's acceptability and usability in encouraging student participation and its capacity to bridge the gap between theoretical knowledge and practical application. The study used quantitative research methodology, and ten students enrolled at Bentong Community College's Business Operational program were given questionnaires to complete. Students' experiences with the AMB App were largely favorable, according to the quantitative analysis conducted using the statistical software program SPSS 27.0. They found the app helpful, engaging, and simple to use. Initial results show a positive correlation between higher student engagement levels and using JotForm App Builder. Students expressed increased motivation, engagement, and comprehension when given engaging and eye-catching learning apps created using the platform. Furthermore, students could apply theoretical principles in a practical setting and better understand them, thanks to the opportunity to construct applications adapted to specific business scenarios and real-world issues. The study adds to the body of knowledge regarding cutting-edge teaching strategies in business education. It has crucial ramifications for educators who want to use no-code application development platforms in the classroom to improve learning results and student engagement.
... Additionally, M-learning has changed the environment of the educational system by presenting an opportunity to involve learners in digitalization (Hwang and Wu, 2014). Furthermore, mobile technologies provide a new opportunity to hold different instructions for learning and teaching outside and inside the classroom (Chee et al., 2017). Similarly, Wains and Mahmood (2008) said that M-learning technologies can move any place at any time without having fixed wired connectivity with the internet, web or link systems. ...
Article
Full-text available
Purpose This study aims to determine the influence of Mobile learning (M-learning) technologies based on the gender orientation of vocational education construction trade trainees in Pakistan. Additionally, it explores the challenges associated with integrating M-learning technologies in vocational institutions of civil engineering. Further, this study will focus on the solutions to improve the accessibility of M-learning technologies after the pandemic. Design/methodology/approach A quantitative method with a survey research design has been adopted in this study. In contrast, the target population was the trainees of vocational education institutions of civil engineering in Pakistan. Further, the data was collected using an adapted survey tool with a five-point Likert scale. Similarly, the data were analyzed through SPSS 27 software tool by using descriptive and inferential statistics. Findings The study's findings highlighted a positive influence of M-learning technologies based on the gender orientation of construction trade trainees from vocational institutions. Similarly, it is also specified that the challenges vocational trainees of the construction trade have faced while utilizing M-learning technologies were related. Hence, it is evident that the potential challenges of M-learning technologies integration and utilization are related to both gender orientations during a postpandemic situation in Pakistan. Practical implications In the Pakistani context, the M-learning technologies approach is recently introduced in the vocational education sector. Therefore, the utilization and integration of M-learning technologies are considered challenging tasks in the context. In this regard, this study helps to understand the acceptance, challenges and impact of M-learning technologies based on gender orientation among vocational institutions trainees of construction trade in Pakistan. Originality/value This study not only refers to the impact of M-learning technologies and their challenges but also highlights the current situation of M-learning in Pakistan, particularly construction engineering trainees in vocational education institutes.
... (Caniels & Rietzschel, 2015;Eckert et al., 2012;Haught, 2015;Haught-Tromp, 2017;Hinchman, 2022;Medeiros et al., 2014;Onarheim, 2012;Stokes, 2006, 2007, 2008, Torrents-Martin et al., 2015. While beginning teachers mimic teaching the essential knowledge and skills necessary to pass high-stakes assessments (Sanchez & Patel, 2017), they must cultivate a creativity paradigm designed to adapt, innovate, and tailor their ideas to meet the unique their students' needs (Chee et al., 2017). ...
Conference Paper
Full-text available
In the context of this quantitative quasi-experimental study, the research aimed to explore variations in the mean caption ratings provided by Generation Z pre-service teachers (GZ-PST) in response to an AI-generated cartoon, building upon prior studies that hinted at potential declines in creativity and motivation among GZ-PSTs educated during the content-standards education era beginning with NCLB in 2001. The study systematically assessed the impact of diverse constraint types on the creative abilities of 39 GZ-PST participants, using the constraint-based model of novelty (C-BMN) framework and the novel, effective, whole (NEW) rubric. The results of this investigation revealed a significant difference in caption creativity between groups exposed to various constraint conditions and the control group, aligning with previous C-BMN research, underscoring the potential of subtle problem-space adjustments to boost creativity and performance. This suggests that constraint-based teaching strategies have the potential to enhance creativity in educator preparation programs, offering a seamless integration into existing curricula for improving pre-service teachers' creativity and performance. As a future research recommendation, the focus should shift towards developing and evaluating C-BMN-based teaching methods that empower pre-service teachers to effectively implement these straightforward techniques in the classroom, ultimately enhancing pedagogical practices and the overall quality of education, transcending the boundaries of creativity research to potentially revolutionize teaching methods and benefit both pre-service teachers and their students.
... Preservice teachers in the millennial generation model teaching approaches that emphasize solely the information and abilities necessary to pass high-stakes assessment (Sanchez & Patel, 2017). Millennial teachers must be creative because they must be able to adapt, invent, and evaluate ideas to meet their own unique curricular demands (Chee et al., 2017). ...
Conference Paper
This quantitative quasi-experimental study examined differences in mean of a New Yorker Magazine cartoon caption ratings among young pre-service teachers at a public university in the Midwest. Research indicated that pre-service teachers educated under the No Child Left Behind Act of 2001 showed less creativity and motivation. Utilizing designed constraints have demonstrated the ability to positively influence individual creativity. The study employed the C- BMN framework and the NEW rubric to analyze data pertaining to the constraint type and its influence on the creativity among 90 M-PST. The results showed a substantial difference in caption creativity between the output-constrained and control groups, but not between the input- constrained and control groups. The result corroborated with prior C-BMN findings that limitations foster creativity. Incorporating constraint-based teaching strategies to stimulate creativity is important for academics, EPP administrators, and educational stakeholders. Future study should focus on developing and evaluating C-BMN-based teaching methods that help teachers encourage students' creativity.
... According to Chee et al. (2017), m-learning refers to "adopting the use of mobile technology to achieve anytime, anywhere, ubiquitous learning." M-learning has provided numerous benefits to the educational system, such as improving interaction and communication between students and teachers (Liu et al. 2020;Alharbi et al. 2022). ...
Article
Full-text available
Covid-19 has reshaped the teaching-learning process. Consequently, m-learning represents an educational change that challenges teachers and managers of educational institutions. Several studies have revealed that the success of the educational process using innovative technology depends on teachers’ acceptance of that technology. Employing the Technology Acceptance Model (TAM), this study aims to investigate the critical drivers of m-learning acceptance and to determine the moderating role of age and gender in schoolteachers’ intention to use and actual use of m-learning or both. Partial least squares structural equation modeling (PLS-SEM) and multigroup analysis technique were employed to assess the studyʼs hypotheses on a sample of 340 teachers. The studyʼs results indicated that perceived usefulness, perceived ease of use, and intention to use m-learning were significant determinants of acceptance of m-learning. More importantly, the results indicate that schoolteachers’ gender differences moderate the influences of intention to use on the actual use of m-learning. The study results may provide decision-makers, practitioners, and educational institutions insights into a better approach to promoting m-learning acceptance and leveraging online education via m-learning.
Article
Full-text available
The original thought piece published in LineZine. I encourage you to read something more recent, like Designing mLearning (Wiley, 2011), The Mobile Academy (Jossey-Bass, 2012), or my articles for the eLearning Guild, where my definition of mLearning is a bit more informed.This was old and naive.
Article
Full-text available
The use of mobile devices for informal learning has gained attention over recent years. Museum learning is also regarded as an important research topic in the field of informal learning. This study explored a blended mobile museum learning environment (BMMLE). Moreover, this study applied three blended museum learning modes: (a) the traditional museum visit accompanied by a learning website, (b) paper-based learning sheets used during museum visits accompanied by a learning website, and (c) an interactive mobile learning system used during museum visits accompanied by a learning website (i.e., BMMLE). Furthermore, the study explored the learning process through the use of each mode by museum visitors and empirically examined the differences between the learning performances and behavioral patterns of visitors. Study participants included 58 college students. A performance analysis, a behavior analysis of learners' participation on the website and a sequential analysis of the videotaped behaviors of visiting participants were conducted. The findings showed that the BMMLE proposed in this study may enable visitors to focus on the interactions between on-site exhibits and mobile learning systems and that the BMMLE may also extend the interaction period between on-site learning and the learning website, thus facilitating the implementation of the museum's learning activities. ©International Forum of Educational Technology & Society (IFETS).
Article
Full-text available
Owing to the advancement of mobile and wireless communication technologies, an increasing number of mobile learning studies have been conducted in recent years. In a mobile learning environment, students are able to learn indoors and outdoors with access to online resources at any time. However, whether or not new learning scenarios that combine both real-world contexts and digital-world resources are beneficial to the students has been questioned. Moreover, it is also interesting to probe whether the existing e-learning strategies are effective when situated in those mobile learning scenarios. In this study, an in-field activity on an indigenous culture course of an elementary school with a formative assessment-based learning strategy was conducted to investigate the possible negative effects of mobile learning by analyzing the students' cognitive load and learning achievement. It is interesting to find that, without proper treatment, the performance of students using those existing online learning strategies, known to be "effective," might be disappointing or may even negatively affect the students' learning achievements. Furthermore, the negative effects could be due to the heavy cognitive load caused by an improper learning design. Such findings offer good references for those who intend to design and conduct mobile learning activities. © International Forum of Educational Technology & Society (IFETS).
Article
Full-text available
The use of mobile technologies in learning has attracted much attention from researchers and educators in the past decade. However, the impacts of mobile learning on students' learning performance are still unclear. In particular, some schoolteachers still doubt the effectiveness of using such new technologies in school settings. In this study, a survey has been conducted by reviewing the 2008-2012 publications in seven well-recognised Social Science Citation Index (SSCI) journals of technology-enhanced learning to investigate the applications and impacts of mobile technology-enhanced learning. It is found that mobile learning is promising in improving students' learning achievements, motivations and interests. In addition, from the survey, it is found that smartphones and tablet PCs have gradually become widely adopted mobile learning devices in recent years, which could affect the adoption of sensing technologies in the future. Accordingly, several open issues of mobile learning are addressed.
Book
Mobile Learning: A Handbook for Developers, Educators and Learners provides research-based foundations for developing, evaluating, and integrating effective mobile learning pedagogy. Twenty-first century students require twenty-first century technology, and mobile devices provide new and effective ways to educate children. But with new technologies come new challenges-therefore, this handbook presents a comprehensive look at mobile learning by synthesizing relevant theories and drawing practical conclusions for developers, educators, and students. Mobile devices-in ways that the laptop, the personal computer, and netbook computers have not-present the opportunity to make learning more engaging, interactive, and available in both traditional classroom settings and informal learning environments. From theory to practice, Mobile Learning explores how mobile devices are different than their technological predecessors, makes the case for developers, teachers, and parents to invest in the technology, and illustrates the many ways in which it is innovative, exciting, and effective in educating K-12 students. Explores how mobile devices can support the needs of students. Provides examples, screenshots, graphics, and visualizations to enhance the material presented in the book. Provides developers with the background necessary to create the apps their audience requires. Presents the case for mobile learning in and out of classrooms as early as preschool. Discusses how mobile learning enables better educational opportunities for the visually impaired, students with Autism, and adult learners. If you're a school administrator, teacher, app developer, or parent, this topical book provides a theoretical, well-researched discussion of the pedagogical theory and mobile learning, as well as practical advice in setting up a mobile learning strategy.
Book
Rapid advancements in technology are creating new opportunities for educators to enhance their classroom techniques with digital learning resources. Once used solely outside of the classroom, smartphones, tablets, and e-readers are becoming common in many school settings. Advancing Higher Education with Mobile Learning Technologies: Cases, Trends, and Inquiry-Based Methods examines the implementation and success of mobile digital learning tools. With the inclusion of data on specific learning environments enhanced by ubiquitous educational technologies, this publication emphasizes the benefits of exploration and discovery in and out of the classroom. This book is an essential reference source for academicians, professionals, education researchers, school administrators, faculty, technology staff, and upper-level students interested in understanding the future of higher education.
Book
The clear and practical writing of Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Researchhas made this book a favorite. In precise step-by-step language the book helps you learn how to conduct, read, and evaluate research studies. Key changes include: expanded coverage of ethics and new research articles.