ArticlePDF Available

Abstract and Figures

Polydextrose (PD) is a low calorie, sugar free, low glycemic carbohydrate that has a variety of functional properties including high water solubility, high glass transition temperature, prebiotic properties, good stability at elevated temperature and over a broad range of pH and is widely recognized as soluble dietary fibre. PD induces physiological effects, such as increasing fecal bulking, softening stools, decreasing fecal pH, increasing short chain fatty acid concentrations and reduces the concentration of carcinogenic substances in the colon. It also aids blood glucose homeostasis and can decrease low density lipoprotein (LDL) cholesterol and total cholesterol levels in blood serum. These functional and physiological benefits have led to considerable interest from the food industry to use PD in the development of new healthy products. PD is widely used in food applications such as baked goods, ice cream, beverages, confectionery, chocolate, yoghurt, and salad dressings, among many others. There is no maximum established limit for PD. However, good manufacturing practices (GMP) limit the quantity to the amount necessary to accomplish intended purpose in the food. This review describes the production process, chemistry, functional properties, physiological functions, food applications, safety and tolerance, and regulatory and labeling information of PD.
Content may be subject to copyright.
IndianJDairySci69(3),2016
239
REVIEW ARTICLE
Polydextrose as a functional ingredient and its food applications: A review
Veena N, Surendra Nath B and Sumit Arora
Received:16August2015/Accepted:08November2015
VeenaN
1
(),SurendraNathB
2
andSumitArora
3
1
DairyChemistryDepartment,CollegeofDairyScienceandTechnology,
GuruAngadDevVeterinaryandAnimalSciencesUniversity,Ludhiana,
Punjab,India.
2
DairyChemistryDepartment,NationalDairyResearchInstitute,Southern
RegionalStation,Bengaluru,Karnataka,India.
3
DairyChemistryDivision,NationalDairyResearchInstitute,Karnal,
Haryana,India
VeenaN
1
DairyChemistryDepartment,CollegeofDairyScienceandTechnology,
GuruAngadDevVeterinaryandAnimalSciencesUniversity,Ludhiana,
Punjab,India.
Email:veena.ndri@gmail.com;Mobile:+919855886831
Abstract: Polydextrose(PD) is alowcalorie, sugar free, low
glycemiccarbohydratethathasavarietyoffunctionalproperties
includinghighwatersolubility,highglasstransitiontemperature,
prebioticproperties,goodstabilityatelevatedtemperatureand
overabroadrangeof pHandiswidelyrecognizedassoluble
dietaryfibre.PDinducesphysiologicaleffects,suchasincreasing
fecalbulking,softeningstools,decreasingfecalpH,increasing
shortchainfattyacidconcentrationsandreducestheconcentration
ofcarcinogenicsubstancesinthecolon.Italsoaidsbloodglucose
homeostasis and can decrease lowdensity lipoprotein (LDL)
cholesterol and totalcholesterollevels inbloodserum.These
functionalandphysiologicalbenefitshaveledtoconsiderable
interestfromthefoodindustrytousePDinthedevelopmentof
newhealthyproducts.PDiswidelyusedinfoodapplications
such  as bake d goods , ice cr eam, bev erages , confe ctione ry,
chocolate, yoghurt, and salad dressings, amongmany others.
ThereisnomaximumestablishedlimitforPD.However,good
manufacturingpractices(GMP)limitthequantitytotheamount
necessarytoaccomplishintendedpurposeinthefood.Thisreview
describestheproductionprocess,chemistry,functionalproperties,
physiologicalfunctions,foodapplications,safetyandtolerance,
andregulatoryandlabelinginformationofPD.
Keywords:Polydextrose,functional properties,physiological
functions,foodapplications,safetyandtolerance
Introduction
Thelevelofhealthawarenessamongtheconsumersworldwide
has in crease d and th e conce pt of f ibre-r ich die t is gai ning
importanceduetoitswellknowndigestivehealthbenefits.In
therecentyears,manylow-caloriefibrefoodshavebecomea
partofthe consumer’sdailydiet.Amongthose,PDhas been
iden tified as  a source  of solub le dieta ry fibre i n foods a nd
beveragesinmanycountries(Wangetal.2014).
PDiscomprised
of90%solublefibreandanenergyvalueofonly1kcal/g.Itisa
non-digestiblepolysaccharidecomposedofrandomlycross-linked
glucose.Duetoitsgoodprocessingperformanceandpotential
healthbenefits,itiswidelyusedaslow-caloriebulkingagentin
avarietyoffoods andapartialreplacement for fatandsugar
(Černáetal.2003).PDhasbeenapprovedasadirectfoodadditive
(21CFR172.841)bytheUSFoodandDrugAdministrationfor
useasanutrientsupplement,texturizer,stabilizerorthickener,
formulation aid and humectants(Burdock and Flamm,1999).
Previousclinicalandin vitrostudiesrevealedthatPDinduces
physiologicaleffects,suchasincreasingfecalbulking,softening
stools,decreasingfecalpH,reducestransittime,increasingshort
chai n fatt y acid ( SCFA) co ncent ration s and th e amoun t of
beneficialbacteria(e.g.LactobacillusandBifidobacterium)(Jie
etal.2000;Probertetal.2004;Lahtinenetal.2010;Raninenet
al. 2011; Tiihonen et al. 2011).In addition, PDfermentation
reducesthe concentrationofcertain putrefactive/carcinogenic
substances(e.g.indole and p-cresol)inthecolon(Endoetal.
1991).PDalsoaidsbloodglucosehomeostasisbecauseofits
lowglycemicindexcomparedtothereferenceglucose(Foster-
Powelletal.2002)andcandecreaseLDLcholesterolandtotal
cholesterolvaluesinhumanblood(LiuandTsai,1995).Thehigh
toleranceandfunctionalpropertiesofPDallowthedevelopment
of food products with avariety of nutritional improvements
withoutcompromisingtasteandtextureprofile(Tiihonenetal.
2011).Thepresentreviewfocusesonthestructure,functional
properties,physiologicalfunctions,foodapplications,safetyand
toleranceandregulatoryandlabelinginformationofPD.
Productionprocess
PD is prepared  by a vacuum m elt process involving
polycondensationofglucoseinthepresenceofsmallamountsof
IndianJDairySci69(3),2016
240
sorbitoland citricacid/phosphoric acid in the ratio 89:10:1,
respectively.Sorbitol actsasaplasticizerandcitric acidasa
catalystinthepolymerization(Rennhard,1973;Radostaetal.
1992).Typically,cornglucose isused.Itisimportantthatthe
molecularsizeofthepolymeriscontrolled(MWabout5,000)
duringthemanufacturingprocessinordertorestricttheformation
oflargemolecularweightmolecules.Thiscontrolpreventsthe
formationofinsolublematerialsandresultsinthehighlywater
solublenatureofPD(Beereboom,1981;Allingham,1982).The
polymerissubjectedtovariousclean-upprocedurestoproduce
severalqualitiesofPD.TheprocesswaspatentedbyRennhard
in1975.Itisavailableintwoforms:PD-A(acidform)andPD-
N(neutralisedform), the latterbeingapracticallyneutralised
productobtained bythe addition ofpotassium hydroxide or
carbonatetoasolutionofPD-A(BurdockandFlamm,1999).It
tastesbitter,astringentandsourandthatiswhyitismodifiedby
refinement (e.g.removal ofcitrate esters, neutralization and
reduc tion) to  remove un desirab le charac teristic s. It may  be
neutralizedwithanyfood-gradebaseand/ordecolourizedand
deionisedforfurtherpurification.Thebittertastecouldalsobe
remediedbypassingthefinalPD,inaqueoussolution,through
anion-exchangeresinandthision-exchangeprocedureremoves
theboundacid.CommercialPDismorepurifiedformavailable
underbrandnamessuchasSta-Lite
®
byTate&Lyle,Decatur;
Litesse
®
 byDani sco, New Cent ury, Kan., no w a division o f
Du Pont N utr iti on and  Hea lth; a nd Tr imcal
®
 fr omC& H
Ingredients,Farington,UK.
Chemistryofpolydextrose
PDisdescribedinitsFoodsChemicalsCodex(FCC)monograph
(Anonymous,2004)asarandomlybondedcondensationpolymer
of D-g lucose, so rbitol an d citric ac id. Commer cial PD al so
containssmallamountsoffreeglucose,sorbitol,citricacid,and
1,6-anhydro-D-glucose(levoglucosan).PDishighlybranched,
withadegreeofpolymerisationbetween2and110(onaverage
approximately12glucoseunits),andwithanaveragemolecular
weightof~2,000Daltons(Allingham,1982;Murray,1988).
All
possi ble linkag es with the  glycosidi c carbon of  glucose ar e
present:α-andβ-(1,2),(1,3),(1,4)and(1,6)withthe(1,6)linkage
predominating(Auerbachetal.2007).Arepresentativestructure
ofPDisgiveninFigure1anditsphysico-chemicalproperties
aresummarizedinTable1.
Technicalandfunctionalproperties
PD is an odourless, neutraltaste,white tocream amorphous
powderwithvirtuallynosweetness. Itishighlysolubleinwater
(approximately80%w/wat20
o
C)andsolutionshaveahigher
visco sity  than suc rose  or sorbi tol s olut ions at e quiv alent
concentrationsandtemperatures.ThischaracteristicenablesPD
toprovidethedesirablemouthfeelandtexturalqualitieswhen
replacing sugarsandfats (Mitchel,1996). PD can beused to
replacebothsucroseandfatinchocolateandtoffeeconfectionery.
Thishasled to thedevelopmentof light, reducedcalorie and
tooth-friendlyproductswhichutilisehydrogenatedPDthatdoes
notcontainresidualcariogenicmonosaccharides.PDalsoexhibits
excellent stability over awide rangeof temperaturesand pH
conditions.ModelsystemcontainingPDhaveindicatedverygood
stabilityagainsthydrolysisoverbroadrangeofpH4.5-6.0and
temperaturemakingitidealforuseinmanybeverageapplications,
even those atlowerpH. No significant hydrolysis would be
expectedatanystoragetemperaturewhenpHishigherthan4.0
(Beeretal.1991).
AnimportantcharacteristicofPDisthatithaswateractivity
closelyresemblingthatofsucroseandcanfunctionashumectants
helpingtoslowdownundesirablechangesinthemoisturecontent
offoods(Mitchel,1996).Thisprolongsshelf-lifeandisespecially
importantforbakedgoods.Inshortcrustpastry,thefatcontent
can be reduced by up to 50% with the additionof PDwhile
maintainingthetexturenormallyassociatedwithtraditionalfull-
fatpastry(Murphy,2001).
PDisafunctionalfoodadditiveduetoitsprebioticproperties
(Kolidaetal.2002;Srisuvoretal.2013).Itcontributesonly25
percentofthecaloriesofsugar(1kcal/gversus4kcal/g)and
only11percentofthecaloriesoffat(9kcal/g).Thelowcalorie
contentof PD isaresult of itspoordigestibilityinthe small
intes tine and i ncomple te ferment ation in  the large i ntestine
(Oliveria etal. 2009).The random bonds inthe PD polymer
preventmammaliandigestiveenzymesfromreadilyhydrolysing
the m olecule  (Murphy, 20 01). This  propert y has led t o the
acceptanceofPDasadietaryfibreinmanycountries(Craiget
al.1999;Floodetal.2004).Thefunctionalityofthisprebioticis
beneficialtohumansandincludessuchaspectsaspromotingthe
growthofhealthybacteriaandstimulatingtheimmunesystem
(Gibson,2004;Srisuvoretal.2013).
Theamount ofwater in a foodsystem greatly influencesPD
functionality andits subsequent effecton the glass transition
tempera ture (T g) of th e compo site fo od. PD p owder i s an
amorphousglasswithananhydrousglasstransitiontemperature
of110°C,whichissignificantlyhigherthanthatofmostother
carb ohydrat es and is  partly a  functio n of its r elative ly low
molecularweight.ThishighTgofPDcanbehelpfulinraising
thecompositeTgoffoods (Stowell, 2009).Whenusedinice
creamandfrozenproducts,thefreezingpointdepressionfactor
permitsthetextureofthefinishedproducttobebalancedtocreate
a rich, creamy smoothness.Products stored in a freezercan
undergo deleterious changes intexture(e.g.ice- and solute-
crystallization,starchretrogradation),structure(e.g.collapseand
shrinkage),and chemicalcomposition (e.g.oxidation flavor/
colourdegradation).PDmay do thisbyinterruptingsugaror
polyolre-crystallizationand/orstarchretrogradation,byproviding
structureand/orraisingthe compositeTg which isthe glass
transitiontemperatureofamaximallyfreezeconcentratedsolution
(Craigetal.1994).TheTgvalues(whereicecannolongerform)
IndianJDairySci69(3),2016
241
oflactose(-28
o
C),sucrose(-32
o
C),fructose(-42
o
C),glucose(-
43
o
C)andsorbitol(-43.5
o
C)arealllowerthanPD(-24
o
C).This
mean s that rep lacemen t of thes e sugars  with PD ra ises the
compositeTgofafood(SladeandLevine,1995).Italsoimproves
storagestabilitybynarrowingthedifferencebetweenthestorage
temperatureandthecompositeglasstransitiontemperatureof
maximallyfrozenconcentratedsolutionsforfrozendesserts.
Intransparentbeverages,PDisamagnificentchoiceofdietary
fibre.Highsolubility,clarityandrheologicalpropertiessimilar
tosucrosemakePDversatileenoughtoaddadesirabletexture
toavarietyofliquids,includingdairydrinksandyogurts,sauces
anddressings,whilereducingcaloriesfromfatorsugar.PDworks
particularly well infoods that requirebulkingagentsorthose
thataretraditionallysweetorrichinfat.Itisabletomaintainthe
textureandmouthfeelthatoftenislostintheprocessofremoving
sugarandfattoreducecalories.Sometimesithelpstomaskoff-
flavorsthatmightbegettingfromvitaminsorminerals(Beristain
et al. 2006). Being a humectant,stabilizer,thickening agent,
sol uble f ibre a nd a pr oven p rebio tic su bstan ce, PD  offers
opportunitiesforcreatingnewfoodswithmorediversesensory
characteristics.
Physiologicalfunctions
Digestivehealth:fibreandprebioticaction
PD  is h ard ly d ige ste d in  the  sma ll i nte sti ne a fte r or al
administration,with60%ofthePDexcretedinfecesand30%
fermentedinthelowergutbyintestinalmicroflora(Figdorand
Rennhard,1981).TheslowandincompletefermentationofPD
ensuresminimalproductionofgasincomparisontoothermore
quicklyfermentableoligosaccharides(Hernotetal.2009).PD
produ ces v olat ile f atty aci ds (V FA) c ause d by micr obia l
fermentation in the large intestineandlowersthepHoflarge
intestinalcontents.Theuniquearrangementofglycosidiclinkages
of PD  makes it  resist ant to hy drolys is by hu man dige stive
enzymes.Thishasbeendeterminedusing[
14
C]labeledPDinrat
andhuman intervention studies(Figdor andRennhard, 1981;
FigdorandBianchine,1983).AfteringestionPDpassesintact
into thecolonwhere it is partiallyfermented by the colonic
microflora.TheslowandconsistentfermentationofPDwasfirst
demonstrated usinganin vitrocolonsimulator (Probertetal.
Figure 1. ChemicalStructureofPD
Molecularweightrange 162-5000(90%)
Appearance White-cream
amorphouspowder
Odour None
Meltingpoint 130
o
C
Solubility(25
o
C) 80%w/w
Viscosity(25
o
C,50%w/w) 33.3centipoise
Heatofsolution 9kcal/g
Wateractivity(20%w/w) 0.992
pHinwater(100g/litre) 2.5-3.5
Titratableacidity 0.14-0.16meq/g
Caloricvalue 1kcal/g
Relativesweetness None
Water Max4%
Sorbitol Max2%
(anhydrousashfreebasis)
Glucose Max4%
Table 1 Thephysico-chemicalpropertiesofgenericPD
IndianJDairySci69(3),2016
242
2004;Mäkivuokkoetal.2005)andsubsequentlyconfirmedina
studyontheeffectof PD on intestinalmicrobesand immune
functionsinpigs(Favaetal.2007).Ithasalsobeenshownin
vitro thatthe microbes that ferment PD prefer branched and
espe ciall y singl e-bran ched PD r esidue s over n on-bra nched
residues,especiallythe(1,6)pyranosemoietiesaresubjectedto
microbialdegradationoverothertypesofglycosidiclinkagesin
themolecule(Lahtinenetal.2010).
InahumaninterventionstudybyEndoetal. (1991) inwhich
eighthealthyvolunteerswerefedadietrichincholesteroland
hadadailyintakeof15gofPDfor6weeks,changesincolonic
florawereaccompaniedbyadecreaseinfecalconcentrationsof
Clostridium spp.Inanotherhumanstudy,significantincreasesin
thenumbersofculturableBifidobacteriaandLactobacillitogether
withdecreasedBacteroidesnumbershavebeendemonstratedin
aplacebo-controlled,randomized,double-blindinterventionstudy
comp rising 1 20 subj ects (Ji e et al. 20 00). Imp roved bo wel
functionwasalsodemonstratedinthesamestudywithdailyintake
of4-12gPDwithnoadverseeffects,suchasabdominaldistention,
crampsordiarrheareported.SupplementationwithPDat5g/
day and  a probiotic  mixture tog ether was fo und to incre ase
cul turab le fec al Bifidobacteria over s upplemen tatio n with
probioticmixturealonewhencomparedovera2weekperiodin
twentyhumansubjects(Tiihonenetal.2008).Also,shortened
oro-fecaltransittime,implicatingtheroleofPDinalleviating
constipation,hasbeenshown(Hengstetal.2009).Thesefindings
suggestthatdietaryPDisasolubledietaryfibre-likesubstance
andshownprebioticpropertieslikemodificationofthemicrobiota
composition,activityandhealthbenefits.
Digestivehealth:bowelfunctionandfecalcharacteristics
Fivehumaninterventionstudies(TomlinandRead,1988;Endo
etal.1991;Archouretal.1994;Jieetal.2000;Floodetal.2004)
andonestudyinrats(Okuetal.1991)haveallreportedincreased
fecalweightinconjugationwithdietarysupplementationwith
PD.Nakagawaetal.(1990)andTomlinandRead(1988)reported
stoolsoftening,andJieetal(2000)reportedimprovedeaseof
defecationincombinationwithPDsupplementation.Twohuman
studieshavereportedincreasedstoolfrequencyonconsumption
ofPD(Endoetal.1991;Jieetal.2000)whiletwootherstudies
haveshownnoeffect(TomlinandRead,1988;Nakagawaetal.
1990).Aratstudy(Okuetal.1991)showedreducedtransittime
inassociationwithPDconsumptionwhiletwohumanstudies
showednoeffect(TomlinandRead,1988;Archouretal.1994).
DecreasedcolonicpH,associatedwiththeincreasedproduction
ofSCFAs,hasbeenconsistentlyreportedinstudies inhuman
(Endoetal.1991;Jieetal.2000),rats(Peuranenetal.2004;
Yoshiokaetal.1994),andintwoin vitrostudiessimulatinghuman
colonicdigestion(Probertetal.2004;Mäkivuokkoetal.2005).
Hence,  the abilit y of PD to fa vorably aff ect gut pH is  well
documented.
Serumcholesterolandtriglyceridelevels
PDisafermentablenon-viscousfibre,andhasbeenshownto
exhibitlipidmetabolismregulatingeffects(Raninenetal.2011).
Typicallytheseeffectshavebeenassociatedwithtwophysico-
chemicalpropertiesofsolublefibres:viscosityandfermentability.
PDhasbeenreportedtoconferlipidmodulatingeffectsinhuman
clinicalinterventionstudies,aswellasinanimalstudies.Intwo
ratsfeedingstudiesinwhichPDwereaccompaniedwithalipid
load,reducedlipidlevelswerereported.Inoneofthestudy,rats
weregiventwodifferentdosagesofcornoil,10%and20%,to
representamoderateorhigh-fatdiet,for8weeks,withorwithout
5% PD. Rat s in the PD group showed de creased serum
triglyceridesascomparedtoaguargumcontrolinthehigh-fat
diet, in creased leve ls of serum HDL c holesterol b oth in the
moderatefatandhighfatdiet(Choeetal.1992).Anotherstudy
hasbeendonewithgerbilsfor4-weeks,thegerbilswerefedwith
0.15%cholesterolwith30%oftheenergycomingfromfatand
withinclusionof6%PD.Liverandplasmatotalcholesterolas
wellasfreeandesterifiedcholesterolfromliverdecreasedinthe
PDgroup(PronczukandHayes,2006).Theacuteresponseof
PDonserumlipidvalueshasalsobeenstudiedinrats,buttogether
withlactitol(Shimomuraetal.2005).Theratsshowedreduced
serumtriglyceridelevels,andanincreaseinluminaltriglyceride
levelsinthececumafter150minutesofingestionofPD,which
wouldindicatethatthecombinationofPDandlactitolreduced
eithertheleveloffatabsorptionintheearlierpartofsmallintestine
or pro mote d the  transi t tim e of f at th roug h the  intest ine
(Shimomuraetal.2005).
In human study withnormal healthy adults withno reported
hypercholesterolemiaareductionintheamountoftotalHDLby
administrationof15gofPDfortwomonthswithconcomitant
decreaseinapolipoproetinA-I,whichisthemaincomponentof
HDLcholesterol,hasbeenobserved(Sakuetal.1991).Inanother
studywithhealthyadults,administrationof10gofPDfor18
dayswasshowntodecreaseLDLcholesterolandtotalcholesterol
valueswithnoeffectonHDLcholesterolortriglycerides(Liu
andTsai,1995).Therearealsocontradictoryresultswithhealthy
humans,asadministrationofPDinanamountfrom4to12gper
dayfor29daysdidnotaffecttriacylglycerol,orcholesterol(Jie
etal.2000).Authorsreportedthatduetorelativelylowfatcontent
(20%ofenergyfromfat)inChinesediet,theydidnotexpectto
measureaneffectofPDonbloodlipids.Inhypocholesterolemic
individuals,theeffectofPDhasbeenstudiedina4-weekstudy
withadministrationof15gand30gPD daily (Pronczukand
Hayes,2006).Inthisstudyitwasnotedthat5ofthe6individuals
ingesting30gofPDwereinaseparaterespondergroup,andin
thirdgrouptheLDLcholesterolvaluesdeclined significantly,
andtherewasatendencyforreducedtotalcholesterol,butno
changeinHDLcholesterol.However,whenall6individualswere
studiedtogether,nochangecomparedtocontrolwasobserved.
Another studyinvestigated the effect of PD on postprandial
triglyceride(TG)responsesinthreeindependenttrialsincluding
IndianJDairySci69(3),2016
243
a nor molipi demic,  obese  and hyp erlipi demic s ubject s. The
maximumpostprandialTGconcentrationwasmorepronounced
inhyperlipidemicgroupcomparedtonormolipidemic(p<0.001)
orobesegroups(p<0.01).ThemodeledTGresponseanalysis
showed that ir respective  of the s tudy po pulation, PD
supplementation was one of the factors significantlyreducing
triglycerideresponsecomparedtotheplacebotreatment(p<0.05)
(Tiihonenetal.2015).
TheeffectofPDonlipidvalueshasbeenofinterestintwostudies
withindividualsshowingabnormalglucosemetabolismortype-
2diabetes.Insubjectswithimpairedglucosemetabolism,PD
administeredfor12weeksat16g/dayhasbeenobservedtolower
LDLcholesterol,increaseHDLcholesterolandcausenochange
intriglycerides(Schwabetal.2006).Inacombinationstudywith
7gPDand3goligofructoseadministereddailyfor6weeksin
adultswithtype-2diabetes,adecreaseintotalcholesterol,TG,
VLD L chol ester ol, an d rati os of t otal c holes terol  to HDL
cho leste rol, a nd LDL cholest erol t o HDL c holes terol  was
observed,whileHDLcholesterolincreased(Ciceketal.2009).
Inadoubleblindandrandomizedstudy,nineteenhealthyyoung
adultsconsumedtwiceastandardhamburgermealwithorwithout
acoladrinkcontaining PD (12.5g).Postprandialtriglyceride
responsewasmeasuredupto360minafterthemeal.Thearea
underthecurvewas25%inthePDtrialthanontheplacebotrial
(VasankariandAhotupa,2005).Aspostprandialhyperlipidemia
isbelievedtobeanindependentriskfactorfortheatherosclerotic
vasculardiseases,PDmayprovidenewdietaryconcepttoreduce
riskfactor.
Glycemiccontrolandinsulinresponse
TheeffectofPDingestiononglucoseandpostprandialinsulin
responsehasbeeninvestigatedinseveralstudies.PDhasavery
lowglycemicindex(4to7)withglycemicloadof1comparedto
thereferenceglucose(100)(Foster-Powelletal.2002).Based
onarecentEFSAscientificopinion,PDissuitableforthosewho
wanttofollowalowglycemicdietwhenitisusedas asugar
replacer(EFSA,2011).PDhasbeenreportedtoattenuate the
bloodglucoseraisingpotentialofglucose,astheglycemicindex
ofglucosewasreducedfrom100to88when12gofPDwas
ingestedtogetherwithglucosebyhealthyadults(Jieetal.2000).
Similarresultswereobservedinastudywithhealthyadultswhen
14gwasingestedtogetherwith50gofglucoseor106gofbread
(Shimomuraetal.2004).Plasmaglucoselevelsweredecreased
by28%and35%,comparedtoglucoseandbreadwithoutPD,
respectivelywithsignificantlyreducedseruminsulinlevelsin
theglucoseplusPDgroup.TheseobservationsindicatethatPD
couldreducetheabsorptionofglucose.WhentheeffectofPD
wasstudiedwithhumansubjectswithimpairedglucosetolerance
or impairedfasting glucose, no changein plasma glucoseor
insulinhasbeenobserved(Schwabetal.2006).DiurnallyPD
didnotseemtochangeplasmasugarlevels,butadecreasein
insulinaftermealswasnoted(Ozawaetal.1993).Indogs,PD
showedanattenuatedpostprandialglycemicandlowerrelative
insulinresponsesthanthecontrolsugarmaltitol(Knappetal.
2008).
Inoneofstudy investigatedtheeffects of a lactose-freemilk
drink,PD-enrichedmilkdrink(fat-andlactosefree),andregular
fat-free milkon fasting insulinand glucose levels in healthy
sub jects ( Lummel a et al. 200 9). The i nsuli n respo nse wa s
significantlylowerforthefibre-enrichedmilkdrinkthanitwas
fortheothermilkproductsandhowever,nodifferencesinthe
responseforglucose.PDhasbeenalsostudiedintrialsinwhich
thereferencegroupreceivedanormalmeal/snackwithglucose,
andtheinterventiongroupthesamebutwiththeglucose,andthe
interventiongroupthesamebutwiththeglucosepartiallyreplaced
withPD.Involunteerswithtype-2diabetes,cranberrieswith10
gofPDshowedattenuatedplasmaglucoseandinsulinresponse
comparedtocranberrieswithglucose (Wilsonetal.2010).In
onestudywithhealthyadults,significantlylowerpostprandial
glucoselevelswereobservedafteringestionofstrawberryjam
with40%PDthanafteringestionofstrawberryjamsweetened
with sugar, cornsyrup, orapple juice, butthis studydid not
measur e insulin (K urotobi et a l. 2010). Thes e above resul ts
indicatethat PDmight havea roleindecreasingpostprandial
glucoseabsorptionandinsulinresponse.
Anti-carcinogenicactivity
Cecalfermentationmaybeanimportantfactorininhibitingcancer
formation, because the fermentationproduct butyrate isanti-
carcinogenic(Perrinetal.1994).Animalstudyhasshownthat
theingestionofPDhassignificantsuppressiveeffectonformation
ofaberrantcryptfoci(ACF)inducedby1,2-dimethylhydraine
(DMH).TheinhibitoryeffectofdietaryPDwassignificantonly
in th e case tha t the PD w as fed fr om 1 week b efore DM H
indicationwhencomparedwithday0,1and7,indicatingthe
timingofinterventionwiththePD-containingdietiscriticalfor
theinhibitoryeffectonACFdevelopmentandtheeffectwasmost
pronouncedintherectum(Ishizukaetal.2003).Theseresults
suggest  that th e inges tion of  PD ma y preve nt colo rectal
carcinogenesis.
Balancingimmuneresponsesinthelargeintestineisespecially
importantforreducingtheriskofcoloncancerdevelopment.A
possiblemechanismforreductionincancerdevelopmentinvolves
theregulationofmucosalgeneexpression.Overexpressionof
thecyclooxygenage-2(cox-2)geneisrelatedtoearlystagesof
coloncancerdevelopmentandchronicinflammatorydiseasesin
theintestine.Mäkivuokkoetal.(2005)combinedtwodifferent
in vi tro sy stems, n amely a  four-st age sim ulator  of colo nic
fermentationandacell-culture-basedmodelofhumanintestinal
epithelialfunction,inordertostudytheeffectsofPDoncolon
cancerdevelopment.Adose-dependentdecreasingeffectoncox-
2expressionwasobservedinCaco-2cells(ahumancoloncancer
cellline).Thisreductionofcox-2expressionassociatedwiththe
IndianJDairySci69(3),2016
244
colonicfermentationofPDfurthersuggestsaprotectiveroleof
PDagainstcoloncancer.Recently,theeffectsofPDfermentation
metabolitesoncoloncancercellsandtheirgeneexpressionwere
investigatedinwhole-genomescaleusingAffymetrixgenechips
(Putaalaet al. 2011). Inthisstudy, itwas observed that PD
fermen tation met abolites i ncreased c aspase-2 an d caspase- 3
activation,whichisahallmarkofapoptosis,increasedthelevel
ofapoptosis aswell as diminished cell proliferation ofcolon
cancercells.ThesestudiescombinedindicatethatPDmightbe
beneficialinpreventingriskfactorsassociatedwithcolorectal
carcinogenesis,whichcouldrelatetoitsabilitytopromoteSCFAs
production(Makelainenetal.2007).
Mineralabsorption
Prebiotics likePD contribute toa reducedpH of the colonic
digestathroughtheirfermentationandtherebytoanenhanced
solubilizationtobothcalciumandmagnesium.Animalstudies
hav e shown tha t PD im proves  calci um abs orpti on both  in
gastrectomizedratsandnormalrats(Haraetal.2000;Santoset
al.2009),wheretheformerprovideamodelforseverelyhampered
calciumabsorption.Innormalrats,PDincreasedtheamountof
calciumandmagnesiuminbone(Haraetal.2000),withincrease
intotalandfemoralbonemineraldensityandcorticalareaand
thickness(Weaveretal.2010).Ironisnormallyabsorbedinthe
small intestine with thestomachplayingan essential role in
improvingthebiologicalavailabilityofiron.Ingastrectomized
rats,PDhasbeenshowntoimproveapparentironabsorptionto
levelsapproachingthoseofnormalrats.Also,innormalrats,
ironabsorptionwasshowntobeimprovedbyPD(Santosetal.
2010).Thestudydemonstratedtheeffectsofcomponentsfroma
typicalJapanesediet(isoflavones,teacatechinordietaryfibre)
on e quol (i s a metab olite  of the i soflav one dia dzein ( Dz))
productionandbonemetabolisminovariectomised(OVX)mice.
Dietaryfibre(PDorraffinose)increasedequolproductionand
inhibitbonelossinOVXmice.Thiseffectwasgreaterthanthat
ofDzaloneforpreventingbonelossinmice.PDthusseemsto
beabletoplayaroleinimprovingmineralstatus.
Foodapplications
ThefunctionalbenefitsofPDhaveledtoconsiderableinterest
fromthefoodindustry,leadingtotheuseofthisingredientinthe
developmentofnewhealthyproducts(Murphy,2001).PDallows
thedevelopmentoffoodproductswithawidevarietyofnutritional
impr ovemen ts such  as preb iotic, f ibre fo rtific ation,  calori e
red uction , reduc ed gly cemic l oad as w ell as s ugar a nd fat
reduc tion. The t echnolo gical pro perties o f PD facil itate th e
productionofproductswithatasteandtextureprofilesimilarto
thatofstandardproducts.InUnitedStates,PDisapprovedby
FoodandDrugAdministration(FDA)foruseinthefollowing
product categories: Chewing gum, confections andfrostings,
dressingsforsalads,frozendairydessertsandmixes,gelatins,
puddingsandfillings,hardcandy,softcandy,bakedgoodsand
bakingmixes,fruitspread,peanutspreads,toppingsandsweet
sauces.
Bakedgoods
PDiswidelyusedasalow-caloriebulkingagentthatcanreplace
partofthesugarsandsomeofthefatinlow-caloriefoodswhile
maintainingapleasanttextureandmouthfeelofbreads,rolls,
cracke rs, flour tor tillas, pita  bread, pizza  crust, and muff ins
(Mitchelletal.2001;Chaudharyetal.2013).Itwouldfunction
primarilyasahumectantandwaterbindingingredienttohelp
slowdowntheeffects of undesirablechangesinthe moisture
contentandhenceprolongtheshelflifeoftheseproducts.
Martínez-Cervera et al. (2012) evaluatedthe suitability ofa
mixtureofsucraloseandPDtoreplacedifferentpercentagesof
sucroseinmuffins.Low-sucrosemuffinsinwhichthesucrose
hadbeen totally or partially replaced(25%, 50%, 75%)by a
sucralose:PDmixture(1:1012).Thestructuralcharacteristicsof
themuffinsbattersandofthebakedmuffinswerestudiedthrough
rheomet ry, microsco py, image anal ysis and text ure analysis.
Replacementof25%sucrosebyamixtureofPD-sucralosealtered
noneoftheeatingqualitypropertiesofthereformulatedmufûns.
FurtherreplacementofsucrosebyPD-sucraloseprogressively
affectedthebatterstructure,bothbeforeandduringthebaking
process. Thereplacement of sucrose decreased the viscosity,
viscoelasticiyandspecificgravityoftherawmuffinsbatter.It
furtherresultsinamuffinswithlessheightandfewerfinalair
cellsasthe sucrosewasreplaced, and withlowhardness and
spring iness. For 50 % sucrose  rep lacement, th e appearance ,
colour,texture,favourandsweetnessandgeneralacceptability
weresimilartothoseofthecontrol.Significantlylessacceptable
muffinswereobtainedwith75and100%sucrosereplacement.
Inasubsequentstudy,muffinswereproducedwhere30%sucrose
oftheformulationwasreplacedagainstaniso-sweetamountof
Steviolglycosides (or rebaudiosideAfromStevia rebaudiana
Bertonileaves)incombinationwithseveralfibres(peafibre,oat
fibre,wheatfibre,wheatbran,applefibre,cellulose,maltodextrin,
PD and  inulin) ( Zahn et al . 2013). Mu ltivari ate analys is of
instrumental and sensorydataindicatesthat acombinationof
inu lin or PD  with r ebaudi oside A res ults i n produ cts wi th
characteristicsclosetothatofareference.Theuseofwheatbran
orapplefibreasbulkreplacerforsucrosegivesproductswhich
mainlydeviateincrumbcolourandarecharacterisedbyawhole
meal  off-tast e, wher eas incr eased c rumblin ess and  reduced
elasticityistheconsequenceofpartialsucrosereplacementby
oat,peaorwheatfibre,celluloseormaltodextrin.Comparedto
thereferencemuffinwith1.3goffibre/100g,thereplacementof
30%sugarbyinulinincreasesfibreinmuffinsto4.6g/100gso
thatitallowstheclaim“sourceoffibre”(EC,2006).Muffins
withPDcanberegardedas“highfibre”(7.1g/100 g) source
(Zahnetal.2013).
IndianJDairySci69(3),2016
245
PDcanbeusedtomakefat-reducedpastry.Inshortcrustpastry,
thefatcontentcanbereducedbyupto50%withtheadditionof
PD whi le maint aining th e textur e normall y associa ted with
traditionalfull-fatpastry.Studieshaveshownthattheadditionof
PDtoshortcrustpastryincreasedthecripsiness;reducedpastry
shrinkage; improved themachinabilityof verythin sheets of
dough; causedbrowning under microwavereheat conditions;
reducedamountofsugarsandfatsinshortcrustpastrywithout
affectingtheorganolepticqualityoftheproduct.UsingPD,the
fatcontentofshortcrustpastrycanbereducedtoaslittleas13to
15% of dou gh weight whil e maintainin g acceptable se nsory
characteristics(Mitchel,1996).
Beveragesanddairydrinks
PDwouldbeusedtoreplacesugarand/orfatintheseproductsas
lowcaloriebulkingagenttoimprovecreaminessandmouthfeel.
PDcanbeusedinvarietyofbeveragesincludingcarbonatedand
non-carbonated,concentratedandready-to-drink,hotandcold
beverages.Itisusedindairydrinks;neutralorflavoured,orlow
pH, pa steurized , or UHT and  in many oth er clear be verage
formats.PDimprovethemouthfeel,givingthetasteexperience
ofaproduct of a muchhigherfatcontent;thisisparticularly
noticeableinlow-fatdairydrinkapplications(Anonymous,1991).
PDisalsoaddedtobeveragesasasourceofdietaryfibreasitis
verysoluble,formingclearsolutions,andisverystableovershelf
life.
Chocolateconfectionary
Thedevelopmentofchocolateandcompositechocolateproducts
withreducedcalories,sugarandfibreenrichmentispossiblewith
PD.PDfunctionstoreplacesugarandprovidewarm,creamy
textureinthechocolatematrixwithoutcontributingmouthcooling
effectorscratchyaftertaste(Mitchel,1996).PDcompletesthe
chocol ate flavor thr ough the form ation of smal l amounts of
caramelduringprocessing.Itslowresidualacidityensuresthat
thedelicate cocoaandsweetflavors are broughtforwardand
maintained(Renauldetal.2003).PDmaybeaddedtochocolate
asanediblecarbohydrateandintensesweetener(Afoakwaetal.
2007).Gomesetal.(2007)obtainedadietchocolateusingvarious
bulkingagentsassucrosesubstitutes.Thebulkingagentsinthe
studywerePD(24.14–48.27%),inulin,fructooligosaccharides,
lactitol andmaltitol and sucralose used with a high intensity
sweetener.TheformulationscontainingPD,PDandlactitol,and
PDandmaltitol wereevaluated for a sensoryanalysis due to
theirgoodtechnologicalperformanceandadequatemachinability
of the chocolate mass atdifferent stages of the process. The
sensoryanalysisrevealednosignificantdifferenceinthethree
evaluatedformulationsintermsofaroma,hardness,meltingin
themouthandflavorandtherewasnosignificantdifferencein
the i ntenti on to pur chase t he thre e chocol ate for mulatio ns,
althoughapreferencewasshownfortheformulationcontaining
PD(32.60%)andmaltitol(15.57%).
The productionof alow-sugar milk chocolate with prebiotic
propertiesofinulin was evaluatedbyFarzanmehrandAbbasi
(2009).Variousratiosofinulin,PDandmaltodxetrin(MD)along
withsucralose (0.04%w/w) wereusedinstead ofsucrose. In
general,formulationswithhighratiosofPDandMDweremoister
andsofterthancontrol.Thelowestmoisturecontentandhighest
hardnesswereobservedforthemoderateratios.Inaddition,MD
inducedtheleastdesirablesensorialeffects,whereasPDandinulin
pronouncedlyimprovedtheoverallacceptability.PDhasbeen
reportedasagoodoptionsasbulkingagenttoimprovetheoverall
acceptability of low-sugarmilk chocolates (Farzanmehr and
Abbasi,2009).Thediabeticprototypesofmilk-chocolateswere
preparedbysubstitutingsucrosewithhigh-intensitysweeteners,
sucraloseor stevioside, anda PD/lactitol (60/40) blend asa
bulkingagent(Meloetal.2010).
PDandlactitolareusuallywell
toleratedbutmayalsohavesomedose-relatedundesirableeffects
owi ng to their n atura l osmo tic p otent ial and/ or exc essiv e
fermentation (Marteauand Flourié,2001). Shahetal. (2010)
studiedthedevelopmentofasucrose-freechocolatesweetened
withStevia rebaudianaextractandcontainingPDandinulinasa
bulkingagent.Aidooetal.(2014)examinedoptimumconditions
forthe use of inulinand PD mixturesassucrose replacersin
sug ar-fr ee cho colat e, an d effec ts on  rheol ogical, phy sical
propertiesandmicrostructurewasalsostudied.TheCassonplastic
viscos ity increase d with increas ing inulin co ncentration  and
reductionin PD, whilstCassonyieldstress was reduced.The
propertiesofchocolateformulatedwith100%PDor100%inulin
werecompared.Chocolateformulatedwith100%PDrevealed
largecrystals withdensesmaller particles and minimalinter-
particlespacescomparedtolargecrystalswithmorevoidspaces
inchocolatesformulatedwith100%inulin.Chocolateformulation
consistingof75.3594%PDand24.6406%inulinwasfoundas
the o ptimum c oncentra tions pr oducing  the most  accepta ble
rheologicalandphysicalqualitycharacteristics.Inasubsequent
study,Aidooetal.(2015)investigatedtherheologicalproperties,
meltingbehavioursandotherphysicalqualitycharacteristicsof
sugar-freechocolatesprocessedfrominulinandPDmixtures(36
and12,%w/w)(ratioof25:75)asbulkingagentssweetenedwith
stevia(0.24%w/w)andthaumatin(0.06%w/w)extracts.The
sugar-freechocolates(steviaandthaumatin)showedsimilarflow
(rheological)andmeltingpropertiesascomparedtothereference
chocolatecontaining48percentsucrose.Sugar-freechocolates
showedsignificantlyhigherviscositythanthereferencechocolate.
Therewerehowever nosignificant differencesinthemelting
beha viour an d textu re of the  sugar-f ree choc olates  and the
reference.Chocolatescontainingthesugarsubstitutesrecorded
low er onse t tempe rature s and hi gher p eak wid ths tha n the
referencesample.AuthorsconcludedthatinulinandPDmixtures
cou ld be  used  for s ugar- free cho cola te manuf acture w ith
satisfactoryphysico-chemicalpropertieswhensweetenedwith
steviaorthaumatinextracts.
IndianJDairySci69(3),2016
246
Pastaandnoodles
Fibreenhancementofnoodleandpastaproductsispossiblewith
PDaswellassomeprocessimprovementbenefitstomechanical
propertiesofthedough.TheadditionofPDtothedoughimproves
thefirmnessthatcanaidformingnoodleorspaghettistrandsor
pastashapes.Thetextureofthecookedproductisnotsignificantly
alteredbyadditionofPDand95%oftheaddedPDremainsin
thepastaornoodlesaftercooking(Matsuda,2006).
Fishandmeatapplications
PDwouldbeusedtoreplacenutritivesweetenersorpolyolsin
surimi(myofibrillarproteinconcentrate)andothercomminuted
fishandmeatproductssuchaschickenfingers,salmonpatties,
etc.Itisaneffectivecryoprotectant,whichunlikesorbitolorcorn
syrupdoesnotaddsweetnesstotheproduct(MacDonaldand
Lanier,1991).Toprotectthemuscleproteinsfromdenaturation
andsoimprovethe technologicalproperties of frozenmuscle
tissuecryoprotectivesubstancesareoftenused.PDcanbeused
inmeatproductssuchaschickennuggetstobindmoistureinthe
meatpatty.Moisturelossisreducedduringcookingaswellas
moisturemigrationtothebatterandbreadcrumbcoating.This
hastheeffectofkeepingthechickennuggetmoistandjuicywhile
thecrispnessofthecoatingisimprovedandstayscrispierfor
longer after cooking (Satsuba andOkuma, 1995).
Park etal.
(1993) foundthatthefunctionalqualityofsaltedpre-rigormince
treatedwithPDascryoprotectantandstoredfor6monthsat-
28°Cwasabout equal tothatofpost-rigor freshmuscle.Itis
possiblethatcryoprotectantscouldhelpmaintainthefunctional
propertiesofpre-rigorsaltedminceduringlong-termchilledor
frozenstorage.SadlerandSwan(1997)investigatedthefunctional
propertiesofmincedbeefthatwassaltedpre-rigorwithorwithout
addedPD, then stored,chilled inavacuum pack oracarbon
dioxidecontrolledatmospherepack,orstored frozen.Adding
PD (2.6%)to salted mince improved batter strain and stress
comparedwiththenon-additiveandsalt-onlysamplesandthus
helpedinmaintainingthemeat’sfunctionality.Tomaniaketal.
(1998)studiedtheeffectsofcryoprotectants(sucrose,D-sorbitol,
malto dextrin a nd PD) on fro zen red me at from sl aughtere d
domesticmammals.TheysuggestedthatPDasthecryoprotectant
ofchoiceinredmeat.Dueitsleastsweetness,tastewasdistinctly
suppressedbymeat,itsdurationofsweetnesswastheshortest
anditstotalflavourimpact(thetotalareaunderthetimeintensity
curve)wasthesmallest.
Insurimi andreformed meatproducts,PDmay beused as a
cryoprotectanttomodifytheglasstransition(Tg)ofthefrozen
matrixandprotectmyofibrillarproteinsfromcolddenaturation
duringfrozen storage(Okada,1992). Kovačevićetal.(2011)
investigatedthecryoprotectiveeffectsofPDonchickensurimi
usingtwodifferentthermalanalysistechniques.Thesamplesof
chickensurimiweremixedwithdifferentmassfractionsofPD
(w=2-10%)plusκ-carrageenan(w=0.5%),PD(w=2-10%)
plus sodium chloride (w= 2%),and PD (w= 2 - 10%). The
additionofPDresultsinstabilizationofmyofibrillarproteins.
Theshiftinthethermaltransitiontemperaturesofmyosinand
actintohighertemperatures,increaseofenthalpiesofmyosin
andactintransition,andshiftofinitialfreezingpointtolower
valuesasthemassfractionofPDincreases,indicatingthatPD
actsinaccordancewithcryoprotectingmechanismandinteracts
with proteinsin chickensurimi. Nopianti et al. (2012) used
different types oflow calorie sweetnesssugar (lactitol,MD,
palati nit, PD and tre halose) as a cr yoprotecta nt on physico -
chemicalpropertiesofthreadfinbream(Nemipterusspp)surimi
duringsixmonthsofstoragewasinvestigated.Theyreportedthat
surimi treate d with a cryoprotect ant exhi bits better
physicochemicalpropertiescomparedwithrawsurimi.PDwas
abletomaintainbetterphysico-chemicalproperties(waterholding
capa city, fold ing test , gel st rength e tc.) th an the ot her low
sweetnesssugarsandsucroseduringsixmonthsoffrozenstorage
an d hence sug gested that,  PD as  a po tential al ternative
cryoprotectanttoreplaceotherlow-sweetnesssugars(Nopianti
etal.2012).
Frozendairydesserts
PDreplacesthebulk,creaminess,smoothness,andmouthfeelof
sugarandfatand enablingtheformation of high-quality,low
calorieandreduced-fatproducts(Kappas,1998).Ithasgreater
visc osity i n solut ion tha n sucro se or so rbitol  at equi valent
concentrationsanditsroleinfreezing-pointdepressionhelpsin
achievingcreamy,palatablefrozendesserts.Adessertcanreadily
beformulatedwithPDtoachievea50%caloriereductionwhen
usedwithahigh intensitysweetener.GoffandJordan(1984)
usedPDandaspartame(0.06to0.1%)assugarsubstitutesina
frozendessertsystem.Smoothnessandacceptability,asevaluated
bysensorymethods,indicatedthatsubstitutionofPDfornomore
than12%ofthe14%totalcarbohydratesinthemixproduced
acceptableproducts.Layereddessertsandyoghurtshavebeen
successfullyformulatedusingPDasalow-caloriebulkingagent
(BarranatesandTamime,1993).SpecterandSetser(1994)studied
theeffectsof milkfatandsucrosesubstitutesonphysicaland
sensory propertiesof a frozendessert systemby sensoryand
instrumentalmethods.Twocomplexcarbohydratefatreplacers,
tapioca dextrinand potato maltodextrin, and aPD-aspartame
sweetening system were evaluated. PD-aspartame effectively
com pensa ted fo r func tiona l prop ertie s that  norma lly we re
conferredbysucroseandmilkfat.Replacementofmilkfatwith
tapiocadextrinorpotatomaltodextrinincreasedcoarsenessand
waterinessanddecreasedcreaminessrelativetothecontrol.
Rolandetal.(1999)demonstratedtheeffectsoffatreplacerson
thephysical andsensory properties offat-free icecream. Ice
creams(0.5%milk fat) were formulatedwithmaltodextrin,
mil k prot ein co ncent rate,  or PD.  Lacto se-re duced , free ze-
concentratedskimmilkwasusedtoprepareaicecreammix.Ice
creamswith10or0.1%fatwerepreparedascontrols.Theaddition
IndianJDairySci69(3),2016
247
offatreplacerstofat-freeicecreamdecreasedtheamountofice
intheproduct.Whencomparedwith0.1%faticecream,these
fatreplacersimprovedtheappearanceandtextureoftheicecream
butdidnotmatchtheattributesimpartedby10%milkfat.The
samplecontainingonlymaltodextrinhadthegreatestcreamflavor
and th e bes t tex tura l cha ract eris tics  comp ared  to sa mple
containingPDormilkproteinconcentrate.Inasubsequentstudy,
lowcalorieicecreamsampleswere producedbymixingmilk
powder(2,4,6or8%)witheithermaltodextrin(10%),PD(10%)
oramixturecontainingequalratiosofmaltodextrin-PD(5%+
5%)onweight basisandartificial sweeteners(aspartame and
asesulfame-K) wereadded tomixes withreduced fatcontent
(Güzeler etal. 2011). Maltodextrin added icecream samples
meltedlateordidnevermelt.However,meltingofsampleswith
PDtakesplaceearlier.Therefore,PDhasapositiveeffectonthe
physicalpropertiesoficecreamthanmaltodextrin.Butsample
containingPDreceivedlowersensoryscoresthanothers.Authors
demonstratedthattheuseofequalmixtureofPDandmaltodextrin
hadpositiveimpactbothonthephysicalandsensoryproperties
oficecreams.
Cultureddairyproducts
Yoghurtisahealthyfoodduetothebeneficialaspectsofitshigh
proteinandcalciumcontents(McKinley,2005).PDcanbeused
asfatandsugarsubstitutesinlow-fatdairyproductsowingto
theiradvantageousfunctionality.Numerousresearchershavetried
toimprovetexturalandfunctionalpropertiesoflow-fatyoghurt
byusingthisfatreplacer.Whenusedasfatreplacer,theygive
fat-likemouthfeelandtexture(Hellandetal.2004).Allgeyeret
al. (2 010) demo nstrated  the effect  of adding  prebioti cs and
prob iotics i nto yogh urt drin k (stirre d yoghu rt) syste m. The
prebioticsinulin,solublecornfibre,andPDwereshowntoalter
thesensorypropertiesoftheyoghurtdrinkwhenincorporatedat
differentlevels.Whenprobiotics(Bifidobacterium lactis Bb-12
and La ctobacillus acidophilus LA-5 ) wer e inc orpo rated,
add itiona l senso ry cha nges we re iden tifie d. Tota l varia nce
explainedbytheprincipalcomponentanalysisbiplotoffactors1
and2was65%,whichshowedyoghurtdrinkswithsolublecorn
fibreandinulinvaryingbythesweetversussourattributesand
yoghurtdrinkswithPDvaryingbythemouthfeelattributes.Based
ontheresultsofthisstudy,onlythePDtreatmentwouldbean
acceptablevehicletodelivertheprobiotichealtheffectsatthe
endofthe30daysstorageperiod.Srisuvoretal.(2013)studied
theeffectsoftwoprebiotics(inulinandPDasfatreplacer,each
at1,2or3g/100mLofreconstitutedmilk)onphysico-chemical
andsensorypropertiesoflow-fatsetyoghurt.Theadditionof
eachprebioticcouldimprovephysicalandsensorypropertiesof
theyoghurtand2gofPD/100mLwasthemostsuitablelevel.
Further,theprobiotic-cultured(withLactobacillus paracasei
Lpc-37)bananapuréewaspreparedandusedasfruitbaseofthe
prod uct a nd some physi coch emical and microb iolo gical
characteristicsweremonitoredduring21daysofstorage.The
numberoftheprobioticswasstillhighlyacceptableat8.86log
CFU/gduringthe entire storageperiod;however,itsphysical
propertiesgraduallydeterioratedafter14days.Authorsconcluded
that theuse ofbananapurée as a source ofnutrientsfor the
probioticandthePDasafatsubstituteinthesetyoghurtwas
beneficialbothfortheconsumersandthemanufacturers.
Cakes
Therearesomestudiesreportedthereplacementofsucrosein
spongecakesbyPD,withorwithoutnonnutritivesweeteners.
Thetextureofyellowlayercakeswasoptimized by Frye and
Setser(1991)usingsixbulkingagents:sorbitol,hydrogenated
sta rch hy drolysate mixture, la ctito l, iso malt,  18-de xtros e-
equivalent maltodextrinand PD incombinations tototally or
partially replace sucrose. Sorb itol at 100%  level result ed in
moderatemouthdryingcomparedtoPDwhichcausedlongand
severemouthdrying,whilealessprolongeddryingoccurredfrom
themixtureofthePDwithmaltodextrin,sorbitolorisomalt. Attia
etal.(1993)studiedtheeffectofreplacingsucrosewithfructose,
acesulfame-Koraspartame,withorwithouttheadditionofPD,
onthephysicalpropertiesofcakes.Theresultsindicatedthat
addingPDcausedanimprovementintexturalpropertieswhich
ledtospongecakeswithsimilaracceptabilitytothatofsugar
cake with a40% reduction incalories. Pateras et al. (1994)
demonstratedtheeffectofsucrosereplacementbyPDonfoam
characteristicsofcakebatters.PDcausedanincreaseinthemean
sizeofairbubbles,andintroducedalargervariationinbubble
sizedistributioninthecakebatter.Hicsasmazetal.(2003)studied
theeffectofPDsubstitutiononahigh-ratiocakesystem.Authors
foundthesameincreaseinthemeanbubblesizeandshowedthat
PDwascapableofimitatingthesucrosecakebatterintermsof
bubblesize distribution.Also,theyfoundthatincrease inPD
resultedinasignificantdecreaseincakeheightandasensible
changeinthelightnessandinthecrumbcolourhue.Rondaetal.
(2005)evaluatedtheeffectonspongecakevolume,colourand
texturepropertiesoftotalreplacementofsucrosebysevenbulking
agents. Several polyols - maltitol, mannitol, xylitol, sorbitol,
isomaltoseandtwooligosaccharides-PDandoligofructosewere
testedasbulkingagents.Bestresultswereobtainedwithxylitol
andmaltitol,leadingtospongecakesmoresimilartothecontrol
onemanufacturedwithsucroseandwiththehighestacceptance
levelinsensoryevaluations.Panelistsassignedthelowestscore
in  overall  acceptabi lity t o mannitol  cakes, f ollowed by
oligofructoseandPDones.Thepoorsensoryscoresgiventothe
oligofructoseand PDcakes were mainlyrelatedto taste and
aftertaste.SitiFaridahandNoorAziah(2012)preparedreduced
caloriechocolatecakewithjackfruitseedflourandPD.Optimized
productwasobtainedbypartiallyreplacingsucrosewithPDat
11%andresultedin34%caloriereductionascomparedtothe
controlcake.
Safety
IndianJDairySci69(3),2016
248
ThesafetyofPDinthehumandiethasbeencomprehensively
demonstrated(BurdockandFlamm,1993).BoththeJointFAO
andWHOexpertcommitteeonfoodadditives(JECFA)andthe
EuropeanCommision,ScientificCommitteeonFood(EU/SCF)
haveassignedanacceptabledailyintake(ADI)“notspecified”,
meaningthatneitheragencyfounditnecessarytostipulatean
upperlevelofsafeintakebecauseexcessiveconsumptionisa
matteroftoleranceratherthansafety(JECFA,1987;EC/SCF,
1990).Therefore,PDispermittedforuseinanyfoodatanylevel
withoutrestrictionotherthanGMPinmostmarkets.WhilePDis
notconsideredtoxicathighdosages,laxationeffectshavebeen
observedwhenintakesareelevated,similartoothernondigestible
carbohydrates.Childrenareconsiderednomoresensitivethan
adultstoPDwhengivenatthesamelevelonaperbodyweight
basis  (Flood et  al. 2004) .As r eported i n a compend ium by
BurdockandFlamm(1999),anextensivearrayoftoxicological
studies,conductedinavarietyofanimalmodels(i.e.mice,rats,
rabbits,dogs)forextensiveperiodsoftime(3–24months),have
fully  supporte d the safe ty of two fo rms of PD  ( acidic an d
neutralizedforms)asfoodingredients.
Tolerance
Floodetal.(2004)havereviewednineclinicalstudiesinadults
andchildrenwereconductedwithPDtoevaluatetheextentof
gastrointestinalsymptoms.ThesestudiesdemonstratedthatPD
isnotlikelytoinducediarrheainadultsatdoseslessthan50g
perday(apracticalno-effectdose),andmostindividualsmay
onlyexperiencediarrheafrommuchhigherdoses.Thesestudies
showedthatPDisbettertoleratedthanmostotherlow-digestible
carbo hydr ates . The fac t tha t les s gas  is pr oduc ed du ring
fermentationislikelyacontributingfactor(Hernotetal.2009;
VesterBoleretal.2009).ThediarrheainducedbyPDisisolated
andtransient.Clinicalchemistryandmetabolicbalancestudies
haveshownnotreatmentrelatedeffectfromingestionofhigh
dosesofPD(Floodetal.2004).PDiswelltolerated,andamean
laxativethresholdof90g/day(1.3g/kgbw)or50gasasingle
dosehasbeengiven(JECFA,1987).TheSCFrapporteurpointed
out,however,thatsuchestimatesareonlyprovidedasaguide
andshouldnotbeusedtoestablishmaximumlevelsofuse(Van
Esch,1987).
Regulatoryandlabelingguidelines
The use  of PD in foods  has receive d approval i n numerous
countries.Itisapprovedforuseinfoodsin57countries,56of
whompermituseof1kcal/genergyvalueforlabeling(Auerbach
etal.2006).PDhasbeenapprovedasafoodadditiveintheUS
since1982(FoodandDrugAdministration21CFR172.841).In
the EU,  PD is appro ved under  the Miscel laneous Addit ives
Directive -Annex I, permitting the useof PD in virtually all
foodstuffsfollowingthequantum satisprincipleandislistedas
E1200.InJapan,theMinistryofHealthandWelfare(MOHW)
recognizesPDasafood(Mitchell,2001;Stowell,2009).InIndia,
according to the Food Safety and Standards(FoodProducts
StandardsandFoodAdditives)Regulations(2011),PD(INSNo.
120 0) ma y be us ed as  bulki ng ag ent, s tabi lizer,  thic kner,
humectantandtexturizerinicecream,frozendesserts, cakes,
biscuits,yoghurt,whiptopping,sugarboiledconfectionary,jam,
fruitjellyandtraditionalIndiansweets(carbohydratebasedand
milkbased)asperGMPlevels(FSSA,2006).
FoodscontainingPDdesignedforspecialdietaryuse,suchas
reducedorlowcaloriefoods,mustbelabeledinaccordancewith
21CFRPart105.Theingredientstatementoffoodscontaining
PD(eitherthepowderorthe70%solutionpartiallyneutralized
withpotassiumhydroxide)shouldincludetheofficialrecognized
nameoftheingredientPD.Foodscontaininginexcessofthe50
mgspotassiumperservingmustalsodeclarepotassiumhydroxide
intheingredientstatement.Aclarifyingstatementmustalsofollow
suchas“forneutralization”or“toadjustpH”.FDArecognizes
thatPDcontainsonlyonecaloriepergramanddoesnotobject
totheuseofthisvalueforpurposeofdeterminingthecaloric
contentoffoodsformulated with PD(Smiles, 1982).
TheUS,
however,allowsPDuseasafoodadditiveinspecificfoodsonly,
andrequiresthat‘Thelabelandlabelingoffood,asingleserving
ofwhichwouldbeexpectedtoexceed15goftheadditive’shall
bear th e statement : ‘Sensiti ve individu als may expe rience a
laxativeeffectfromexcessiveconsumptionofthisproduct’(Flood
et al. 2 004). According t o FSSAI regula tions in Ind ia, food
containingmorethan10%PDshallbearthelabelonpackage
“PDmayhavelaxativeeffects”.
Conclusions
PD is added tofoods for itsphysiological andtechnological
reasons.Itshighstabilityinheatandacidicenvironments,low
viscosity,high solubility in water,and bulkingand texturing
propertiesandblandtastelendsitselftoawidevarietyoffood
and be verage form ulations.  PD can impro ve mineral s tatus,
attenuatepostprandialbloodtriglycerides,maintainsbloodsugar
levels,regulates bowel function,softenedthefeces, improves
the ease of defe cation and hel ps in prevention  of colon
carcinogenesis.InthisregardPDallowsthedevelopmentoffood
productswithawidevarietyofnutritionalimprovementssuchas
prebiotic,fibrefortification,caloriereduction,reducedglycemic
loadaswellassugarandfatreduction.Hence,PDisaversatile
foodingredientthatcanbeusedtoimprovethenutritionalprofile
ofawiderangeofprocessedfoods.
References
21CFR 172.841,46FR30080 (June5,1981) FoodAdditivesPetition No.
9A3441
Afoakwa EO, PatersonA,Fowler M (2007)Factors inûuencing rheological
andtextural qualitiesinchocolate-areview.Trends FoodSciTechnol
18:290–298
Aidoo R P, Afoa kwa EO, Dew ettinck K (2014)  Optimizat ion of inul in and
polydextrosemixturesassucrosereplacers duringsugar-freechocolate
IndianJDairySci69(3),2016
249
ma nuf act ure  – rh eolo gic al,  mic ros tru ctu re a nd p hys ical  qua lit y
characteristics.JFoodEngineer126:35-42
AidooRP,AfoakwaEO,DewettinckK(2015)Rheologicalproperties,melting
behavioursandphysicalqualitycharacteristicsofsugar-freechocolates
processe d using inul in/polydext rose bulking  mixtures swe etened with
steviaandthaumatinextracts.LWT-FoodSciTechnol62:592-597
AllgeyerLC,MillerMJ,LeeS-Y(2010)Sensoryandmicrobiologicalquality
of yogurtdrinks withprebioticsand probiotics. J Dairy Sci 93:4471–
4479
AllinghamRP(1982)Polydextrose-Anewfoodingredient.In:Chemistryof
FoodsandBeverages:RecentDevelopments,CharalambousG,InglettG,
Eds.AcademicPressInc:NewYork,pp293-303
Anony mous (199 1) Polyde xtrose - App lication s of bulk  sweetene rs. Food
marketingtechnol5:19-20
Ano nymou s (20 04) F ood Ch emic al Cod ex. F ifth E diti on, Th e Nati onal
AcademiesPress:Washigton,DC,pp336-339
Arch our L, Fl ourie B , Briet F, Pe llier P, Marte au P,R ambaud  JC (199 4)
Gastr ointest inal eff ects and  energy v alue of  polydex trose in  health y
nonobesemen.AmJClincNutr59(6):1362-1368
AttiaAE,ShehataHA,AskarA(1993)Analternativeformulaforthesweetening
ofreducedcaloriecakes.FoodChem48:169-172
Auerbac h M, Craig S,  Mitchell H (2 006) Bulki ng agents: m ulti-funct ional
ingredients.InSweeteners and Sugar Alternatives in Food Technology;
MitchellH,Eds.;BlackwellpublishingLtd:Oxford,UK.pp367-398.
AuerbachMH,CraigSA,HowlettJF,HayesKC(2007)Caloricavailabilityof
polydextrose.NutrRev65:544-549
BarranatesE,TamimeAY(1993)Fat-freeyoghurt-likeordislike,Ingredients
focus.
Beer M,Arrigoni E, UhlmannD,Wechsler D,Amado R (1991)Stability of
polydextrosesolutionstoheattreatmentandstorageunderacidconditions.
Lebensmittel-WissenschaftTechnol24:245-251
Beereboom JJ(1981)Technicalaspectsofpolydextrose. PolydextroseTrade
PressBriefing,NewYork,May28
BeristainCI,Cruz-SosaF,Lobato-CallerosC,Pedroza-IslasR,Rodríguez-Huezo
ME, Verde-Calvo JR  (2006) Applica tions of sol uble dieta ry fibres in
beverages.RevistaMexicanaDeIngenieriaQuimica5:81-95
Burdoc k GA, Flamm W G (1999) A review o f the stud ies of the s afety of
polydextroseinfood.FoodChemToxicol37:233-264
ČernáM,BarrosAS,NunesA,Rocha,SM,DelgadilloI,ČopýìkováJ,Coimbra
MA (2003 ) Use of F T-IR sp ectrosc opy as a  tool for  the anal ysis of
polysaccharidefoodadditives.CarbohyPolym51:383–389
ChaudharyV,SmallDM, Kasapis S(2013)Structuralstudiesonmatricesof
deacetylatedgellanwithpolydextrose.FoodChem137:37–44
ChoeM,KimJD,JuJS(1992)Effectsof polydextroseandhydrolysedguar
gumonlipidmetabolismof normal ratswithdifferentlevelsofdietary
fat.KoreanJNutr25(3):211-220
Cicek  B, Arslan  P,  Kelesti mur F (2 009) The  effects o f oligo fructo se and
polydextroseon metaboliccontrolparametersintype-2diabetes.PakJ
MedSci25(4):573-578
Craig  SAS, Anderso n JM, Hol den JF, Murray  PR (1994 ) Bulkin g agents:
Polydextrose,Thirdinternationalworkshoponcarbohydratesasorganic
rawmaterials,Wageningen,theNetherlands
CraigSAS,HoldenJF,TroupJP,AuerbachMH,FrierHI(1999)Polydextrose
assolubleûberandcomplexcarbohydrate.In:ComplexCarbohydratesin
Foods,ChoSS,ProskyL,DreherM,Eds.MarcelDekkerInc:NewYork,
NY
EC(2006)Regulation(EC)No1924/2006oftheEuropeanParliamentandof
theCouncilof20December2006onnutritionandhealthclaimsmadeon
foods.OfficialJEuUnionL404,9-25.
EC/SCF(1990)4.2Polydextrose.Excerptfromtheminutesofthe71stmeeting
oftheScientificCommitteeforFoodsheldon25–26January.
EFSA(2011)Scientificopiniononthesubstantiationofhealthclaimsrelated
tothesugarreplacersxylitol,sorbitol,mannitol,maltitol,lactitol,isomalt,
eryt hritol , d-ta gatose , isom altul ose, su cralo se and p olyde xtrose  and
maintenanceoftoothmineralisationbydecreasingtoothdemineralisation
(id463,464,563,618,647,1182,1591,2907,2921,4300),andreduction
ofpost-prandialglycaemicresponses(id617,619,669,1590,1762,2903,
2908, 2920) pursuanttoarticle 13(1) of regulation (ec) no 1924/2006.
EFSAJ 9(4):2076
EndoK,KumemuraM,NakamuraK,FujisawaT,SuzukiK,BennoY,Mitsuoka
T(1991)Effectofhighcholesteroldietandpolydextrosesupplementation
onthemicroflora,bacterialenzymeactivity,putrefactiveproducts,volatile
fattyacid(VFA)profile,weight,andpHofthefecesinhealthyvolunteers.
BifidobactMicrofl10(1):53-64
FarzanmehrH,AbbasiS(2009)Effectsofinulinandbulkingagentsonsome
physico chemical, t exturaland  sensory pro perties of mi lk chocolat e. J
TextureStud40:536-553
FavaF,MäkivuokkoH, Siljander-RasiH,PutaalaH,TiihonenK,StowellJ,
Touhy K, G ibson G, Routon en, N (20 07) Effe ct of PD on  intesti nal
microbesandimmunefunctionsinpigs.BrJNutr98(1):123-133
FigdorSK,BianchineJR(1983)Caloricutilizationand dispositionof [14C]
polydextroseinman.JAgricFoodChem31(2):389-393
FigdorSK,RennhardHH(1981)Caloricutilizationanddispositionof[14C]
polydextroseintherat.JAgricFoodChem29(6):1181-1189
FloodMT,AuerbachHH,CraigSAS(2004)Areviewoftheclinicaltoleration
studiesofpolydextroseinfood.FoodChemToxicol42:1531–1542
Foste r-Powel l K, Holt  SH, Bran d-Mill er JC (20 02) Int ernatio nal tabl e of
glycemicindexandglycemicloadvalues.AmJClinNutr76(1):5-56
FryeAM,SetserCS(1991)Optimizingtextureofreducedcalorieyellowlayer
cakes.CerealChem69:338–343
FSSA(2006)TheFoodSafetyandStandardsAct,Universal’s:NewDelhi,India.
GibsonGR(2004)Fibreandeffectsonprobiotics(theprebioticconcept).Clin
NutrSupp1:25-31
GoffDH, Jordan WK (1984)Aspartame and polydextrose in a low calorie-
reducedfrozendessert.JFoodSci49:306-307
GomesRC,VissottoFZ,FadiniAL,deFariaEV,LuizAM(2007)Inûuenceof
different bulkagents on therheologicaland sensorycharacteristics of
dietandlightchocolate.CienceeTechnologiadeAlimentos27:614–623
Güzeler N,KaçarA,SayD (2011) Effect of milk powder, maltodextrinand
polydextroseuseonphysicalandsensory propertiesoflowcalorieice
creamduringstorage.AkademikGýda9:6-12
Hara H, SuzukiT,Aoyama Y(2000) Ingestion of the soluble dietaryfibre,
polydextrose,increases calciumabsorptionandbonemineralizationin
normalandtotal-gastrectomizedrats.BrJNutr84(5):655-661
HellandMH,WicklundT,NarvhusJA(2004)Growthandmetabolismofselected
strainsofprobioticbacteriainmilk-andwater-basedcerealpuddings.Int
DairyJ14:957-965
HengstC,PtokS,RoesslerA,FechnerA,JahreisG(2009)Effectofpolydextrose
supplementationondifferentfaecalparametersinhealthyvolunteers.Int
JFoodSciNutr60(5):96-105
Hernot DC , Boileau TW, Bauer LL,  Middelbos I S,Murphy MR ,Swanson
KS,Fahey GC Jr (2009) Invitro fermentationprofiles,gasproduction
rat es, a nd m icro biot a mod ulat ion a s aff ecte d by c ert ain f ruct ans,
galactooligosaccharides,andpolydextrose.JAgricFoodChem57(4):1354-
1361
Hicsasmaz Z,YazganY,BozogluF,Kaunas Z(2003)Effectof polydextrose
su bsti tut ion  on th e ce ll st ruc tur e of t he h igh -rat io c ake  syst em.
Lebensmittel-WissenschaftTechnol36:441-450
IshizukaS,NagaiT,HaraH(2003)Reductionofaberrantcryptbyingestionof
polydextroseintheratcolorectum.NutrRes23:117-122
JECFA(1987)Evaluationofcertainfoodadditivesandcontaminants.Thirty-
firs t repo rt of t he the J oint FAO /WHO Ex pert C ommitt ee on F ood
Additives,Worldhealthorganizationaltechnicalreportseries759,Geneva.
JieZ,Bang-YaoL, Ming-JieX,Hai-weiL,Zu-kang Z,Ting-songW,Craig
SAS(2000)Studiesontheeffectsofpolydextroseintakeonphysiologic
functionsinchinesepeople.AmJClinNutr72:1503–1509
KappasJ(1998)Polydextrose,fatreplacersandfunctionalingredientsinfrozen
dai ry a ppli cati ons.  In I ce cr eam:  Proc eed ings  of an  inte rna tion al
symposium,Athens,September1997,Publisher:IDF,pp75-82
KnappBK,ParsonsCM,SwansonKS,FaheyGC(2008)Physiologicalresponses
tonovelcarbohydratesasassessedusingcanineandavianmodels.JAgric
FoodChem56(17):7999-8006
Kol ida S , Tuohy  K, Gi bson  GR (20 020 P rebi otic  effec ts of  inuli n and
oligofructose.BrJNutr87:S193–S197
IndianJDairySci69(3),2016
250
Kov ačevi ć D, M astan jević  K, Ko rdić J  (2011)  Cryo prote ctive  effe ct of
polydextroseonchickensurimi.CzechJFoodSci29:226–231
Kurot obi T, Fukuha ra K, Ina ge H, Kim ura S (20 10) Glyc emic ind ex and
postprandialbloodglucoseresponsetoJapanesestrawberryjaminnormal
adults.JNutrSciVitminol56:198-202
LahtinenSJ,KnoblockK,DrakoularakouA,JacobM,StowellJ,GibsonGR,
OuwehandAC(2010) Effectofmoleculebranchingandglycosidiclinkage
onthedegradationofpolydextrosebygutmicrobiota.BiosciBiotechnol
Biochem 74(10):2016-2021
LiuS,TsaiCE(1995)Effectsofbiotechnicallysynthesizedoligosaccharides
andpolydextroseonserumlipidsinthehuman.JChinNutrSoc20:1–12
Lummela N, Ke kkonen RA, Jauhia inen T, Pilvi TK, Tuure T, Jarvenpaa S,
ErikssonJG,KorpelaR(2009)Effectofafibre-enrichedmilkdrinkon
insulinandglucoselevelsinhealthysubjects.NutrJ8:45.
MacDonald A, LanierT (1991) Carbohydrates as cryoprotectants formeats
andsurimi.FoodTechnol45:150-155
MakelainenHS,MakivuokkoHA,SalminenSJ,RautonenNE,OuwehandAC
(2007)Theeffectsofpolydextroseandxylitolonmicrobialcommunity
andactivityina4-stagecolonsimulator.JFoodSci 72(5):M153-M159
MäkivuokkoH,NurmiJ,NurminenP,StowellJ,RautonenN(2005)Invitro
effectsonpolydextrosebycolonicbacteriaandcaco-2cellcyclooxygenase
geneexpression.NutrCancer-InterJ52(1):94-104
Mar teau P,Fl ouri é B (20 01) Toler ance t o low- dige stibl e carb ohydr ates:
symptomatologyandmethods.BrJNutr85:S17-21
Martínez-Ce rvera S, Sanz T, Salvador A, Fiszman S M (2012) Rheologi cal,
texturalandsensorialpropertiesoflow-sucrosemufûnsreformulatedwith
sucralose/polydextrose.LWT-FoodSciTechnol45:213-220
MatsudaI,KatsutaY,ShimadaK,KiyoshimaT(2006)Water-solubledietary
fibre- contain ing comp osition a nd metho d for prep aring sa me. Pate nt
Assignee:ColoranInc.PatentNumber.WO8707902A1,PCTinternational
patentapplication
McKinleyMC(2005)Thenutritionandhealthbenefitsofyoghurt.IntJDairy
Technol58:1-12
MeloL,ChildsJL,DrakeM,MariaH,BoliniA,EfraimP(2010)Expectations
andacceptabilityofdiabeticandreduced-caloriemilkchocolatesamong
nondiabeticsanddiabeticsintheUSA.JSensStud25:133-152
Mit chel  HL (19 96) T he Ro le of  the b ulki ng ag ent  poly dext rose  in fa t
replacement.In:Handbook of Fat Replacers,RollerS,JonesSA,Eds.
CRCPress:BocaRaton,pp235-249.
MitchellH,AuerbachMH,MoppettFK(2001)Polydextrose.In:Alternative
Sweeteners,3rded.NaborsLOEds.MarcelDekker:NewYork,pp499–
518
MurphyO(2001)Non-polyollow-digestiblecarbohydrates:Foodapplications
andfunctionalbeneûts.BrJNutr85:S47–S53
MurrayP(1988) Polydextrose.In:Low-calorieProducts.BirchGG,Lindley
MGEds.Elsevierappliedscience:LondonandNewYork,pp83-100
NakagawaY,OkamatsuH,FujiiY(1990)Effectsofpolydextrosefeedingon
thefrequency andfeeling ofdefecationin healthyfemalevolunteers.J
JapaneseSocNutrFoodSci43:95-101.
NopiantiR,HudaN,FazilahA,IsmailN,EasaAM(2012)Effectofdifferent
typesoflowsweetnesssugaronphysicochemicalpropertiesofthreadfin
bream surimi (Nemipterus spp.)duringfrozen storage.Int Food Res J
19:1011-1021
OkadaM(1992)HistoryofsurimitechnologyinJapan.In:SurimiTecnology,
LanierTC,LeeCMEds.MarcelDekkerInc:NewYork,pp3-21
OkuT,FujiiY,OkamatsuH(1991)Polydextroseasdietaryfiber–hydrolysis
bydigestiveenzymeanditseffectongastrointestinaltransit-timeinrats.
JClinBiochemNutr11(1):31-40.
Oliveria RPS,FlorenceACR,Silva RC, PeregoP,ConvertiA,Gioielli LA,
Oliveria MN(2009) Effectof differentprebiotics onthe fermentation
kinetics,  probiotic survi val and fatty ac id proûles in non fat symbiotic
fermentedmilk.IntJFoodMicrobiol128:467–472
OzawaH,KobayashiT,Sakane H,ImafukuS,MikamiY,HommaY(1993)
Effectsofdietaryfiberpolydextrosefeedingonplasmalipidslevelsand
diurnalchangeinplasmasugar,insulin,andbloodpressurelevels.Nippon
EiyoShokuryoGakkaishi46(5):395-399
Park JW, Lanier TC, Pil kington DH (1 993) Cryosta bilization of  functional
propertiesofpre-rigor and post-rigorbeefbydextrose polymerand/or
phosphates.JFoodSci 58:467-472
PaterasIMC,HowellsKF,RosenthalAJ(1994)Hot-stagemicroscopyofcake
ba tter  bub bles  dur ing s imu late d ba king : su cros e re plac eme nt b y
polydextrose.JFoodSci59:168–170
Perrin  P,  Cassagna u C, Burg C,  Patry Y, Vavasseur F, Harb J,  Lependu J,
DouillardJY,GalmicheJP,BornetF,MeflahK(1994)Aninterleukin2/
sodium butyrate combination as immunotheraphy forrat colon cancer
peritonealcarcinomatosis.Gastroenterol107:1697-1708
Peuranen S,TiihonenK,ApajalahtiJ,KettunenA,Saarinen M,RautonenN
(20 04) Co mbin ation  of po lydex tros e and l acti tol af fects  micr obial
ecosystemandimmuneresponsesinratgastrointestinaltract.BrJNutr
91(6):905-914
Prob ert HM, Apa jalahti  JHA, Ra utonen N , Stowel l J, Gib son GR (2 004)
Polydextrose,lactitolandfructo-oligosaccharidefermentationbycolonic
bac teria  in a t hree- stag e cont inuo us cul ture  syste m. Appl  Envi ron
Microbiol70(8):4505-4511
Pro ncz uk A, H aye s KC ( 2006 ) Hy poch ole ster olem ic e ffec t of d iet ary
polydextroseingerbilsandhumans.NutrRes26(1):27-31
PutaalaH,Makivuokko H,TiihonenK,RautonenN (2011)Simulatedcolon
fibermetabolomeregulatesgenesinvolvedincellcycle,apoptosis,and
energymetabolisminhumancoloncancercell.MolCellBiochem 357(1-
2):235-45
RadostaS,BoczekP,GrossklausR(1992)Compositionofpolydextrose®before
andafterintestinaldegradationinrats.Starch44:150-153
RaninenK,LappiJ,MykkanenH,PoutanenK(2011)Dietaryfibertypereflects
phy siolog ical f uncti onali ty: co mpari sion o f grai n fibr e, inu lin, a nd
polydextrose.NutrRev69(1):9-21
RenauldM,O’SullivanG,DeisRC,VanderSchuerenF(2003)Optingoutof
sugar.(sugarsubstitutesin confectionary products).Kennedy’sConfec
July33-41.
Rennh ard H (1 973) Pol ysacch arides a nd thei r Prepar ation. U S Paten t No
3766165A
RolandAM,PhillipsLG,BoorKJ(1999)Effectsoffatreplacersonthesensory
properties,color,melting,andhardnessoficecream.JDairySci82:2094–
2100
RondaF,GómezM, BlancoCA,CaballeroPA(2005)Effectsofpolyolsand
nondigestibleoligosaccharidesonthequalityofsucrose-freespongecakes.
FoodChem90:549-555
SadlerDN,SwanJE(1997)EffectofNaCl,polydextrose,andstorageconditions
onthefunctionalcharacteristicsandmicrobialqualityofpre-andpost-
rigorsaltedbeef.MeatSci46:329-338
SakuK,YoshinagaK,OkuraY,YingH,HaradaR,ArakawaK(1991)Effects
ofpolydextroseonserum-lipids,lipoproteinsandapolipoproteinsinhealth
subjects.ClinTherapeu13(2):254-258
Santos EF,Tsuboi KH,Araujo MR, FalconiMA,OuwehandAC,Andreollo
NA, Miyasak a CK (2010) Ingesti on of polydextro se increase the ir on
abs orpt ion in  rats  subm itted  to pa rtial  gast recto my. Acta  Cir Br as
25(6):518-524
SantosEF,TsuboiKH,AraujoMR,OuwehandAC,AndreolloNA,Miyasaka
CK(2009)Deitarypolydextroseincreasescalciumabsorptioninnormal
rats.ABCDArqBrasCirDig22(4):201-205
SatsubaH,OkumaK(1995)MatsutaniChemIndLtd.Productionofsausages.
JapanesePatentApplication,PatentNumber:7-132067
SchwabU,LouherantaA,TorronenA,UusitupaM(2006)Impactofsugarbeet
pectinandpolydextroseonfastingandpostprandialglycemiaandfasting
concentrationsofserumtotalandlipoproteinlipidsinmiddle-agedsubjects
withabnormalglucosemetabolism.EuJClinNutr60(9):1073-1080
ShahAB,JonesGP,VasiljevicT(2010)Sucrose-freechocolatesweetenedwith
Stevia rebaudianaextractandcontainingdifferentbulkingagents–effects
on ph ysicoc hemica l and se nsory p roper ties. I nt J Foo d Sci Techno l
45:1426–1435
ShimomuraY,MaedaK,NagasakiM,MatsuoY,MurakamiT,BajottoG,Sato
J, Selno T,Kamiwaki T, Suzuki M(2005)Attenuatedresponse of the
serumtriglycerideconcentration to ingestionof achocolatecontaining
IndianJDairySci69(3),2016
251
polyd extrose  and lact itol in p lace of s ugar. Biosc i Biotec h Bioche m
69(10):1819-1823
ShimomuraY,NagasakiM,MatsuoY,MaedaK,MurakamiT,SatoJ,SatoY
(2004)Effectsofpolydextroseonthelevelsofplasmaglucoseandserum
insulinconcentrationsinhumanglucosetolerancetest.JJapaneseAssoc
DietFiberRes8(2):105-109
Siti Fa ridah MA, N oorA ziah AA (2012) Dev elopment  of reduce d calorie
chocolatecakewithjackfruitseed(Artocarpus heterophyllus Lam.)flour
andpolydextroseusingresponsesurfacemethodology(RSM).IntFood
ResJ19:515-519
SladeL,LevineH(1995)Glasstransitionandwater-foodstructureinteractions.
AdvFoodNutrRes38:103-269
SmilesRE(1982)TheFunctionalapplicationsofpolydextrose.In:Chemistry
ofFoodsandBeverages:RecentDevelopments,CharaiambousG,Inglett
GEds.AcademicpressInc.Ltd:London,pp305-322
Specter SE,Setser CS(1994) Sensory and physicalpropertiesofareduced-
caloriefrozendessertsystemmadewithmilkfatandsucrosesubstitutes.
JDairySci77:708-717
SrisuvorN,ChinprahastN,PrakitchaiwattanaC,SubhimarosS(2013)Effects
ofinulinandpolydextroseonphysicochemicalandsensorypropertiesof
low-fat set yoghurtwithprobiotic-culturedbanana purée. LWT- Food
SciTechnol51:30-36
StowellJD(2009)Polydextrose.In:FibreIngredients:FoodApplicationsand
HealthBenefits.ChoSS,SamuelP,Eds.TylorandFrancisGroup,CRC
Press:BocaRaton,FL,pp173-204
Tiihonen K, RautonenN,Alhoniemi E,AhotupaM,StowellJ,VasankariT
(2 015 ) Post pra ndial  tri glyce rid e resp ons e in  normo lip idemi c,
hyperlipidemicandobesesubjects–theinfluenceofpolydextrose,anon-
digestiblecarbohydrate.NutrJ14:23
Tiihone n K, Suoma lainen T, Tynkkynen   S, Rauto nen N (200 8) Effect  of
prebiotic supplementationona probioticbacteriamixture:comparision
betweenaratmodelandclinicaltrials.BJNutr99:826-831.
Tiiho nen KK , Royt io H, P utaala  H, Ouw ehand AC  (2011)  Polyd extro se
fun ctio nal fi bre -  impr oving  dige stiv e heal th, s atie ty and  beyo nd.
Nutrafoods10:23-28
TomaniakA,TyszkiewiczI,KomosaJ(1998)Cryoprotectantsforfrozenred
meats.MeatSci50:365-371
TomlinJ, Read NW (1988)Acomprehensive studyof the effects on colon
functioncausedbyfeedingispaghulahuskandpolydextrose.Alimentary
PharmacolTheapeu2(6):513-519
VanEschJ(1987)Regulatoryaspectsoflow-digestiblecarbohydrates.InLow
Digestibility Carbohydrates,LeegwaterDC,FeronVJ,HermusRJJEds.
Pudoc:Wageningen,pp128–133
VasankariTJ,AhotupaM(2005)Supplementationofpolydextrosereduceda
ham burger  meal i nduc ed pos tpran dial h ypert rigly ceri demia . Circ ul
112(17):3849
VesterBolerBM,HernotDC,BoileauTW,BauerLL,MiddelbosIS,Murphy
MR, Sw anson K S, Fahe y GC Jr ( 2009) c arbohy drates  blended  with
polydextroselowergasproductionandshort-chainfattyacidproduction
inaninvitro system.NutrRes29:631-639.
Wang  H, Sh ib Y, Le G ( 201 4) Ra pid m icro wave -as sist ed sy nthe sis of
polydextroseandidentiûcationofstructureandfunction.CarbohyPolym
113:225–230
WeaverCM,MartinBR,StoryJA,HutchinsonI,SandersL(2010)Novelfibers
increase bonecalcium content andstrength beyondefficiency of large
intestinefermentation.JAgricFoodChem58(16):8952-8957
WilsonT,LuebkeJL,MorcombEF,Carrell,EJ,LeveranzMC,KobsL,Schmidt
TP, Limbu rg PJ, Vorsa  N, Sing h AP (2010 ) Glyc emic r espon ses to
sweetened dried and rawcranberriesin humans with type 2diabetes. J
FoodSci75(8):H218-H223
YoshiokaM,Shimomura,Y,SuzukiM(1994)Dietarypolydextroseaffectsthe
largeintestineinrats.JNutr124:539-547
ZahnS,ForkerA,KrügelL,RohmH(2013)CombineduseofrebaudiosideA
andfibres for partialsucrosereplacementinmuffins.LWT-FoodSci
Technol50:695-701
... This polysaccharide is composed of randomly cross-linked glucose and is indigestible (Alptekin et al., 2022). Due to its good processing performance and potential health benefits, it has been introduced as a low-calorie bulk ingredient in various foods and a partial substitute for fat and sugar (Veena et al., 2016). Inulin is increasingly used in processed foods as a fat or sugar substitute or to enhance product properties and has only 25-35 g/100 g of energy compared to digestible carbohydrates (Mudannayake et al., 2022). ...
Article
Full-text available
The formulation of a novel functional fresh apple juice enriched with dietary prebiotic fiber (inulin or polydextrose), ginger extract (GE), and cardamom essential oil (CEO) was carried out based on a combined D-optimal design. In the first stage, sensory evaluation was performed to screen and select the optimum sample for further experiments. The sensory evaluation showed that the sample containing inulin 0.25 g/100 g GE and 0.03 g/100 g CEO had the highest organoleptic score. In the second stage, various chemical experiments, including pH, acidity, formalin index, total phenol, flavonoids, antioxidant capacity, and vitamin C content, were evaluated on the selected enriched apple juices. The addition of GE and CEO caused changes in nutritional characteristics, including antioxidant capacity, total phenol, flavonoids, vitamin C, and IC 50 , from 35 g/100 g, 350 mg GAE/g, 17 mg/L, 370 mg/kg, and 1,800 mg/kg to 45 g/100 g, 460 mg GAE/g, 21 mg/L, 420 mg/kg, and 1,200 mg/kg respectively. The steady shear flow and dynamic oscillatory shear rheological tests were also performed on the screened samples, and results showed that the addition of dietary fiber in apple juices increased the apparent viscosity, storage modulus, loss modulus, and complex viscosity. In general, adding plant extracts and processed essential oil to apple juice increased the nutritional-nutraceutical value and sensory attributes of apple juice.
... The definition of dietary fiber was recently reviewed several times as the number of digestionresistant materials increased significantly, either in the isolated or synthetic form. The new definition includes any substances that behave like fiber regardless of the method used in manufacturing them if they exhibit positive physiological benefits (Bruno-Barcena & Azcarate-Peril, 2015;Raigond et al., 2015;Veena et al., 2016). Us-ing commercially available isolated or synthetic dietary fiber has several advantages: cost reduction and consistent quality (Ibrahim, 2018). ...
Article
Full-text available
Dietary fiber intake is significantly below the recommended daily allowances worldwide, making fortification of foods with dietary fiber a vital strategy. Simultaneously, there is a trend towards increased consumption of processed meat products containing substantial amounts of fat, making processed meat products an excellent vehicle to deliver fiber. In this study, the effects of adding four types of dietary fiber (Resistant Starch (RS), Polydextrose (POD), Fructooligosaccharides (FOS) and Galactooligosaccharides (GOS)) to chicken nuggets were investigated. Fibers were added at three levels (5, 10 and 15%) to replace 33.33, 66.66, and 100%, respectively, of the chicken skin. The difference between the removed quantity of chicken skin and added fiber was compensated with water. Chicken nuggets were evaluated by measuring color, texture, proximate composition, yield and consumers’ acceptability. Results indicated that replacement of the chicken skin entirely with dietary fiber is possible without negatively affecting the final product quality.
... US Food and Drug Administration approved polydextrose as a food additive. It is widely used as a low-calorie bulking agent in various foods and a partial replacement for fat and sugar [6]. Guar-gum is a plantbased natural non-ionic, water-soluble polysaccharide. ...
Article
Full-text available
Muffins are among high sucrose-containing bakery products enjoyed globally for their soft texture and great taste. Its excess consumption results in high-calorie intake, leading to many health problems such as diabetes, obesity, cardiovascular disorders, etc. Replacement of sucrose from muffins helps in the preparation of low-calorie bakery products. The objective of the current study was the preparation of sugar-free muffins and examining their effect on the height and textural attributes. Refined flour was replaced with millet-legume-based composite flour selected from our previous work. Statistical analysis was done using the central composite design of Design Expert, v.11. Polydextrose and guar-gum were the variables, and height, hardness, fracturability, springiness, adhesiveness, cohesiveness, and resilience were the responses in the experimental design. The ANOVA, R 2 , and R 2 adjusted values for all the responses except cohesiveness and resilience showed a significant effect of polydextrose and guar-gum on the height and textural quality of sugar-free muffin. Replacement of sucrose resulted in muffins with lower height (p ˂0.01), more hardness, more fracturability, lesser springiness, adhesiveness (p˂0.05), and no significant effect on cohesiveness and resilience. Incorporating composite flour containing high fiber and protein in the muffin formulation may be another reason for the present findings. However, adding polydextrose and guar-gum to sugar-free muffins has helped to prepare low-calorie products with accepted quality attributes. The best solution from optimization with a design expert was polydextrose (12.627%) and guar-gum (0.707%) with a desirability value of 0.791. These sugar-free muffins will help the bakery industry achieve the new goal of preparing less energy-containing functional foods. In the future, this research will help food technologists and bakery experts to prepare sugar-free muffins with desirable quality.
... Polydextrose, a highly branched non-digestible oligosaccharide, is used in a variety of conventional foods (like confectionery products, dairy foods, and baked products) and functional foods because of its neutral taste and prebiotic potential ( Probert et al., 2004 ). It contains mainly glucose and randomly bonded polymer of citric acid, sorbitol, and D-glucose ( Ibarra et al., 2015 ;Veena et al., 2016 ). Polydextrose also has been recognized as a soluble dietary fiber source in food and beverages ( Wang et al., 2014 ). ...
Article
Full-text available
This study was to investigate the combined effect of polydextrose and guar gum, as a fat replacer, on physical, chemical, textural, and sensory properties of developed Sungyod rice cookies (SYRC). The variation of polydextrose (5.00-9.50%), guar gum (0.50-1.00%), and butter (12.00-16.50%) were optimized using a d-optimal mixture design with 3 center points. The suitable formulation for SYRC with the optimized quantity of polydextrose (5.00%), guar gum (1.00%), and butter (16.00%) was obtained and can substitute the fat content in control SYRC up to 6%. The substitution of polydextrose and guar gum significantly affected the physical, chemical, textural, and sensory properties, especially fat content which could be reduced by 27.86% as compared with control SYRC formulation. The consumer acceptance of optimized SYRC was in the range of like slightly to like very much (6.7–7.4). The research outcomes indicated that polydextrose and guar gum can substitute fat content in SYRC and can be applied to create bakery products which can further recommend the exploitation of various ingredients to deliver reduced-fat products.
... Therefore, we used polydextrose as a bulking agent when using stevia instead of sucrose in ice cream formulations (Table 1). Polydextrose has a variety of functional properties with potential health benefits, making it a great additive in various food products [47]. Not only does polydextrose aid in enhancing ice cream texture, it also acts as a fat replacer to improve the appearance and the mouthfeel of the ice cream [48]. ...
Article
Full-text available
There has been a challenge in overcoming the bitter aftertaste of stevia, a natural non-caloric sweetener. Recent research focuses on investigating various types of steviol glycosides, the sweet compounds in stevia leaves, as they exhibit different sensory characteristics. This study determined the sensory properties and acceptability of ice cream sweetened solely with three steviol glycosides, rebaudioside (Reb) A, D, and M (0.09% w/v), using sucrose-sweetened ice cream as a control (14% w/v). Ice cream consumers (n = 92) rated their overall liking, attribute liking, and sweetness and bitterness intensities and described the aftertastes of each sample using check-all-that-apply. The liking scores of Reb D- and M-sweetened ice creams were significantly higher than those of Reb A-sweetened ice cream. Among the three glycosides, only Reb M showed a sweetness intensity comparable with that of sucrose. Consumers perceived the aftertastes of Reb D and M ice creams as being more sweet, pleasant, creamy, and milky, while Reb A was more artificial and chemical. Reb D and M ice creams were also plotted close to sucrose in the correspondence analysis graph, meaning that their aftertaste characteristics were similar to those of sucrose. The present study clearly highlights that Reb D and M have better tastes and provide better perceptions to consumers than Reb A, which is the most widely used glycoside in food industry.
Article
Tüketiciler, prebiyotik bileşen içeren sağlıklı içecekleri giderek daha fazla talep etmektedir. İçecek üretiminde son ürünün kalitesi tercih edilen bileşenlere ve bu bileşenlerin kullanım oranına bağlıdır. Bu sebeple bu çalışmanın amacı toz kakaolu içeceğin kıvam artırıcı bileşenlerin prebiyotiklerle ikamesi ile ürün kalitesinde oluşturduğu fiziksel etkiler araştırılmıştır. Bu amaçla, bağımsız değişken prebiyotik bileşenler (inülin, polidekstroz, maltodekstrin) ve bunların kombinasyonlarının ürüne etkisi belirlenmiştir. Bu çalışma, prebiyotik toz kakao içecek formülasyonunu inülin, polidekstroz ve maltodekstrin ile optimize etmek için basit karışım tasarım yöntemini uygulamıştır. Tek yönlü merkezi bileşik tasarım, brix, çözünürlük su tutma kapasitesi, kütle yoğunluğu, carr indeksi, Hausner oranları ve ıslanma süresi gibi içeceklerin fiziksel özellikleri tahmin edilmiştir. İçecek formülasyonlarının kütle yoğunluğu verilerinin tahmini için hausner oranları (HO), carr indeks (CI) değerleri belirlenmiş ve sırasıyla 1,3±0,00-1,39±0,03 ile 22,25±1,16-28,18±1,92 aralığında tespit edilmiştir. Bu çalışmanın sonucunda genel arzu edilebilirlik maksimum su tutma kapasitesi ve suda çözünürlük değerlerine baz alınarak belirlenmiştir ve buna göre optimum prebiyotik oranları inülin, polidekstroz ve maltodekstrin için sırasıyla 6,762 ve 12,351 gr ve 3,875 gr olarak belirlenmiştir. Arzu edilebilirlik 0.87'e eşittir. Elde edilen sonuçlar, inülin, polidektroz ve maltodekstirn kombinasyonu kullanılarak prebiyotik toz kakaolu içecek üretiminin mümkün olduğunu göstermektedir.
Article
Background: Their ability to induce the production of IgA, especially in the intestine, is one of the health benefits of soluble dietary fibers (SDFs), but the mechanism involved is unclear. Objective: This study was designed to identify the relationship between the induction of IgA by SDFs and the cecal short-chain fatty acids (SCFAs) content, and to evaluate the importance of T cell-independent IgA production for SDF-induced IgA production. Methods: We compared the SDFs fructooligosaccharides (FO), indigestible glucan (IG), and polydextrose (PD). Male BALB/cAJcl mice or T cell-deficient BALB/cAJcl-nu/nu (nude) mice were fed diets supplemented with one SDF (3% w/w) for 10 weeks and we measured IgA content in their feces, plasma, lung, and submandibular gland. Results: In BALB/cAJcl mice, the consumption of all three SDF diets induced fecal IgA production, but the response was stronger in the IG and PD groups than in the FO group. The IgA concentration of the plasma and lung were also higher in the FO and PD groups, and these groups showed significantly higher cecal acetic and n-butyric acid content. In contrast, in nude mice, the induction of IgA production was identified only in fecal samples of mice fed the three SDF diets, even though there were significant increases in cecal SCFAs content. Conclusions: The induction of IgA production by SDFs is occurred T cell-independently in the intestine, but that in the plasma, lung, and submandibular gland is T cell-dependent. SCFAs generated in the large intestine might influence the systemic immune system, but there is no clear relationship between the generation of SCFAs and intestinal IgA production in response to SDF consumption.
Article
Full-text available
Biscuits are widely consumed bakery products around the globe. Its excess consumption has led to many health problems such as diabetes, obesity, and cardiovascular diseases. Although sugar replacement may be a step in solving most health-related issues, the complication is in its formulation. It is tedious to replace sugar and prepare biscuits with quality attributes, including aeration, texture, and mouthfeel. The present study aimed to formulate composite flour-based sugar-free biscuits. A composite flour, millet-legume-based mixture, was used for biscuit preparation. The central composite design of response surface methodology (RSM) (Design Expert 11 version) was used to analyse the effect of eliminating sugar using polydextrose (A) (10-15%) and guar-gum (B) (0-1.5%) at different levels on physical (thickness and spread ratio) and textural (hardness and fracturability) attributes. The optimized biscuit was prepared, and the precision of the optimized biscuit was determined using a one-sample T-test in SPSS Statistics version 22. The optimization with the design expert resulted in the best solution, i.e., polydextrose (12.488%) and guar-gum (0.921%) with the highest desirability value of 0.993. The ANOVA, R 2 , and R 2 adjusted values for thickness, spread ratio, hardness and fracturability showed that the formulated sugar-free biscuits were statistically significant. Sugar elimination from the control biscuits noticeably affects its physical and textural attributes. Biscuits prepared were of lesser diameter, spread ratio, comparable hardness and fracturability than control biscuits, mainly due to the composite flour used in the formulation of experimental biscuits. The protein present in the flour restricts the spread of sugar-free biscuits because of its higher binding capacity. However, the addition of polydextrose and guar-gum resulted in the preparation of accepted quality sugar-free biscuits. To conclude, the proposed sugar-free biscuits may be a solution to the present dietary recommendations and an alternative to healthy options for health management.
Article
Polydextrose (PDX) is a non-digestible oligosaccharide with a complex structure widely used in the food industry. Studies have shown many health benefits of polydextrose, including modulating the gut microbiota, improving the immune system, altering the lipid profile, and stimulating bowel function. Patients with chronic kidney disease (CKD) report gut dysbiosis, inflammation, dyslipidemia and constipation. These are major concerns that affect the quality of life. In this context, PDX can promote beneficial effects. However, little is known about PDX in CKD. This review discusses the possible beneficial effects of PDX on gut health for patients with CKD, particularly its impact on constipation.
Chapter
Modern biotechnology has played a significant role in human welfare in a more sustainable way. In the past two decades, biotechnology has improved agriculture, medicine, environment and food industries. Biotechnology has enhanced the quality, shelf life, nutrition, processing and production of food. Functional foods have a great potential to address hidden hunger, i.e. a lack of micronutrients. Functional food not only possesses nutrition but also shows disease curing properties. Hence, functional food contributes towards the problem of global hunger and human health. There is a requirement to scale in food and nutrition by using different biotechnological techniques. The present chapter investigates and explores modern biotechnological tools in functional food as well as contribute to future perspectives where modern biotechnological techniques can be utilized for improving functional food. This chapter also explores the interrelationship between food, nutrition and techniques in biotechnology.
Article
Full-text available
Two thermal analysis techniques - Differential scanning calorimetry (DSC) and Differential thermal analysis (DTA), - were used to study the cryoprotective effects of polydextrose on chicken surimi. The samples of chicken surimi were mixed with: (a) different mass fractions of polydextrose (w = 2-10%), (b)kappa-carrageenan (w = 0.5%) and different mass fractions of polydextrose (w = 2-10%), and (c) NaCl (w = 2%) and different mass fractions of polydextrose (w = 2-10%). Chicken surimi was produced following a modified procedure of Dawson et al. (1988) on a broiler (Sasso, 12 weeks, and 1.73 kg live wt.), that was quickly frozen and stored for 3 months at -25 degrees C. Initial freezing point (T(i)), thermal transition temperature (T(p)), and denaturation enthalpy (Delta H) were evaluated. The greatest effects of the cryoscopic depression of the initial freezing point T(i) were exhibited by the samples of chicken surimi with added 2% NaCl and 10% polydextrose. Differential scanning calorimetry (DSC) revealed a shift in the thermal transition temperature of myosin and actin to a higher temperature as the mass fraction of polydextrose increased. Since the denaturation enthalpy is directly related to the amount of native proteins, higher values of Delta H indicate higher cryoprotective effects of polydextrose.
Article
Response Surface Methodology (RSM) with Central Composite Rotatable Design (CCRD) was performed in this study to develop an acceptable reduced calorie chocolate cake. The range of the independent variables, namely Jackfruit Seed (JFS) flour (20-25% replacement of wheat flour) and polydextrose (10-15% replacement of sucrose) were identified which affect the volume, specific volume, symmetry and uniformity of the chocolate cake. The coefficient of determination, R 2 values for volume, specific volume, symmetry and uniformity were greater than 0.900. The optimum level for replacement of sugar with polydextrose was at 11% and wheat flour with JFS flour was at 16% with calorie reduction approximately 34% from the control cake formulation.