Download full-text PDF

Chitinoidellids from the Early Tithonian–Early Valanginian Vaca Muerta Formation in the Northern Neuquén Basin, Argentina

Article (PDF Available) inJournal of South American Earth Sciences 76 · March 2017with156 Reads
DOI: 10.1016/j.jsames.2017.03.005
Diego Kietzmann at University of Buenos Aires
  • 26.56
  • University of Buenos Aires
Abstract
As part of microfacies studies carried out on the Tithonian – Valanginian carbonate ramp of the Neuquén Basin, two stratigraphic sections of the Vaca Muerta Formation (Arroyo Loncoche and Río Seco de la Cara Cura) were chosen in order to analyze the chitinoidellid content and distribution. Calpionellids in the studied sections are relatively poorly preserved; hyaline calcite walls are often recrystallized making the systematic determination difficult. However, microgranular calcite walls seem to have resisted better the incipient neomorphism presented by the limestones of the Vaca Muerta Formation. Seven known species of Chitinoidellidae and four known species of Calpionellidae are recognized. The distribution of calpionellid species allows recognizing the Chitinoidella and Crassicollaria Zones in the Neuquén Basin. The Chitinoidella Zone correlates with the Virgatosphinctes mendozanus–Windhauseniceras internispinosum Andean ammonite Zones, and can be divided into two subzones. The lower one is poorly defined, while the upper one can be assigned to the Boneti Subzone. The Crassicollaria Zone in the Neuquén basin needs a detailed revision, but data provided in this work enable its correlation at least with the Corongoceras alternans ammonite Zone. Similar associations were reported in Mexico and Cuba, showing good consistency between these regions. However, in the Neuquén Basin unlike the Tethys, chitinoidellids persist until the lower Berriasian.
Figures
Fig. 1. A) Sketch map of the Neuqu en Basin with detail of the studied localities. B) Stratigraphic chart for the Neuqu en Basin showing Groeber's cycles and sequence stratigraphic subdivision after Legarreta and Gulisano (1989). C) Lithostratigraphic subdivision of the Lower Mendoza Mesosequence or lower Mendoza Subgroup in Southern Mendoza. Modified from Kietzmann et al. (2014). Ki: Kimmeridgian, Ti: Tithonian, Be: Berriasian, Va: Valanginian. 
A) Sketch map of the Neuqu en Basin with detail of the studied localities. B) Stratigraphic chart for the Neuqu en Basin showing Groeber's cycles and sequence stratigraphic subdivision after Legarreta and Gulisano (1989). C) Lithostratigraphic subdivision of the Lower Mendoza Mesosequence or lower Mendoza Subgroup in Southern Mendoza. Modified from Kietzmann et al. (2014). Ki: Kimmeridgian, Ti: Tithonian, Be: Berriasian, Va: Valanginian.
Fig. 2. Arroyo Loncoche section showing Stages based on Andean Ammonite Zones (Riccardi, 2015), calcareous dinocysts Zones (Ivanova and Kietzmann, 2016), Nanofossil bioevents (Lescano and Kietzmann, 2010; Kietzmann et al., 2011a), magnetostratigraphy (Iglesia Llanos et al., 2017), lithologic log, sample location, chitinoidellids distribution and calpionellid zones. 
Arroyo Loncoche section showing Stages based on Andean Ammonite Zones (Riccardi, 2015), calcareous dinocysts Zones (Ivanova and Kietzmann, 2016), Nanofossil bioevents (Lescano and Kietzmann, 2010; Kietzmann et al., 2011a), magnetostratigraphy (Iglesia Llanos et al., 2017), lithologic log, sample location, chitinoidellids distribution and calpionellid zones.
Chitinoidellids from the Early TithonianeEarly Valanginian Vaca
Muerta Formation in the Northern Neuqu
en Basin, Argentina
Diego A. Kietzmann
a
,
b
,
*
a
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geol
ogicas, Ciudad Universitaria, Pabell
on II, Intendente
Güiraldes 2160, C1428EHA Ciudad Aut
onoma de Buenos Aires, Argentina
b
CONICET-Universidad de Buenos Aires, Instituto de Geociencias B
asicas, Ambientales y Aplicadas de Buenos Aires (IGeBA), Argentina
article info
Article history:
Received 2 February 2017
Received in revised form
7 March 2017
Accepted 7 March 2017
Available online 14 March 2017
Keywords:
Calpionellids
Jurassic-Cretaceous transition
Biostratigraphy
Southern Hemisphere
abstract
As part of microfacies studies carried out on the Tithonian eValanginian carbonate ramp of the Neuqu
en
Basin, two stratigraphic sections of the Vaca Muerta Formation (Arroyo Loncoche and Río Seco de la Cara
Cura) were chosen in order to analyze the chitinoidellid content and distribution. Calpionellids in the
studied sections are relatively poorly preserved; hyaline calcite walls are often recrystallized making the
systematic determination difcult. However, microgranular calcite walls seem to have resisted better the
incipient neomorphism presented by the limestones of the Vaca Muerta Formation. Seven known species
of Chitinoidellidae and four known species of Calpionellidae are recognized. The distribution of calpio-
nellid species allows recognizing the Chitinoidella and Crassicollaria Zones in the Neuqu
en Basin. The
Chitinoidella Zone correlates with the Virgatosphinctes mendozanuseWindhauseniceras internispinosum
Andean ammonite Zones, and can be divided into two subzones. The lower one is poorly dened, while
the upper one can be assigned to the Boneti Subzone. The Crassicollaria Zone in the Neuqu
en basin needs
a detailed revision, but data provided in this work enable its correlation at least with the Corongoceras
alternans ammonite Zone. Similar associations were reported in Mexico and Cuba, showing good con-
sistency between these regions. However, in the Neuqu
en Basin unlike the Tethys, chitinoidellids persist
until the lower Berriasian.
©2017 Elsevier Ltd. All rights reserved.
1. Introduction
Calpionellids are a useful biostratigraphic group of planktonic
protozoa widely distributed in the Tethyan realm during the Late
Jurassic eEarly Cretaceous times (e.g. Remane, 1971; Grün and
Blau, 1997; Michalík et al., 2009; Lakova and Petrova, 2013).
Three families are recognized based on the ultrastructure of their
lorica: Chitinoidellidae Trejo, 1980 (microgranular lorica), Semi-
chitinoidellidae Nowak 1978 (combined microgranular and hyaline
lorica), and Calpionellidae Bonet 1956 (hyaline loricas).
Reports of calpionellids from mid and high latitudes of the
Southern Hemisphere are really rare, and these faunas were prac-
tically unknown for Argentina despite having been repeatedly
sought by some researchers (e.g., Remane, 1985). Presence of
calpionellids in the Neuqu
en Basin was mentioned earlier by
Fern
andez Carmona et al. (1996), Fern
andez Carmona and Riccardi
(1998,1999), and Kietzmann et al. (2011a), who report the presence
of hyaline and microgranular forms. These reports represent the
rst record of calpionellids outside the Tethyan realm, but unfor-
tunately without illustrations.
Afnities between the faunas of the Tethyan realm and the
Neuqu
en Basin were known since the pioneering work of Darwin
(1846). Mesozoic faunal exchange between the southeast Pacic
and the Tethys were continuous through the Central Atlantic and
around Australasia (Riccardi, 1991). Cosmopolitan faunas and oras
would have been distributed through the so-called Hispanic
Corridor (Smith, 1983), a narrow, embryonic Atlantic seaway hy-
pothesized to have opened in Pliensbachian time, creating a
shortcut connection between the Tethys and eastern Panthalassa
(Aberhan, 2001). Tethyan inuence in the Neuqu
en Basin has been
noted in ammonite faunas (e.g., Riccardi, 1991; Zeiss and Leanza,
2008, 2010), bivalves (e.g., Damborenea, 2002), foraminifera and
ostracodes (e.g. Ballent and Whatley, 2000; Ballent et al., 2011),
nannoplankton oras (e.g. Bown and Concheyro, 2004), as well as
*Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depar-
tamento de Ciencias Geol
ogicas, Ciudad Universitaria, Pabell
on II, Intendente
Güiraldes 2160, C1428EHA Ciudad Aut
onoma de Buenos Aires, Argentina.
E-mail address: diegokietzmann@gl.fcen.uba.ar.
Contents lists available at ScienceDirect
Journal of South American Earth Sciences
journal homepage: www.elsevier.com/locate/jsames
http://dx.doi.org/10.1016/j.jsames.2017.03.005
0895-9811/©2017 Elsevier Ltd. All rights reserved.
Journal of South American Earth Sciences 76 (2017) 152e164
other typical Tethyan microfauna, such as the microcrinoid Sacco-
coma (e.g. Kietzmann and Palma, 2009). Therefore, the presence of
calpionellids in the Neuqu
en Basin is not unexpected, but its
importance lies in the fact that it represents the southernmost re-
cord outside of the Tethys.
The purpose of this paper is to describe chitinoidellid specimens
from the Vaca Muerta Formation in two stratigraphic sections in
the southern Mendoza sector of the Neuqu
en Basin. At the same
time, their stratigraphic distribution and a preliminary long dis-
tance correlation is discussed. Although more detailed studies of
this group in the Vaca Muerta Formation is needed to allow an
accurate correlation with Tethyan biozones, the results of this paper
are very valuable, and consistent with recently published strati-
graphic data (Kietzmann et al., 2015; Riccardi, 2015; Iglesia Llanos
et al., 2017; Ivanova and Kietzmann, 2016) that will allow estab-
lishing an increasingly robust chronostratigraphic scheme.
2. Geological setting
The Neuqu
en Basin was a retro-arc basin developed in Mesozoic
times along the Pacic margin of South America (Fig. 1a). It has a
triangular shape and is bounded by a metamorphic and volcanic
basement to the east and by an immature volcanic arc to the west
(Yrigoyen, 1991). Its stratigraphy was dened by Groeber (1946),
and later Legarreta and Gulisano (1989) updated this framework
emphasizing the importance of eustatic changes in the develop-
ment of depositional sequences.
Different tectonic regimes exerted a rst-order control in basin
development and sedimentary evolution (Legarreta and Uliana,
1991, 1996). An extensional regime was established during Late
Triassic eEarly Jurassic. It was characterized by a series of narrow,
isolated depocenters controlled by large transcurrent fault systems
lled mainly with continental deposits of the Precuyo Group
(Manceda and Figueroa, 1993; Vergani et al., 1995). The Early
Jurassic eLate Cretaceous was characterized by a thermal subsi-
dence regime with localized tectonic events, which led to the
development of a shallow marine basin connected to the proto-
Pacic Ocean by narrow passages within the volcanic arc
(Legarreta and Uliana, 1996). Depocenters were lled by conti-
nental and marine siliciclastic, carbonate and evaporite successions
(Cuyo, Lotena, and Mendoza Groups). Under these tectonic condi-
tions, a series of marine sequences were developed throughout the
basin during Late Jurassic eEarly Cretaceous. These are included in
the Mendoza Group (Stipanicic, 1969) or Mendoza Mesosequence
(Legarreta and Gulisano, 1989)(Fig. 1b), also divided by Leanza
(2009) into Lower, Middle and Upper Mendoza Subgroups.
Finally, a compressive deformation regime was established during
the Late Cretaceous and lasting throughout the Cenozoic alter-
nating with extensional events (Ramos, 2010).
In the northern Neuqu
en Basin (southern Mendoza area, Fig. 1c)
the lower Mendoza Subgroup includes continental deposits of the
Tordillo Formation (Kimmeridgian-Early Tithonian?), basinal to
middle carbonate ramp deposits of the Vaca Muerta Formation
(Early Tithonian eEarly Valanginian) and middle to inner ramp
oyster-deposits of the Chachao Formation (Early Valanginian),
which form a homoclinal carbonate ramp system (e.g. Leanza et al.,
1977; Legarreta and Kozlowski, 1981; Carozzi et al., 1981; Mitchum
and Uliana, 1985; Kietzmann et al., 2014).
3. Studied sections and methods
As part of microfacies studies carried out on the Titho-
nianeValanginian carbonate ramp of the Neuqu
en Basin, two
stratigraphic sections of the Vaca Muerta Formation -Arroyo Lon-
coche (~280 m; Fig. 2) and Río Seco de la Cara Cura (~30 0 m; Fig. 3)-
were chosen in order to analyses the chitinoidellid content and
distribution. A total of 60 thin sections were studied under a
petrographic transmitted light microscope. In these sections the
Vaca Muerta Formation is characterized by a decimetre-scale
rhythmic alternation of marlstones and limestones representing
the most distal part of carbonate ramp system (Kietzmann et al.,
2008, 2011b, 2014; Kietzmann and Palma, 2014). Ammonite data
in the studied sections indicate an Early Tithonian to Early Val-
anginian age (Riccardi pers. comm.). Nannoplankton in the Arroyo
Loncoche section has poorly resolution, however some important
bioevents were recognized (Lescano and Kietzmann, 2010;
Kietzmann et al., 2011a). Also seven calcareous dinocysts zones,
previously proposed for the Tethyan Realm, were conrmed in the
Vaca Muerta Formation by Ivanova and Kietzmann (2016) (Fig. 2).
Cyclostratigraphic data published by Kietzmann et al. (2015)
allowed them to apply a oating orbital scale and obtain a mini-
mum duration for ammonite biozones. Likewise, Iglesia Llanos et al.
(2017) obtained a detailed magnetostratigraphic colum for the
Arroyo Loncoche section. Both oating data are very consistent
with biostratigraphic scheme of Riccardi (2015).
4. Systematic paleontology
Calpionellids are relatively poorly preserved in the studied
sections of the Vaca Muerta Formation. Hyaline calcitic walls are
often recrystallized making the systematic determination difcult;
however, microgranular calcitic walls seem to have resisted better
the incipient neomorphism presented by the limestones of the
Vaca Muerta Formation. Seven species of Chitinoidellidae are
recognized, as well as four species of Calpionellidae. On the basis of
morphological features of lorica and collar construction recognized
species are listed below.
Family Chitinoidellidae Trejo, 1980
Genus Chitinoidella Doben, 1963
Chitinoidella boneti Doben, 1963
Fig. 4.1e10,Fig. 5.1e3
1963 Chitinoidella boneti n.sp.- Doben, p. 42, pl. 6, Figs. 1e5.
1985 Chitinoidella boneti Doben - Remane, p. 564, Fig. 13.
1997 Chitinoidella boneti Doben - Grün and Blau, p. 208, pl. I,
Fig. 7
1998 Chitinoidella boneti Doben - Pop, pl. I, Fig. 3
2002 Chitinoidella boneti Doben - Reh
akov
a, p. 370, Fig. 2. 1e4
2010 Chitinoidella boneti Doben - Benzaggagh et al., Fig. 8.
2011 Chitinoidella boneti Doben - Sallouhi et al., pl. 1, Fig. 24
2013 Chitinoidella boneti Doben - Lakova and Petrova, pl. 1,
Figs. 17e18, pl. 5, Figs. 21e23.
Material: Arroyo Loncoche section (L74, L100, L115, L155, L158,
L171, L190), Río Seco de la Cara Cura (Lt36, Lt37, Lt51, Lt54, Lt57,
Lt90).
Diagnosis: Microgranular calcitic, bell-shaped lorica with a
large oral opening, slightly preoral constriction, and outwardly
deected collar. Aboral pole of lorica ends usually by a short caudal
appendage. Dimensions are 55e83
m
m in length and 40e50
m
min
width, with a length/width ratio smaller than 1.5. It resembles
Tintinnopsella carpathica (Murgeanu and Filipescu).
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the Upper Tithonian Boneti Subzone of the Chitinoidella
Zone. It was recognized in the Anatolian Peninsula, Eastern Europe
(Carpathians, Balkanides), Venetian and Eastern Alps, Bethic
Cordillera of Spain, North of Africa (Morocco and Tunisia),Cuba and
Mexico. In the Neuqu
en Basin was mentioned previously in the
Windhauseniceras internispinosum ammonite Zone (lowermost
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164 153
Upper Tithonian) of the Northern Sierra de la Cara Cura (Fernandez-
Carmona and Riccardi, 1998). In the studied sections, it was
recognized from the base of the Windhauseniceras internispinosum
to the Argentiniceras noduliferum ammonite Andean Zones
(lowermost Upper Tithonian euppermost Lower Berriasian).
Chitinoidella hegarati Sallouhi et al., 2011
Fig. 4.11e13;Fig. 5.4
2011 Chitinoidella hegarati n. sp. - Sallouhi, Boughdiri, and
Cordey
Material: Arroyo Loncoche section (L115, L171, L190), Río Seco
de la Cara Cura (Lt37, Lt51, Lt54, Lt57).
Diagnosis: Microgranular calcitic, fairly isometric bell-shaped to
polygonal lorica with parallel lateral edges. Conical aboral pole
terminating in a caudal appendage (rounded in oblique sections).
Large oral opening surrounded by a collar outwardly deected in its
distal extremity, its lower part being small and cylindroid with a
small preoral constriction.
Parallel to fairly rounded lateral anks converge to the oral part
through a shoulder-like structure. For axial sections, Dimensions
are 50e65
m
m in length and 38e43
m
m in width, with a length/
width ratio between 1.2 and 1.5. The maximum width can be
measured by the middle of the lorica. It resembles Tintinnopsella
remanei Borza.
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the Upper Tithonian Boneti Subzone of the Chitinoidella
Fig. 1. A) Sketch map of the Neuqu
en Basin with detail of the studied localities. B) Stratigraphic chart for the Neuqu
en Basin showing Groeber's cycles and sequence stratigraphic
subdivision after Legarreta and Gulisano (1989). C) Lithostratigraphic subdivision of the Lower Mendoza Mesosequence or lower Mendoza Subgroup in Southern Mendoza. Modied
from Kietzmann et al. (2014). Ki: Kimmeridgian, Ti: Tithonian, Be: Berriasian, Va: Valanginian.
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164154
Zone. It was recognized in Venetian and Eastern Alps, and North of
Africa (Morocco and Tunisia). In the studied sections, it was
recognized from the upper Windhauseniceras internispinosum
ammonite Zone to the Argentiniceras noduliferum ammonite Zone
(lowermost Upper Tithonian euppermost Lower Berriasian).
Chitinoidella elongata Pop, 1997
Fig. 4.14e15,Fig. 5.5e6
1997 Chitinoidella elongata Pop - Pop, Fig. 1: 2, 2 photos 3e4.
2002 Chitinoidella elongata Pop - Reh
akov
a, p. 2, Figs. 5e8.
2013 Chitinoidella elongata Pop - Lakova and Petrova, pl. 1,
Figs. 20e21, pl. 5, Figs. 24e25.
Fig. 2. Arroyo Loncoche section showing Stages based on Andean Ammonite Zones (Riccardi, 2015), calcareous dinocysts Zones (Ivanova and Kietzmann, 2016), Nanofossil bio-
events (Lescano and Kietzmann, 2010; Kietzmann et al., 2011a), magnetostratigraphy (Iglesia Llanos et al., 2017), lithologic log, sample location, chitinoidellids distribution and
calpionellid zones.
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164 155
Material: Arroyo Loncoche section (L100, L122), Río Seco de la
Cara Cura (Lt37, Lt51, Lt54, Lt90).
Diagnosis: Cylindrical lorica with a conical aboral ended by
caudal appendage and an outwardly deected collar. The lorica
length is 84e105
m
m, and its width is 44e55
m
m. Length/width
ratio is 1.9. Its shape resembles that of Tintinnopsella longa (Colom).
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the Upper Tithonian, Boneti Subzone (Chitinoidella Zone) of
the Carpathians. In the studied sections was recognized from the
upper Windhauseniceras internispinosum ammonite Zone to the
Corongoceras alternans ammonite Zone (Upper Tithonian).
Genus Borziella Pop, 1997
Borziella slovenica (Borza, 1966)
Fig. 4.16e18;Fig. 5.7e8
1969 Chitinoidella slovenica n. sp. - Borza, pl. LXVI, Figs. 8-9.
1997 Borziella slovenica (Borza) - Pop, Fig. 2, potos 14-15.
Fig. 3. Río Seco de la Cara Cura section showing Stages based on Andean Ammonite Zones (Riccardi, 2015), lithologic log, sample location, chitinoidellid distribution and calpionellid
zones.
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164156
Fig. 4. Chitinoidellids from the TithonianeBerriasian Vaca Muerta Formation at the Arroyo Loncoche section. 1-10) Chitinoidella boneti Doben (samples L74, L100, L190). 11-13)
Chitinoidella hegarati Sallouhi, Boughdiri, and Cordey (samples L171, L190). 14-15) Chitinoidella elongata Pop (samples L100, L122). 16-18) Borziella slovenica (Borza) (samples L52,
L115, L190). 19-20) Dobeniella cf. pinaraensis (Furazola Bermudez and Kreisel) (samples L8, L190).
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164158
1998 Borziella slovenica (Borza) -Pop, pl. 1, Figs. 16-17.
2002 Borziella slovenica (Borza) - Reh
akov
a, Fig. 2. 1e4
2011 Borziella slovenica (Borza) - Sallouhi et al., pl. 1, Figs. 18,
20e21
2013 Borziella slovenica (Borza) - Lakova and Petrova, pl. 1,
Figs. 9e10.
Material: Arroyo Loncoche section (L52, L115, L190), Río Seco de
la Cara Cura (Lt23, Lt54).
Diagnosis: Ovoid to spheroidal lorica with rounded aboral pole.
The lorica length is 40e48
m
m, and its width is 28e32
m
m. The
preoral segment of the lorica bears a small constriction followed by
a relatively short outwardly deected collar similar to Tintinnopsella
remanei Borza or Lorenziella hungarica Knauer type.
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the uppermost Lower Tithonian Dobeni Subzones of the
Chitinoidella Zone. It was recognized in Easter Europe (Carpathians
and Balkanides), Eastern Alps, Anatolian Peninsula, and North of
Africa (Morocco and Tunisia). In the studied sections, it was
recognized in the Aulacosphinctes proximus to the Argentiniceras
noduliferum ammonite Zones (uppermost Lower Titho-
nianeuppermost Lower Berriasian).
Genus Carpathella Pop, 1998
Carpathella rumanica Pop, 1998
Fig. 5.9e13
1998 Carpathella rumanica n. sp. - Pop, Fig. 2, photos 1e5.
2002 Carpathella rumanica Pop - Reh
akov
a, Figs. 2.13e16.
Material: Río Seco de la Cara Cura (Lt51, Lt54).
Diagnosis: Ovoidal lorica with a rounded aboral pole. The pre-
oral segment of the lorica bears slight constriction forming a
characteristic shoulder. The collar is short and cylindrical, with a
diameter commonly smaller than the maximum width of the lorica.
The lorica length is 38e42
m
m, and its width is 34e36
m
m. This
species strongly resembles Calpionella alpina Lorenz.
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the uppermost Lower Tithonian Dobeni Subzone of the
Chitinoidella Zone. It was recognized in Easter Europe (Carpa-
thians), and North of Africa (Tunisia). In the studied sections, it was
recognized from the Corongoceras alternans ammonite Zone (Upper
Tithonian).
Genus Dobeniella Pop, 1997
Dobeniella cf. pinaraensis (Furazola Bermudez and Kreisel, 1973)
Fig. 4.19e20;Fig. 5.14e15
1973 Chitinoidella pinarensis n. sp. - Furazola Bermudez and
Kreisel, pl 1., Figs. 5e6.
Material: Arroyo Loncoche section (L8, L190), Río Seco de la Cara
Cura (Lt2).
Description: Ovoid lorica with a sub-rounded aboral pole ended
by a caudal appendage, which is approximately a half of the total
length of the lorica. The oral segment of the lorica ends with a
composite collar. The outer ring of the collar is large and deected
outwardly. The inner piece of the collar is cylindrical and larger
than the outer one. The lorica length is 68e122
m
m, and its width is
39e44
m
m.
Occurrence and stratigraphic distribution: In the Tethys oc-
curs in the Upper Tithonian Boneti Subzone of the Chitinoidella
Zone. It was recognized in Easter Europe (Carpathians), as well as in
Cuba. In the studied sections, it was recognized from the Virgatos-
phinctes mendozanus and the Argentiniceras noduliferum Ammonite
Zones (Lower Tithonian euppermost Lower Berriasian).
Family Calpionellida Bonet, 1956
Genus Calpionella Lorenz, 1902
Calpionella alpina Lorenz, 1902
(Fig. 5.16)
1902 Calpionella alpina n.sp. - Lorenz, pl. 9, Fig. 1.
1932 Calpionella alpina Lorenz - Cadisch, pl. 1, Figs. 1e9, pl. 2,
Figs. 12-15, pl. 3 Figs. 22-23.
196 4 Calpionella alpina Lorenz - Remane, pl. 1, Figs. 1-21, pl. 5,
Fig. 2.
1973 Calpionella alpina Lorenz eFurrazola Bermúdez and Krei-
sel, pl. 3, Figs. 6e7.
1985 Calpionella alpina Lorenz - Remane, Figs. 6a,18.1e3.
1999 Calpionella alpina Lorenz - Lakova et al., pl. 1, Fig. 9.
2013 Calpionella alpina Lorenz - Lakova and Petrova, pl. 2,
Figs. 12-16
Material: Río Seco de la Cara Cura (Lt37).
Diagnosis: Ovoidal lorica with a rounded aboral pole. The pre-
oral segment of the lorica bears slight constriction forming a
characteristic shoulder. The collar is short and cylindrical, with a
diameter commonly smaller than the maximum width of the lorica.
The lorica length is 50e90
m
m, and its width is 40e70
m
m. The
length/width ratio is <1.25.
Occurrence and stratigraphic distribution: This species is
known from the whole of the Tethyan area, and its stratigraphic
range is Upper Tithonian-Berriasian. In the Neuqu
en Basin was
mentioned previously in Tithonian and Berriasian levels
(Fernandez-Carmona et al., 1996; Fernandez Carmona and Riccardi,
1999). In the studied sections, it was recognized at the base of the
Corongoceras alternans ammonite Andean Zones (Upper Tithonian),
as well as poorly preserved specimens in Berriasian levels.
Genus Crassicollaria Remane, 1962
Crassicollaria intermedia (Durand-Delga, 1957)
(Fig. 5.17e18)
1957 Calpionella intermedia n.sp. - Durand Delga, pl. 1, Fig. 2,4.
1963 Calpionella intermedia Durand Delga - Boller, pl.1, Figs.1-9,
pl. 2, Fig.34.
196 4 Crassicollaria intermedia (Durand-Delga) - Remane, pl. 2,
Figs. 19-35, pl. 5, Figs. 16-17.
1973 Crassicollaria intermedia (Durand-Delga) - Furrazola Ber-
múdez and Kreisel, pl. 3, Figs. 1e2.
1985 Crassicollaria intermedia (Durand-Delga) - Remane,
Figs. 11.1e18, 18.14e15
2013 Crassicollaria intermedia (Durand-Delga) - Lakova and
Petrova, pl. 5, Figs. 44-46
Material: Río Seco de la Cara Cura (Lt37).
Fig. 5. Chitinoidellids and calpionellids from the Tithonian eBerriasian Vaca Muerta Formation at the Río Seco de la Cara Cura section. 1-3) Chitinoidella boneti Doben. (samples Lt36,
Lt37, Lt90). 4) Chitinoidella hegarati Sallouhi, Boughdiri, and Cordey (sample Lt37). 5-6) Chitinoidella elongata Pop (samples Lt51, Lt90). 7-8) Borziella slovenica (Borza) (samples Lt23,
Lt54). 9-13) Carpathella rumanica Pop (samples Lt51, Lt54). 14-15) Dobeniella cf. pinaraensis (Furazola Bermúdez and Kreisel) (sample Lt2). 16 ) Calpionella alpina Lorenz (sample Lt2).
17-18) Crassicollaria intermedia (Durand-Delga) (sample Lt2). 19 ) Crassicollaria massutiniana (Colom) (sample Lt2). 20) Tintinnopsella carpathica (Murgeanu and Filipescu) (sample
Lt2).
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164 159
Diagnosis: Ovoidal elongated or cylindrical, its aboral part ends
by a short caudal appendage. The lorica length is 91e108
m
m, and
its width is 45e51
m
m. The large oral opening is suroundaded by a
short cylindrical collar, the preoral segment of the lorica displays a
more or less pronounced swelling.
Occurrence and stratigraphic distribution: This species is
known from the whole of the Tethyan area, and its stratigraphic
range is Upper Tithonian. In the studied sections, it was recognized
at the base of the Corongoceras alternans ammonite Andean Zones
(Upper Tithonian).
Crassicollaria massutiniana (Colom, 1948)
(Fig. 5.19)
194 8 Calpionella massutiniana n.sp. - Colom, pl. 11, Fig. 45.
1962 Crassicollaria massutiniana (Colom) - Remane, p. 15.
196 4 Crassicollaria massutiniana (Colom) - Remane, pl. 3,
Figs. 17-40, pl. 5, Figs. 21-22.
1973 Crassicollaria massutiniana (Colom) - Furrazola Bermúdez
and Kreisel, pl. 3, Fig. 5.
2013 Crassicollaria massutiniana (Colom) - Lakova and Petrova,
pl. 5, Figs. 47-48.
Material: Río Seco de la Cara Cura (Lt37).
Diagnosis: Ovoidal elongated or cylindrical, its aboral part
endes by a short caudal appendage. The lorica length is 80e97
m
m,
and its width is 53e59
m
m. The large oral opening is suroundaded
by a short cylindrical collar, the preoral segment of the lorica dis-
plays a more or less pronounced swelling.
Occurrence and stratigraphic distribution: This species is
known from the whole of the Tethyan area, and its stratigraphic
range is Upper Tithonian. In the studied sections, it was recognized
at the base of the Corongoceras alternans ammonite Andean Zones
(Upper Tithonian).
Genus Tintinnopsella Colom, 1948
Tintinnopsella carpathica (Murgeanu and Filipescu, 1933)
(Fig. 5.20)
1933 Calpionella carpathica n.sp. - Murgeanu and Filipescu, pl.1,
Fig. c.
1947 Tintinnopsella carpathica (Murgeanu and Filipescu) -
Colom, pl. 19, Figs. 4e5.
1957 Tintinnopsella carpathica (Murgeanu and Filipescu) -
Durand Delga, pl. 1, Fig. 5.
196 4 Tintinnopsella carpathica (Murgeanu and Filipescu) -
Remane, pl. 4, Figs. 23-25.
1973 Tintinnopsella carpathica (Murgeanu and Filipescu) - Fur-
razola Bermúdez and Kreisel, pl. 4, Fig. 1.
1985 Tintinnopsella carpathica (Murgeanu and Filipescu) -
Remane, Figs. 12, 18.21e24.
2013 Tintinnopsella carpathica (Murgeanu and Filipescu) -
Lakova and Petrova, pl. 5, Figs. 38-45.
Material: Río Seco de la Cara Cura (Lt37).
Diagnosis: Hyaline calcitic, bell-shaped lorica with a large oral
opening, slightly preoral constriction, and outwardly deected
collar. Aboral pole of lorica ends usually by a short caudal
appendage. Dimensions are 40e70
m
m in length and 70e120
m
min
width.
Occurrence and stratigraphic distribution: This species is
known from the whole of the Tethyan area, and its stratigraphic
range equeals that of the family Calpionellidae. In the Neuqu
en
Basin was mentioned previously in Tithonian and Berriasian levels
(Fernandez-Carmona et al., 1996; Fernandez Carmona and Riccardi,
1999). In the studied sections, it was recognized its small form at
the base of the Corongoceras alternans ammonite Andean Zones
(Upper Tithonian), as well as poorly preserved specimens in Ber-
riasian levels.
5. Stratigraphic distribution and biozonation
In the studied sections seven known species of Chitinoidellidae
and four known species of Calpionellidae are recognized: Chiti-
noidella boneti Doben, Chitinoidella hegarati Sallouhi, Boughdiri, and
Cordey, Chitinoidella elongata Pop, Borziella slovenica (Borza), Car-
pathella rumanica Pop, Dobeniella cf. pinaraensis (Furazola Bermu-
dez and Kreisel), Crassicollaria intermedia Durand Delga,
Crassicollaria massutiniana (Colom), Calpionella alpina Lorenz, and
Tintinnopsella carpathica (Murgeanu and Filipescu). However, both
families show different preservation grades due to neomorphism of
limestones, showing better preservation potential those of micro-
crystalline wall (chitinoidellids).
In the Tethyan Realm chitinoidellids attained a dominant posi-
tion in the plankton during the later Early Tithonian until the Late
Tithonian (Fallauxi to Microcanthum ammonite Standard Zones),
when they were replaced by hyaline calpionellids (e.g. Borza, 1969,
1984; Remane,1985; Benzaggagh and Atrpos, 1995; Reh
akov
a and
Michalík, 1997; Reh
akov
a, 2002; Sallouhi et al., 2011; Lakova and
Petrova, 2013). In the Neuqu
en Basin the rst chitinoidellid spec-
imen has been recognized within the Virgatosphinctes mendozanus
to the Argentiniceras noduliferum Andean Ammonite Zones.
The Andean Virgatosphinctes mendozanus Zone has been corre-
lated differently by diverse methodologies: Ammonite biostratig-
raphy suggest that this zone correlates with the uppermost
Darwini?eSemiforme Standard Zones (Riccardi, 2008; 2015),
however, this interval starts with a reverse polarity and attains a
polarity pattern that comprises more than just normal polarity.
Cyclostratigraphic data provided by Kietzmann et al. (2015) sug-
gests its correlation with the lower part of the Fallauxi Standard
Zone (following the absolute scale of Gradstein et al., 2012), but
detailed magnetostratigraphy carried out by Iglesia Llanos et al.
(2017) would indicate its correlation with the uppermost Hybo-
notumeDarwini Standard Zone. The Andean Argentiniceras nod-
uliferum ammonite Zone is correlated by ammonite biostratigraphy,
cyclostratigraphy and magnetostratigraphy to the uppermost
Occitanicaelowermost Boissieri Standard Zone (uppermost Early
Berriasian to lowermost upper Berriasian) (Riccardi, 2015;
Kietzmann et al., 2015; Iglesia Llanos et al., 2017). However, other
biostratigraphic postures suggest its correlation with the Early
Berriasian JacobieOccitanica Standard Zones (Vennari et al., 2014).
The rst hyaline calpionellid in the Neuqu
en Basin appears in
the transition between the Windhauseniceras internispinosum and
Corongoceras alternans ammonite Zones, corresponding to the up-
permost part of the Microcanthum Standard Zone (Zeiss and
Leanza, 2008, 2010; Riccardi, 2015; Kietzmann et al., 2015; Iglesia
Llanos et al., 2017) similarly to the Tethys area (e.g. Remane,
1985; Lakova and Petrova, 2013).
The present distribution of calpionellid species allows recog-
nizing two of the calpionellid standard zones in the Neuqu
en Basin:
5.1. Chitinoidella zone
In the Tethys, the rst occurrence (FO) of microgranular chiti-
noidellids denes the lower boundary of the Chitinoidella zone,
whereas the upper boundary coincides with the FO of Praetinti-
nopsella andrusovi Borza or the FO of Calpionellidae Bonet
(Borza,1984; Lakova and Petrova, 2013). The Chitinoidella Zone is
divided into two interval subzones: Dobeni Subzone (Grandesso,
1977) and Boneti Subzone (Borza, 1984). After the systematic
revision of chitinoidellids, Pop (1997) dened their lower
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164160
boundaries at the FO of Longicollaria dobeni (Borza) for the Dobeni
Subzone, and at the FO of Chitinoidella boneti Doben for the Boneti
Subzone. Another subdivision of this zone was given by R^
eh
anek
(1990), Grün and Blau (1997), and Sallouhi et al. (2011). However,
Lakova et al. (2016) consider two allocated chitinoidellid subzones
as sufcient.
In the Neuqu
en Basin Longicollaria dobeni (Borza) was not
recognized. However, Dobeniella cf. pinaraensis (Furazola Bermudez
and Kreisel), and Borziella slovenica (Borza), which is a typical
component of the Dobeni Subzone, represent to the rst occurrence
of chitinoidellids in the Vaca Muerta Formation (Virgatosphinctes
mendozanuseAulacosphinctes proximus Zones). The FO of Chitinoi-
della boneti Doben indicate the base of the Boneti Subzone, and
coincides approximately with the base of the Windhauseniceras
internispinosum ammonite Zone. The FO of hyaline calpionellids
occurs in the transition between the Windhauseniceras inter-
nispinosum and Corongoceras alternans ammonite Zones.
The interval between the FO of Dobeniella cf. pinaraensis (Fur-
azola Bermudez and Kreisel) and the FO of Chitinoidella boneti
Doben could be assigned to the Dobeni Subzone. However, this
interval should be studied in more detail to establish more pre-
cisely its correlation with the Tethyan subzone. On the other hand,
the interval between the FO of Chitinoidella boneti Doben and the
FO of hyaline calpionellids can be assigned to the Boneti Subzone. It
is noteworthy that similar low-diversity associations are repre-
sented in Mexico and Cuba, where the Dobeni Subzone is also
poorly represented, and the Boneti Subzone is well dened
(Pszcz
ołkowski and Myczy
nski, 2010; L
opez-Martínez et al., 2015).
5.2. Crassicollaria zone
The Crassicollaria Zone was dened by Alleman et al. (1971)
between the FO of hyaline-walled calpionellids and the explo-
sionof the spherical form of Calpionella alpina Lorenz. This zone is
known from practically the whole of the Tethyan area, and was
divided into two or three subzones by different authors (see Lakova
and Petrova, 2013).
In the Neuqu
en basin this zone needs a detailed revision, but
data provided in this work indicate a typical association of Tintin-
nopsella carpathica (Murgeanu and Filipescu), Calpionella alpina
Lorenz, Crassicollaria intermedia Durand Delga and Crassicollaria
massutiniana Colom. The lower boundary is determined by the FO
of Calpionellidae and coincides with the transition between the
Windhauseniceras internispinosum and Corongoceras alternans
ammonite Zones. Its upper boundary is not dened in the present
work. A similar association was reported by L
opez-Martinez et al.
(2013a, b, 2015) in Mexico, which again shows good consistency
between the two regions.
6. Discussion
The distribution of calpionellids in the studied sections of the
Vaca Muerta Formation show good similarities with the calpio-
nellid zones in the Tethys. However, chitinoidellids show a wider
temporal distribution, since Tethyan chitinoidellids are restricted to
the uppermost Lower Tithonian and Upper Tithonian (Falaux-
ielowermost Microcanthum ammonite Standard Zones). Therefore,
the presence of chitinoidellids as down as the Virgatosphinctes
mendozanus Zone would support the cyclostratigraphic data by
Kietzmann et al. (2015) of a correlation with the Fallauxi Standard
Zone, but magnetostratigraphic scale by Iglesia Llanos et al. (2017)
seems to be a stronger argument for an older position.
The available data on the timing of the rst appearances of
chitinoidellids in the Tethys are rather scarce (Lakova and Petrova,
2013), and in many Tithonian sections of the Tethyan Realm the
earliest species of Chitinoidellidae (from Dobeni Subzone) were not
registered, only the upper Boneti Subzone of Chitinoidella Zone
being documented (Enay and Geyssant, 1975; Lugo, 1975; Cecca
et al., 1989; Benzaggagh et al., 2010; Boughdiri et al., 2006; L
opez
Martínez et al., 2013a, b, 2015). Even though the Dobeni Subzone
would correlate with the FallauxiePonti Santard Zones (e.g.,
Benzaggagh and Atrpos, 1995; Michalík et al., 2009; Benzaggagh
et al., 2010), Keisser-Weidich and Schairer (1990) reported some
chitinoidellid sections from the Hybonotum Standard Zone in
Northern Calcareous Alps, and also Platonov et al. (2014) place the
base of the Chitinoidella Zone close to ammonites from this zone.
On the other hand, L
opez-Martínez et al. (2015) reported chiti-
noidellids at higher position than the Remanei Subzone in Mexico.
Nevertheless, the presence of chitinoidellids up to Early Berriasian
in the Neuqu
en Basin could be explained by reworking of Late
Tithonian deposits in marginal positions of the basin during Ber-
riasian times or by differences related to ecological controls.
Although the upper Substeueroceras koeneni and Argentiniceras
noduliferum Zones represent deposits of forced regressions, sedi-
mentological and seismic data indicate an aggradational low-
gradient depositional system, with high sedimentation rates, and
no evidence of large erosion features (Mitchum and Uliana, 1985;
Kietzmann et al., 2014, 2016; Gonzalez et al., 2016). Therefore,
this hypothesis cannot be rejected, but it seems unlikely.
The development of microgranular calpionellids in the Tethys
occurred at two specic times, during Tithonian (chitinoidellids)
and Early Albian (precollomiellids), with a time gap of ~20 Ma (e.g.,
Remane, 1985; Reh
akov
a and Michalík, 1997; Reh
akov
a, 2002;
~
nez-Useche et al., 2016). That allows Reh
akov
a and Michalík
(1997) and Reh
akov
a (2002) to speculate about similar paleocli-
matic and paleoeanographic conditions during both time intervals,
probably in connection with supersaturation of calcium carbonate
in sea-water chemistry. Reh
akov
a et al. (2016) show that calpio-
nellid diversity maxima and crises may coincide either with metal
poisoning or with salinity changes, as well as global climate
changes by active volcanoes. Indeed, different triggers have been
proposed for crises in marine biocacication, such as changes in
nutrient levels, temperature, and seawater chemistry, etc. Weissert
and Erba (2004) indicate that whereas increased nutrient avail-
ability could have affected biocalcication, changes in palae-
otemperature do not appear to be as signicant with respect to
carbonate production in the Late JurassiceEarly Cretaceous. In fact,
stable isotopic data published by Scasso et al. (2005) from the Vaca
Muerta Formation show similar values to those of the Tethys, and
surface water temperature of 25e30
C.
Weissert and Erba (2004) relate biocalcication crises with
volcanic activity and decrease in pH and carbonate ion concentra-
tion of surface waters. Also, it is important to keep in mind that Late
Jurassic-Early Cretaceous times were characterized by high calci-
cation, elevated PCO
2
and lower pH than modern oceans (H
onisch
et al., 2012). On the other hand, the eastern margin of the Pacic
Ocean was associated with an active subduction zone and a vol-
canic arc, so it is very likely that the waters chemistry of the Pacic
were oversaturated in Ca
2þ
and Mg
2þ
, which could have favored
the proliferation of porcelaneous forms, as in the case of other
microfossils. For example, hyaline and porcelaneous foraminifera
have different mechanism for tests calcication, with different
ranges in pH conditions and Mg/Ca ratios (de Nooijer et al., 2009).
In any case, these argumentations are only speculative and more
detailed and regional studies are needed in order to understand the
chitinoidellid distribution, as well as the application of Tethyan
calpionellid standard zones in the Neuqu
en Basin.
Although it is still necessary to carry out further studies in other
stratigraphic sections of the Neuqu
en Basin in order to establish the
applicability of the biostratigraphy based on calpionellids, standard
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164 161
calpionellids zones were recognized previously in the subsurface of
the basin (see Gonz
alez Tomassini et al., 2015), but since these are
unpublished reports by the author, they have not yet been properly
demonstrated. The presence of Tintinnopsella,Crassicollaria and
Calpionella forms in the Corongoceras alternans and Substeueroceras
koeneni ammonite Zones were also reported in other sections of the
Vaca Muerta Formation by Fern
andez Carmona et al. (1996), and
indicate that conditions for hyaline calpionellids were also favor-
able at these latitudes.
The denition of the Boneti Subzone of the Chitinoidella Zone
allowed a valuable anchorage of Andean ammonite zones to bio-
zones in the Tethys. Correlation of the Windhauseniceras inter-
nispinosum Zone with the Simplisphinctes Subzone of the
Microcanthum Zone of the Standard Zonation was originally pro-
posed by Leanza (1945) and later conrmed by Zeiss and Leanza
(2008, 2010) on the basis of the presence of the genus Simpli-
sphinctes Tavera. These conclusions were also ratied by Fern
andez
Carmona and Riccardi (1998), who reports for the rst time Chiti-
noidella boneti,C. cf. pinarensis, and Chitinoidella spp. in the
W. internispinosum Zone, from the northern part of Sierra de la Cara
Cura. Also the Chitinoidella Zone was recognized in the subsurface
(El Trapial block, see Gonzalez-Tomassini et al., 2015), which would
indicate that at least the Boneti Subzone it is a well-dened sub-
zone in the Neuqu
en basin.
The presence of large forms of Calpionella alpina Lorenz, Cras-
sicollaria sp. and Tintinnopsella sp. in association with ammonites of
the Corongoceras alternans and lowermost part of the Sub-
steueroceras koeneni Zones were reported by Fern
andez Carmona
et al. (1996) for the Aconcagua Subbasin. Besides the small form
of Calpionella alpina Lorenz, together with large forms of Tintinop-
sella carpathica (Murgeanu and Filipescu), was reported at Chacay
Melehue (Fern
andez Carmona and Riccardi, 1999) with ammonites
of the Substeueroceras koenenieArgentiniceras noduliferum Zones,
which allows to Riccardi (2015) to conrm the extension of the
Substeueroceras koeneni Zone into the Berriasian. These data, and
those presented in this work, strongly suggest that the study of
calpionellids will contribute to clarify the doubts that still seem to
be with some correlations between the Andean and Tethyan
ammonite zones. New detailed studies in other stratigraphic sec-
tions along the basin, will allow establishing with more precision
the applicability of the Berriasian-Valanginian calpionellid zones.
So far, the biggest difference with Tethys is the persistence of chi-
tinoidellids into Berriasian levels.
7. Conclusions
The distribution of eleven known species of chitinoidellids and
calpionellids allows recognizing the Chitinoidella and Crassicollaria
Zones in the Neuqu
en Basin. The Chitinoidella Zone correlates with
the Virgatosphinctes mendozanuseWindhauseniceras inter-
nispinosum Andean Ammonite Zones, and can be divided into two
subzones, of which the upper one can be assigned to the Boneti
Subzones. The lower subzone is represented only by Dobeniella cf.
pinaraensis and Borziella slovenica, and corresponds with the Vir-
gatosphinctes mendozanuseAulacosphinctes proximus Andean
ammonite Zones. The Boneti Subzone includes Chitinoidella boneti,
Ch. hegarati,Ch. elongata,Borziella slovenica, and Dobeniella cf.
pinaraensis, and corresponds to the Windhauseniceras inter-
nispinosum Andean ammonite Zones.
The Crassicollaria Zone contains of Tintinnopsella carpathica,
Calpionella alpina,Crassicollaria intermedia, and Cr. massutiniana.
Although in the Neuqu
en Basin this zone needs a detailed revision,
data provided in this work indicate it correlation at least with the
Corongoceras alternans ammonite Zone.
Species distribution of chitinoidellids and calpionellids in the
Neuqu
en Basin show some differences with the Tethys, particularly
chitinoidellids that persists until the Early Berrisian, but also show
good similarity with the Tithonian-Berriasian in Mexico and Cuba.
Acknowledgment
This research has been done under the framework of the PICT-
2015-0206 project supported by the Agencia Nacional de
Promoci
on Cientíca y Tecnol
ogica. I am especially grateful to Dr.
A.C. Riccardi (Universidad Nacional de La Plata y Museo, Argentina)
for the ammonite identication, and biozones determination, as
well as for the helpful discussions regarding the biostratigraphy of
the Vaca Muerta Formation. I also thank Dr. J. Blau (Justus-Liebig-
Universit
at Gie
b
en, Germany) for the early discussion about chiti-
noidellids. I was honored to have the reviews of Dr. R. L
opez Mar-
tinez (Universidad Nacional Aut
onoma de M
exico, M
exico), and Dr.
J. Michalík, whose comments and suggestions have improved the
original manuscript. Finally, I would like to thank the editorial work
of Dr. F. Vega (Regional Editor JSAES).
References
Alleman, F., Catalano, R., Fares, F. and Remane, J. 1971. Standard calpionellid zona-
tion (Upper TithonianeValanginian) of the Western Mediterranean province.
In: Farinacci, A. (Ed.), Proceedings of the II Planktonic Conference, Roma 1970,
1337e1340.
Aberhan, M., 2001. Bivalve palaeobiogeography and the Hispanic Corridor: time of
opening and effectiveness of a proto-Atlantic seaway. Palaeo 165, 375e394.
http://dx.doi.org/10.1016/S0031-0182(00)00172-3.
Ballent, S.C., Whatley, R., 2000. The composition of Argentinean Jurassic marine
ostracods and foraminiferal faunas: environment and zoogeography. Geobios
33, 365e376.
Ballent, S., Concheyro, A., N
a~
nez, C., Pujana, I., Lescano, M., Carignano, A.P.,
Caram
es, A., Angelozzi, G., Ronchi, D., 2011. Microf
osiles mesozoicos y cen-
ozoicos. In: Leanza, H.A., Arregui, C., Carbone, O., Danieli, J.C., Vall
es, J.M. (Eds.),
Geología y Recursos Naturales de la Provincia del Neuqu
en. Asociaci
on Geo-
l
ogica Argentina, Buenos Aires, pp. 489e528.
Benzaggagh, M., Atrpos, F., 1995. The Chitinoidella and Crassicollaria Zones (Titho-
nian) in the Inner Part of the Prerif (Morocco). New Data and Correlation with
Ammonite Zones, vol. 320. Comptes Rendus de lAcad
emie des Sciences Paris,
S
erie II a, pp. 227e234.
Benzaggagh, M., Cecca, F., Rouget, I., 2010. Biostratigraphic distribution of am-
monites and calpionellids in the Tithonian of the internal Prerif (Msila area,
Morocco). Pal
aontol. Z. 84 (2), 301e315.
Boller, K., 1963. Stratigraphisclie und mikropal
aontologische Untersuchungen im
Neocom der Klippendecke (
ostlich der Rhone). Ecl. Geol. Helv. 56, 15e102.
Bonet, F., 1956. Zonicaci
on microfaunistica de las calizas cret
acicas del Este de
M
exico. dXX. Congr. Geol. Intern., Mexico.
Borza, K., 1966. Neue Arten der Gattung Chitionodella Doben, 1962 in den West-
karpaten. Geologicky Sbornik Slovenkej Akademie Vied 17, 259e265.
Borza, K., 1969. Die Mikrofacies und Mikrofossilien des Oberjuras und der Unterk-
reide der Klippen Zone der Westkarpaten. Slovak Academy of Sciences Pub-
lishing House, Bratislava, 302 pp.
Borza, K., 1984. The Upper Jurassic eLower Cretaceous parabiostratigraphic scale
on the basis of Tintinninae, Cadosinidae, Stomiosphaeridae, Calcisphaerulidae
and other microfossils from the West Carpathians. Geologický Zborník e
Geologica Carpathica 35, 539e550.
Boughdiri, M., Sallouhi, H., Ma^
alaoui, K., Soussi, M., Cordey, F., 2006. Calpionellid
zonation of the JurassiceCretaceous transition in North-Atlasic Tunisia. Upda-
ted Upper Jurassic stratigraphy of the Tunisian Troughand regional correla-
tions. Comptes Rendus G
eosciences 338 (16), 1250e1259.
Bown, P., Concheyro, A., 2004. Lower Cretaceous Calcareous Nannoplankton from
the Neuqu
en Basin, Argentina. Marine Micropaleontology 52, 51e84.
Cadisch, J., 1932. Ein Beitrag zum Calpionellen problem. Geologisches Rundschau
23, S. 241.
Cecca, F., Enay, R., Le H
egarat, G., 1989. L'Ardescien (Tithonique sup
erieur) de la
r
egion stratotypique: s
eries de r
ef
erence et faunes (ammonites, calpionelles) de
la bordure ard
echoise. Documents Laboratoire G
eologie Lyon 107, 115 pp.
Colom, G. 1947. Estudios sobre la sedimentaci
on profunda de las Baleares desde el
Lias superior al Cenomanense-Turonense. dCons. Sup. Inv. Cient., Publ. Inst.
Lucas Mallada, 147 p.
Colom, G., 1948. Fossil Tintinnids: loricated infusoria of the order of the Oligotricha.
J. Paleont. 22, 233.
Carozzi, A.V., Bercowski, F., Rodriguez, M., Sanchez, M. y, Vonesch, T., 1981. Estudio
de microfacies de la Formaci
on Chachao (Valanginiano), Provincia de Mendoza.
8 Congreso Geol
ogico Argentino. Actas 2, 545e565. San Luis.
Damborenea, S.E. 2002. Jurassic evolution of Southern Hemisphere marine palae-
obiogeographic units based on benthonic bivalves. Geobios 35, M
emoire
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164162
Sp
ecial(24):51e71.
Darwin, C., 1846. Geological Observations on South America, Being the Third Part of
the Geology of the Voyage of the Beagle, under the Command of Capt. Firtz Roy,
RN, during the Years 1832 to 1836. Smith, Elder and Co., London, 268 pp.
de Nooijer, L.J., Toyofuku, T., Kitazato, H., 2009. Foraminifera promote calcication
by elevating their intracellular pH. PNAS 106 (36), 15374e15378 .
Doben, K., 1963. Über Calpionelliden an der Jura/Kreide-Grenze. Mitteilungen der
Bayerisches Staatssammlung für Pal
aontologie und historische Geologie 3,
35e50.
Durand-Delga, M., 1957. Nouvelles donnees sur le Jurassique superieur et le Cretace
inferieur du Chenoua (Nord-Algerois). Bull. Soc. Geol. Fr. (6) 7, S. 1129.
Enay, R., Geyssant, J.R. 1975. Faunes tithoniques des chaînes b
etiques (Espagne
m
eridionale). Colloque sur la limite jurassique-cr
etac
e, Lyon, Neuch^
atel, 1973.
M
emoir BRGM 86, 39e55.
Fern
andez Carmona, J. y Riccardi, A.C. 1998. Primer hallazgo de Chitinoidella Doben
en el Tithoniano de la Argentina. 10 Congreso Latinoamericano de Geología y 6
Congreso Nacional de Geología Econ
omica 1: 292, Buenos Aires.
Fernandez Carmona, J., Riccardi, A.C., 1999. Primer reporte de Calpion
elidos
calc
areos del Cret
acico inferioreBerriasiano de la Provincia del Tethys en la
República Argentina: Conexi
on Tethys-Pacíco. Boletim do Simposio sobre o
Cret
aceo do Brasil, pp. 465e466.
Fern
andez Carmona, J.,
Alvarez, P.P., Aguirre-Urreta, M.B., 1996. Calpion
elidos
calc
areos y grupos incerta sedis en la Formaci
on Vaca Muerta (Tithoniano su-
perior), alta cordillera mendocina, Argentina. 13ºCongreso Geol
ogico Argentino
y3ºCongreso de Exploraci
on de Hidrocarburos. Actas 5, Mendoza, Argentina,
p. 225.
Furazola Bermudez, G., Kreisel, K., 1973. Los tintinidos fosiles de Cuba. Revista
Tecnol
ogica 11 (1), 27e45.
Groeber, P., 1946. Observaciones geol
ogicas a lo largo del meridiano 70. Hoja Chos
Malal. Revista de la Sociedad Geol
ogica Argentina 1, 178e208.
Gonzalez, G., Vallejo, D., Kietzmann, D.A., Marchal, D., Desjardins, P., Gonzalez
Tomassini, F., Gomez Rivarola, L., Dominguez, F., 2016. Transecta Regional de la
Formaci
on Vaca Muerta Integraci
on de sísmica, registros de pozos, coronas y
aoramientos. IAPG-AGA, 252 pp.
Gonz
alez Tomassini, F., Kietzmann, D.A., Fantín, M.A., Crousse, L.C.,
Reinjenstein, H.M., 2015. Estratigrafía y an
alisis de facies de la Formaci
on Vaca
Muerta en el
area de El Trapial. Cuenca Neuquina, Argentina, pp. 78e89. Pet-
rotecnia 2015/2.
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2012. The Geologic Time Scale.
Elsevier, Oxford, pp. 31e42.
Grandesso, P., 1977. Gli strati a Precalpionellidi del Titoniano e I loro raporti conil
Rosso Ammonitico Veneto. Memoire di Scienze Geologiche 32, 1e15.
Grün, J., Blau, B., 1997. Late Jurassic/Early Cretaceous revised calpionellid zonal and
subzonal division and correlation with ammonite and absolute time scales.
Mineralia Slovaca 29, 297e300.
H
onisch, B., Ridgwell, A., Schmidt, D.N., Thomas, T., Gibbs, S.J., Sluijs, A., Zeebe, R.,
Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C.,
Royer, D.L., Barker, S., Marchitto Jr., T.M., Moyer, R., Pelejero, C., Ziveri, P.,
Foster, G.L., Williams, B., 2012. The geological record of ocean acidication.
Science 335, 1058. http://dx.doi.org/10.1126/science.1208277.
Iglesia Llanos, M.P., Kietzmann, D.A., Kohan Martinez, M., Palma, R.M., 2017. Mag-
netostratigraphy of the Upper Jurassic-Lower Cretaceous of Argentina: impli-
cations for the Jurassic-Cretaceous boundary in the Neuqu
en Basin. Cretac. Res.
70, 189e208.
Ivanova, D.K., Kietzmann, D.A., 2016. Calcareous Dinoagellate Cysts from the
Tithonian - Valanginian Vaca Muerta Formation in the Southern Mendoza Area
of the Neuqu
en Basin, Argentina. VI Simposio Argentino del Jur
asico, Malargüe.
Keisser-Weidich, B., Schairer, G., 1990. Stratigraphiche Korrelation von Ammoniten,
Calpionellen und Nannoconiden aus Oberjura und Unterkreide der N
ordlichen
Kalkalpen. Eclogae Geologicae Helvetiae 83 (2), 353e387.
Kietzmann, D.A., Palma, R.M., 2009. Microcrinoideos saccoc
omidos en el Tithoniano
de la Cuenca Neuquina ¿Una presencia inesperada fuera de la regi
on del Tethys?
Ameghiniana 46, 695e700.
Kietzmann, D.A., Palma, R.M., 2014. Early Cretaceous crustacean microcoprolites
from Sierra de la Cara Cura, Neuqu
en Basin, Argentina: Taphonomy, environ-
mental distribution, and stratigraphic correlation. Cretac. Res. 49, 214e228.
Kietzmann, D.A., Palma, R.M., Bressan, G.S., 2008. Facies y microfacies de la rampa
tithoniana-berriasiana de la Cuenca Neuquina (Formaci
on Vaca Muerta) en la
secci
on del arroyo Loncoche eMalargüe, provincia de Mendoza. RAGA 63 (4),
696e713.
Kietzmann, D.A., Blau, J., Riccardi, A.C., Palma, R.M. 2011a. An interesting nding of
chitinoidellids (Clapionellidea Bonet) in the Jurassic-Cretaceous boundary of
the Neuqu
en Basin. XVIII Congreso Geol
ogico Argentino, Actas: pp. 1480e1481,
Neuqu
en.
Kietzmann, D.A., Martín-Chivelet, J., Palma, R.M., L
opez-G
omez, J., Lescano, M.,
Concheyro, A., 2011b. Evidence of precessional and eccentricity orbital cycles in
a Tithonian source rock: the mid-outer carbonate ramp of the Vaca Muerta
Formation, Northern Neuqu
en Basin, Argentina. AAPG Bull. 95 (9), 1459e1474.
Kietzmann, D.A., Palma, R.M., Riccardi, A.C., Martín-Chivelet, J., L
opez-G
omez, J.,
2014. Sedimentology and sequence stratigraphy of a Tithonian - Valanginian
carbonate ramp (Vaca Muerta Formation): a misunderstood exceptional source
rock in the southern Mendoza area of the Neuqu
en Basin, Argentina. Sediment.
Geology 302, 64e86.
Kietzmann, D.A., Palma, R.M., Iglesia Llanos, M.P. 2015. Cyclostratigraphy of an
orbitally-driven Tithonian-Valanginian carbonate ramp succession, Southern
Mendoza, Argentina: Implications for the Jurassic-Cretaceous boundary in the
Neuqu
en Basin. Sed. Geo. 315:29e46.
Kietzmann, D.A., Ambrosio, A., Suriano, J., Alonso, S., Gonz
alez Tomassini, F.,
Depine, G., Repol, D., 2016. The Vaca Muerta-Quintuco system (Tithonian e
Valanginian) in the Neuqu
en Basin, Argentina: a view from the outcrops in the
Chos Malal fold and thrust belt. AAPG Bull. 100 (5), 743e771.
Lakova, I., Petrova, S., 2013. Towards a standard Tithonian to Valanginian calpio-
nellid zonation of the Tethyan Realm. Acta Geologica Polonica 63 (2), 201e221.
http://dx.doi.org/10.2478/agp-2013-0008.
Lakova, I., Stoykova, K., Ivanova, D., 1999. Calpionellid, nannofossil and calcareous
dinocyst bioevents and integrated biochronology of the Tithonian to Val-
anginian in the Western Balkanides, Bulgaria. Geologica Carpathica 50,
151e158.
Lakova, I, Petrova, S, Reh
akov
a, D. 2016. High-diversity chitinoidellid associations
from the West Balkan (Bulgaria) correlated with their record in the Western
Carpathians. In:
Sujan, M. (Ed.), Environmental, Structural and Stratigraphical
Evolution 10th ESSEWECA Conference, Abstract Book (online version), 1st-2nd
December 2016, Bratislava, Slovakia.
Leanza, A.F., 1945. Amonites del Jur
asico superior y del Cretacico inferior de la Sierra
Azul, en la parte meridional de la provincia de Mendoza. Anales Museo La Plata,
n.s, pp. 1e99.
Leanza, H.A., 2009. Las principales discordancias del Mesozoico de la Cuenca
Neuquina según observaciones de supercie. Revista del Museo Argentino de
Ciencias Naturales 11, 145e184.
Leanza, H.A., Marchese, H.G., Riggi, J.C., 1977. Estratigrafía del Grupo Mendoza con
especial referencia a la Formaci
on Vaca Muerta entre los Paralelos 35ºy40ºl.s.
Cuenca Neuquina-Mendocina. Revista de la Asociaci
on Geol
ogica Argentina 32,
190e208.
Legarreta, L., Gulisano, C.A., 1989. An
alisis estratigr
aco de la Cuenca Neuquina
(Tri
asico Superior-Terciario Inferior). In: Chebli, G.A., Spalletti, L.A. (Eds.),
Cuencas Sedimentarias Argentinas. Serie Correlaci
on Geol
ogica 6, Tucum
an,
pp. 221e243.
Legarreta, L., Kozlowski, E., 1981. Estratigrafía y sedimentología de la Formaci
on
Chachao, provincia Mendoza. 8ºCongreso Geol
ogico Argentino 2, 521e543.
Legarreta, L., Uliana, M.A., 1991. JurassiceCretaceous marine oscillations and ge-
ometry of Back Arc Basin, Central Argentina andes. In: McDonald, D.I.M. (Ed.),
Sea Level Changes at Active Plate Margins: Process and Product. International
Assoacition of Sedimentologists, vol. 12. Special Publication, pp. 429e450.
Legarreta, L., Uliana, M.A., 1996. The Jurassic succession in west central Argentina:
stratal patterns, sequences, and paleogeographic evolution. Palaeogeogr.
Palaeoclimatol. Palaeoecology 120, 303e330.
Lescano, M., Kietzmann, D.A., 2010. Nanof
osiles Calc
areos de la Formaci
on Vaca
Muerta (Tithoniano inferior- Valanginiano inferior) en la regi
on sudoccidental
de la Provincia de Mendoza. 10 Congreso Argentino de Paleontología y Bio-
estratigrafía y 7 Congreso Latinoamericano de Paleontología, Actas, La Plata, p.
94.
L
opez-Martínez, R., Barrag
an, R., Reh
akov
a, D., 2013a. The Jurassic/Cretaceous
boundary in the Apulco area by means of calpionellids and calcareous di-
noagellates: an alternative to the classical Mazatepec section in eastern
Mexico. J. S. Am. Earth Sci. 47, 142e151.
L
opez-Martínez, R., Barrag
an, R., Reh
akov
a, D., Cobiella-Reguera, J.L., 2013b. Cal-
pionellid distribution and microfacies across the Jurassic/Cretaceous boundary
in western Cuba (Sierra de los
Organos). Geologica Carpathica 64 (3), 195e208.
L
opez-Martínez, R., Barrag
an, R., Reh
akov
a, D., Martini, M., Eguiluz de Antu~
nano, S.,
2015. Calpionellid biostratigraphy, U-Pb geochronology and microfacies of the
Upper Jurassic-Lower Cretaceous Pimienta formation (Tamazunchale, San Luis
Potosí, central-eastern Mexico). Boletín de la Sociedad Geol
ogica Mexicana 67
(1), 75e86.
Lorenz, Th., 1902. Geologische Studien im Grenzgebiet zwischen helvetischer und
ostalpiner Fazies. II. Der südliche Rh
atikon. Ber. Natf. Ges. Freiburg/Br., 12, S. 35.
Lugo, J.E. 1975. Presencia de Chitinoidella sp. (Tintinnidea, Codonellidae) en el
Jur
asico del sureste de M
exico. Boletín Asociaci
on Mexicana De Ge
ologos Pet-
roleros XXVII (10e12): 451-465.
Manceda, R., Figueroa, D. 1993. La inversi
on del rift mesozoico de la faja fallada y
plegada de Malargüe. Provincia de Mendoza. 12 Congreso Geologico Argentino
y 2 Congreso de Exploraci
on de Hidrocarburos, Actas 3: 219e232, Buenos Aires.
Michalík, J., Reh
akov
a, D., Hal
asov
a, E., Lintnerov
a, O., 2009. The Brodno section ea
potential regional stratotype of the Jurassic/Cretaceous boundary (Western
Carpathians). Geologica Carpathica 60 (3), 213e232.
Mitchum, R.M., Uliana, M., 1985. Seismic stratigraphy of carbonate depositional
sequences, Upper Jurassic-Lower Cretaceous, Neuqu
en Basin, Argentina. In:
Berg, B.R., Woolverton, D.G. (Eds.), Seismic Stratigraphy 2. An Integrated
Approach to Hydrocarbon Analysis. American Association of Petroleum Geol-
ogists, Memoir 39, Tulsa, pp. 255e283.
Murgeanu, G., Filipescu, M., 1933. Calpionella carpathica n. sp. dans les Carpathes
roumaines. Notat. Biol. 1, S. 63.
Nowak, W.A., 1978. Semichitinoidella n. gen (Tintinnina) of the Upper Jurassic of the
Czorsz-tyn succession. Pieniny Klippen Belt (Carpathians, Poland). Rocz. Pol.
Tow. Geol. Krakow 48 (1), 3e25.
~
nez-Useche, F., Barrag
an, R., Canet, C., L
opez-Martínez, R., 2016. Record of upper
Aptianeelower Albian environmental perturbation in northeastern Mexico. J. S.
Am. Earth Sci. 70, 298e307.
Platonov, E., Lakova, I., Petrova, S., Arkadiev, V., 2014. Tithonian and Lower Berria-
sian calpionellid against ammonite biostratigraphy of the Dvuyakornaya For-
mation in eastern Crimea. Geologica Balcanica 43 (1e3), 63e76.
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164 163
Pop, G. 1997. R
evision syst
ematique des chitinoïdelles Tithoniennes des Carpathes
m
eridionales (Roumanie). Comptes Rendus de lAcad
emie des Sciences Paris,
S
erie II a, 324, 931e938.
Pop, G. 1998. Nouvelles chitinoïdelles Tithoniennes des Carpathes m
eridionales
Roumanie). Comptes Rendus de lAcad
emie des Sciences, Paris, S
erie de la t
erre
et des plan
etes, 326, 817e822.
Pszcz
ołkowski, A., Myczy~
nski, R., 2010. TithonianeEarly Valanginian evolution of
deposition along the proto-Caribbean margin of North America recorded in
Guaniguanico successions (western Cuba). J. S. Am. Earth Sci. 29, 225e253.
Ramos, V.A., 2010. The tectonic regime along the Andes: present-day and Mesozoic
regimes. Geol. J. 45, 2e25.
Reh
akov
a, D., 2002. Chitinoidella Trejo, 1975 in middle Tithonian Carbonate pelagic
sequences of the West Carpathian Tethyan area. Geologica Carpathica 53,
369e379.
Reh
akov
a, D., Michalík, J., 1997. Evolution and distribution of calpionellids ethe
most characteristic constituents of Lower Cretaceous Tethyan microplankton.
Cretac. Res. 18, 495e504.
Reh
akov
a, D., Michalík, J., Lakova, I, Petriva, S. 2016. Calpionellid tests malforma-
tions recorded in Upper Jurassic and Lower Cretaceous pelagic carbonates of the
Western Carpathians and Western Balcan - a tool for paleoenvironmental
interpretation. In:
Sujan, M. (Ed.), Environmental, Structural and Stratigraphical
Evolution 10th ESSEWECA Conference, Abstract Book (online version), 1st-2nd
December 2016, Bratislava, Slovakia.
R^
eh
anek, J. 1990. Calpionellids from the Jurassic and Cretaceous limestones on the
SE slope of the Bohemian Massif. Biostratigraphical and sedimentological study
from Mesozoicum of the Western Carpathian and Bohemian Massif. Knih. ZPN
9b, 185e208.
Remane, J., 1962. Zur Calpionellen-Systematik. N. Jb. Geol. Pal
aont., Mh. 1962, 8e24.
Remane, J., 1964. Untersuchungen zur Systematik und Stratigraphie der Calpio-
nellen in den Jura-Kreide-Grenzschichten des Vocontischen Troges. Palae-
ontographica, Abt. A 123, 1e57. Stuttgart.
Remane, J., 1971. Les Calpionelles, Protozoaires planctoniques des mers
m
esog
eennes de l
epoque secondaire. Annales Gu
ebhard 47, 369e432.
Remane, J., 1985. Calpionellids. In: Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.),
Plankton Stratigraphy 1. Cambridge Earth Science Series, pp. 555e571.
Riccardi, A.C., 1991. Jurassic and cretaceous marine connections between the
southeast Pacic and Tethys. Palaeogeography, Palaeoclimatology. Palae-
oecology 87 (1e4), 155e189.
Riccardi, A.C., 2008. El Jur
asico de la Argentina y sus amonites. Revista de la
Asociaci
on Geol
ogica Argentina 63, 625e643.
Riccardi, A., 2015. Remarks on the TithonianeBerriasian ammonite biostratigraphy
of west central Argentina. Volumina Jurassica 13, 23e52.
Sallouhi, H., Boughdiri, M., Cordey, F., 2011. Tithonian Chitinoidellids of the South-
Tethyan margin of the Maghreb: new data from Tunisia. Comptes Rendus
Palevol 10, 641e653.
Scasso, R.A, Alonso, S.M, Lan
es, S, Villar, H.J., Lippai, H. 2005. Geochemistry and
petrology of a Middle Tithonian limestone-marl rhythmite in the Neuqu
en
Basin, Argentina: depositional and burial history. In: Veiga, G.D., Spalletti, L.A.,
Howell, J.A., Schwarz, E. (eds.), The Neuqu
en Basin, Argentina: A Case Study in
Sequence Stratigraphy and Basin Dynamics. The Geological Society, Special
Publications 252: 207e229, London.
Smith, P.L., 1983. The Pliensbachian ammonite Dayiceras dayiceroides and early
Jurassic paleogeography. Can. J. Earth Sci. 20, 86e91. http://dx.doi.org/10.1139/
e83-008.
Stipanicic, P.N., 1969. El avance en los conocimientos del Jur
asico argentino a partir
del esquema de Groeber. Revista de la Asociaci
on Geol
ogica Argentina 24,
367e388.
Trejo, M., 1980. Distribuci
on estratigr
aca de los Tintínidos mesozoicos mexicanos.
Revista del Instituto Mexicano del Petr
oleo 12, 4e13.
Vennari, V.V., Lescano, M., Naipauer, M., Aguirre-Urreta, B., Concheyro, A.,
Schaltegger, U., Armstrong, R., Pimentel, M., Ramos, V.A., 2014. New constraints
on the Jurassic-Cretaceous boundary in the High Andes using high-precision U-
Pb data. Gondwana Research 26, 374e385.
Vergani, G.D., Tankard, A.J., Belotti, H.J., Welkink, H.J., 1995. Tectonic evolution and
paleogeography of the Neuqu
en Basin, Argentina. In: Tankard, A.J., Suarez
Soruco, R., Welsink, H.J. (Eds.), Petroleum Basins of South America. American
Association of Petroleum Geologists, Memoir 62, Tulsa, pp. 383e402.
Weissert, H., Erba, E., 2004. Volcanism, CO2, and paleoclimate: a late Jurassic eearly
Cretaceous C and O isotope record. J. Geol. Soc. 161, 1e8.
Yrigoyen, M.R., 1991. Hydrocarbon Resources of Argentina. Petrotecnia, Special
Issue, pp. 38e54.
Zeiss, A., Leanza, H.A., 2008. Interesting new ammonites from the Upper Jurassic of
Argentina and their correlation potential: new possibilities for global correla-
tions at the base of the Upper Tithonian by ammonites, calpionellids and other
fossil groups. Newsletters Stratigr. 42, 223e247.
Zeiss, A., Leanza, H.A., 2010. Upper Jurassic (Tithonian) ammonites from the litho-
graphic limestones of the Zapala region, Neuqu
en Basin, Argentina. Beringeria
41, 23e74.
D.A. Kietzmann / Journal of South American Earth Sciences 76 (2017) 152e164164
Project
Detailed multidiciplinary studies (sedimentologic, sequence stratigraphic, cyclostratigraphic, magnetostratigraphic and biostratigrafic) will be conducted in and mixed carbonate successions of the …" [more]
Project
Consortium Members: Shell - Total - Chevron Summary: This project is part of a four- years working plan for the completion of four doctoral theses at the University of Buenos Aires. It is propo…" [more]
Project
understanding how comes this "black shale" produces so much hydrocarbon comprehend how it was deposited define the geopolitics and the activities behind the scenes
Project
1- To evaluate the paleogeographic evolution of the Norpatagonian Massif during the Triassic - Early Jurassic. 4- To construct the first magnetoestratigraphic scale of the Late Jurassic - Early Cre…" [more]
Article
    The Late Jurassic – Early Cretaceous marine sediments of the Andean region show an excellent record of different calcareous microfossils, among which calcareous dinoflagellate cysts stand out. Detailed micropaleontological studies of Vaca Muerta Formation (Early Tithonian – Early Valanginian) in the southern Mendoza Neuquén Basin from three sections are conducted with the aim of establishing a... [Show full abstract]
    Conference Paper
    January 2017
      The J-K boundary is controversial at a global scale. Recently, it has been proposed that the J-K could be defined through microfossils (i.e. calpionellids) and/or magnetostratigraphy. The J-K boundary is comprised within the Vaca Muerta Formation that crops out in the Neuquén basin, Argentina, and represents one of the most important unconventional hydrocarbon reservoirs in the world. The Vaca... [Show full abstract]
      Article
      February 2017 · Cretaceous Research
        A systematic sedimentologic and paleomagnetic study was carried out in the Vaca Muerta Formation, cropping out in the northern Neuquén Basin, west-central Argentina. The studied section is c.280 m-thick and represents a carbonate ramp system bearing ammonites that indicate Late Jurassic–Early Cretaceous ages. The Vaca Muerta Formation is one of the most important unconventional hydrocarbon... [Show full abstract]
        Article
          In this contribution, López-Martínez et al. (2017) state that they achieved to define the position of the Jurassic- Cretaceous (J-K) boundary from the finding of Tethyan calpionellids in the Vaca Muerta Formation at Las Loicas section, Neuquén Basin. In this contribution, the authors analyzed ten samples in a reduced interval of the Vaca Muerta Formation where the boundary would lie. Las... [Show full abstract]
          Discover more