Upward high-energy field-aligned electron beams above the polar edge of auroral oval: observations from the SKA-3 instruments onboard the Auroral Probe (Interball-2)
It is commonly believed that Alfvénic waves observed in the ionosphere originated at trans ionospheric altitudes. However, recent observations of waves localized over skin depth scales, which are prone to Landau damping, and upward going Poynting flux suggest an ionospheric source. This theoretical study establishes the generation of electromagnetic waves at subcyclotron frequencies by localized static electric fields of the type commonly observed in the auroral ionosphere. The problem is formulated in terms of an eigenvalue system of equations which can describe all cold plasma normal modes, ion acoustic waves, and the various mode couplings induced by nonuniform electric fields. It is found that the velocity shear associated with the background electric field can significantly affect the observable properties of Alfvén waves. In particular, Alfvén waves can be destabilized when the magnitude of the velocity shear frequency exceeds the ion cyclotron frequency. Velocity shear can also significantly modify the ratio of E/B for these waves. The analysis further reveals electromagnetic Kelvin-Helmholtz instabilities, which are non-Alfvénic, with lower velocity shear thresholds. We model conditions encountered by several rockets and satellites, for example, FAST, Freja, AMICIST, AT2, to analyze wave properties and find that for typical ionospheric parameters the Kelvin-Helmholtz instabilities can generate electromagnetic waves with broadbanded spectra and other physical characteristics similar to observations. It is also shown that these waves are capable of resonant interaction with electrons over localized regions and hence may be important to understanding the generation of suprathermal electron bursts.
Ion data acquired by the Interball-Auroral satellite during crossings of the poleward boundary of the auroral oval in the 2200-0300 MLT sector at altitudes of ~2.5-3 Earth's radii reveal the frequent occurrence of thermal and superthermal H+ ion outflows. These events are strongly correlated with suprathermal electron fluxes and broadband electromagnetic ULF waves. The pitch angle distributions give evidence of transverse heating occurring in a latitudinally narrow layer at the boundary between the polar cap and the plasma sheet boundary layer, over a broad altitude range extending up to the satellite altitude. The distributions evolve with latitude, exhibiting fluxes maximizing at pitch angles close to 90° at the poleward edge of the outflow structure and at pitch angles closer to the upward field-aligned direction at lower latitudes. The data analysis suggests that ion cyclotron resonance interaction with ULF electromagnetic turbulence can account for the observed heating, even if we cannot totally exclude that transverse velocity shears and nonresonant stochastic transverse acceleration sometimes contribute to the ion energization in view of the dc electric field fluctuations commonly observed at the same times. During the expansion phase of substorms the region of transverse heating at the poleward boundary of the discrete auroral oval exhibits a latitudinal structure characterized by an alternate occurrence of latitudinally narrow regions of intense and weak ion fluxes. These latitudinal variations are associated with magnetic fluctuations at a frequency of ~2×10-2Hz, interpreted in terms of hydromagnetic Alfvén waves. Equatorward of the heating region, the energy spectrograms recorded during the same events exhibit an energy-latitude dispersion signature with energy decreasing as latitude decreases. This dispersion is the result of the velocity filter effect due to the large-scale convection and of the poleward motion of the ion heating source associated with the poleward motion of the high-latitude edge of the active auroral region. The poleward edge of the low-energy ion structure marked by a sharp latitudinal gradient of the ion flux appears as a reliable midaltitude criterion for identifying the poleward boundary of the soft electron layer lying at the high-latitude edge of the plasma sheet boundary layer.
ResearchGate has not been able to resolve any references for this publication.