ArticlePDF Available

GlobalTreeSearch: The first complete global database of tree species and country distributions

Authors:
  • Botanic Gardens Conservation International Richmond UK
  • Botanic Gardens Conservation International , Richmond, United Kingdom

Abstract and Figures

This paper presents, for the first time, an overview of all known tree species by scientific name and country level distribution, and describes an online database—GlobalTreeSearch—that provides access to this information. Based on our comprehensive analysis of published data sources and expert input, the number of tree species currently known to science is 60,065, representing 20 percent of all angiosperm and gymnosperm plant species. Nearly half of all tree species (45%) are found in just ten families, with the three most tree-rich families being Leguminosae, Rubiaceae, and Myrtaceae. Geographically, Brazil, Colombia, and Indonesia are the countries with the most tree species. The countries with the most country-endemic tree species reflect broader plant diversity trends (Brazil, Australia, China) or islands where isolation has resulted in speciation (Madagascar, Papua New Guinea, Indonesia). Nearly 58 percent of all tree species are single country-endemics. Our intention is for GlobalTreeSearch to be used as a tool for monitoring and managing tree species diversity, forests, and carbon stocks on a global, regional, and/or national level. It will also be used as the basis of the Global Tree Assessment, which aims to assess the conservation status of all of the world’s tree species by 2020.
Content may be subject to copyright.
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=wjsf20
Download by: [Emily Beech] Date: 06 September 2017, At: 04:58
Journal of Sustainable Forestry
ISSN: 1054-9811 (Print) 1540-756X (Online) Journal homepage: http://www.tandfonline.com/loi/wjsf20
GlobalTreeSearch: The first complete global
database of tree species and country distributions
E. Beech, M. Rivers, S. Oldfield & P. P. Smith
To cite this article: E. Beech, M. Rivers, S. Oldfield & P. P. Smith (2017) GlobalTreeSearch: The
first complete global database of tree species and country distributions, Journal of Sustainable
Forestry, 36:5, 454-489, DOI: 10.1080/10549811.2017.1310049
To link to this article: http://dx.doi.org/10.1080/10549811.2017.1310049
Accepted author version posted online: 23
Mar 2017.
Published online: 23 Mar 2017.
Submit your article to this journal
Article views: 8849
View related articles
View Crossmark data
Citing articles: 2 View citing articles
GlobalTreeSearch: The rst complete global database of tree
species and country distributions
E. Beech
a
, M. Rivers
a,b
, S. Oldeld
b
, and P. P. Smith
a
a
Botanic Gardens Conservation International, Richmond, United Kingdom;
b
IUCN/SSC Global Tree Specialist
Group
ABSTRACT
This article presents, for the rst time, an overview of all known tree
species by scientic name and country level distribution, and
describes an online databaseGlobalTreeSearchthat provides
access to this information. Based on our comprehensive analysis of
published data sources and expert input, the number of tree species
currently known to science is 60,065, representing 20% of all angios-
perm and gymnosperm plant species. Nearly half of all tree species
(45%) are found in just 10 families, with the 3 most tree-rich families
being Leguminosae, Rubiaceae, and Myrtaceae. Geographically,
Brazil, Colombia, and Indonesia are the countries with the most tree
species. The countries with the most country-endemic tree species
reect broader plant diversity trends (Brazil, Australia, China) or
islands where isolation has resulted in speciation (Madagascar,
Papua New Guinea, Indonesia). Nearly 58% of all tree species are
single-country endemics. Our intention is for GlobalTreeSearch to be
used as a tool for monitoring and managing tree species diversity,
forests, and carbon stocks on a global, regional, and/or national level.
It will also be used as the basis of the Global Tree Assessment, which
aims to assess the conservation status of all of the worlds tree
species by 2020.
KEYWORDS
Global tree assessment;
GlobalTreeSearch; tree
database; tree distribution;
tree diversity; tree
endemism
Introduction
Trees rst evolved over 300 million years ago, and woodinesshas evolved since that time
in plant families across the taxonomic array (Fitzjohn et al., 2014; Kenrick & Crane, 1997).
Trees provide us with food, timber, and medicine, and are major components of the most
biologically diverse ecosystems on earth, including woodlands and forests (FAO, 2014).
Individual tree species play crucial roles in their ecosystems, supporting a multitude of
other species due to their position at the base of trophic pyramid (e.g., Kennedy &
Southwood, 1984). In the climate change negotiations in Paris in 2015, the conservation
of trees, the cessation of deforestation, and the sustainable management of forests were all
recognized as activities that address climate change (Poorter et al., 2015). However,
eective forest conservation requires species-specic action, as individual tree species
face threats that are unique to that species.
Despite the importance of trees and their ecosystem services, there has until now not
been an authoritative global list of trees. In fact, our knowledge of the number of tree
CONTACT E. Beech Emily.Beech@bgci.org Botanic Gardens Conservation International
Color versions of one or more of the gures in the article can be found online at www.tandfonline.com/wjsf.
JOURNAL OF SUSTAINABLE FORESTRY
2017, VOL. 36, NO. 5, 454489
http://dx.doi.org/10.1080/10549811.2017.1310049
© 2017 Taylor & Francis
Downloaded by [Emily Beech] at 04:58 06 September 2017
species has remained surprisingly sparse at the national and international levels. In 1753,
in Species Plantarum, Linnaeus described 9,000 species of plants and marked up the
woody species with the symbol of Saturn (Simpson, 2010). Since the time of Linnaeus,
botanical exploration and discovery has hugely expanded, but the precise number of plant
species still remains uncertain, with current estimates suggesting there are 370,495 seed
plants (Lughadha et al., 2016). Estimates of the number of tree species have ranged from
45,000 to 100,000 (Fine & Ree, 2006; Oldeld, Lusty, & MacKinven, 1998; Savolainen,
2000; Tudge, 2006), with reports suggesting there are 21,000 species in temperate regions
(Hunt, 1996) and 40,00053,000 in the tropics (Slik et al., 2015). Most of these gures are
based on broad estimates or modeled numbers of trees; none of them have been derived
from an authoritative global list of trees.
Here, for the rst time, we present an overview of the complete list of all known tree
species by scientic name and country level distribution, and we describe an online
database, called GlobalTreeSearch (http://www.bgci.org/globaltree_search.php), that pro-
vides access to this information. GlobalTreeSearch has been designed as a tool for
assessing, monitoring, and managing tree species diversity, forests, and carbon stocks on
a global, regional, and/or national level.
Methodology
Denition of tree
As tree type growth habits have evolved many times across dierent plant families, there
are many denitions of a tree. For the purposes of this project, we use the tree denition
agreed by IUCNs Global Tree Specialist Group (GTSG): a woody plant with usually a
single stem growing to a height of at least two metres, or if multi-stemmed, then at least one
vertical stem ve centimetres in diameter at breast height. We excluded cycads, tree ferns,
tree-like Poaceae, Bromeliaceae, and Musaceae from our list. The World Checklist of
Selected Plant Families (WCSP) and several other taxonomic databases use the Raunkiær
system for categorizing life forms, with trees most often being categorized as phanero-
phytes. However, this system excludes smaller trees and also includes some larger shrubs.
Eorts have been made to include the smaller trees by incorporating country level and
regional tree lists in addition to WCSP species. Shrubs were removed manually on a
species-by-species basis. Some plant species have variable life-forms, but all species that
are recorded as growing naturally as a tree somewhere have been included.
Data compilation and management
Tree species data were accessed from a range of sources including: the World Checklist of
Selected Plant Families (WCSP, 2016), Flora of China (Wu Zhengyi, Raven, & Hong
Deyuan 19942013), African Plant Database (Conservatoire et Jardin Botaniques Ville de
Genève, 2017), FloraBase (Western Australian Herbarium, 1998), Plants of Southern
Africa (SANBI, 2014), The PLANTS database (USDA, 2016), Brazilian Flora 2020 (Rio
de Janeiro Botanical Garden, 2016), and Tropicos (Missouri Botanical Garden, 2016).
In addition to these major published sources, we extended the call for information to the
botanical community and contacted over 80 experts in the GTSG and member institutions of
JOURNAL OF SUSTAINABLE FORESTRY 455
Downloaded by [Emily Beech] at 04:58 06 September 2017
Botanic Gardens Conservation International (BGCI), receiving a wide range of regional,
taxonomic, and country-specic tree checklists. Over 500 published sources were consulted,
all of which are referenced in the Database Reference Sources listed in the Appendix.
Collation and compilation of the data has taken over two years of full-time work.
Database description
The GlobalTreeSearch database was compiled in Microsoft Access and consists of four
interlinked tables. The rst table of taxon names contains all of the names received during
the compilation of GlobalTreeSearch. This table currently contains 180,000 entries. Each
unique tree taxon name links by ID number to the source of that name. This long list of
tree names has been rened only to contain the names of accepted tree species names (i.e.,
the 60,065 nal tree species). For this rened list of accepted tree species, we recorded
associated geographic information. Each country occurrence for each species has its own
unique source. This table currently contains over 195,500 entries.
Taxonomy
All taxon names received were recorded, but only taxonomically accepted names (or
unresolved names) are included in the published GlobalTreeSearch. The current version of
GlobalTreeSearch focuses on species names and does not contain infraspecic taxa. The
taxonomic opinion follows the WCSP for its published families. Families that are not
included in WCSP follow The Plant List (TPL, 2013). Other regional sources (Euro+Med,
Reora) and taxonomic sources (ILDIS) have been consulted when required. As The Plant
List (TPL, 2013) was last updated in May 2012, any species published since then have been
provisionally accepted on our list unless found to be synonymous with species from other
more recent published sources, such as in a published monograph. In such cases, the source
of the taxonomic status is recorded, allowing for updates as taxonomic opinion evolves.
Distribution information
The country-level distribution information was recorded following the ISO 3166 country
names standard. Distribution data were sourced from various published references includ-
ing the nomenclatural sources mentioned above, as well as additional monographs, check-
lists, and oras, some electronically and others through manual review. Distribution
information has been recorded to country level for all taxa, with distribution in certain
countries (Brazil, the United States, South Africa, Australia, and China) recorded to state
or province. These countries were chosen as they are geographically expansive, and the
distributions at sub-country level were generally easily obtained.
The country distributions were also matched to eight biomes (Oceania, Neotropical,
Nearctic, Afrotropical, Antarctic, Palearctic, Australasia, Indo-Malay), following Olson
et al. (2001). For the purpose of our analysis, Indonesia is considered entirely within the
Indo-Malay biome and China within the Palearctic biome.
456 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Expert review
GlobalTreeSearch has been reviewed by more than 30 experts chosen for their taxonomic
or regional expertise. These experts reviewed the list of omitted taxa and amended
distribution data where necessary. However, GlobalTreeSearch is not a static entity,
which is to say that additions, taxonomic revisions, and deletions will continue to be
carried out to ensure the list remains the most comprehensive and up-to-date list of the
worlds tree species. The database will be maintained and managed by BGCI through its
website http://www.bgci.org/globaltree_search.php. An e-mail address will be set up to
allow people to suggest revisions which will be veried through expert review before
modication. In addition, if a suggested revision cannot easily be veried or resolved, then
a comments eld will record the nature of the query received.
Results
There are 60,065 tree species recorded worldwide. Based on current taxonomic knowledge
and levels of botanical exploration, we believe that this compilation represents the best
available record of the total number of tree species and a sound basis for conservation
planning.
Over 45% (27,203) of tree species are found in just 10 families (Figure 1). The family
with the most tree species is the Leguminosae with 5,405 tree species, followed by
Rubiaceae (4,827), and then Myrtaceae (4,330).
The most diverse tree genera are Syzygium (1,069 species), Eugenia (884 species), and
Eucalyptus (747 species), all in the family Myrtaceae (Figure 2). Ficus (Moraceae),
Diospyros (Ebenaceae), and Psychotria (Rubiaceae) are the fourth, fth, and sixth largest
genera, respectively.
The country with the most diverse tree ora is Brazil, with 8,715 tree species, followed
by Colombia (5,776 spp.) and Indonesia (5,142 spp.) (Figure 3). Nearly 58% of all tree
species (34,575) are single country endemics. The countries with the most endemic trees
5405
4827
4330
2930
2008 1834 1677 1630
1282 1280
0
1000
2000
3000
4000
5000
6000
Figure 1. Top ten families with the most tree species.
JOURNAL OF SUSTAINABLE FORESTRY 457
Downloaded by [Emily Beech] at 04:58 06 September 2017
are Brazil (4,333 spp.), Madagascar (2,991 spp.), Australia (2,584 spp.), and China (2,149
spp.) (Figure 4).
Matching country distributions to biomes (Figure 5), the biome with the largest
number of trees is the Neotropic biome with over 23,000 tree species, followed by the
other tropical biomes, the Indo-Malay biome and the Afrotropic biome. There are no trees
occurring in the Antarctic biome, and the next lowest diversity is in North America in the
Nearctic biome, with fewer than 1,400 species. The most diverse tree genera reect
dierent centers of diversity. More than half of the species in the genus Syzygium (615)
are found in the Indo-Malay biome, over 731 Eugenia species are found in the Neotropics,
and almost all of the Eucalyptus genus is found in Australasia.
1069
884
747 727 726
624 616 598 589
468
0
200
400
600
800
1000
1200
Figure 2. Top ten genera with the most tree species.
8715
5776
5142 4993
4656 4635 4439
3591 3364 3234
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000
Figure 3. Top ten countries with most tree species.
458 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Discussion
The compilation of GlobalTreeSearch has been a multidisciplinary eort, with data
contributed from botanic gardens, museums, academia, NGOs, forestry organizations,
and agricultural institutions. GlobalTreeSearch asserts the number of tree species to be at
the lower end of previous estimates. Nevertheless, the GlobalTreeSearch database contains
over 375,500 plant names and country entries, an indication of the scale of the task.
Having an accurate number of tree species and their country level distributions will
encourage extensive applications by a wide range of users, from conservation planning
and action to sustainable forestry practices.
The tropical hotspots of tree diversity identied by this analysis are unsurprising, with
countries in the Neotropic biome coming out on top as reported in more general
assessments of the distribution of biodiversity (Giam, Bradshaw, Tan, & Sodhi, 2010;
Heywood & Watson, 1995; Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000).
Other estimates of tree diversity hotspots (such as Slik et al., 2015) have reported that the
4333
2991
2584
2149
1520 1395 1372 1365 1341 1282
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
Figure 4. Top ten countries with the largest number of endemic species.
Figure 5. Tree species numbers by biome.
JOURNAL OF SUSTAINABLE FORESTRY 459
Downloaded by [Emily Beech] at 04:58 06 September 2017
Indo-Pacic region, comprising the Australasian, Oceania, and Indo-Malay biomes as well
as Madagascar, is of comparable species diversity to the Neotropics. Again, our analysis
reects this assertion. Similarly, countries with the highest levels of tree endemism reect
broader measures of plant diversity (e.g., Brazil, China, Australia) or islands where
isolation has resulted in speciation (e.g., Madagascar, Papua New Guinea, Indonesia).
The preliminary analysis of tree distributions by country and biome represented in this
article will be followed by more in-depth analyses in future publications.
Data availability was an important factor in developing this checklist. Several biodiverse
countries have electronic online oras developed in response to the Global Strategy for
Plant Conservation Target 1: An online ora of all known plants (Sharrock, Oldeld, &
Wilson, 2014). For this reason, countries such as Colombia, Brazil, and China are likely to
have more up-to-date data in the GlobalTreeSearch database. Other regions with diverse
tree oras (e.g., Southeast Asia) have not been as extensively surveyed or have not
compiled their data electronically. Although hard copy publications were used extensively
in cases where oras are still incomplete (e.g., Flora Malesiana), there will still inevitably
be data that are poorer for some areas. Projects are already under way to complete online
oras on national, regional, and global scales, sources which will be utilized by
GlobalTreeSearch when available.
The fact that Leguminosae is the most diverse tree family is not surprising given that
Leguminosae is the third most diverse plant family after the (primarily herbaceous)
families Asteraceae and Orchidaceae. Rubiaceae, the second most diverse tree family is
the fourth most diverse plant family and is primarily tropical and woody. Myrtaceae is the
third most diverse tree family and, interestingly, accounts for the top three tree genera
Syzygium, Eugenia, and Eucalyptus. This reects the fact that the family Myrtaceae is
almost entirely woody, and it is characteristic of highly diverse subtropical and tropical
zones.
GlobalTreeSearch is not a static database and it will incorporate both changes in
taxonomy and increased availability of data. BGCI encourages submissions from regions
where data may not be as readily available to improve the GlobalTreeSearch database.
There is also scope for increasing the levels of regional data for countries other than those
already included as new data become available. For example, island level data for countries
such as Indonesia and the Philippines would be useful for conservation planning and
forestry.
At the policy level, documenting trends in the conservation, sustainable use, and
development of Forest Genetic Resources (FGR) has been undertaken by the Food and
Agriculture Organization (FAO) of the United Nations. In 2014, FAO published the
rst State of the Worlds Forest Genetic Resources (SOWFGR) report (FAO, 2014).
The purpose of this report was [to build] the information and knowledge base
required for action towards better conservation and sustainable management of FGR
at national, regional, and international levels. Based on the preliminary, draft ndings
of this report, FAO noted that very few countries have detailed tree species checklists
that include species characteristics allowing distinction between dierent life forms
(FAO, 2014). As a result, the inventories submitted by the 86 countries that contrib-
uted to the report were inconsistent and incomplete. The completion of
GlobalTreeSearch will greatly support the FAO in achieving the strategic priorities
outlined in their Global Plan of Action for the Conservation, Sustainable Use, and
460 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Development of Forest Genetic Resources(FAO, 2013). Specically, the
GlobalTreeSearch database will enable country checklists to be routinely produced
and will constitute a comprehensive data set that can be used to measure trends in
the conservation and use of FGR over time. Furthermore, production of tree species
distribution maps is an essential step in conservation and management of FGR, though
few countries have the resources to produce such maps. With the GlobalTreeSearch
database, the production of country-level and precise location distribution maps for all
tree species is achievable.
Mapping species is also an important step in assessing the conservation status of all of
the worlds tree species, an activity essential to ensure eective conservation and manage-
ment of tree diversity. This is the aim of the Global Tree Assessmenta complete
assessment of the conservation status of all trees by 2020 (Newton et al., 2015). The
Global Tree Assessment is being made possible by the GlobalTreeSearch database, which
will be used to prioritize species in need of conservation assessment. GlobalTreeSearch is
used to develop a workow to rapidly and accurately assess and map species not at risk of
extinction (Least Concern), in conjunction with GBIF data, which in turn will enable
subsequent activities to focus on the often less well-known species that are at risk of
extinction. Tree red listing activities are already under way or completed for the Global
Tree Assessment including assessment of European trees, assessment of various taxonomic
groups (Magnoliaceae, oaks, Betulaceae, etc.), and initial assessment of the worlds com-
mercial timbers. To date, conservation status assessments of only around 20,000 of the
trees with scientically accepted names have been recorded in global, regional, or national
red lists; that is, about a third of known tree species (BGCI, ThreatSearch, unpublished
data). BGCI will build on this work by carrying out a gap analysis bringing in data from its
ThreatSearch database (a compilation of plant conservation assessments), PlantSearch
database (taxa in botanic garden collections), and GardenSearch database (location of
botanic gardens worldwide) to identify where capacity is needed to prioritize tree con-
servation through red listing and to conserve trees both in situ and ex situ.
The Global Tree Assessment supports the Global Strategy for Plant Conservation and
the broader Aichi Targets of the Convention on Biological Diversity but is not simply a
tool for tree conservation. GlobalTreeSearch and the Global Tree Assessment also support
initiatives to improve sustainable forest management, for example through regulation of
the international timber trade. FAO estimates that in 2006 the trade in timber products
contributed some $468 billion annually to global GDP (FAO, 2009). A recently compiled
working list of internationally traded timbers documented 1,575 timber taxa (Mark,
Newton, Oldeld, & Rivers, 2014). The conservation status of many of these species is
unknown, and this is even more the case for the thousands of species that are traded
locally or regionally. The national inventories and conservation assessments provided by
GlobalTreeSearch and the GTA will greatly assist national authorities in regulating
unsustainable trade in the species concerned. The Global Tree Assessment will also
support implementation of the UNFCCC, which aims to tackle greenhouse gas emissions
from deforestation and forest degradation through the REDD+program. Recognizing
the potential for social and environmental risks and benets from REDD+, the UNFCCC
has agreed on a set of broad safeguards that countries should promote and support,
specically focusing on the conservation of natural forests and biodiversity (Visseren-
Hamakers, McDermmott, Marjanneke, & Cashore, 2012). Improved information on the
JOURNAL OF SUSTAINABLE FORESTRY 461
Downloaded by [Emily Beech] at 04:58 06 September 2017
conservation status of tree species will help to focus REDD+ activities and enhance their
conservation impacts.
Conclusions
It is perhaps surprising that it has taken until 2017 to compile GlobalTreeSearch, the rst
global, authoritative list of tree species. However, it is worth acknowledging that
GlobalTreeSearch represents a huge scienticeort encompassing the discovery,
collection, and description of tens of thousands of plant species. This is big science
involving the work of thousands of botanists over a period of centuries, and the advent of
digital checklists and databases over the past few decades has made the collation and
renement of so many data sources possible. Furthermore, GlobalTreeSearch is not a
static list; it will continue to be rened, revised, and added to. Some geographic regions
remain relatively unexplored botanically and, even where thorough eldwork has been
undertaken, there can be a substantial lag between discovery and publication. Similarly,
plant taxonomy is constantly changing with new discoveries and taxonomic revisions
augmenting our knowledge.
GlobalTreeSearch has both immediate value to a wide range of user communities and
will allow for the assessment and monitoring of tree species diversity on a global, regional,
and/or national level over time.
Acknowledgments
The authors would like to thank in particular the following organizations for providing data
contributing to GlobalTreeSearch: African Plant Database; World Checklist of Selected Plant
Families; IPNI; Flora of China; Brazilian Flora 2020; Missouri Botanical Gardens Tropicos; Plants
of Southern Africa; FloraBase. A full list of the 500+ sources consulted for GlobalTreeList is
available at the end of this article. We would also like to thank the following contributors and
reviewers: Megan Barstow, Henk Beentje, Steven Brewer, Chien-Fan Chen, Lillian Chua, Alison
Copeland, Iain Darbyshire, Neville Evans, Alfredo Fuentes, Zoe Irwin, Yvette Harvey-Brown,
Thomas Heller, Alison Hutchinson, Ben Jones, David Kikodze, Esteban Martínez, Mónica Moraes
R., Lydia Murphy, Sachiko Nishida, Naomi Rich, Marie-Stéphanie Samain, George Schatz, Anne-
Cathrine Scheen, Ferry Slik, Harry Smith, Daniela Suarez, Jonathan Timberlake, Philip Thomas, Lex
Thomson, Carmen Ulloa Ulloa, Salako K. Valère, Freddy Zenteno, and the following IUCN Species
Survival Committee Specialist Groups: Global Tree Specialist Group, Cuban Plant Specialist Group,
New Caledonia Plant Red List Authority, Madagascar Plant Specialist Group.
References
Conservatoire et Jardin Botaniques Ville de Genève. (2017). African plant database. Retrieved April
1, 2016, from http://www.ville-ge.ch/musinfo/bd/cjb/africa/
FAO. (2009). State of the worlds forests 2009. Rome, Italy: FAO.
FAO. (2013). Global plan of action for the conservation, sustainable use and development of forest
genetic resources. Commission on Genetic Resources for Food and Agriculture, Rome, Italy: FAO.
FAO. (2014). The state of the worlds forest genetic resources. Rome, Italy: FAO.
Fine, P. V., & Ree, R. H. (2006). Evidence for a time-integrated species-area eect on the latitudinal
gradient in tree diversity. The American Naturalist,168 (6), 796804. doi:10.1086/508635
462 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Fitzjohn, R. G., Pennell, M. W., Zanne, A. E., Stevens, P. F., Tank, D. C., & Cornwell, W. K. (2014).
How much of the world is woody? Journal of Ecology,102 (5), 12661272. doi:10.1111/1365-
2745.12260
Giam, X., Bradshaw, C. J., Tan, H. T., & Sodhi, N. S. (2010). Future habitat loss and the conserva-
tion of plant biodiversity. Biological Conservation,143 (7), 15941602. doi:10.1016/j.
biocon.2010.04.019
Heywood, V. H., & Watson, R. T. (1995). Global biodiversity assessment (Vol. 1140). Cambridge,
UK: Cambridge University Press.
Hunt, D. R. (1996). The genera of temperate broadleaved trees. Broadleaves,2,45.
Kennedy, C. E. J., & Southwood, T. R. E. (1984). The number of species of insects associated with
British trees: A re-analysis. Journal of Animal Ecology,53, 455478. doi:10.2307/4528
Kenrick, P., & Crane, P. R. (1997). The origin and early evolution of plants on land. Nature,389,
3339. doi:10.1038/37918
Lughadha, E. N., Govaerts, R., Belyaeva, I., Black, N., Lindon, H., Allkin, R., . .. Nicolson, N. (2016).
Counting counts: Revised estimates of numbers of accepted species of owering plants, seed
plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa,272 (1),
8288. doi:10.11646/phytotaxa.272.1
Mark, J., Newton, A., Oldeld, S., & Rivers, M. (2014). The International timber trade: A working list
of commercial timber tree species. Richmond, UK: Botanic Gardens Conservation International.
Missouri Botanical Garden (MBG). (2016). Tropicos.org. Retrieved December 7, 2016, from http://
www.tropicos.org
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000).
Biodiversity hotspots for conservation priorities. Nature,403, 853858. doi:10.1038/35002501
Newton, A., Oldeld, S., Rivers, M., Mark, J., Schatz, G. E., Garavito, N. T., . . . Miles, L. (2015).
Towards a Global Tree Assessment. Oryx,49 (3), 410415. doi:10.1017/S0030605315000137
Oldeld, S., Lusty, C., & MacKinven, A. (1998). The world list of threatened trees. Cambridge: World
Conservation Press. Cambridge, UK: UNEP-WCMC.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood,
E. C., . . . Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth.
Bioscience,51 (11), 933938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Poorter, L., Van Der Sande, M. T., Thompson, J., Arets, E. J., Alarcón, A., Álvarez-Sánchez, J.,
Peña-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology
Biogeography,24, 13141328. doi:10.1111/geb.12364
Rio de Janeiro Botanical Garden. (2016). Brazilian Flora 2020 in construction. Retrieved February 1,
2017, from http://oradobrasil.jbrj.gov.br
SANBI. (2014). Plants of Southern Africa: An online checklist. Retrieved September 01, 2016, from
http://posa.sanbi.org/searchspp.php
Savolainen, O. (2000). Developing criteria and indicators for genetically sustainable forestry. In Turok
& Gerubek (Eds.) 2000. International collaboration on forest genetic resources: The role of Europe.
Proceedings of the Second EUFORGEN Steering Committee meeting, Vienna, Austria, Rome:
IPGRI. Retrieved from November 2629, 1998.
Sharrock, S., Oldeld, S., & Wilson, O. (2014). Plant conservation report 2014: A review of progress
in implementation of the global strategy for plant conservation 20112020. Secretariat of the
convention on biological diversity, Montreal, Canada, and Botanic Gardens Conservation
International, Richmond, U.K. Technical Series No. 81.
Simpson, N. (2010). Botanical symbols: A new symbol set for new images. Botanical Journal of the
Linnean Society,162, 117129. doi:10.1111/boj.2010.162.issue-2
Slik, J. W. F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., . . .
Venticinque, E. M. (2015). An estimate of the number of tropical tree species. Proceedings of the
National Academy of Sciences of the United States of America,112 (24), 74727477. doi:10.1073/
pnas.1423147112
The Plant List (TPL). (2013). The plant list version 1.1. Retrieved December 7, 2016, from http://
www.theplantlist.org/
Tudge, C. (2006). The tree: A natural history of what trees are. New York, NY: Crown Publishers.
JOURNAL OF SUSTAINABLE FORESTRY 463
Downloaded by [Emily Beech] at 04:58 06 September 2017
USDA, NRCS. (2016). The PLANTS database. Retrieved December 7, 2016, from http://plants.usda.
gov
Visseren-Hamakers, I. J., McDermmott, C., Marjanneke, J. V., & Cashore, B. (2012). Trade-os, co-
benets and safeguards: Current debates on the breadth of REDD+. Current Opinion
Environment Sustain,4(6), 646653. doi:10.1016/j.cosust.2012.10.005
WCSP. (2016). World checklist of selected plant families.Facilitated by the Royal Botanic Gardens,
Kew. Retrieved December 31, 2016, from http://apps.kew.org/wcsp/qsearch.do
Western Australian Herbarium. (1998). FloraBaseThe Western Australian Flora. Department of
parks and wildlife. Retrieved September 1, 2016, from https://orabase.dpaw.wa.gov.au/
Wu, Z., Raven, P. H., & Hong, D. (Eds.). (19942013). Flora of China. St Louis, MO: Science Press,
Beijing & Missouri Botanical Garden Press.
Appendix
DATABASE REFERENCE SOURCES
Abbott, J. R. (2009). Phylogeny of the Polygalaceae and a revision of Badiera. Doctoral dissertation,
University of Florida, FL.
Acevedo-Rodríguez, P. (2011). Allophylastrum: A new genus of Sapindaceae from northern South
America. PhytoKeys, 5,3943.
Acevedo-Rodríguez, P. & Strong, M. T. (2007). Catalogue of the seed plants of the West Indies.
Retrieved 1 September 2014, from http://botany.si.edu/Antilles/WestIndies/.
Acevedo-Rodríguez, P. & Strong, M. T. (2012). Catalogue of seed plants of the West Indies.
Smithsonian Contributions to Botany, 98,192.
Acevedo-Rodríguez, P. & Brewer, S. W. (2016). Spathelia belizensis: A new species and rst record
for the genus in Central America (tribe Spathelieae, Rutaceae). PhytoKeys, 75, 145151.
Adema, F. & van der Ham, R. W. J. M. (1993). Cnesmocarpon (Gen. Nov.), Jagera and Trigonachras
(Sapindaceae-Cupanieae): Phylogeny and systematics. Blumea, 38,73215.
Agostini, G. & Fariñas, M. (1963). Holotype of Maytenus agostinii Steyerm. (Celastraceae). Caracas:
Fundación Instituto Botánico de Venezuela.
Akopian, S. S. (2007). On the Pyrus L. (Rosaceae) species in Armenia. Flora, Vegetation and Plant
Resources of Armenia, 16,1526.
Alejandro, G. J. D. & Meve, U. (2016). Rubovietnamia coronula sp. nov.(Rubiaceae:
Gardenieae) from the Philippines. Nordic Journal of Botany. 34 (2),385389.
Alemayehu, G., Asfaw, Z. & Kelbessa, E. (2016) Cordia africana (Boraginaceae) in Ethiopia: A
review on its taxonomy, distribution, ethnobotany and conservation status. International Journal
of Botany Studies. 1 (2),3846.
Alfarhan, A. H., Al-Turki, T. A. & Basahy, A. Y. (2005). Flora of Jizan Region. Final Report
Supported by King Abdulaziz City for Science and Technology. Riyadh, Saudi Arabia.
Allen, C. K. (1942). Studies in the Lauraceae, IV: Preliminary study of the Paupasian species
collected by the Archbold expeditions (concluded). Journal of the Arnold Arboretum. 23 (2),
133155.
Almeda, F., Marcela, A. & Mendoza, H. (2014). Two new species of Graenrieda (Melastomataceae:
Merianieae) from Colombia and Panama. Phytotaxa. 163 (1),3947.
Amann, C., Amann, G., Arhel, R., Guiot, V. & Marquet, G. (2011). Plantes de Mayotte.
Mamoudzou: Armen Factory.
Amorim, B. S. & Alves, M. (2016). Taxonomic novelties in Gomidesia clade (Myrcia sl, Myrtaceae)
from the Atlantic Forest of Brazil. Phytotaxa. 272 (4), 287293.
Anderson, C. (2016). Circumscription and nomenclature of Hiraea barclayana, H. reclinata, and H.
ternifolia (Malpighiaceae), and of seven species misassigned to them. BlumeaBiodiversity,
Evolution and Biogeography of Plants. 61 (2), 125146.
464 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Andino, J. E. G., Fernandez-Fernandez, D. & Palacios, W. A. (2016). A new species of Sloanea
(Elaeocarpaceae) subgenus Quadrisepala from Ecuadorian Amazonia. Phytotaxa. 263 (2),
147153.
Ang, W. F., Lok, A. F. S. L. & Tan, H. T. W. (2010). Rediscovery in Singapore of Pinanga
simplicifrons (Miq.) Becc. (Arecaceae). Nature in Singapore,3,8386.
Annotated Checklist of the Flowering Plants of Nepal. (2017). Retrieved 1 February 2017, from
http://www.eoras.org/ora_page.aspx?ora_id=110.
ANPSA. (2017). Australia Native Plants Society. Retrieved 1 February 2017, from http://www.anpsa.
org.au.
APC. (2015). Australian Plant Census. Retrieved 1 February 2017, from http://www.anbg.gov.au/
chah/apc.
APNI. (2015) Australian Plant Name Index. Retrieved 1 February 2017, from http://www.anbg.gov.
au.
Applequist, W. L. (2016). A revision of the Malagasy species of Homalium sect. Eumyriantheia
Warb. (Salicaceae). Candollea. 71 (1),3360.
Arakaki, M., Ostolaza, C., Cáceres, F. & Roque, J. (2006). Cactaceae endémicas del Perú. Revista
Peruana de Biología, 13 (2), 193219.
Arce, M. R., Gale, S. L. & Maxted, N. (2008). A taxonomic study of Albizia (Leguminosae:
Mimosoideae: Ingeae) in Mexico and Central America. Anales del Jardín Botánico de Madrid.
65 (2), 255305.
Arnoldo, M. (2012). Arnoldos zakora: wat in het wild groeit en bloeit op Aruba, Bonaire en
Curaçao. Zutphen: WalburgPers.
Ashburner, K. & McAllister, H. A. (2013). The Genus Betula. A taxonomic revision of birches.
London: Kew Publishing.
Asprino, R. C. & Amorim, A. M. A. (2016). A new species of Hirtella (Chrysobalanaceae), and
redescription of a closely related taxon, from the Atlantic Forest, Brazil. Phytotaxa. 265 (3),
259266.
Atha, D. E., Mitchell, J. D., Pell, S. K. & Camacho, F. R. (2011). A new species of Comocladia
(Anacardiaceae) from Belize and Guatemala. Brittonia. 63 (3), 370374.
Atlas of Living Australia. (2017). Atlas of living Australia. Retrieved 1 February 2017, from http://
www.ala.org.au.
Australian Biological Resources Study. (2017). Flora of Australia online. Retrieved 1 February 2017,
from http://www.environment.gov.au/biodiversity/abrs/online-resources/ora/main/index.html.
Averyanov, L. V., Nguyen, K. S., Nguyen, H. T. & Harder, D.K. (2015). Preliminary assessment for
conservation of Pinus cernua (Pinaceae) with a brief synopsis of related taxa in eastern
Indochina. Turczaninowia. 18 (1), 738.
Aymard, G. (1998). A new species of Aldina (Fabaceae: Caesalpinioideae) from Venezuelan
Amazonia. Novon a Journal for Botanical Nomenclature. 8 (4), 330331
Baba, Y. & Crayn, D. (2012). Elaeocarpus hylobroma (Elaeocarpaceae): A new species endemic to
mountain tops in north-east Queensland, Australia. Kew Bulletin. 67 (4), 743750.
Baba, Y. (2013). Evolution, systematics and taxonomy of Elaeocarpus (Elaeocarpaceae) in Australasia.
Doctoral dissertation, James Cook University, Queensland.
Bacchetta, G., Fenu, G., Mattana, E., Zecca, G., Grassi, F., Casazza, G., et al. (2011). Genetic
variability of the narrow endemic Rhamnus persicifolia Moris (Rhamnaceae) and its implications
for conservation. Biochemical Systematics and Ecology. 39 (4), 477484.
Bajpai, O., Kumar, A., Srivastava, A. K., Kushwaha, A. K., Pandey, J. & Chaudhary, L.B. (2015). Tree
species of the Himalayan Terai region of Uttar Pradesh, India: A checklist. Check List. 11 (4),
1718.
Balachandran, N. & Rajendiran, K. (2016). Cordia ramanujamii (Cordiaceae): New species from
Tamil Nadu, India. Taiwania. 61 (2),7477.
Baldeón, S., Flores, M. & Roque, J. (2006). Fabaceae endémicas del Perú. Revista Peruana de
Biología. 13 (2), 302337.
Ban, N. T., Ly, T. D. & Khoi, N. K. (2007). Vietnam Red Data Book, Part II. Plants. Hanoi: Natural
Science and Technology Publishing.
JOURNAL OF SUSTAINABLE FORESTRY 465
Downloaded by [Emily Beech] at 04:58 06 September 2017
Bartholemew, B., Bouord, D. E., Chang, A. L., Cheng, Z., Dudley, T. R., He, S. A., et al. (1983). The
1980 Sino-American botanical expedition to western Hubei province, Peoples Republic of China.
Journal of the Arnold Arboretum. 64 (1),1103.
Bastin, J. F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., et al.
(2015). Seeing Central African forests through their largest trees. Scientic reports, 5, 13156.
Beentje, H. J., & Smith, S. A. L. (Eds.). (2001). Flora of tropical East Africa. Crown agents for
Overseas governments.
Beltrán, H., Granda, A., León, B., Sagástegui, A., Sánchez, I. & Zapata, M. (2006). Asteraceae
endémicas del Perú. Revista Peruana de Biología. 13 (2),64164.
Benitez de Rojas, C. & DArcy, W. G. (1998). The genera Cestrum and Sessea (Solanaceae: Cestreae)
in Venezuela. Annals of the Missouri Botanical Garden. 85 (2), 273351.
Berendsohn, W. G., Gruber, A. K. & Monterrosa Salomón, J. (2012). Nova Silva Cuscatlanica.
Árboles nativos e introducidos de El Salvador. Parte 2: AngiospermaeFamilias M a P y
Pteridophyta. Englera. 29 (2),1300.
Berendsohn, W. G., Gruber, A. K. & Monterrosa Salomón, J. A. (2009) Nova Silva Cuscatlanica.
Árboles nativos e introducidos de El Salvador. Parte 1: AngiospermaeFamilias A a L. Englera.
29 (1),1438.
Berg, C. C. (2002). Ficus subgenus Pharmacosycea section Oreosycea (Moraceae) in the Solomon
Islands, Fiji, and the New Hebrides. Blumea. 47 (2), 299314.
Berg, C. C. (2004). Flora Malesiana precursor for the treatment of Moraceae 6: Ficus subgenus
Sycomorus. Blumea. 49 (1), 155200.
Berg, C. C. (2007). New species of Ficus (Moraceae) from South America. Blumea. 52 (3), 569594.
Berg, C. C. (2007). Precursory taxonomic studies on Ficus (Moraceae) for the Flora of Thailand.
Thai Forest Bulletin (Botany), 35,428.
Bernal, R., Gradstein, S. R. & Celis, M. (Eds.). (2015). Catálogo de plantas y líquenes de Colombia.
Retrieved 1 February 2017, from http://catalogoplantasdecolombia.unal.edu.co/es/.
Beyra, A. & Lavin, M. (1999). Monograph of Pictetia (Leguminosae-Papilionoideae) and review of
the Aeschynomeneae. Systematic Botany Monographs, 56,193.
Bhuinya, T. & Mukherjee, S. K. (2012). Status of Litsea Lam. (Lauraceae) in Andaman and Nicobar
Islands, India. Paper Presented at the International Seminar on Multidisciplinary Approaches in
Angiosperm Systematics. India: Department of Botany, University of Kalyani.
Bhuinya, T., Singh, P. & Mukherjee, S. K. (2010). An account of the species of Litsea Lam.
(Lauraceae) endemic to India. Bangladesh Journal of Plant Taxonomy. 17 (2), 183191.
Bhutan Biodiversity Portal (2017). Bhutan Biodiversity Portal. Retrieved 1 February 2017, from
http://www.biodiversity.bt
Bingham, M., Willemen, A., Ballings, P. & Hyde, M. A. (2017). Flora of Zambia. Retrieved 1
February 2017, from http://www.zambiaora.com/
Biodiversity Informatics and Co-Operation in Taxonomy for Interactive shared Knowledge base
(2008). Biotik. Retrieved 1 February 2017, from www.biotik.org
Biosecurity Queensland. (2017). Weeds of Australia. Biosecurity Queensland Edition. Retrieved 1
February 2017, from http://keyserver.lucidcentral.org/weeds/data/media/Html/index.htm.
Birnbaum, P., Ibanez, T., Pouteau, R., Vandrot, H., Hequet, V., Blanchard, E., et al. (2015).
Environmental correlates for tree occurrences, species distribution and richness on a high-
elevation tropical island. AoB Plants, 7,115.
Bissiengou, P. & Sosef, M. S. M. (2008). Novitates Gabonenses 69. A new endemic species of and a
new combination in Campylospermum (Ochnaceae). Blumea. 53 (3), 627631.
Boldingh, I. (1914). The Flora of the Dutch West Indian Islands. II. The Flora of Curaçao, Aruba and
Bonaire. Leiden: Brill.
Bollendor, S. M., Van Welzen, P. C. & Slik, J. W. F. (2000). A taxonomic revision of Mallotus
section Polyadenii (Euphorbiaceae). Blumea. 45 (2), 319340.
Borhidi, A. L., Oviedo-Prieto, R. & Fernández-Zequeira, M. (2016). Nuevos resultados de la revisión
taxonómica de los géneros Palicourea y Psychotria (Rubiaceae, Psychotrieae) en Cuba. Acta
Botanica Hungarica. 58 (12),148.
466 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Bostock, P. D. & Holland, A. E. (2016) Census of the Queensland Flora 2016. Queensland
Department of Science, Information Technology and Information: Brisbane. Retrieved 1
February 2017, from http://www.data.qld.gov.au/dataset/census-of-the-queensland-ora-2016.
Botanical Survey of India. (2017). eFlora of India. Retrieved 1 February 2017, from http://eorain
dia.nic.in/eoraindia/homePage.action.
BRAHMS. (2017). Plants of Namibia. Retrieved 1 February 2017, from http://herbaria.plants.ox.ac.
uk/bol/namibia.
BRAHMS. (2017). The National Herbarium of Trinidad and Tobago. Available at: http://herbaria.
plants.ox.ac.uk/bol/trin.
Brambach, F., Coode, M., Biagioni, S. & Culmsee, H. (2016). Elaeocarpus rdausii (Elaeocarpaceae):
A new species from tropical mountain forests of Sulawesi. PhytoKeys, 62,114.
Breitwieser I., Brownsey P. J., Nelson W. A. & Wilton A.D. (Eds.). (20162017). Flora of New
Zealand Online. Retrieved 1 February 2017, from http://www.nzora.info.
Breteler, F. J. (2016). Novitates Gabonenses 84. A new species of Wilczekra (Celastraceae) from
Gabon. Plant Ecology and Evolution. 149 (1), 131134.
Breteler, F. J. (Ed.). (1989). The Connaraceae: A taxonomic study with emphasis on Africa.
Agricultural University: Michigan.
Brummitt, N. A. & Utteridge, T. M. A. (2003). A second species of Distyliopsis (Hamamelidaceae)
from New Guinea. Kew Bulletin. 58 (3), 727731.
Bünger, M. D. O., Mazine, F. F. & Stehmann, J. R. (2016). Eugenia ruschiana (Myrtaceae): A new
species from southeastern Brazilian Atlantic forest. Phytotaxa. 266 (1),4044.
Bunwong, S., Chantaranothai, P. & Keeley, S.C. (2014) Revisions and key to the Vernonieae
(Compositae) of Thailand. PhytoKeys, 37,25101
Bussmann, R. W., Gruhn, J. & Glenn, A. (2010). Axinaea fernando-cabiesii and A. reginae spp. nov.
(Melastomataceae) from upper Amazonia of Peru, with notes on the conservation status of A.
ava. Nordic Journal of Botany. 28 (5), 518522.
Byng, J. W., Barthelat, F., Snow, N. & Bernardini, B. (2016). Revision of Eugenia and Syzygium
(Myrtaceae) from the Comoros archipelago. Phytotaxa. 252 (3), 163184.
Byng, J.W., Florens, F.V. & Baider, C. (2015). Syzygium pyneei (Myrtaceae): A new critically
endangered endemic species from Mauritius. PhytoKeys, 46,6166.
Byng, J. W., Barthelat, F., Snow, N. & Bernardini, B. (2016). Revision of Eugenia and Syzygium
(Myrtaceae) from the Comoros archipelago. Phytotaxa.252 (3), 163184.
CABI (2017) CABI: Invasive Species Compendium. Retrieved 1 February 2017, from http://www.
cabi.org/isc/.
Cabral, F. N., Bittrich, V. & Amaral, M. D. C. E. D. (2016). Two new species and one new record of
Caraipa (Calophyllaceae) from Colombia. Systematic Botany. 41 (2), 348353.
The Calora Database (2017). Calora: Information on California plants for education, research and
conservation. Retrieved 1 February 2017, from http://calora.org.
Caliari, C. P., Souza, V. C. & Mazine, F. F. (2016). Two new species of Myrcia (Myrtaceae) from
Brazilian Atlantic Forest. Phytotaxa. 267 (3), 201210.
Callmander, M. W., Lowry, P. P., Forest, F., Devey, D. S., Beentje, H. & Buerki, S. (2012). Benstonea
Callm. & Buerki (Pandanaceae): Characterization, circumscription, and distribution of a new
genus of screw-pines, with a synopsis of accepted species. Candollea. 67 (2), 323345.
Camargo, R. A. & de Azevedo Tozzi, A. M. G. (2014). A synopsis of the genus Deguelia
(Leguminosae, Papilionoideae, Millettieae) in Brazil. Brittonia. 66 (1),1232.
Campos-Ríos, M. & Chiang, F. (2010). Bourreria tuxtlae y Bourreria veracruzana (Boraginaceae)
dos especies nuevas y clave para la identicación de las especies arbóreas del género, en México.
Polibotánica, 30,0107.
Cantley, J. T., Sporck-Koehler, M. J. & Chau, M. M. (2016). New and resurrected Hawaiian species
of pilo (Coprosma, Rubiaceae) from the island of Maui. PhytoKeys, 60, 33.
Cardoso, D., De Lima, H. C. & De Queiroz, L. P. (2013). Staminodianthus: A new neotropical
Genistoid legume genus segregated from Diplotropis. Phytotaxa. 110 (1),116.
JOURNAL OF SUSTAINABLE FORESTRY 467
Downloaded by [Emily Beech] at 04:58 06 September 2017
Carrington, S., Sabir, K., Broome, R. & Acevedo Rodriguez, P. (2007). Plants of the Eastern
Caribbean. Barbados: The University of the West Indies. Retrieved 1 February 2017, from
http://ecora.cavehill.uwi.edu/
Carter, S. & Wood, J. R. I. (1982). Two new succulent Euphorbia species from southwest Arabia.
Kew Bulletin. 37 (1),7376.
Castillo-Campos, G., García-Franco, J.G. & Martínez, M. L. (2013). Spathacanthus magdalenae sp.
Nov. (Acanthaceae): A riparian forest species from Veracruz, Mexico. Nordic Journal of Botany.
31 (4), 449452.
Cayzer, L. W., Crisp, M. D. & Telford, I.R. (2000). Auranticarpa: A new genus of Pittosporaceae
from northern Australia. Australian Systematic Botany. 13 (6), 903917.
Centre for Plant Biodiversity Research. (2017). EUCLID. Australian National Herbarium. Third
Edition. Retrieved 1 February 2017, from https://www.anbg.gov.au/cpbr/cd-keys/euclid3/
Chakrabarty, T., Lakra, G. S. & Diwakar, P. G. (2010). The Family Lauraceae in Andaman and
Nicobar Islands. In Ramakrishna, C. Raghunathan & Sivaperuman, C. Recent Trends in
Biodiversity of Andaman and Nicobar Islands. 179193.
Chanco, M., León, B. & Sánchez, I. (2006). Malvaceae endémicas del Perú. Revista Peruana de
Biología. 13 (2), 413425.
Chang, C. & Kim, H. (2015). The woody plants of Korea. Retrieved 1 February 2017, from http://
orakorea.myspecies.info/en.
Chantaranothai, P. (2014). Three new records of Syzygium Gaertn. in Thailand and lectotypication
of 19 taxa of Eugenia L. (Myrtaceae). Thai Forest Bulletin (Botany), 42,7580.
Chantaranothai, P. & Parnell, J. (1994). Revision of Acmena, Cleistocalyx, Eugenia s.s. and
Syzygium (Myrtaceae) in Thailand. Thai Forest Bulletin (Botany), 21,1123.
Chaowasku, T. & Van Der Ham, R. W. (2013). Integrative systematics supports the establishment of
Winitia: A new genus of Annonaceae (Malmeoideae, Miliuseae) allied to Stelechocarpus and
Sageraea. Systematics and Biodiversity. 11 (2), 195207.
Chaowasku, T., Johnson, D. M., Van Der Ham, R. W. & Chatrou, L. W. (2015). Huberantha: A
replacement name for Hubera (Annonaceae: Malmeoideae: Miliuseae). Kew Bulletin. 70 (2),14.
Cheek, M. & Haba, P. (2016). Spiny African Allophylus (Sapindaceae): A synopsis. Kew Bulletin, 71
(4), 57.
Chileora (2012). Chileora. Retrieved 1 February 2017, from http://www.chileora.com/.
Chilebosque (2017). Chilebosque. Retrieved 1 February 2017, from http://www.chilebosque.cl/.
Chong, K. Y., Tan, H. T. & Corlett, R. T. (2009). A checklist of the total vascular plant ora of
Singapore: native, naturalised and cultivated species. Singapore: Raes Museum of Biodiversity
Research, National University of Singapore.
Christensen, K. I. & Zieliński, J. (2008). Notes on the genus Crataegus (Rosaceae-Pyreae) in
southern Europe the Crimea and western Asia. Nordic Journal of Botany, 26, 344360
Chua, L. S. L., Suhaida, M., Hamidah, M. & Saw, L. G. (2010). Malaysia Plant Red List, Peninsular
Malaysian Diperocarpaceae. Research Pamplet No. 129. Forest Research Institute. Malaysia.
Chung, R. C. K., Soepadmo, E. & Lim, A. L. (2005). A synopsis of the Bornean species of Microcos
L. (Tiliaceae). GardensBulletin of Singapore, 57, 101130.
Chung, R. C. K. (2001). Taxonomic notes on the Bornean Helicia and Heliciopsis (Proteaceae).
Journal of Tropical Forest Science. 13 (3), 534547.
Chung, R.C.K., Tan, H.S. & Soepadmo, E. (2012). A remarkable new species of Jarandersonia
(Malvaceae-Brownlowioideae) from Central Kalimantan, Borneo. Systematic Botany. 37 (1),
213217.
Cicuzza, D., Newton, A. & Oldeld, S. (2007). The Red List of Magnoliaceae. Cambridge: Fauna &
Flora International.
CIRAD. (2008). Arbres, arbustes de la forêt réunionnaise. Retrieved 1 February 2017, from http://
arbres-reunion.cirad.fr/.
Conn, B. & Damas, K. (2017) Guide to trees of Papua New GuineaPNGtrees descriptions. Retrieved
1 February 2017, from http://www.pngplants.org/PNGtrees/TreeDescriptions/.
Conn, B.J. (1995). Handbooks of the ora of Papua New Guinea: Volume 3. Melbourne: Melbourne
University Press.
468 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Conservatoire et Jardin Botaniques Ville de Genève (2017). African Plant Database. Retrieved 1
April 2016, from http://www.ville-ge.ch/musinfo/bd/cjb/africa/.
Cook Islands Government. (2007). Cook Islands biodiversity database. Retrieved 1 February 2017,
from http://cookislands.bishopmuseum.org/.
Cornejo, X. & Iltis, H. H. (2008). A revision of Colicodendron (Capparaceae). Journal of the
Botanical Research Institute of Texas. 2 (1),7593.
Cornejo, X. & Iltis, H. H. (2010). Three new species of Capparidastrum (Capparaceae) from
Colombia, Venezuela, and Ecuador. Harvard Papers in Botany. 15 (1), 155163.
Cornejo, X., Lombardi, J. A. & Thomas, W. W. (2011). Chionanthus parviora: A new species of
Oleaceae Endemic to Northeastern Brazil. Harvard Papers in Botany. 16 (2), 421423.
Corner, E. J. (1970). New species of Streblus and Ficus (Moraceae). Blumea, 18, 393411.
Costion, C. M. & Lorence, D. H. (2012). The endemic plants of Micronesia: A geographical checklist
and commentary. Micronesia. 43 (1),51100.
Costion, C. M. & Plunkett, G. M. (2016). A revision of the genus Osmoxylon (Araliaceae) in Palau,
including two new species. PhytoKeys, 58,4964.
Costion, C. M., Kitalong, A. H. & Holm, T. (2009). Plant endemism, rarity, and threat in Palau,
Micronesia: A geographical checklist and preliminary Red List assessment. Micronesica. 41 (1),
131164.
Cotton, E. & Meier, W. (2003). Clidemia intonsa and Miconia chapensis (Miconieae,
Melastomataceae): Two new species endemic to cloud forest refuges in the Coastal Cordillera
of Venezuela. Willdenowia. 33 (1), 197203.
Couvreur, T. L. & Niangadouma, R. (2016). New species of Uvariopsis (Annonaceae) and
Laccosperma (Arecaceae/Palmae) from Monts de Cristal, Gabon. PhytoKeys. 68,18.
Couvreur, T. L., Niangadouma, R., Sonké, B. & Sauquet, H. (2015). Sirdavidia: An extraordinary
new genus of Annonaceae from Gabon. PhytoKeys, 46,119.
Croizat, L. (1938). Notes on Chinese Euphorbiaceae. Journal of the Arnold Arboretum. 19 (2),
134148.
CSIRO. (2010) Australian Tropical Rainforest Plants Edition 6. Retrieved 1 February 2017, from http://
keys.trin.org.au/key-server/data/0e0f0504-0103-430d-8004-060d07080d04/media/Html/index.html.
Culmsee, H., Pitopang, R., Mangopo, H. & Sabir, S. (2011). Tree diversity and phytogeographical
patterns of tropical high mountain rain forests in Central Sulawesi, Indonesia. Biodiversity and
Conservation. 20 (5), 11031123.
Daly, D. C. & Martínez-Habibe, M. C. (2016). Seven new species of Dacryodes. Brittonia, 68 (2),
120137.
Daly, D. C. (2005). Protium aidanianum: A new species from Western Amazonia. Studies in
Neotropical Burseraceae XII. Novon. 15 (3), 410413.
Danin, A. (20032017) Flora of Israel Online. Retrieved 1 February 2017, from http://ora.org.il/
Darbyshire, I. & Luke, Q. (2016). Barleria mirabilis (Acanthaceae): A remarkable new tree species
from west Tanzania. Kew Bulletin. 71 (1),16.
Darbyshire, I., Kordofani, M., Farag, I., Candiga, R. and Pickering, H. (2015). The plants of Sudan
and South Sudan: An annotated checklist. Richmond: Royal Botanic Gardens, Kew.
Darwin, S. P. (2010). A taxonomic revision of Timonius subgen. Pseudobobea (Valeton) S.P.
Darwin (Rubiaceae). Candollea. 65 (2), 217240.
Davila, N. & Kinoshita, L. S. (2016). A new species of Platycarpum (Rubiaceae, Henriquezieae) from
Peruvian Amazon. Phytotaxa. 260 (3), 276282.
Dávila, N. & Vicentini, A. (2016). Isertia psammophila (Isertieae, Rubiaceae): A new species from
white-sand areas of the Brazilian Amazon. Phytotaxa, 257 (2). 174180.
Dawson, S. E. (2016). Characteristics of the Madagascan genus Canephora (Rubiaceae:
Octotropideae), and the description of two new species. Kew Bulletin, 71 (3).110.
de Carvalho, L. D. A. F. (1991). New Taxa of Solanum (Solanaceae) from Brazil, Colombia, Central
America, and Venezuela. Annals of the Missouri Botanical Garden. 78 (1), 224244.
de Carvalho-Sobrinho, J.G., Machado, M.C. & de Queiroz, L.P. (2012). Spirotheca elegans
(Malvaceae: Bombacoideae): A new species from Bahia, Brazil. Systematic Botany. 37 (4),
978982.
JOURNAL OF SUSTAINABLE FORESTRY 469
Downloaded by [Emily Beech] at 04:58 06 September 2017
de Faria, J. E. Q., Mazine, F.F. & Proença, C. E. B. (2015). Two new species of Eugenia (Myrtaceae)
from the Cabo Frio Center of Plant Diversity, Rio de Janeiro, Brazil. Phytotaxa. 208 (3), 201208.
de Granville, J. J. (2007). A new species of Bactris (Palmae) from French Guiana. Brittonia. 59 (4),
354356.
de Kok, R. (2013). The genus Premna L. (Lamiaceae) in the Flora Malesiana area. Kew Bulletin. 68
(1),5584.
de Kok, R. P., Rusea, G. & Lati, A. (2009). The genus Teijsmanniodendron Koord. (Lamiaceae).
Kew Bulletin. 64 (4), 587625.
de Kok, R. P. J. (2015). A revision of Cryptocarya (Lauraceae) from Thailand and Indo-China.
Gardens Bulletin Singapore. 67 (2), 309350.
de Kok, R. P. J. (2016). A revision of Beilschmiedia (Lauraceae) of peninsular Malaysia. Blumea. 61
(2), 147164.
de Kok, R. P. J. (2016). A revision of Cryptocarya R. Br. (Lauraceae) of Peninsular Malaysia. Kew
Bulletin. 71 (1),126.
De Lima, L. F. G., Baumgratz, J. F. A., Lughadha, E. N. & Dos Santos, J. U. M. (2016). Two new
species of Graenrieda (Melastomataceae, Merianieae) from the Amazon Rainforest. Phytotaxa.
267 (1),7783.
De Queiroz, L.P., Lewis, G.P. & Allkin, R. (1999). A revision of the genus Moldenhawera Schrad.
(Leguminosae-Caesalpinioideae). Kew Bulletin. 54 (4), 817852.
de Salas, M.F. & Baker, M.L. (2016). A census of the vascular plants of Tasmania, including
Macquarie Island. (Tasmanian Herbarium, Tasmanian Museum and Art Gallery. Hobart)
Retrieved 1 February 2017, from http://www.tmag.tas.gov.au.
De Sanctis, M., Adeeb, A., Farcomeni, A., Patriarca, C., Saed, A. & Attorre, F. (2012). Classication
and distribution patterns of plant communities on Socotra Island, Yemen. Applied Vegetation
Science, 16, 148165.
de Stapf, M.N.S. & dos Santos Silva, T. (2013). Typications in Cordia (Cordiaceae), with an
assessment of the status of Cordia blanchetii. Kew Bulletin. 68 (2), 355359.
De Stefano, R.D., Janovec, J.P. & Can, L.L. (2013). Three decades to connect the sexes: Calatola
microcarpa (Icacinaceae): A new species from the Southwestern Amazon. Phytotaxa. 124 (1),
4349.
De Wilde, W. J. J. O. (2002). Additions to Asian Myristicaceae: Endocomia, Gymnacranthera,
Horseldia, Knema. Blumea. 47 (2), 347362.
Demaio, P., Karlin, U. O. & Medina, M. (2015). Árboles Nativos de Argentina. Argentina: Ecoval
Ediciones.
Deomurari, A., Jani, M., Matieda, K. & KaPatel, J. (2014) IBIS-Flora Beta VersionAngiosperm
Flora of India. Retrieved 1 February 2017, from http://www.ora.indianbiodiversity.org/ora/
angiosperms.
Devecchi, M. F., Thomas, W. W. & Pirani, J. R. (2016). Simaba arenaria (Simaroubaceae): A new
species from sandy coastal plains in Northeastern Brazil, with notes on seedling morphology.
Systematic Botany. 41 (2), 401407.
Dludlu, M. N., Muasya, A. M., Chimphango, S. B. & Stirton, C. H. (2015). Taxonomy of the
Southern African Psoralea aphylla complex (Psoraleeae, Leguminosae). South African Journal of
Botany, 97,77100.
Dombo, A., Da Costa, E. & Neto, G. (2002). Zambia Plant Red Data List. Retrieved 1 February 2017,
from http://www.nationalredlist.org/zambia-plant-red-data-list-2002/.
Donnell, A. (2012). A systematic revision of Bakeridesia Hochr. (Malvaceae). Doctoral dissertation,
Ohio University, United States.
Dressler, S. (1999). Revision of the genus Cleistanthus (Euphorbiaceae) in the Philippines. Blumea.
44(1), 109148.
East African Plant Red List Authority (EAPRLA). (2015). Tree assessments from EAPRLA work-
shops I-X. Nairobi, Kenya.
Eastwood, A. (2005). Globally threatened trees of the Caucasus. A report on the Caucasus regional
tree Red Listing workshop held in Tbilisi, Georgia, 2628 September 2005. Cambridge: Fauna &
Flora International.
470 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Eastwood, A., Lazkov, G. & Newton, A. (2009) The Red List of trees of Central Asia. Cambridge:
Fauna & Flora International.
Endemia. (2016). Endemia: Faune et Flore de Nouvelle-Caledonie. Retrieved 1 February 2017, from
http://endemia.nc.
Esser, H. & Saw, L. G. (2015). A new species of Polyosma (Escalloniaceae/Polyosmaceae) from
Thailand and new synonyms. Phytotaxa. 221 (1),8992.
Euro+Med (2006-). Euro+Med PlantBase: The information resource for Euro-Mediterranean plant
diversity. Retrieved 1 February 2017, from http://ww2.bgbm.org/EuroPlusMed/.
Ewango, C. E., Kenfack, D., Sainge, M. N., Thomas, D. W. & van der Burgt, X. M. (2016). Gambeya
korupensis (Sapotaceae: Chrysophylloideae): A new rain forest tree species from the Southwest
Region in Cameroon. Kew Bulletin, 71 (2),16.
Falanruw, M. V. C. (2015). Trees of Yap: A eld guide. California: U.S. Department of Agriculture
Forest Service, Pacic Southwest Research Station.
Farjon, A. (2001). A world checklist and bibliography of conifers (2nd ed.). Richmond: Royal Botanic
Gardens Kew.
Farjon, A. & Filer, D. (2013). An atlas of the worlds conifers. Leiden: Brill.
Fauna & Flora of Liberia (2017) Plant atlas of Liberia. Retrieved 1 February 2017, from http://www.
liberianfaunaora.org/plant-atlas-of-liberia.
Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, A., Brienen, R. J., et al. (2015).
Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 6, 6857.
Fedde, F. (1921). Repertorium specierum novarum regni vegetabilis. Fasciculus XVII. Berlin:
Selbstverlag des Herausgebers.
Fernández-Alonso, J. L. & Cogollo-Pacheco, Á. A. (2016). Chionanthus megistocarpus (Oleaceae):
A new species from the Western Cordillera of Colombia. Phytotaxa. 269 (1),1420.
Fernandez-Fernandez, D., Ulloa, C. U. & Penneys, D. S. (2016). A new species of Blakea (Blakeeae,
Melastomataceae) from Ecuador. Phytotaxa. 284 (1),6974.
Fernando, E. S., Co, L. C., Lagunzad, D. A., Gruezo, W. S., Barcelona, J. F., Madulid, D. A., et al.
(2008). Threatened plants of the Philippines: A preliminary assessment. Asia Life Sciences,
Supplement 3,152.
Feulner, G. (1997). First observations of Olea cf. europaea (the Wild Olive) and Ehretia obtusifolia
in the United Arab Emirates. Tribulus. 7 (1), 1214.
Fiaschi, P. (2016). A new species of Dendropanax (Araliaceae) from the Brazilian Atlantic Forest.
Brittonia. 68 (2), 103110.
Fiaschi, P. & Plunkett, G. M. (2016). Two new species of the Didymopanax clade of Scheera
(Araliaceae) from the Brazilian Amazon. Phytotaxa. 245 (2), 153160.
Field Museum (19992016). Amostras de Herbário da Neotrópica. Retrieved 1 February 2017, from
http://fm1.eldmuseum.org/vrrc/index.php?PHPSESSID=5c08cd33d8686913db18e82fbc1b5555.
Figueiredo, E. (2010). Unpublished assessments of trees of S. Tomé and Príncipe (draft). Centro de
Ecologia, Funcional, University of Coimbra. Portugal.
Figueiredo, E. & Smith, G. F. (2008). Plants of Angola/Plantas de Angola. Strelitzia 22. South African
National Biodiversity Institute, Pretoria.
Figueiredo, E., Paiva, J., Stévart, T., Oliveira, F. & Smith, G. F. (2011). Annotated catalogue of the
owering plants of São Tomé and Príncipe. Bothalia. 41 (1),4182.
Filipe de Portugal, S. T., Lewis, G. P. & Hawkins, J. A. (2010). A revision of the South American
genus Apuleia (Leguminosae, Cassieae). Kew Bulletin. 65 (2), 225232.
Filipowicz, N., Nee, M. & Renner, S. (2012). Description and molecular diagnosis of a new species
of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes. PhytoKeys, 10,8394.
Flora Malesiana (2017) Flora Malesiana. Retrieved 1 February 2017, from http://portal.cybertaxon
omy.org/ora-malesiana/.
Flora of North America Editorial Committee (Eds.). (1993+). Flora of North America North of
Mexico. 20+ vols. New York and Oxford.
Flores, R., Ibanez, A., & Correa, M. D. (2016). Eugenia veraguensis (Myrtaceae): A new species from
Golfo de Chiriquí in Veraguas Province, Panama, with notes on Eugenia rhombea. Phytotaxa.
270(3), 217222.
JOURNAL OF SUSTAINABLE FORESTRY 471
Downloaded by [Emily Beech] at 04:58 06 September 2017
FOI (2017). Flowers of India. Retrieved 1 February 2017, from http://www.owersondia.net/.
Forero, E. (1983). Connaraceae. Flora Neotropica, 36,1207.
Forest Research Institute Malaysia. (2015). Malaysia Flora Database. Retrieved 1 February 2015,
http://www.chm.frim.gov.my/Bio-Diversity-Databases/Flora-Database.aspx
Fosberg, F. R., Sachet, M. H., & Oliver, R. (1979). Geographical checklist of the Micronesian
Dicotyledonae. Micronesica. 15 (12).
Freire, S.E., Katinas, L. & Sancho, G. (2002). Gochnatia (Asteraceae, Mutisieae) and the Gochnatia
complex: Taxonomic implications from morphology. Annals of the Missouri Botanical Garden. 89
(4), 524550.
Friedmann, F. (1994). Flore des Seychelles: dicotylédones. IRD Editions, Collection Faune et Flore
tropicales 44. Marseille, France.
Fritsch, P. W., & Al, F. (2015). A taxonomic revision of Antillean Symplocos (Symplocaceae).
Phytotaxa. 194 (1),167.
Funk, V. A., Berry, P., Alexander, S., Hollowell, T.H. & Kello, C. L. (2007). Checklist of the plants of
the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French
Guiana). Washington, DC: National Museum of Natural History.
Gagnidze R. I. (Ed.) (19852011). Saqartvelos ora (Flora of Georgia) (2nd ed.). Tbilisi: Metsniereba.
Gagnon, E., Bruneau, A., Hughes, C. E., de Queiroz, L. & Lewis, G.P. (2016). A new generic system
for the pantropical Caesalpinia group (Leguminosae). PhytoKeys, 71,1160.
Gahagen, B., Terbush, M. & Ballard, H. (2016). A taxonomic synthesis of the Tovomita weddelliana
(Clusiaceae) species complex. Systematic Botany. 40 (4), 968988.
Gaikwad, K. N. & Mali, M. V. (2012). Tree ora of Nashik city (Maharashtra). International Journal
of Life Science & Pharma Research. 2 (2),94101.
Gamba-Moreno, D. L. and Almeda, F. (2014). Systematics of the Octopleura clade of Miconia
(Melastomataceae: Miconieae) in tropical America. Phytotaxa. 179 (1),1174.
Gann, G. D., J. C. Trejo-Torres and C. G. Stocking. (20152016). Plantas de la Isla de Puerto Rico/
Plants of the Island of Puerto Rico. Florida: The Institute for Regional Conservation.
Gao, L. M. & Li, D. Z. (2009). Rhododendron qiaojiaense (Ericaceae): A new species from Yunnan,
China. Annales Botanici Fennici. 46 (1),6770.
Garavito, N. T., Dàvila, E. A., Caro, S. A., Murakami, A. A., Baldeón, S., Beltràn, H., et al. (2014) A
regional Red List of Montane tree species of the tropical Andes: Trees at the top of the world.
Richmond: Botanic Gardens Conservation International.
GBIF. (2017). Global Biodiversity Information Facility. Retrieved 1 February 2016, from http://
www.gbif.org/
Germishuizen, G., Meyer, N. L., Steenkamp, Y. & Keith, M. (Eds.) (2006). A checklist of South
African plants. Southern African Botanical Diversity Network Report No. 41. SABONET,
Pretoria, Republic of South Africa.
Gibbs, D. & Chen, Y. (2009). The Red List of Maples. Cambridge: Fauna & Flora International.
Gibbs, D., Chamberlain, D. & Argent, G. (2011). The Red List of rhododendrons. Richmond: Botanic
Gardens Conservation International.
Gibbs, P. & Semir, J. (2003). A taxonomic revision of the genus Ceiba Mill. (Bombacaceae). Anales
del Jardín Botánico de Madrid. 60(2), 259300.
Gibbs, P. E. & Alverson, W. S. (2006). How many species of Spirotheca (Malvaceae sl,
Bombacoideae)?. Brittonia. 58(3), 245258.
Gilles, D., Zaiss, R., Blach-Overgaard, A., Catarino, L., Damen, T., Deblauwe, V. et al. (2016).
RAINBIO: A mega-database of tropical African vascular plants distributions. PhytoKeys, 74,
118.
Giriraj, A., Irfan-Ullah, M., Ramesh, B. R., Karunakaran, P. V., Jentsch, A. & Murthy, M. S. R.
(2008). Mapping the potential distribution of Rhododendron arboreum Sm. ssp. nilagiricum
(Zenker) Tagg (Ericaceae): An endemic plant using ecological niche modelling. Current Science.
94 (12), 16051612.
GISD. (2017). The Global Invasive Species Database. IUCN. Retrieved 1 February 2017, from http://
www.iucngisd.org/gisd/.
472 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
National Museum of Nature and Science. (2017). Global Red List of Japanese threatened plants.
Retrieved 1 February 2017, from https://www.kahaku.go.jp/english/research/db/botany/redlist/
list/list_div.html.
Goldenberg, R. & Meirelles, J. (2011). A new species of Graenrieda (Merianieae, Melastomataceae)
with a calyptrate calyx. Systematic Botany. 36 (1), 119123.
Goldenberg, R., Almeda, F., Caddah, M. K., Martins, A. B., Meirelles, J., Michelangeli, F. A. &
Weiss, M. (2013). Nomenclator botanicus for the neotropical genus Miconia (Melastomataceae:
Miconieae). Phytotaxa. 106 (1),1171.
Goldenberg, R., Michelangeli, F. A., Aona, L. Y., & Amorim, A. M. (2016). Angiosperms and the
Linnean shortfall: Three new species from three lineages of Melastomataceae at one spot at the
Atlantic Forest. PeerJ, 4, e1824.
Gómez, J. R. D. S., & Michelangeli, F. A. (2016). Miconia portogallensis (Melastomataceae): A new
species from the Sierra Madre del Sur, Guerrero, Mexico. Phytotaxa. 278 (2), 132140.
González Gutiérrez, P. A. (2014). Evolution and biogeography of Buxus L. (Buxaceae) in Cuba and
the Caribbean. Doctoral dissertation, Freie Universität Berlin, Germany.
González-Espinosa, M., Meave, J. A., Lorea-Hernández, F. G., Ibarra-Manriquez, G. & Newton, A.
C. (2011). The Red List of Mexican cloud forest trees. Cambridge: Fauna & Flora International.
Gordon, J. (2005). Red Listing of Mesoamerican dry forest tree species. Cambridge: Fauna & Flora
International.
Gosline, G. & Malécot, V. (2011). A monograph of Octoknema (OctoknemaceaeOlacaceae s.l.).
Kew Bulletin. 66 (3), 367404.
Gottschling, M. & Miller, J. S., (2007). A revision of Bourreria (Boraginales, Ehretiaceae) in South
America. Annals of the Missouri Botanical Garden. 94 (4), 734744.
Government of India. (2017). Botanical survey of India. Retrieved 1 February 2017,
from http://bsi.gov.in/Index.aspx.
Grandtner, M. M. (2005). Elseviers dictionary of trees. Volume 1: North America. Amsterdam:
Elsevier Science.
Grandtner, M.M. & Chevrette, J. (2014). Elseviers dictionary of trees. Volume 2: South America.
Cambridge, United States: Academic Press.
Graveson, R. (2015). Plants of Saint Lucia. Retrieved 1 September 2015, from http://saintlucian
plants.com/.
Grimshaw, J. (2003). Notes on the temperate species of Juglans. IDS Yearbook. 107130.
Grossheim, A. A. (19391967). Flora Kavkaza, Vol. I-II, Baku, Azerbaijan, Izdatelstvo АзФАН, Vol.
III, Baku, Azerbaijan, Izdatelstvo Akademii Nauk Azerbaijanskoi SSR, Vol. IV-VI. Leningrad,
Izdatelstvo Akademii Nauk SSSR, Vol. VII. Leningrad, Russian Federation: Nauka.
Grossheim, A. A. (1949). OpredelitelPactenii Kavkaz. Moscow: Sovetckaia Nauka.
Guerrero, A., Judd, W. S. & Morris, A. B. (2004). A new species of Illicium subsection Parviora
(Illiciaceae) from the Massif de la Hotte, Haiti. Brittonia. 56 (4), 346352.
Guillaumin, A. N. D. R. (1931). Contribution to the Flora of the New Hebrides: Plants collected by
SF Kajewski in 1928 and 1929. Journal of the Arnold Arboretum, 12 (4), 221264.
Guo, W., Fan, Q., Jing, H., Hu, X., & Liao, W. (2016). Sorbus calcicola (Rosaceae): A new species
from Guangxi Province in China. Phytotaxa. 261 (3), 260266.
Gustafsson, M. H., & Borchsenius, F. (2016). Clusia nubium (Clusiaceae): A new species from
cloud-forests of southwestern Ecuador. Phytotaxa. 253 (3), 219222.
Hackel, E. (1908). Notes on Philippine Gramineae, III. The Philippine Journal of Science, 3 (C), 172.
Haegens, R. M. A. P. (2000). Taxonomy, phylogeny, and biogeography of Baccaurea, Distichirhops,
and Nothobaccaurea (Euphorbiaceae). Doctoral dissertation, Universiteit Leiden, The
Netherlands.
Hahn, N. (2016). Senegalia montis-salinarum: A new species of Fabaceae: Mimosoideae endemic to
the Soutpansberg, South Africa. Phytotaxa. 244 (2), 174180.
Haretche, F., Mai, P. & Brazeiro, A. (2012). Woody ora of Uruguay: Inventory and implication
within the Pampean region. Acta Botanica Brasilica. 26 (3), 537552.
Harriet, G.J. & Kerry, W.S. (1998). 1997 IUCN Red list of threatened plants. Gland: IUCN.
JOURNAL OF SUSTAINABLE FORESTRY 473
Downloaded by [Emily Beech] at 04:58 06 September 2017
Hartley, T.G. (1974). A revision of the genus Acronychia (Rutaceae). Journal of the Arnold
Arboretum. 55 (3), 469523.
Harvard University (2017). Harvard University Herbaria and Libraries. Retrieved 1 February 2017,
from http://huh.harvard.edu/.
Harwood, B. & Tathana, N. (2011) Two new Casearia (Salicaceae) species from Thailand, and notes
on Casearia grewiifolia var. gelonioides. Thai Forest Bulletin (Botany), 39,2327.
Hassler, M. (2017). World plants: Synonymic checklists of the vascular plants of the world (version
Nov 2016). In: Roskov, Y., Abucay, L., Orrell, T., Nicolson, D., Bailly, N., Kirk, P. et al. (Eds.).
(2017). Species 2000 & ITIS catalogue of life. Retrieved 1 February 2017, from http://www.
catalogueoife.org.
Heatubun, C. D., Baker, W. J., Mogea, J. P., Harley, M. M., Tjitrosoedirdjo, S. S. & Dranseld, J.
(2009). A monograph of Cyrtostachys (Arecaceae). Kew Bulletin. 64 (1),6794.
Hendrian. (2004). Revision of Ochrosia (Apocynaceae) in Malesia. Blumea. 49 (1), 101128.
Hernandez, F.G.L. (1997). On Cinnamomum (Lauraceae) in Mexico. Acta Botánica Mexicana, 40,
118.
Hind, D. J. N. (2011). An annotated preliminary checklist of the Compositae of Bolivia. Version 2.
Richmond: Royal Botanic Gardens, Kew
Hoogland, R. D. (1979). Studies in the Cunoniaceae II. The Genera Caldcluvia, Pullea, Acsmithia,
and Spiraeanthemum. Blumea. 25 (2), 481505.
Hopkins, H. C. F. & Pillon, Y. (2011). Further new endemic taxa of Cunoniaceae from New
Caledonia. Kew Bulletin. 66 (3), 405423.
Huamantupa, I., Vásquez, R., Foster, R., Cuba, M. & Calatayud, G. (2014). Adiciones de angios-
permas a la Flora del Perú procedentes de los bosques Andino Amazónicos del sur peruano.
Revista Peruana de Biología. 21 (2), 163170.
Editorial Committee of the Flora of Taiwan. (Ed.). (1975-). Flora of Taiwan. Taipei: Department of
Botany, National Taiwan University.
Hughes, M. (2013). Memecylon pseudomegacarpum M. Hughes (Melastomataceae): A new species
of tree from Peninsular Malaysia. European Journal of Taxonomy, (56),19.
Hunter, J. T. (2001). Eucalyptus saxicola (Myrtaceae): A new species from the Central Tablelands of
New South Wales (section Maidenaria series Bridgesianae). Telopea. 9 (2), 403407.
Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. (2017). Flora of Zimbabwe.
Retrieved 1 February 2017, from http://zimbabweora.co.zw/.
IDigBio. (2017). Integrated digitized biocollections. National Science Foundation. Retrieved 1
February 2017, from https://www.idigbio.org/.
India Biodiversity Portal (2013). India biodiversity portal. Retrieved 1 September 2016, from http://
indiabiodiversity.org/.
International Legume Database & Information Service. (20062013). ILDIS World Database of
Legumes Version 10.38. Retrieved 1 September 2016, from http://www.legumes-online.net/.
IPNI. (2012). The International Plant Names Index (IPNI). Retrieved 1 September 2016, from http://
www.ipni.org/how_to_cite_us.html/
IUCN France, MNHN and DIREN Polynésie Française. (2015). Liste rouge de la Flore vasculaire
endémique de Polynésie française (2015). Available at: https://inpn.mnhn.fr/espece/listerouge/
FR/Flore_Vasculaire_Polynesie_2015
IUCN. (2016). The IUCN Red List of threatened species. Version 20163. Retrieved 16 December
2016, from http://www.iucnredlist.org.
Jackes, B. R. (2005). Revision of Myrsine (Myrsinaceae) in Australia. Australian Systematic Botany.
18 (5), 399438.
Jiménez, J. E., Juarez, P., & Chaves-Fallas, J. M. (2016). Cupania moralesii (Sapindaceae): A new
endemic tree species from the premontane forest of Costa Rica. Phytotaxa. 275 (1),6974.
Jimenez-Ramirez, J., González, C. A., & Rios-Carrasco, S. (2016). Triumfetta acahuizotlanensis
(Malvaceae): A new tree species endemic of Guerrero, Mexico. Phytotaxa. 265 (3), 273278.
Jing, H., Fan, Q., Guo, W., & Liao, W. (2016). Sorbus prunifolia (Rosaceae): A new species from
Yunnan Province, China. Phytotaxa. 258 (2), 171178.
JSTOR. (2017). Global Plants. ITHAKA. Retrieved 1 February 2017, from http://plants.jstor.org/.
474 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Judkevich, M. D., Salas, R. M., & Keller, H. (2016). Randia brevituba (Rubiaceae): A new species from
the Southern Cone of America and comments on Randia armata. Systematic Botany. 41 (1), 238244.
Kalema, J. & Beentje, H. (2012). Conservation checklist of the trees of Uganda. Richmond: Kew
Publishing.
Kariagin, I. I. (Ed.). (1950, 19531957). Flora Azerbaijana (Flora of Azerbaijana). Vol. I, IV-VII.
Baku, Azerbaijan: Izdatelstvo Akademii Nauk Azerbaijanskoy SSR.
Kawasaki, M. L., & Pérez, Á. J. (2016). New species of Myrtaceae from Yasuní National Park,
Ecuador. Harvard Papers in Botany. 21(1),5558.
Kelly, L. M., Almeda, F., & Fritsch, P. W. (2016). A taxonomic revision of Mexican and Central
American Symplocos (Symplocaceae). Phytotaxa. 264(1),1115.
Keng, H. (1984). Florae malesianae precursores. LVIII, part 2: The genus Gordonia (Theaceae) in
Malesia. Gardens Bulletin Singapore, 37,147.
Ketskhoveli, N. (Ed.-in-Chief) (19711984). Saqartvelos Flora (2nd ed.), Vol. I-IX. Tbilisi:
Metsniereba.
Khumchompoo, S. & Thongpukdee, A. (2005). Miliusa longiora (Hook. f. & Thomson) Baill. ex
Finet & Gagnep.(Annonaceae): A new record for Thailand. Thai Forest Bulletin (Botany), 33,
3234.
Kiet, L. C., Kessler, P. J. & Eurlings, M. (2005). A new species of Aquilaria (Thymelaeaceae) from
Vietnam. Blumea. 50 (1), 135141.
Knapp, S. (2009). Synopsis and lectotypication of Solanum (Solanaceae) species endemic in the
West Indies. Anales del Jardín Botánico de Madrid. 66 (1),6584.
Knapp, S., Spooner, D. M. & León, B. (2006). Solanaceae endémicas del Perú. Revista Peruana de
Biología. 13 (2), 612643.
Koenen, E. J. & de Wilde, J. J. (2012). A taxonomic revision of the reinstated genus Leplaea and the
newly recognized genus Neoguarea (Meliaceae, Sapindales): The exclusion of Guarea from
Africa. Plant Ecology and Evolution. 145(2), 209241.
Köhler, E. (2006). Three new Buxus species (Buxaceae) from eastern Cuba. Willdenowia. 36(1),
479489.
Köhler, E., Fernández, R. & Zamudio, S. (1993). Buxus moctezumae Köhler, Fernándes et Zamudio
(Buxaceae) una especie nueva de Estado de Querétaro, México Con 37 Figuras. Feddes
Repertorium. 104(56), 295305.
Komarov, V. L. (Ed.) (19341964). Flora SSSR, Vol I-IV, Leningrad, Russian Federation: Vol.
VII-XXX. Moskva-Leningrad, Russian Federation: Izdatelstvo Akademii Nauk SSSR.
Kostermans, A. (1959). A monograph of the genus Heritiera Aiton (Sterculiaceae) (including
Argyrodendron F. v. M. and Tarrietia Bl.). Reinwardtia. 4 (4), 465583.
Kostermans, A. (1960). Miscellaneous botanical notes 2. Reinwardtia. 5 (4), 375411.
Kostermans, A. (1969). Materials for a revision of Lauraceae II. Reinwardtia. 7 (1), 451536.
Kostermans, A. J. (1965). A monograph of the genus Parinari Aubl. (Rosaceae-Chrysobalanoideae)
in Asia and the Pacic region. Reinwardtia, 7 (2), 147213.
Kress, W. J., DeFilipps, R. A., Farr, E., Kyi, D. Y. Y., Angrist, J. D., Pischke, J. S. et al. (2003). A
checklist of the trees, shrubs, herbs, and climbers of Myanmar. Washington DC, United States:
National Museum of Natural History.
Kriebel, R. (2016). A monograph of Conostegia (Melastomataceae, Miconieae). PhytoKeys, 67,
1326.
Krishnamani, R., Kumar, A. & Harte, J. (2004). Estimating species richness at large spatial scales
using data from small discrete plots. Ecography. 27 (5), 637642.
Kulju, K. K. M., Sierra, S. E. C. and Van Welzen, P. C. (2007). Re-shaping Mallotus [part 2]:
Inclusion of Neotrewia, Octospermum and Trewia in Mallotus s.s. (Euphorbiaceae s.s.). Blumea.
52 (1), 115136.
Lachashvili, N. J., Eradze, N. V. and Khetsuriani, L. D. (2016): Conspectus of trees and shrubs of
Tbilisi environs (East Georgia, South Caucasus). Annals of Agrarian Science, 14.
Lachenaud, O. & Séné, O. O. (2012). Un nouveau Multidentia (Rubiaceae) dAfrique centrale. Plant
Ecology and Evolution. 145 (1), 132137.
JOURNAL OF SUSTAINABLE FORESTRY 475
Downloaded by [Emily Beech] at 04:58 06 September 2017
Lara, L. J. C., Berrazaín Iturralde, R., Leiva Sánchez, A. T. & Oldeld S. (2005). Memorias del primer
Taller para la Categorización de Árboles Cubanos. Grupo de Especialistas en Plantas de Cuba,
Flora & Fauna International. Cuba: Jardín Botánico Nacional, La Habana.
Larsen, K. & Ming, H. C. (1991). New taxa of Myrsinaceae from Thailand. Nordic Journal of Botany.
11 (1),6178.
Leenhouts, P. W. (1986). A taxonomic revision of Nephelium (Sapindaceae). Blumea. 31 (2),
373436.
Leenhouts, P. W. & Vente, M. (1982). A taxonomic revision of Harpullia (Sapindaceae). Blumea. 28
(1),151.
León, B. (2006). Clusiaceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 261264.
León, B. (2006). Ericaceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 285293.
León, B. (2006). Flacourtiaceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 338.
León, B. (2006). Lauraceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 380388.
Léon, B. (2006). Myrsinaceae endémicas del Perú. Revista Peruana de Biología, 13 (2), 458462.
León, B. (2006). Sapindaceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 605607.
León, B. (2006). Symplocaceae endémicas del Perú. Revista Peruana de Biología, 13 (2), 647649.
León, B. (2006). Tiliaceae endémicas del Perú. Revista Peruana de Biología. 13 (2), 655.
León, B. & Monsalve, C. (2006). Annonaceae endémicas del Perú. Revista Peruana de Biología. 13
(2),3541.
León, B. & Monsalve, C. (2006). Apocynaceae endémicas del Perú. Revista Peruana de Biología. 13
(2), 4648.
León-Yánez, S., Valencia, R., Pitman, N., Endara, L., Ulloa Ulloa C. & Navarrete H., (Eds.) (2011).
Libro Rojo de las Plantas Endémicas del Ecuador. 2nd edición. Quito, Ecuador: Publicaciones del
Herbario QCA,
Lim, C. K., Dranseld, J., Kiew, R. & Saw, L. G. (1998). Four new Pinanga Blume (Palmae) species
from Peninsular Malaysia. Gardens Bulletin Singapore. 50 (1),99114.
Lim, T. K. (2012). Edible medicinal and non-medicinal plants. Volume 1. Fruits. New York, United
States: Springer.
Linares, J. & Sousa, M. (2007). Nuevas especies de Dalbergia (Leguminosae: Papilionoideae:
Dalbergieae) en México y Centroamérica. Ceiba. 48(12),6182.
Liu, B., & Qin, H. N. (2013). Taxonomic revision of the Symplocos nakaharae complex
(Symplocaceae) with special reference to fruit morphology. Journal of Systematics and
Evolution, 51 (1),9
4114.
Loeuille, B., & Pirani, J. R. (2016). Two new syncephalous species of Eremanthus (Asteraceae:
Vernonieae) from southeastern Brazil. Phytotaxa. 243 (2), 128136.
Loizeau, P. & Barriera, G. (2007). Aquifoliaceae néotropicales: Descriptions, Illustrations, Identication, et
Recherche dInformation. Retrieved 1 September 2016, from http://www.ville-ge.ch/cjb/.
Loots, S. (2005). A Red Data Book of Namibian Plants. SABONET Report No. 38. Pretoria.
Loots, S. (2010). Unpublished assessments of the Namibian Botanical Research. Institute of Namibia.
Namibia.
Lorence, D. H. & Wood, K. R. (2012). Psychotria kosraensis (Rubiaceae): A new species from
Kosrae, Caroline Islands, Micronesia. Novon: A Journal for Botanical Nomenclature. 22 (1),
5155.
Lozada-Pérez y, L., & Rojas Gutiérrez, J. (2016). Una Nueva Especie, Omiltemia guerrerensis
(Rubiaceae) de Guerrero, México. Novon: A Journal for Botanical Nomenclature. 24(4), 365368.
Lozano, P. & Klitgaard, B. B. (2006). The genus Machaerium (Leguminosae: Papilionoideae:
Dalbergieae) in Ecuador. Brittonia. 58(2), 124150.
Luoma-aho, T. (2004). Forest Genetic Resources Conservation and Management: Proceedings of the
Asia Pacic Forest Genetic Resources Programme (APFORGEN) Inception Workshop, Kepong,
Kuala Lumpur, Malaysia, 1518 July, 2003. Bioversity International.
Luong, V. D., Luu, H. T., Nguyen, T. Q. T. & Nguyen, Q. D. (2016) Camellia luteopallida
(Theaceae): A new species from Vietnam. Annales Botanici Fennici. 53(12), 135138.
M. B. Thomas, J. F. Rock Herbarium, University of Hawaii at Manoa. (2015). Consortium of Pacic
Herbaria Database (CPH). Retrieved 1 September 2016, from http://www.pacicherbaria.org/
476 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Maas, P. J., Westra, L. Y. T. & Chatrou, L. W. (2003). Duguetia (Annonaceae). Flora Neotropica, 88,
1274.
Maas, P .J. M., Westra, L. Y. T., Guerrero, S. A., Lobão, A. Q., Scharf, U., Zamora, N.A. et al. (2015).
Confronting a morphological nightmare: Revision of the Neotropical genus Guatteria
(Annonaceae). Blumea. 60(12),1219.
Mackinder, B. A. & Clark, R. (2012). Baphia rosa (Leguminosae: Papilionoideae): A new species
from the Kabompo District of Zambia and a review of the classication of B. chrysophylla, B.
claessensii and B. gilletii from the Democratic Republic of the Congo. Kew Bulletin. 67(3),
413420.
Mackinder, B. A. & Harris, D. J. (2006). A synopsis of the genus Berlinia (Leguminosae
Caesalpinioideae). Edinburgh Journal of Botany. 63(23), 161182.
Mackinder, B. A. & van der Burgt, X.M. (2009). Berlinia korupensis (Leguminosae
Caesalpinioideae): A new tree species from Cameroon. Kew Bulletin. 64(1), 129134.
Mackinder, B. A. & Wieringa, J. J. (2007). Novitates Gabonenses 58: Two new species of Berlinia
(Leguminosae-Caesalpinioideae: Detarieae). Kew Bulletin. 62(1), 159164.
Mackinder, B. A. & Wieringa, J.J. (2013). Hymenostegia viridiora (Detarieae, Caesalpinioideae,
Leguminosae): A new tree species from Cameroon. Blumea. 58(1),1317.
Mackinder, B. A., Wieringa, J. J. & van der Burgt, X. M. (2010). A revision of the genus Talbotiella
Baker f.(Caesalpinioideae: Leguminosae). Kew Bulletin. 65(3), 401420.
Madriñán, S. (2004). Rhodostemonodaphne (Lauraceae). Flora Neotropica, 92,1102.
Makashvili, A. (19523). Tbilisis Midamoebis Flora. Volume 12. Tbilisi: Publishing House of the
Stalin Tbilisi State University.
Marinho, L. C., Gahagen, B., & Amorim, A. M. (2016). Description of Tovomita clarkii
(Clusiaceae): An endemic species from Venezuela. Phytotaxa, 261 (1),8791.
Marinho, L. C., Martins, M. V., Amorim, A. M., & Bittrich, V. (2016). Vismia atlantica
(Hypericaceae): A new species previously thought to be well-known from the Brazilian Atlantic
Forest 1. The Journal of the Torrey Botanical Society. 143 (3), 330337.
Mark, J., Newton, A., Oldeld, S. & Rivers, M. (2014). The International Timber Trade: A working
list of commercial timber tree species. Richmond: BGCI.
Marques, C. P., Fonseca, T., Ferreira, M. & Laranjeira, P. (2010). First forest inventory of Timor-
Leste. Districts of Bobonaro and Covalima (2008|2009). Final Report. Universidade de Trás-os-
Montes e Alto Douro, Portugal Google Scholar.
Marshall, A. R., Couvreur, T. L., Summers, A. L., Deere, N. J., Luke, W. Q., Ndangalasi, H. J et al.
(2016). A new species in the tree genus Polyceratocarpus (Annonaceae) from the Udzungwa
Mountains of Tanzania. PhytoKeys, 63,6376.
Marshall, A. J. & Beehler B. M. (2007). The Ecology of Indonesian Papua, Part Two. Tuttle
Publishing.
Martinelli, G. & Moraes M. A. (2013). Livro vermelho da ora do Brasil. Rio de Janeiro, Brazil:
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Centro Nacional de Conservação da
Flora.
Masri, T., Nuwayhid, R. Y., Masri, N. & Fakhry, K. (2009). Autoecology of Castanea sativa Mill. in
Lebanon. Acta Hortic. 815,8394.
Maxwell, J. F. & Veldkamp, J. F. (1990). Notes on the Astronieae (Melastomataceae)I. Astrocalyx,
Astronia. Blumea. 35,71114.
Mazine, F. F., & Souza, V. C. (2015). Lectotypications and a new combination in Eugenia sect.
Racemosae (Myrtaceae). Phytotaxa, 205 (3), 157167.
Mazine, F.F. & Faria, J.E.Q. (2013). A new species of Eugenia (Myrtaceae) from South America.
Phytotaxa. 151 (1),5357.
Meerts, P. (2016). An annotated checklist to the trees and shrubs of the Upper Katanga (DR
Congo). Phytotaxa. 258 (3), 201250.
Meireles,J.E.&Tozzi,A.M.G.A.(2015).Limadendron: A new genus of Leguminosae (Papilionoideae,
Brongniartieae) from South America. Plant Systematics and Evolution. 301 (2),701707.
Meirelles, J., Lima, D. F., & Goldenberg, R. (2016). Miconia astrocalyx (Melastomataceae,
Miconieae): A new species from Brazilian Cerrado. Phytotaxa. 257(2), 187192.
JOURNAL OF SUSTAINABLE FORESTRY 477
Downloaded by [Emily Beech] at 04:58 06 September 2017
Meléndez González, P. A. (2009). Sinopsis del Genero Machaerium (Leguminosae Papilionoideae)
en Venezuela. Acta Botánica Venezuelica. 32(2), 363416.
Mendoza, W., Rodríguez, M., Rodríguez, E., Weigend, M., Chanco, M., Ortiz, R., et al. (2006). El
libro rojo de las plantas endémicas del Perú. Revista Peruana de Biología. 13 (2),64164.
Merrill, E. D. (1909). New or Noteworthy Philippine Plants, VII. The Philippine Journal of Science,
4, C.
Michelangeli, F.A. & Goldenberg, R. (2014). A new species of Graenrieda (Melastomataceae) from
the northern Amazon basin. Brittonia. 66 (2), 170173.
Ministerio de Medio Ambiente y Agua. (2012). Libro Rojo de la Flora amenazada de Bolivia. Vol. I.
Zona Andina. La Paz, Bolivia: Ministerio de Medio Ambiente y Agua.
Missouri Botanical Garden. (2017). Pakistan plant database. Retrieved 1 February 2017, from http://
www.tropicos.org/project/Pakistan.
Missouri Botanical Garden. (2017). A world checklist of Thymelaeaceae. Retrieved 1 February 2017,
from http://www.tropicos.org/Project/Thymelaeaceae.
Missouri Botanical Garden. (2017). Bolivia catalogue. Retrieved 1 February 2017, from http://www.
tropicos.org/Project/BC.
Missouri Botanical Garden. (2017). Catálogo de las Plantas Vasculares de la Selva Central, Peru.
Retrieved 1 February 2017, from http://www.tropicos.org/Project/SCP.
Missouri Botanical Garden. (2017). Catalogue of the vascular plants of Ecuador. Retrieved 1
February 2017, from http://tropicos.org/Project/CE.
Missouri Botanical Garden. (2017). Catalogue of the vascular plants of Madagascar. Available at:
http://www.tropicos.org/Project/MADA
Missouri Botanical Garden. (2017). Catalogue of the vascular plants of the Department of Antioquia
(Colombia). Retrieved 1 February 2017, from http://www.tropicos.org/Project/CV.
Missouri Botanical Garden. (2017). eFloras.org. Retrieved 1 February 2017, from http://www.eoras.
org/.
Missouri Botanical Garden. (2017). Flora de Nicaragua. Retrieved 1 February 2017, from http://
www.tropicos.org/Project/FN
Missouri Botanical Garden. (2017). Flora Mesoamericana. Retrieved 1 February 2017, from http://
www.tropicos.org/Project/FM.
Missouri Botanical Garden. (2017). Flora of Panama. Retrieved 1 February 2017, from http://www.
tropicos.org/Project/FOPWFO.
Missouri Botanical Garden. (2017). Index to the climate change vulnerability of Andean plants.
Retrieved 1 February 2017, from http://www.tropicos.org/Project/AndeanClimateChange.
Missouri Botanical Garden. (2017). Listado de la Flora del Parque Nacional Madidi, Bolivia.
Retrieved 1 February 2017, from http://www.tropicos.org/Project/MDICHK.
Missouri Botanical Garden. (2017). Manual de Plantas de Costa Rica. Retrieved 1 February 2017,
from http://www.tropicos.org/Project/Costa%20Rica.
Missouri Botanical Garden. (2017). Panama checklist. Retrieved 1 February 2017, from http://www.
tropicos.org/Project/PAC.
Missouri Botanical Garden. (2017). Paraguay checklist. Retrieved 1 February 2017, from http://www.
tropicos.org/Project/Paraguay.
Missouri Botanical Garden. (2017). Peru checklist. Retrieved 1 February 2017, from http://www.
tropicos.org/Project/PEC.
Missouri Botanical Garden. (2017). Selected Rubiaceae Tribes and Genera. Retrieved 1 February
2017, from http://www.tropicos.org/Project/Rubiaceae.
Missouri Botanical Garden. (2017). Tropicos. Retrieved 1 February 2017, from http://www.tropicos.
org/Home.aspx.
Missouri Botanical Garden. (2017). WBN ora database. Available at: http://www.tropicos.org/
Project/Weda%20Bay.
Mitchell, J. D. & Daly, D. C. (2015). A revision of Spondias L. (Anacardiaceae) in the Neotropics.
PhytoKeys, (55),192.
Moett, R. O. (2007). Name changes in the Old World Rhus and recognition of Searsia
(Anacardiaceae). Bothalia. 37 (2), 165175.
478 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Monk, K., De Fretes, Y. & Reksodiharjo-Lilley, G. (1997). Ecology of Nusa Tenggara and Maluka.
The Ecology of Indonesia Series vol 5. Dalhousie University. Singapore.
Morales, J. (2006). Novedades en las Proteaceae de Costa Rica. Darwiniana, nueva serie, 44 (2),
490492.
Morales, M., & Fortunato, R. H. (2016). A new xerophytic species of Mimosa (Mimosoideae,
Leguminosae) from Madagascar. Phytotaxa, 270 (4), 277285.
Mori, S.A. & Cornejo, X. (2013). Two new species (Gustavia johnclarkii and G. hubbardiorum) and
other contributions to the systematics of Gustavia (Lecythidaceae). Brittonia. 65 (3), 330341.
MSBP. (2003). Darwin Initiative Research Exercise on Community Tree Seeds, UK Workshop 2003.
Müller, J. (2006). Systematics of Baccharis (Compositae-Astereae) in Bolivia, including an
overview of the genus. Systematic Botany Monographs, 76,1341.
Munzinger, J., Lowry, P. P., Buerki, S., & Callmander, M. W. (2016). A taxonomic revision of the
endemic new Caledonian Genus Storthocalyx (Sapindaceae). Systematic Botany, 41 (2), 387400.
Muscarella, R., Uriarte, M., Erickson, D. L., Swenson, N. G., Zimmerman, J. K., et al. (2014). A well-
resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data. PLoS ONE,
9 (11), e112843.
Muséum national dHistoire naturelle. (2017). Inventaire National du Patrimoine Nature (INPN).
Retrieved 1 February 2017, from https://inpn.mnhn.fr/accueil/index?lg=en.
MyBIS. (2015). Malaysia Biodiversity Information System (MyBIS). Retrieved 1 February 2017,
from http://www.mybis.gov.my.
Nagamasu, H., Rueangruea, S., Suddee, S. & Tagane, S. (2015). Prunus kaengkrachanensis
(Roseaceae), a new species from Southwestern Thailand. Thai Forest Bulletin (Botany), 43,4345.
National Red List. (2016). The National Red List. Retrieved 1 September 2016, from http://www.
nationalredlist.org.
Naturalis Biodiversity Center. (2017). BioPortal. Retrieved 1 February 2017, from http://bioportal.
naturalis.nl/
NatureFiji. (2017). NatureFijiMareqetiViti-MareqetiViti. Retrieved 1 February 2017, from https://
natureji.org/.
New Zealand Plant Conservation Network. (2017). New Zealand Plant Conservation Network.
Available at: http://www.nzpcn.org.nz/.
Newman, M., Ketphanh, S., Svengsuksa, B., Thomas, P., Sengdala, K., Lamxay, V. et al. (2007). A
checklist of the vascular plants of Lao PDR. Scotland: Royal Botanic Garden Edinburgh.
Ng, F .S. P. (2005). Taxonomic notes on Bornean Litsea, Lindera, Neolitsea and Iteadaphne
(Lauraceae). Gardens Bulletin Singapore, 57, 217246.
Ngearnsaengsaruay,C.,Middleton,D.J.&Chayamarit, K. (2011). A revision of the genus
Litsea Lam.(Lauraceae) in Thailand. Thai Forest Bulletin (Botany). 39,40119.
Nishida, S. (2008). Taxonomic revision of Beilschmiedia (Lauraceae) in Borneo. Blumea. 53 (2),
345383.
Nishida, S., (1999). Revision of Beilschmiedia (Lauraceae) in the neotropics. Annals of the Missouri
Botanical Garden. 86 (3), 657701.
Noblick, L.R. & Lorenzi, H. (2010). New Syagrus species from Brazil. Palms. 54 (1),1842.
Ohwi, J., (1984). Flora of Japan. A combined much revised, and extended translation by the author of
his Flora of Japan (1953) and Flora of Japan: Pteridophyta (1957). Washington, DC: Smithsonian
Institution.
Oldeld, S. & Eastwood, A. (2007). The Red List of Oaks. Cambridge: Fauna & Flora International.
Ordas, J. A. D., Taradji, A. R. J., Valdez Jr, M. B., Banag, C. I., & Alejandro, G. J. D. (2016).
Neonauclea connicalycina: A new myrmecophytic species of Naucleeae (Rubiaceae) from Cebu,
Philippines. Phytotaxa. 273 (2), 127132.
Ortiz-Díaz, J. J., Arnelas, I., & Pinzon, J. P. (2016). Coccoloba tunii (Polygonaceae): A new species
from Chiapas (Mexico). Phytotaxa. 275 (1),7580.
Ortiz-Rodriguez, A. E., Escobar-Castellanos, M. A., & Pérez-Farrera, M. A. (2016). Phylogenetic
analyses and morphological characteristics support the description of a second species of
Tridimeris (Annonaceae). PhytoKeys, 74, 79.
JOURNAL OF SUSTAINABLE FORESTRY 479
Downloaded by [Emily Beech] at 04:58 06 September 2017
Ortiz-Rodriguez, A. E., Ramos, C. M. B., & Gomez-Dominguez, H. (2016). A new species of
Amphitecna (Bignoniaceae) endemic to Chiapas, Mexico. PhytoKeys, 65,1523.
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Simons, A. (2009). Macaranga tanarius Muell. Arg.
(Euphorbiaceae). Agroforestry Database 4.0. Retrieved 1 September 2016, from http://www.worl
dagroforestry.org/treedb/AFTPDFS/Macaranga_tanarius.pdf
Österreichische Bundesforste. (2014). Forest carbon inventory in proposed central Suau REDD+
Area, Milne Bay Province, Papua New Guinea. Suva, Fiji: SPC/GIZ Regional REDD+ Project.
Ottens-Treurniet, M. A. D., & van Welzen, P. C. (2016). A revision of the Malesian genus
Blumeodendron (Euphorbiaceae). Blumea-Biodiversity, Evolution and Biogeography of Plants,
61 (1),6482.
Page, N. (2016). New tree species described from the Western Ghats, India. Oryx, 50 (4), 582582.
Palmpedia. (2015). Palmpedia: A Palm growers guide. Retrieved 1 September 2016, from http://
www.palmpedia.net/.
Palmweb. (2017). Palmweb: Palms of the world online. Retrieved 1 February 2017, from http://
palmweb.org/.
Pannell, C. M. (2008). A key to Aglaia (Meliaceae) in Australia, with a description of a new species,
A. cooperae, from Cape York Peninsula, Queensland. Journal of the Adelaide Botanic Garden. 22,
6771.
Pathak, M. K., Bhaumik, M. & Krishna, G. (2014). A new species of Adinandra (Pentaphylacaceae)
from India. Edinburgh Journal of Botany. 71 (03), 379383.
Pelissari, G. & Neto, S. R. (2014). Ficus tubulosa (Moraceae): A new Amazonian species and the re-
establishment of Ficus trachelosyce. Phytotaxa. 170 (3), 207212.
Pendry, C. A. (2004). Monograph of Ruprechtia (Polygonaceae). Systematic Botany Monographs. 67,
1113.
Pennington, R. T., Daza, A., Reynel, C. and Lavin, M. (2011). Poissonia eriantha (Leguminosae)
from Cuzco, Peru: An overlooked species underscores a pattern of narrow endemism common to
seasonally dry neotropical vegetation. Systematic Botany. 36 (1),5968.
Pennington, T. D. (2016). Systematic treatment of American Trichilia (Meliaceae). Phytotaxa, 259
(1),18162.
Pennington, T. D., & Clarkson, J. J. (2013). A revision of Guarea (Meliaceae). Edinburgh Journal of
Botany, 70 (2), 179.
Pennington, T. D. & Clarkson, J. J. (2013). A revision of Guarea (Meliaceae). Edinburgh Journal of
Botany. 70 (2), 179362.
Pennington, T. D. & Clarkson, J. J. (2016). A revision of American Trichilia (Meliaceae). Phytotaxa.
259 (1),12.
Pennington, T. D. & Mori, S. A. (1993). Guarea michel-moddei (Meliaceae): A new species from
central French Guiana. Brittonia. 45 (3), 231234.
PFAF. (2017). Plants for a future.Retrieved 1 February 2017, from http://pfaf.org.
Philipson, W. R. (1976). A synopsis of the Malesian species of Osmoxylon (including
Boerlagiodendron), Araliaceae. Blumea. 23 (1),99119.
Phillipson, P. B., & Allorge, L. (2016). A remarkable new species of Clerodendrum L. (Lamiaceae)
from Madagascar. Candollea. 71 (1), 117126.
Pickering, H. & Patzelt, A. (2008). Field guide to the wild plants of Oman. Richmond: Royal Botanic
Gardens, Kew.
Pipoly III, J. J. (1992). Notes on the genus Myrsine (Myrsinaceae) in Peru. Novon. 2 (4), 392407.
Pipoly III, J. J. (1995). Clusia fabiolae: A new species, with a synopsis of Clusia section Anandrogyne
(Clusiaceae) in Guayana. SIDA, Contributions to Botany. 16 (4), 737755.
Pipoly III, J.J. & Takeuchi, W. (2004). New species of Tapeinosperma and Discocalyx (Myrsinaceae)
from Morobe Province, Papua New Guinea. Harvard Papers in Botany. 8 (2), 153159.
Pipoly III, J.J., Kearns, D. M. & Berry, P. E. (2000). Key to the species and sections of Clusia in the
Venezuelan Guayana. Retrieved 1 February 2017, from http://www.mobot.org/MOBOT/research/
ven-guayana/clusiaceae/clusia.html.
Plantes et botanique. (2017). Plantes & botanique. Retrieved 1 February 2017, from http://www.
plantes-botanique.org.
480 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
PlantNET. (2017). New South Wales Flora Online. Retrieved 1 February 2017, from http://plantnet.
rbgsyd.nsw.gov.au/.
PNGplants. (2017). PNGplants database: Plant collections from Papua New Guinea. Retrieved 1
February 2017, from http://www.pngplants.org/PNGdatabase.
Poncy, O. (2007). A new species of Inga Mill. (Fabaceae, Mimosoideae) from the Guianas.
Adansonia. 3 (29), 249254.
Pool, A. (2013). New species, combinations, and lectotypications in neotropical and Northern
Mexican Frangula (Rhamnaceae). Novon: A Journal for Botanical Nomenclature. 22 (4), 447467.
Poorum, K. & Ranghoo-Sanmukhiya, V. M. (2009). Phylogeny of Trochetia species based on
morphological and molecular markers. University of Mauritius Research Journal. 15(1), 560576.
Prance, G. T. (1984). Chrysobalanaceae. Flora Malesiana-Series 1, Spermatophyta. 10 (1), 635678.
Prance, G. T., Plana, V., Edwards, K. S., & Pennington, R. T. (2007). Flora neotropica. Monograph
100. Proteaceae. New York: New York Botanical Garden, 89.
Prance, G. T. (2012). A revision of Barringtonia (Lecythidaceae). Allertonia, 12,1164.
Prance, G. T. & Jongkind, C. C. (2015). A revision of African Lecythidaceae. Kew Bulletin. 70 (1),
168.
Prance, G. T., Plana, V., Edwards, K. S. & Pennington, R. T. (2007). Proteaceae (Flora Neotropica
Monograph 100). New York: The New York Botanical Garden Press. New York, United States.
Prata, E. M. B., De Carvalho, R. B., & Vicentini, A. (2016). Pagamea spruceana (Rubiaceae,
Gaertnereae): A new species from ooded white-sand forests in the Upper Rio Negro region,
Brazil. Phytotaxa, 269 (3), 186192.
Press, J. R., Shrestha, K. K. & Sutton, D.A. (2000). Annotated checklist of the owering plants of
Nepal. London: Natural History Museum Publications.
Priyanti, P., Chikmawati, T., Sobir, S., & Hartana, A. (2016). Durio connatus (Malvaceae): A new
species from Kalimantan, Indonesia. Phytotaxa. 272 (3), 215219.
PROSEA. (2017). PROSEA: Plant resources of South-East Asia. Retrieved 1 February 2017, from
http://proseanet.org/prosea/.
PROTA. (2017). Plant resources of Tropical Africa. Retrieved 1 February 2017, from http://www.
prota.org/.
PVNH. (2017). The herbarium of Vanuatu (PVNH). Retrieved 1 February 2017, from http://publish.
plantnet-project.org/project/vanuaora_en
Raimondo, D., Staden, L. V., Foden, W., Victor, J. E., Helme, N. A., Turner, R. C. et al. (2009). Red
List of South African plants 2009. Pretoria, South African National Biodiversity Institute.
Rainer, H. (2001). Nomenclatural and taxonomic notes on Annona (Annonaceae). Annalen des
Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 103, 513524.
Rainer, H. (2006). Monographic studies in the genus Annona L.(Annonaceae): Inclusion of the
genus Rollinia A. St.-Hil. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik
und Zoologie, 108, 191205.
Ramesh, B.R., Pascal, J.P. & Nouguier, C. (1997). Atlas of endemics of the Western Ghats (India):
Distribution of tree species in the evergreen and semi-evergreen forests. India: Institut français de
Pondichéry.
Real Jardín Botánico de Madrid. (2017). Flora de Guinea: Base de datos de Flora de Guinea. Consejo
Superior de Investigaciones Cientícas. Retrieved 1 February 2017, fromhttp://www.oradeguinea.
com/herbario/.
Rejmánek, M. & Richardson, D. M. (2013). Trees and shrubs as invasive alien species2013 update
of the global database. Diversity and Distributions, 19 (8), 10931094.
Reksodiharjo, W. S. (1960). The genus Coelostegia Benth. (Bombac.). Reinwardtia, 5 (3), 26991.
Retief, E. & Van Wyk, A. E. (2001). The genus Ehretia (Boraginaceae: Ehretioideae) in southern
Africa. Bothalia. 31 (1),923.
Rich, T. C. G., Houston, L., Robertson, A. & Proctor, M. C. F. (2010). Whitebeams, Rowans and
Service trees of Britain and Ireland: A monograph of British and Irish Sorbus, L. London: Botanical
Society of the British Isles.
JOURNAL OF SUSTAINABLE FORESTRY 481
Downloaded by [Emily Beech] at 04:58 06 September 2017
Richard, P. S. S. & Muthukumar, S. A. (2012). Arborescent angiosperms of Mundanthurai range in
the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the southern Western Ghats, India. Check
List. 8 (5), 951962.
Ricker, M., Hernández, H. M., Sousa, M. & Ochoterena, H. (2013). Especies arbóreas y arbores-
centes de México: Asteraceae, Leguminosae y Rubiaceae. Revista Mexicana de Biodiversidad. 84
(2), 439470.
Ricketson, J. M. and Pipoly III, J. J. (2013). Nomenclatural transfers in the pantropical genus
Myrsine (Myrsinaceae). Novon: A Journal for Botanical Nomenclature. 22 (4), 468472.
Rico Arce, M. D. L. & Griths, P. (2002). Two little known Acacia species from Mexico. Curtiss
Botanical Magazine. 19 (3), 152159.
Rio de Janeiro Botanical Garden (2016). Brazilian Flora 2020 in construction. Retrieved 1 February
2017, from http://oradobrasil.jbrj.gov.br.
Risna, R. A. (2009). Autekologi dan studi populasi Myristica teijsmannii Miq.(Myristicaceae) di
Cagar Alam Pulau Sempu, Jawa Timur. Masters dissertation, Bogor Agricultural University,
West Java, Indonesia.
Ritter,M.W.&Naugle,C.M.(1999).Populationcharacteristics,germinationandproposedmanage-
ment of Elaeocarpus joga Merr. on Guam: A regionally endemic tree. Micronesica. 31 (2),275281.
Robi, A. J. (2015). A taxonomic revision of the family Lauraceae from South India. Doctoral
dissertation, Kannur University, Kerala, India.
Romkham, N. (2013). Wrightia calcicola (Apocynaceae: Apocynoideae): A new species from
Thailand. Thai Forest Bulletin (Botany), 41,8184.
Royal Botanic Gardens and Domain Trust. (2017.) PlantNET (The NSW Plant Information Network
System). Retrieved 1 February 2017, from http://plantnet.rbgsyd.nsw.gov.au.
Royal Botanic Gardens Edinburgh. (2017). Edinburgh Rhododendron Monographs. Retrieved 1
February 2017, from http://data.rbge.org.uk/service/factsheets/Edinburgh_Rhododendron_
Monographs.xhtml.
Royal Botanic Gardens, Kew. (1999). Survey of Economic Plants for Arid and Semi-Arid Lands
(SEPASAL) database. Retrieved 1 February 2017, from http://apps.kew.org/sepasalweb/sepaweb.
Royal Botanic Gardens, Kew. (2014). Kew GardensConservation Assessment Tracker. Retrieved 1
August 2015, from www.google.com/fusiontables/DataSource?docid=14VS
4gADo50vHpLa4loT4B6 K-ZX-6G20YP19il7A#rows:id = 1.
Royal Botanic Gardens, Kew. (2017). Discover plants and fungi. Retrieved 1 February 2017, from
http://www.kew.org/science-conservation/plants-fungi.
Royal Botanic Gardens, Kew. (2017). Flora Zambesiaca. Retrieved 1 February 2017, from http://
apps.kew.org/eoras/search.do.
Royal Botanic Gardens, Kew. (2017). The Herbarium Catalogue. Retrieved 1 February 2017, from
http://apps.kew.org/herbcat/navigator.do.
Rueangruea, S., Tagane, S., Suddee, S. & Tetsana, N. (2015). Toona calcicola: A new species and
Reinwardtiodendron humile, a new record to Thailand. Thai Forest Bulletin (Botany), 43,7986.
Rzedowski, J., Lemos, R. M. & de Rzedowski, G. C. (2005). Inventario del conocimiento
taxonómico, así como de la diversidad y del endemismo regionales de las especies mexicanas
de Bursera (Burseraceae). Acta Botanica Mexicana, 70,85111.
SANBI (2014). Plants of Southern Africaan online checklist. Retrieved 1 September 2016, from
http://posa.sanbi.org/searchspp.php.
SANBI (2014). Red List of South African Plants version 2014.1. Retrieved 1 September 2016, from
http://redlist.sanbi.org/.
Sánchez-Chávez, E., & Zamudio, S. (2016). Tres especies nuevas de Myrtaceae de la Sierra Madre
Oriental, México. Acta botánica mexicana, 115,5164.
Sanoja, E. (2004). Diagnosis y observaciones sobre la biología de Catostemma lemense, nueva
Bombacaceae de Venezuela. Acta Botánica Venezuélica. 27 (2),8394.
Santamaria-Aguilar, D., & Ortiz, R. D. C. (2016). Freziera dasycarpa (Pentaphylacaceae): A new
species from the montane forest of Antioquia, Colombia. Phytotaxa. 263 (3), 279285.
Santos, L. L., Sales, M. F., & Sobral, M. (2016). A new Brazilian species of Myrcia (Myrtaceae) and a
new synonym for Psidium amplexicaule. Phytotaxa. 257 (2), 122132.
482 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Sarma, J., Shameer, P. S., & Mohanan, N. N. (2016). A new species of Garcinia (Clusiaceae) from
Assam, North East India. Phytotaxa. 252 (1),7376.
Sasidharan, N. & Swarupanandan, K. (1992). A new species of Cassine (Celastraceae) from India.
Reinwardtia. 11 (1),2932.
Saunders, R. M. & Chalermglin, P. (2008). A synopsis of Goniothalamus species (Annonaceae) in
Thailand, with descriptions of three new species. Botanical Journal of the Linnean Society. 156 (3),
355384.
Schatz, G. E. & Maas, P. J. M. (2010). Synoptic revision of Stenanona (Annonaceae). Blumea. 55 (3),
205223.
Schatz, G. E., Ramos A, C.A., Ortiz, O. O. & McPherson, G. (2015). A new, restricted range species of
Annona (Annonaceae) endemic to the Caribbean Slope of Panama. Novon. 24 (2),203208.
Schatz, G. E., Shulkina, T. & Solomon, J. C. (2014). Red List of the endemic plants of the Caucasus:
Armenia, Azerbaijan, Georgia, Iran, Russia, and Turkey. St. Louis: Missouri Botanical Garden
Press.
Schmidt, L. H. & Mbora, A. (2008). Commiphora africana (A. Rich.) Engel. Seed Leaet, 138.
Schot, A. M. (2004). Systematics of Aporosa (Euphorbiaceae). Blumea Supplement No. 17. The
Netherlands: Nationaal Herbarium Nederland, Universiteit Leiden.
Sebola, R. J., & Balkwill, K. (2009). A monograph of the Oliniaceae. South African Journal of Botany.
Secco, R. D. S. (2008). Alchornea lojaensis: A new species of Euphorbiaceae for the Flora of
Ecuador. Kew Bulletin. 63 (3), 511513.
SEMARNAT (2010). NOM-059-SEMARNAT-2010.
Sevilla, S. & Welzen, P. C. (2001). Revision and phylogeny of Agrostistachys and Chondrostylis
(Euphorbiaceae). Blumea. 46 (1),7197.
Shaw, K., Stritch, L., Rivers, M., Roy, S., Wilson, B. & Govaerts, R. (2014). The Red List of
Betulaceae. Richmond: BGCI.
Shimizu, G. H., Goncalves, D. J. P., Franca, F., Simoes, A. O., & Yamamoto, K. (2016). A remarkable
new species of Qualea (Vochysiaceae) from Piauí state, Brazil. Phytotaxa. 273 (4), 262268.
Sidyasa, K., Uhaedi, S., Gusti M. T. I., Whitmore, T.C. & Sidiyaka, K. (1997). Tree ora of
Indonesia: Check list for Irian Jaya. Bogor: Ministry of Forestry, Forestry Research and
Development Agency, Forest & Nature Conservation Research & Development Centre.
Sierra, S. E. C. & Van Welzen, P. C. (2005). A taxonomic revision of Mallotus section Mallotus
(Euphorbiaceae) in Malesia. Blumea. 50 (2), 249274.
Sierra, S. E. C., Aparicio, M., Gebraad, M. J. H., Kulju, K. K. M. & Van Welzen, P. C. (2007). The
morphological range in Mallotus (Euphorbiaceae) and a taxonomic revision of its section
Rottleropsis (including Axenfeldia) in Malesia, Thailand and Africa. Blumea. 52 (1),21113.
Sierra, S. E. C., Van Welzen, P. C. & Slik, J. W. F. (2005). A taxonomic revision of Mallotus section
Philippinenses (former section RottleraEuphorbiaceae) in Malesia and Thailand. Blumea. 50 (2),
221248.
Siniscalchi, C. M., Loeuille, B., Semir, J., & Pirani, J. R. (2016). Lychnophora spiciformis
(Asteraceae: Vernonieae): A new species from Bahia, Brazil. Phytotaxa. 253 (1),4856.
Sistema Nacional de Áreas de Conservación (Sinac) y Programa REDD-CCAD-GIZ. (2014).
Protocolo de campo para la identicación de especies arbóreas: Información taxonómica y
dendrológica de las especies arbóreas de Costa Rica. 2014. San José, Costa Rica.
Sleumer, H. (1969). Materials towards the knowledge of the Icacinaceae of Asia, Malesia, and
adjacent areas. Blumea. 17 (1), 181264.
Sleumer, H. (1988). The genera Discocalyx Mez, Fittingia Mez, Loheria Merr. and Tapeinosperma
Hook.f. (Myrsinaceae) in New Guinea. Blumea. 33 (1),81107.
Sleumer, H. O. (1980). Flacourtiaceae. Flora Neotropica, 22,1499.
Slik, J. W. F. (2009). Plants of Southeast Asia. Retrieved 1 September 2016, from https://www.
asianplant.net.
Slik, J. W. F. & Van Welzen, P. C. (2001). A taxonomic revision of Mallotus sections Hancea and
Stylanthus (Euphorbiaceae). Blumea. 46 (1),366.
Smith, A. C. (1971). Studies of pacic island plants, XXIV. The genus Terminalia (Combretaceae) in
Fiji, Samoa, and Tonga. Brittonia. 23 (4), 394412.
JOURNAL OF SUSTAINABLE FORESTRY 483
Downloaded by [Emily Beech] at 04:58 06 September 2017
Smithsonian Institution. (2017). Floras of the West Indies: Catalogue of Seed Plants of the West
Indies. Retrieved 1 September 2016, from http://botany.si.edu/Antilles/WestIndies/catalog.htm.
Smithsonian Tropical Research Institute. (2017). Panama. Retrieved 1 September 2016, from http://
biogeodb.stri.si.edu/biodiversity/.
Snow, N. (2004). Systematics of Pilidiostigma (Myrtaceae). Systematic Botany. 29(2), 393406.
Sobral, M. A. R. C. O. S., Mazine, F. F., Leoni, L., Souza, M. C., & A. D. E. (2016). Five new
southeastern Brazilian Myrtaceae. Phytotaxa. 253 (1),5770.
Sobral, M., Caliari, C. P., Gressler, E., Mazine, F. F., Magenta, M., & Viana, P. L. (2016). Seven new
southeastern Brazilian species of Myrcia (Myrtaceae). Phytotaxa, 247 (1),2744.
Soejarto, D. D. (1980). Revision of South American Saurauia (Actinidiaceae). Fieldiana: Bot. N.S., 2,
1141.
Soejima, A., Tagane, S., Van, N. N., Duy, C. N., Huong, N. T. T., & Yahara, T. (2016). Callicarpa
bachmaensis Soejima & Tagane (Lamiaceae): A new species from Bach Ma National Park in Thua
Thien Hue Province, Central Vietnam. PhytoKeys, 62,3339.
Soepadmo, E. & Wong, K. M. (1995). Tree ora of Sabah and Sarawak: Volume One. Sandakan:
Sabah Forestry Department.
Soepadmo, E., Wong, K. M. & Saw, L. G. (1996). Tree ora of Sabah and Sarawak: Volume Two.
Sandakan: Sabah Forestry Department.
Soepdamo, E. & Saw, L. G. (2000). Tree ora of Sabah and Sarawak: Volume Three. Sandakan:
Sabah Forestry Department.
Soepdamo, E., Saw, L. G. & Chung, R. C. K. (2002). Tree ora of Sabah and Sarawak: Volume Four.
Sandakan: Sabah Forestry Department.
Soepdamo, E., Saw, L. G. & Chung, R. C. K. (2004). Tree ora of Sabah and Sarawak: Volume Five.
Sandakan: Sabah Forestry Department.
Soepdamo, E., Saw, L. G., Chung, R. C. K. & Kiew, R. (2007). Tree ora of Sabah and Sarawak:
Volume Six. Sandakan: Sabah Forestry Department.
Soepdamo, E., Saw, L. G., Chung, R. C. K. & Kiew, R. (2011). Tree ora of Sabah and Sarawak:
Volume Seven. Sandakan: Sabah Forestry Department.
Soepdamo, E., Saw, L. G., Chung, R. C. K. & Kiew, R. (2014). Tree ora of Sabah and Sarawak:
Volume Eight. Sandakan: Sabah Forestry Department.
Solano, J. (2016). Passiora chimuensis, una nueva especie y primer registro de la sección
Pseudostrophea (Subgénero Astrophea, Passioraceae) en Mesoamérica. Journal of the
Botanical Research Institute of Texas, 10 (1).
Sosef, M. S. (2013). The genus Idertia (Ochnaceae). Plant Ecology and Evolution. 146 (3), 351359.
Sosef, M. S. & Dauby, G. (2012). Contribution to the taxonomy of Garcinia (Clusiaceae) in Africa,
including two new species from Gabon and a key to the Lower Guinean species. PhytoKeys, 17,
4162.
Sosnovsky, D. I. (Ed.) (1952a, 1952b). Flora Azerbaijana. Vol. II, III. Baku, Azerbaijan: Izdatelstvo
Akademii Nauk Azerbaijanskoy SSR.
Sothers, C., Prance, G. T., Buerki, S., De Kok, R. & Chase, M. W. (2014). Taxonomic novelties in
Neotropical Chrysobalanaceae: Towards a monophyletic Couepia. Phytotaxa. 172 (2), 176200.
Sotuyo, S. & Lewis, G. P. (2007). A new species of Caesalpinia from the Río Balsas Depression,
Mexico, and an updated taxonomic circumscription of the Caesalpinia hintonii complex
(Leguminosae: Caesalpinioideae: Caesalpinieae: Poincianella group). Brittonia. 59 (1),3336.
Sousa, M. & Sotuyo, S. (2012). El género Muellera L. f. en Mesoamérica y norte de Sudamérica. Acta
Botánica Mexicana, 100,1540.
Sousa, S. (2009). Standleyi una nueva sección del género Lonchocarpus (Leguminosae,
Papilionoideae, Millettieae), nuevas especies y subespecies para Mesoamérica y Sudamérica.
Acta Botánica Mexicana, 86,3969.
Sousa, S. (2011). Especies nuevas y una lectotipicación en Lonchocarpus (Leguminosae) para
Mesoamérica. Revista Mexicana de Biodiversidad. 82 (4), 11081122.
South African National Biodiversity Institute. (2016). Botanical database of Southern Africa
(BODATSA). Retrieved 1 September 2016, from http://newposa.sanbi.org/.
484 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
South Australian Seed Conservation Centre. (2017). Seeds of South Australia. Retrieved 1 February
2016, from http://www.saseedbank.com.au/.
Stergios, B. D. (2001). Contributions to South American Caesalpiniaceae. Vi. Campsiandra felipeana
(Caesalpinieae): A dwarf swamp-forest endemic of the lower Orinoco watershed. Acta Botánica
Venezuelica. 24 (2),8591.
Stergios, B.D. & Aymard, G. A. (2008). A striking new species of Aldina (Fabaceae-Swartzieae-
Aldininae) from the Venezuelan Guayana highlands. Harvard Papers in Botany. 13 (1),2933.
Stirton, C. H. & Muasya, A. M. (2016). Seven new species and notes on the genus Aspalathus
(Crotalarieae, Fabaceae). South African Journal of Botany, 104,3546
Stone, R.D. & Luke, Q. (2015). Lijndenia udzungwarum (MelastomataceaeOlisbeoideae): A new,
endemic species from the Udzungwa Mountains of southern Tanzania. Phytotaxa. 226 (2),
169176.
Stone, R. D. & Ntetha, N. A. (2013). Warneckea parvifolia (MelastomataceaeOlisbeoideae): A new
sand-forestendemic from northeastern KwaZulu-Natal (South Africa) and southernmost
Mozambique, and a phylogenetic analysis of eastern and southern African representatives of
W. section Warneckea. South African Journal of Botany, 88, 317325.
Stoops E. & Welzen P.C. van. (2013). A revision of Ptychopyxis (Euphorbiaceae) in southeast Asia.
Nordic Journal of Botany, 31,94112.
Strijk, J.S., Sirimongkol, S., Rueangruea, S., Ritphet, N. & Chamchumroon, V. (2014). Lithocarpus
orbicarpus (Fagaceae): A new species of Stone Oak from Phang Nga province, Thailand.
PhytoKeys, 34,3345.
Swanepoel, W. (2005). Commiphora kaokoensis (Burseraceae): A new species from Namibia, with
notes on C. dinteri and C. namaensis. Bothalia. 35 (1),4753.
Swanepoel, W. (2006). Two new species of Commiphora (Burseraceae) from southern Africa.
Bothalia. 36 (1),4556.
Swanepoel, W. (2011). Commiphora buruxa (Burseraceae): A new species from southern Namibia.
South African Journal of Botany. 77 (3), 608612.
Swanepoel, W. (2014). Commiphora namibensis (Burseraceae): a new species from Angola.
Phytotaxa. 178 (3), 211216.
Swenson, U., & Munzinger, J. (2016). Five new species and a systematic synopsis of Pycnandra
(Sapotaceae), the largest endemic genus in New Caledonia. Australian Systematic Botany. 29 (1),
140.
Swenson, U., Nylinder, S. & Munzinger, J. (2013). Towards a natural classication of Sapotaceae
subfamily Chrysophylloideae in Oceania and Southeast Asia based on nuclear sequence data.
Taxon. 62 (4), 746770.
Tagane, S., Nguyen, V. H., Van Ngoc, N., Son, H. T., Toyama, H., Yang, C. J., et al. (2016).
Homalium glandulosum (Salicaceae): A new species from Vu Quang National Park, North
Central Vietnam. PhytoKeys, 58, 97.
Takeuchi, W. (2007). Notes on Acronychia (Rutaceae) from the Kaijende Highlands of Papua New
Guinea. Harvard Papers in Botany. 11 (2), 203206.
Takeuchi, W. (2014). A distinctive addition to the tree ora of Papua New Guinea: Helicia
woxvoldiana sp. nov. (Proteaceae), a large-owered myrmecophyte from the upper Sepik.
Phytotaxa. 172 (2),94100.
Takhtajan, A. L. (Ed.) (19542001). Flora Armenii Vol 19. Yerevan, Armenia: Izdatelstvo
Akademii Nauk Armianskoy SSR, Vol 10. Liechtenstein: A.R.G. Ganntner Verlag KG
Takhtajan, A. L. (Ed.) (2003, 2006, 2008). Caucasian ora conspectus, Vol. I-II. Saint-Petersburg:
Saint-Petersburg University Press.
Takhtajan, A. L. (Ed.) (2003, 2006, 2008). Caucasian ora conspectus, Vol. III. Saint-Petersburg
Moscow: KMK Scientic Press.
Talybov, T. G. & Ibrahimov А. M. (2009). Wild species of Pears (Pyrus L.) in The Flora of
Nakhichevan Autonomous Republic of Azerbaijan. Turczaninowia. 12 (34),8287.
Tan, H. S., Chung, R. C. K. & Soepadmo, E. (2011). A synopsis of Jarandersonia (Malvaceae
Brownlowioideae). Gardens Bulletin Singapore. 63 (12), 137144.
JOURNAL OF SUSTAINABLE FORESTRY 485
Downloaded by [Emily Beech] at 04:58 06 September 2017
Tange, C. (2013). A revision of the genus Greenea (Rubiaceae). Thai Forest Bulletin (Botany), 41,
6480.
Taylor, C. M. (2016). Rubiacearum Americanarum Magna Hama Pars XXXI: More new neotropical
species and morphological notes for Psychotria (Psychotrieae). Novon: A Journal for Botanical
Nomenclature. 24 (4), 413434.
Ter Steege, H., Pitman, N. C., Killeen, T. J., Laurance, W. F., Peres, C. A., Guevara, J. E., et al.
(2015). Estimating the global conservation status of more than 15,000 Amazonian tree species.
Science Advances. 1(10), 1500936.
Ter Steege, H., Vaessen, R. W., Cárdenas-López, D., Sabatier, D., Antonelli, A., De Oliveira, S. M.,
Pitman, et al. (2016). The discovery of the Amazonian tree ora with an updated checklist of all
known tree taxa. Scientic Reports, 6, 29549.
The Plant List. (2013). Version 1.1. Retrieved 1 October 2015, from http://www.theplantlist.org.
Thomas, W. W. (2011). Nothotalisia: A new genus of Picramniaceae from tropical America.
Brittonia. 63(1),5161.
Timyan, J. (1996). Bwa yo: Important trees of Haiti. Washington D.C.: South-East Consortium for
International Development.
Todzia, C. A. (1992). A reevaluation of the genus Phyllostylon (Ulmaceae). SIDA, Contributions to
Botany, 15, 263270.
Tomas, W. M., Ishii, I. H., Urbanetz, C., Tomas, M. A., Camilo, A. R. & Cano, Á. (2015). The
Carandilla Palm (Trithrinax schizophylla Drude, Arecaceae) is not extinct in Brazil: First primary
records from the Chaco region of Mato Grosso do Sul. Check List. 11(4), 1669.
Tong, Y., Pang, K. S. & Xia N. (2014). Carpinus insulares (Betulaceae): A new species from Hong
Kong, China. Journal of Tropical and Subtropical Botany. 22(2), 121124.
Torres-Leite, F., Bruniera, C. P., Zappi, D. C., & Carrijo, T. T. (2016). True axillary inorescences in
Rudgea (Palicoureeae, Rubiaceae): A newly reported characteristic of two new Brazilian species,
R. quisquiliae and R. axilliora. Phytotaxa. 272(3), 191200.
Toyama, H., Tagane, S., Chhang, P., Nagamasu, H., & Yahara, T. (2016). Flora of Bokor National
Park, Cambodia III: A new species, Garcinia bokorensis (Clusiaceae). Acta Phytotaxonomica et
Geobotanica. 67(1),4753.
Toyama, H., Tagane, S., Van Son Dang, H. T., Nagamasu, H., Naiki, A., & Yahara, T. (2016). A new
species of Eustigma (Hamamelidaceae) from Hon Ba Nature Reserve, Vietnam. PhytoKeys, 65,
4755.
Trainor, C. R. (2011). New island records of Eucalyptus alba sensu latofor Damar and Romang,
Lesser Sundas, Indonesia. Northern Territory Naturalist. 23(1),4553.
Trinidad and Tobago Biodiversity (2012). Retrieved 1 October 2015, from http://www.biodiversity.
gov.tt.
Trudgen, M. S. & Baker, W. J. (2008). A revision of the Heterospathe elegans (Arecaceae) complex
in New Guinea. Kew Bulletin. 63(4), 639647.
Turner, I. M. (2012). A new combination in Monocarpia (Annonaceae). Edinburgh Journal of
Botany. 69(1),95
98.
Ulloa, C. U., Penneys, D. S., Neill, D. A. & Fernandez, D. M. (2015). A new species of Chalybea
(Blakeeae, Melastomataceae) from the Ecuador-Peru border. Phytotaxa. 212(4), 264270.
Ulloa, C.U., Ståhl, B., Minga, D. & Ansaloni, R. (2015). A new species of Symplocos (Symplocaceae)
from southern Ecuador. PhytoKey, 56,4146.
UNEP-WCMC. (2015). Overview of Dalbergia spp. from South and Central America: A basic review.
Cambridge: UNEP-World Conservation Monitoring Centre.
University of Florida Herbarium. (2017). University of Florida Herbarium (FLAS). Retrieved 1
February 2017, from https://www.mnh.u.edu/herbarium/
USDA, NRCS. (2017). The PLANTS Database. National Plant Data Team. Retrieved 1 February
2017, from https://plants.usda.gov/java/citePlants
Useful Tropical Plants Database. (2017). Useful Tropical Plants Database. Retrieved 1 February
2017, from http://tropical.theferns.info/
Utteridge, T. M. & Davis, A. P. (2009). Two new combinations in Pyrostria (Rubiaceae,
Vanguerieae) from Thailand. Kew Bulletin. 64(4), 751752.
486 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Valdés, C. P. & Rodríguez, I. V. (2000). Wallenia maestrensis (Myrsinaceae): A new species from
eastern Cuba. Willdenowia. 30(1), 141145.
Valencia, S., Rosales, S, J. L. S., & Arellano, O. J. S. (2016). A new species of Quercus, section
Lobatae (Fagaceae) from the Sierra Madre Oriental, Mexico. Phytotax. 269(2), 120126.
Van den Eynden, V., Oatham, M. P. & Johnson, W. (2008). How free access internet resources
benet biodiversity and conservation research: Trinidad and Tobagos endemic plants and their
conservation status. Oryx. 42(3), 400407.
van der Burgt, X. M. (2016). Didelotia korupensis and Tessmannia korupensis (Leguminosae,
Caesalpinioideae): Two new tree species from Korup National Park in Cameroon. Blumea-
Biodiversity, Evolution and Biogeography of Plants. 61(1),5158.
van der Burgt, X. M., Mackinder, B. A., Wieringa, J. J. & de la Estrella, M. (2015). The
Gilbertiodendron ogoouense species complex (Leguminosae: Caesalpinioideae), Central Africa.
Kew Bulletin. 70(2),142.
Van der Maesen, L. J. G. (2013). Novitates Gabonenses 85: Leguminosae-Papilionoideae in the ora
of Gabon: New species and nomenclatural notes. Webbia. 68(2),97101.
Van der Meijden, R. (1982). Systematics and evolution of xanthophyllum: (Polygalaceae). Leiden
Botanical Series, Volume 7. Leiden: Leiden University Press.
Van Dung, L., Son, H. T., Tran, N. I. N. H., & Nhan, P. H. (2016). Camellia quangcuongii
(Theaceae): A new species from Vietnam. The Journal of Japanese Botany, 91, 226230.
VanNgoc,N.,VanDung,L.,Tagane,S.,Binh,H.T.,Son,H.T.,Trung,V.Q.,etal.(2016).Lithocarpus
dahuoaiensis (Fagaceae): A new species from Lam Dong Province, Vietnam. PhytoKeys, 69,23.
Van Welzen, P. C. & Sierra, S. E. C. (2006). The Mallotus wrayi complex (Euphorbiaceae). Blumea.
51(2), 373388.
Vargas, O. M. (2011). Anomenclator of Diplostephium (Asteraceae: Astereae): A list of species with
their synonyms and distribution by country. Lundellia, 14,3251.
Velayos, M., Cabezas, F., Barberá, P., de la Estrella, M., Aedo, C., Morales, R., et al. (2013).
Preliminary checklist of vascular plants of Bioko Island (Equatorial Guinea). Botanica
Complutensis, 37, 109133.
Villaseñor, J. L. (2016). Checklist of the native vascular plants of Mexico. Revista Mexicana de
Biodiversidad. 87(3), 559902.
Vink, W. (1985). The Winteraceae of the old world. V. Exospermum links Bubbia to Zygogynum.
Blumea. 31(1),3955.
Vink, W. (2016). The Winteraceae of the Old World. VIII. Some Zygogynum species from New
Guinea. Blumea-Biodiversity, Evolution and Biogeography of Plants, 61(1),4150.
Vivero, J. L., Kelbessa, E. & Demissew, S. (2005). The Red List of trees and shrubs of Ethiopia and
Eritrea. Cambridge: Fauna & Flora International.
Vivero, J. L., Szejner, M., Gordon, J. and Magin, G. (2006). The Red List of trees of Guatemala.
Cambridge: Fauna & Flora International
von Adolf Engler, B. (1994). Botanische Jahrbücher für Systematik, Panzengeschichte und
Panzengeographie. Stuttgart: Schweizerbart Science Publishers.
Wagner, M. R., Cobbinah, J. R. & Bosu, P. P. (2008). Forest entomology in West Tropical Africa:
forest insects of Ghana. Dordrecht: Springer Science & Business Media.
Wagner, W. L. & Lorence, D. H. (20022017). Flora of the Marquesas Islands. Retrieved 1 February
2017, from: http://botany.si.edu/pacicislandbiodiversity/marquesasora/index.htm.
Wagner,W.L.,Herbst,D.R.&Lorence,D.H.(20052017). Flora of the Hawaiian Islands. Retrieved 1
February 2017, from: http://botany.si.edu/pacicislandbiodiversity/hawaiianora/index.htm.
Wagner, W. L. & Lorence, D. H. (2011). A nomenclator of Pacic oceanic island Phyllanthus
(Phyllanthaceae), including Glochidion. PhytoKeys, 4,6794.
Wahlert, G. A., Phillipson, P. B., Mabberley, D. J., & Lowry, P. P. (2016). Grewia hispidissima
Wahlert, Phillipson & Mabb., sp. nov. (Malvaceae, Grewioideae): A new species of restricted
range from northwestern Madagascar. Adansonia. 38 (1), 117121.
WCSP (2016). World checklist of selected plant families. Facilitated by the Royal Botanic Gardens,
Kew. Retrieved 1 February 2017, from http://apps.kew.org/wcsp/.
JOURNAL OF SUSTAINABLE FORESTRY 487
Downloaded by [Emily Beech] at 04:58 06 September 2017
Wearn, J. A. & Mabberley, D. J. (2011). Clerodendrum (Lamiaceae) in Borneo. Systematic Botany.
36(4), 10501061.
Weerasinghe, A., Puvenendran, S., Wickramasinghe, A., Karunaratne, D.N., Wijesundara, S. &
Karunaratne, V. (2013). Potent bioactivities of the endemic Annonaceae heightens its dire
conservation status. Journal of the National Science Foundation of Sri Lanka. 41 (4),
345350.
Weerasooriya, A. D. & Saunders, R. M. (2010). Monograph of Mitrephora (Annonaceae). Systematic
Botany Monographs, 90,1167.
Welzen, P. C. van (Ed.). (2017). Flora Malesiana Euphorbiaceae. Retrieved 1 February 2017, from
http://www.nationaalherbarium.nl/euphorbs.
Welzen, P. C. van & Chayamarit, K. (2017). Flora of Thailand Euphorbiaceae. Retrieved 1 February
2017, http://www.nationaalherbarium.nl/thaieuph.
Wer, H. V. D. (2013). A revision of the genus Ocotea Aubl.(Lauraceae) in Madagascar and the
Comoro Islands. Adansonia. 35 (2), 235279.
West, J. (2010). Australian tropical rainforest plants. Retrieved 1 February 2017, http://keys.trin.org.
au/key-server/data/0e0f0504-0103-430d-8004-060d07080d04/media/Html/index.html.
Western Australian Herbarium. (1998). FloraBase: The Western Australian Flora. Department of
Parks and Wildlife. Retrieved 1 September 2016, from https://orabase.dpaw.wa.gov.au/
Whistler, W. A. (1986). A revision of Psychotria (Rubiaceae) in Samoa. Journal of the Arnold
Arboretum. 67 (3), 341370.
Whistler, W. A. (2004). Rainforest trees of Samoa: A guide to the common native and naturalized
lowland and foothill forest trees of the Samoan Archipelago. Honolulu: Isle Botanica.
Whitford, H. N. (1911). The Forest of the Philippines: Part II. The Principal Forest Trees. Manila:
Department of the Interior, Bureau of Forestry.
Wieringa, J. J. & Mackinder, B. A. (2012). Novitates Gabonensis 79: Hymenostegia elegans and H.
robusta spp. nov. (LeguminosaeCaesalpinioideae) from Gabon. Nordic Journal of Botany. 30 (2),
144152.
Wieringa, J. J., Mackinder, B. A. & Van Proosdij, A. S. (2013). Gabonius gen. nov. (Leguminosae,
Caesalpinioideae, Detarieae): A distant cousin of Hymenostegia endemic to Gabon. Phytotaxa.
142 (1),1524.
Wilkie, P. (2007). A new species of Pterospermum (Dombeyoideae, Malvaceae/Sterculiaceae) from
Cambodia and Vietnam. Edinburgh Journal of Botany. 64 (02), 179183.
Wilmot-Dear, C. M., & Friis, I. (1998). Cypholophus decipiens (Urticaceae): Taxonomy and range
of a species often misplaced in Boehmeria. Kew Bulletin. 53 (4), 919927.
Wilmot-Dear, C. M. & Friis, I. (2013). The old world species of Boehmeria (Urticaceae, tribus
Boehmerieae). A taxonomic revision. Blumea. 58 (2),85216.
Wilson, P. G. (2009). Conspectus of the genus Eugenia (Myrtaceae) in the Philippines. Gardens
Bulletin Singapore. 60 (2), 399410.
Womersley, J. S. (1978). Handbooks of the Flora of Papua New Guinea. Volume I. Melbourne:
Melbourne University Press.
Wong, K. M., Arin, A. M., & Jore, A. A. (2016). Novitates Bruneienses, 5. Polyalthia watui
(Annonaceae): A new tree species from Brunei, Borneo. GardensBulletin Singapore. 68 (1),
7176.
Wood, K. R., Appelhans, M. S., & Wagner, W. L. (2016). Melicope oppenheimeri, section Pelea
(Rutaceae): A new species from West Maui, Hawaiian Islands: With notes on its ecology,
conservation, and phylogenetic placement. PhytoKeys. 25 (69),5164.
Wood, K., Lorence, D. H. & Kiehn, M. (2016). Coprosma kawaikiniensis (Rubiaceae): A new species
from the Dubautia-Sadleria shrubland-fernland community on Kauai, Hawaiian Islands.
PhytoKeys, 60,2132.
WorldWideWattle. (2017) World Wide Wattle. Retrieved 1 February 2017, from s
Wu Zhengyi, Raven, P. H. & Hong Deyuan (Eds.). (19942013). Flora of China. St Louis: Science
Press, Beijing & Missouri Botanical Garden Press.
Xue, B., Su, Y. C., Thomas, D. C. & Saunders, R. M. (2012). Pruning the polyphyletic genus
Polyalthia (Annonaceae) and resurrecting the genus Monoon. Taxon. 61 (5), 10211039.
488 E. BEECH ET AL.
Downloaded by [Emily Beech] at 04:58 06 September 2017
Ya Sokolov, S. (Ed.). (2013). Derevya i Kustarniki SSSR. Volumes 17. Russia: Book On Demand
Ltd.
Yahara, T., Tagane, S., Mase, K., Chhang, P. & Toyama, H. (2016). Flora of Bokor National Park V:
Two new species of Machilus (Lauraceae), M. bokorensis and M. brevipaniculata. PhytoKeys, 65,
3546.
Yii, P. C. & Chai, P. P. K. (2001). New combinations, new names and new species of Madhuca
(Sapotaceae) from Sabah and Sarawak, Borneo. GardensBulletin Singapore, 53, 343356.
Zamora, N. (2014). Protocolo de campo para la identicación de especies arbóreas: Información
taxonómica y dendrológica de las especies arbóreas de Costa Rica. Sistema Nacional de Áreas de
Conservación (Sinac) y Programa REDD-CCAD-GIZ. Costa Rica: Ministerio de Amiente y
Energia.
Zarones, L. (2014). Native plants of the Mariana Islands for wildlife and ornamental use. Mariana
Islands: Laolao Bay Pride Campaign.
Zhu, H., Roos, M. C. & Ridsdale, C. E. (2012). A taxonomic revision of the Malesian species of
Lasianthus (Rubiaceae). Blumea. 57 (1), 1102.
JOURNAL OF SUSTAINABLE FORESTRY 489
Downloaded by [Emily Beech] at 04:58 06 September 2017
... Wood has accompanied the development of nearly all human cultures worldwide; this is demonstrated by countless types of artefacts that have come to us and are now recognised as part of our cultural heritage. The intrinsic relationship between human societies and wood is evidenced by the diverse uses of various tree species [1], among the more than 60,000 species cataloged in nature [2,3]. This use results in a wide range of cultural artefacts produced to address aspects related to the symbolic world, health, survival, subsistence, warfare, and social interaction, which characterize the way of life, traditions, beliefs, and cultural expressions built by human societies over time and across regions of the globe [4]. ...
... Countries such as Brazil, Mexico, and Argentina in Latin America have significant potential to be explored, mainly due to the unique biodiversity of their tropical forests [3] and the rich cultural heritage associated with the use of forest resources [8], which so far has been less studied compared to Asian and European heritages. Research in Brazil is relatively recent (approximately three decades old) and regionally asymmetrical. ...
Article
Full-text available
The cultural use of wood, historically grounded in the understanding of ancient artefacts, has garnered increasing interest from researchers, as it enables the exploration of relationships between biodiversity, ancestral knowledge, and the cultural materiality of distinct human societies. The main objective of this article is to provide an overview and identify the main global trends in studies on the cultural use of wood. The article analyses documents from the Web of Science Core Collection from 1976 to 2024, highlighting the characteristics of scientific production, collaboration networks, keywords, and high-impact literature through bibliometric and scientometric methods. The choice was made for WoS as it is one of the largest databases in the world with complete scientific articles, considering the year with the oldest publication on the topic. The results reveal a growing academic interest in wooden heritage, with notable contributions from Italy, China, France, Spain, and England. With their remarkable cultural expression in wood, Latin countries such as Brazil, Mexico, and Argentina hold significant potential in this field. Areas such as wood chemistry and materials science are predominant, underscoring the need for collaboration with researchers, such as plant anatomists, who can integrate botanical and forestry information on culturally significant species and better contribute to global wooden heritage preservation efforts. This study can contribute to the circulation and integration of researchers interested in the topic and encourage the advancement of underexplored but culturally essential subjects.
... In the latter case, other factors, such as turnover in habitat types or non-native plant species composition, could influence non-native beetles independently from the richness of native plant species. We used the GlobalTreeSearch database for classifying woody and non-woody plants (Beech et al., 2017). Afterwards, we separated sampling plots in managed (N = 924, plant richness = 25.41 ± 18.41 SD) and unmanaged (N = 177, plant richness = 24.75 ± 19.3 SD) and repeated the same regressions separately for the two forest management regimes to assess differences in the intercepts and the slopes of the ordinary and quantile regressions for the two management regimes. ...
Article
1. The species richness of vascular plants in forests can have contrasting effects on the occurrence of non-native insects. The establishment of non-native insect populations may be facilitated by low plant species richness, which reflects the availability of few but easily accessible resources, or hampered by high plant species richness due to spatial dilution of resources or biotic resistance (i.e., resistance against biological invasions). The relationship between the species richness of plants and non-native insects is likely influenced by disturbance regimes, which, in European forests, mostly consists of timber harvesting. We investigated this relationship considering two major forest attributes: (i) species richness of non-native vascular plants and (ii) forest management. 2. From 1101 forest plots in Europe, we gathered occurrences of 1212 vascular plant species, including 160 non-native species, and of 2404 beetle species, including 29 non-native species. We tested the relationship between the species richness of non-native beetles and plants using non-linear quantile regressions. We disentangled the effect of non-native plant species richness from that of management on the species richness of non-native beetles, while accounting for forest structural variables, using structural equation models. 3. We found clear evidence of a hump-shaped relationship between non-native beetle and plant species richness. The general shape of the relationship persisted when considering only woody or non-woody plants, as well as only non-native plants. The relationship was also similar between managed and unmanaged forests. However, the proportion of non-native beetles in managed forests was higher than in unmanaged forests at the same plant species richness. 4. Management had a direct negative effect on non-native beetle species richness, whereas non-native plant species richness had a direct positive effect. When considering all direct and indirect effects, management facilitated the occurrence of non-native beetles indirectly via non-native plants rather than directly. 5. Synthesis and applications. Species richness of native and non-native vascular plants modulates the species richness of non-native beetles through relationships with opposite signs. The interplay with management regimes and forest structures determines whether non-native beetles are promoted. Forest management aimed at reducing the intensity of disturbance while encouraging native plant species richness could promote the dominance of dilution effects and biotic resistance and could moderate the establishment of non-native insects.
... databases. After that, we retained only angiosperm tree species in the datasets according to the GlobalTreeSearch checklist (Beech et al. 2017), as different survey methodologies likely vary in the rate of detection of small shrub species, but less so for the tree species. Finally, we retained only the plots that comprised more than three native tree species, as we believe it is unlikely that a natural forest harbors only three or fewer tree species in an area of 0.1 ha. ...
Article
Full-text available
The biogeographic affinity of a lineage leaves imprint on its niche, and influences its distribution under biotic interchange between landmasses. Since the beginning of the Quaternary, North America (a remnant of Laurasia) and South America (a remnant of Gondwana) have been united, and triggered the Great American Biotic Interchange. Based on existing knowledge, we expect more Laurasian lineages to occur at higher latitudes, in colder or drier areas; and more Gondwanan lineages to reside at lower latitudes, in hotter and wetter areas of the Americas. Moreover, the tropical niche conservatism (TNC) hypothesis states that the tropical flora be most ancient. If so, then both younger Laurasian and Gondwanan lineages would occur in regions at colder and higher latitudes. Here, we examine the latitudinal patterns of species richness and mean family age of Laurasian and Gondwanan angiosperm tree lineages in 422 forest plots distributed across the Americas, and investigate the underlying continent and climatic drivers. We found opposite latitudinal and climatic patterns for species richness of Laurasian and Gondwanan lineages, the former declined towards lower latitudes and hotter climates, whereas the latter declined towards higher latitudes and colder climates. In particular, more pronounced climatic patterns for species richness of Laurasian and Gondwanan lineages were observed in North and South America, respectively. In addition, the mean family age of Laurasian lineages declined towards higher latitudes and colder climates, and for Gondwanan lineages it also decreased towards higher latitudes in South America, hence supporting the TNC hypothesis. We suggest Laurasian and Gondwanan angiosperm tree lineages in forests of the Americas exhibit diverged climate niche preferences, perhaps partly due to diversification of the former in extratropical climates in recent geological times.
... This debate is particularly important in the context of the tree flora of the wet tropics, as up to 53,000 of the global total of ca. 73,000 tree species occur in old-growth, closed-canopy wet tropical forests [7][8][9] . ...
Article
Full-text available
Understanding how the traits of lineages are related to diversification is key for elucidating the origin of variation in species richness. Here, we test whether traits are related to species richness among lineages of trees from all major biogeographical settings of the lowland wet tropics. We explore whether variation in mortality rate, breeding system and maximum diameter are related to species richness, either directly or via associations with range size, among 463 genera that contain wet tropical forest trees. For Amazonian genera, we also explore whether traits are related to species richness via variation among genera in mean species-level range size. Lineages with higher mortality rates—faster life-history strategies—have larger ranges in all biogeographic settings and have higher mean species-level range sizes in Amazonia. These lineages also have smaller maximum diameters and, in the Americas, contain dioecious species. In turn, lineages with greater overall range size have higher species richness. Our results show that fast life-history strategies influence species richness in all biogeographic settings because lineages with these ecological strategies have greater range sizes. These links suggest that dispersal has been a key process in the evolution of the tropical forest flora.
Article
Full-text available
The latitudinal gradient in plant diversity is one of the most famous patterns in ecology. It is hypothesised that narrow niche breadths and restricted geographic ranges in the tropics allow more species to coexist with minimal overlap relative to high‐latitude regions. Although a wealth of studies have investigated these questions across different regions and taxonomic groups, these have consistently yielded contradictory results, leading to the continued persistence of numerous ecological explanations. Here, using a global occurrence database containing over 100 000 plant species, we provide the first globally standardised investigation into the geographic relationships among latitudinal range, environmental breadth, and latitudinal median. We find limited evidence for a global latitudinal gradient in species' ranges and environmental breadths, with results varying between hemispheres and along latitude within each hemisphere. In agreement with previous observations, we show consistent support for a latitudinal gradient in environmental breadth and latitudinal range, but only for trees in the Northern Hemisphere and for tropical species. In the Southern Hemisphere, conversely, these trends are inverted for non‐tropical species, with latitudinal range and environmental breadth decreasing with distance from the equator. Moreover, these relationships are even weaker with environmental breadth, even though there is a strong relationship between environmental breadth and latitudinal range. By applying standardised methods at the global scale, these results suggest that variation in species' ranges is largely a by‐product of biogeographic patterns rather than niche processes. Collectively, this work illustrates that existing ecological ‘rules' linking niche breadth to latitude predominantly reflect regional sampling biases and a historical focus on the Northern Hemisphere and certain taxonomic groups.
Article
This work seeks to produce wood-based panels with Amazon wood sawing residues and castor oil-based polyurethane resin as binder. Three types of panels were produced, with the following resin proportions: 25%, 30%, and 35%. Physical and chemical tests were performed to assess the potential for using this residue, and physical and mechanical properties of the panels were evaluated. Tukey test was performed with a 5% probability to verify the significance between the means for the different types of panels. The results show that the produced panels have a high density (~800 kg/m3), modulus of rupture (~11 N/mm2), which meet the physical properties and modulus of rupture (Non-structural) required by Brazilian particleboard standards, demonstrating its potential in the use of non-structural panels in furniture or finishing. However, the panels did not meet the modulus of elasticity (~900 N/mm2) property, indicating the need to propose ways to improve this property in such panels in future research
Article
Full-text available
Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate. Based on historical trait-climate relationships, we found that, overall, the studied functional traits show shifts of less than 8% of what would be expected given the observed changes in climate. However, the recruit assemblage shows shifts of 21% relative to climate change expectation. The most diverse forests on Earth are changing in functional trait composition but at a rate that is fundamentally insufficient to track climate change.
Article
Mitigating the effects of environmental exploitation on forests requires robust data analysis tools to inform sustainable management strategies and enhance ecosystem resilience. Access to extensive, integrated plant biodiversity data, spanning decades, is essential for this purpose. However, such data are often fragmented across diverse datasets with varying standards, posing two key challenges: first, integrating these datasets into a unified, well-structured data warehouse, and second, handling the vast volume of data using big data technologies to analyze and monitor the temporal evolution of ecosystems. To address these challenges, we developed and used an extract, transform, and load (ETL) protocol that curated and integrates 4482 forestry datasets from around the world, dating back to the 18th century, into a 100-GB data warehouse containing over 172 million records sourced from the Global Biodiversity Information Facility repository. We implemented Python scripts and a NoSQL MongoDB database to streamline and automate the ETL process, using the data warehouse to create the ForestForward web platform. ForestForward is a free, user-friendly application developed using the Django framework, which enables users to consult, download, and visualize the curated data. The platform allows users to explore data layers by year and observe the temporal evolution of ecosystems through visual representations. Database URL: https://forestforward.udl.cat
Chapter
In this chapter, we outline what is known about climatic and stress memory in trees, with examples covering different groups and species of trees (conifers, poplar, oak, ash, and eucalypts). We focus on two broad types of memory: (1) immune memory involved in inducible defenses (defense priming) and (2) climatic memory, whereby trees maintain certain phenological phenotypes in response to environmental conditions experienced during embryogenesis. We outline the epigenetic mechanisms that are thought to be involved in the creation and maintenance of climatic and stress memory in trees. We also give examples of how to study such memories in trees. In these examples, we focus on research protocols that have been proven useful to characterize memories and their mechanistic basis, with an emphasis on molecular techniques that can be used to dissect epigenetic mechanisms.
Thesis
Full-text available
My thesis is based on plastid and nuclear DNA sequences of species of Buxus. It is mostly focused on the Caribbean species of this genus. The results show that Buxus arrived in Cuba c. 12 million years ago and that the adaptation to ultramaphic soils, the accumulation and hiperaccmulation of nickel triggered the evolution of Buxus in Cuba.
Book
Full-text available
The Samoan archipelago is divided politically into a western portion known as Samoa (formerly known as Western Samoa) and an eastern portion known as American Samoa. Extensive south Pacific rain forests comprising several hundred species of native trees occur in these volcanic islands in the heart of Polynesia. Rainforest Trees of Samoa is designed to enable the layperson and scientist alike to identify the most common trees (mostly native species, but also the naturalized alien species) in the lowland and mid-elevation forest (i.e., the vast majority of trees one is likely to encounter in the Samoan forest). The book is based on the author's work in Samoa that spans the last three decades. The information on the species presented (about 140 of them) includes the scientific name, Samoan and English names (if any), synonyms, the botanical family to which the plant belongs, and the range of the species. This is followed by the habitat, ethnobotanical uses in Samoa, and a complete botanical description, including a condensed “Distinguishing Characters.” Each species is covered by one to four color photographs of the leaves, fruits, and flowers to aid in the identification of the tree. In addition, there is a botanical key presented that can aid in determining the identity of any unknown species. A table is provided that shows the island distribution of each of the species within the Samoa archipelago. Also included are a bibliography of pertinent literature and a glossary of botanical terms. The book is 210 pages long, and includes 228 color photos. It is designed to be of use to foresters, botanists, naturalists, teachers, students, or just nature lovers who visit the archipelago. It is also a very useful guide to the trees of Tonga, Niue, and the Cook Islands, since most of the species covered also occur in these archipelagos and islands. Also included are six tree species that are new to science (two of them from Tonga).
Article
Full-text available
The family Rubiaceae is one of the largest of all angiosperm families and is , particularly abundant in the tropics. In Polynesia it comprises 24 genera (Darwin, 1979) and in species numbers is probably the largest dicotyledonous family. Psychotria L. is the largest of the Pacific genera of Rubiaceae and is perhaps second only to Cyrtandra J. R. & G. Forster of the Gesneriaceae in the number of native species in the region. Psychotria has fruits and seeds that are readily spread by frugivorous birds and is prone to speciation when dispersed to new areas. It is found on all the major high islands of Polynesia, with about 80 species in Fiji (Darwin, 1979), 11 in Hawaii (Sohmer, 1977), nine in the Marquesas (Fosberg, 1939), and more than eight in the Society and Tubuai Islands (Fosberg, 1937). Most Pacific species of Psychotria are restricted to a single island or archipelago but are closely related to those of neighboring ones.
Book
Full-text available
The Marquesas Islands are a volcanic archipelago of 12 islands and numerous islets situated within the eastern part of French Polynesia, making it one of the most isolated groups of oceanic islands. The Flora of the Marquesas Islands is a complete account of all of the plants found in the Marquesas Islands. Of the total 826 vascular plant species recorded for the Marquesas Islands, approximately 495 are aliens introduced by humans over the years, including 248 cultivated, 33 Polynesian introductions, and 214 other naturalized species, compared to the native flora of 331 species. The native flora consists of 100 ferns and lycophytes and 231 angiosperms, with 47% of the species endemic to the Marquesas. Floristic affinities are with the Society Islands, other Polynesian islands, the paleotropics, and to a lesser degree the Hawaiian Islands and the neotropics. Human colonization and the introduction of non-native animals and plants have severely impacted the low- to mid-elevation vegetation of the Marquesas. The naturalized flora consists of 5 ferns, 62 monocots, and 170 dicots. This is one of the first flora projects fully developed and written in a web site database and edited into this two-volume work. Volume 1 includes introductory chapters, lycophytes, ferns, monocots, and exsiccatae. Volume 2 covers the dicots, dicot exsiccatae, cultivated plants, literature cited, and an index to both volumes. This is a collaborative project between the National Tropical Botanical Garden, the Smithsonian Institution, and the Délégation à la Recherche de la Polynésie française intended to further knowledge of the flora of this remote archipelago. Based on extensive fieldwork this book covers the extant floristic diversity, including 85 recently described species, and provides original illustrations, illuminating photos, and critical conservation considerations. This work imparts a foundational knowledge of the flora as a vital component towards preserving the biodiversity of the Marquesas Islands.
Article
Full-text available
2003-2006 гг. установлено, что в нас-тоящее время во флоре Нахчыванской АР насчитывается 17 видов рода Pyrus L. В числе прочих, приведены новые местонахождения видов, лишь недавно указанных для флоры Нахчыванской АР и Азербайджана в целом-P. voronovii Rubtz., P. zangezura Maleev, P. pseudosyriaca Gladkova, P. megrica Gladkova, P. chosrovica Gladkova, P. georgica Kuth., P. fedorovii Kuth. и P. demetrii Kuth. Ключевые слова: Нахчыванская АР, Pyrus, флора, новые местонахождения. Summary. Results of the study of species diversity and distribution of wild species of pears in the flora of Nakhchivan Autonomous Republic are summarized. Field studies of 2003-2006 demonstrated that 17 species of Pyrus L. occur in the region. New localities of some species including recently reported for Nakhchivan Autonomous Republic and Azerbai-jan in general (P. voronovii Rubtz., P. zangezura Maleev, P. pseudosyriaca Gladkova, P. me-grica Gladkova, P. chosrovica Gladkova, P. georgica Kuth., P. fedorovii Kuth. и P. demetrii Kuth.) are revealed and reported.
Book
The book comprises checklist of the gymnosperms and angiosperms of Nepal. The checklist encompasses 6,076 taxa of flowering plants, belonging to 216 families and 1,534 genera. It provides information on 5,345 species, 163 subspecies, 517 varieties and 51 forma of gymnosperms and angiosperms recoded from Nepal. For convenience, the taxa are arranged alphabetical order of families, genera, species and infraspecific taxa in descending order.
Article
The purpose of the review paper is to review existing literature on ethnobotanical knowledge of Cordia africana to assist in the proper utilization, management and conservation of the species. Cordia africana which belongs to the family of Boraginaceae is a deciduous forest tree widely distributed from South Africa to Saudi Arabia and Yemen at altitudes between 550 - 2600 m.a.s.l. and with an annual rainfall of 700 - 2000 mm. It occurs in primary or secondary forests and woodlands. In Ethiopia, it grows well in the dry, moist and wet weyna dega agro-ecological zone. Cordia africana has various uses as medicine, fodder, food, fuelwood, for making of juices and materials for culturale use. It is one of the most important indigenous tree species for making a variety of items used by the communities. It provides very good mulch and can be used in other mixed cropping systems on cropland, pastureland, to improve microclimatic conditions. Cordia africana is a forage tree for honeybees and flowers between March and October. Beehives are often hung on Cordia africana tree. It is therefore good for beekeeping and honey production. Cordia africana is also a source of excellent high-value timber that is suitable for furniture, mortars, windows and house doors. It is one of the major timber species in Ethiopia that have been exploited commercially. It plays an important role in generating local household income from the sale of products and conserving biodiversity. Business obtained from timber production severely accelerated the high rate exploitation of Cordia africana. It is locally threatened and is given protection by proclamation (Government of Ethiopia, Proclamation No. 94/1994). It is now managed by some farmers in their farmland as agroforestry tree, such management and acquisition of economic benefits from the species might promote local peoples' interest in conservation.
Article
Homalium sect. Blackwellia Benth. (Salicaceae) is the largest and most widespread solitary-stamened section of Homalium Jacq. As part of a project to update the taxonomy of Homalium in Madagascar, a new revisionary treatment of the Malagasy species is presented and an identification key is provided. Fifteen species are recognized, of which four are newly described, and within Homalium axillare (Lam.) Benth. a subspecies, Homalium axillare subsp. delphinense (H. Perrier) Appleq., is recognized. Homalium acuminatifolium Appleq. is similar to Homalium axillare, but the leaves are usually lanceolate with a long-acuminate apex and the petals often spreading; it is native to the province of Toliara. Homalium longiracemosum Appleq. is distinguished by its long racemes and long, narrow, long-petioled leaves; it is endemic to the vicinity of Sainte Luce. Homalium fortunatii Appleq. and Homalium martialii Appleq. are similar to Homalium thuarsianum (Tul.) Baill. in having pubescent sepal glands and paniculate inflorescences. Both of these new species have usually elliptical to narrowly elliptical leaves and are native to northeastern humid forests. Homalium fortunatii has minutely pubescent young twigs, while Homalium martialii has sepals and petals always shorter than the calyx tube. Occasional hybridization is observed. Homalium microphyllum O. Hoffm. is not recognized and the type is believed to be a hybrid involving a species of Homalium sect. Odontolobus Warb.