ArticlePDF Available

Abstract and Figures

The two-year period of the latest satellite mission of the European Space Agency provided images that support analysis of ground vertical displacement on the mining areas. Satellite Sentinel-1A gives the possibility of carrying out such investigation in the cycle of 12 days. In the article the comprehensive introduction to the technological aspects of the processing of satellite images has been presented. The essential research was concentrated on the analysis of periodic vertical movement of the terrain surface located above underground mining operation from 2015 to 2016 . The SAR images processing was provided based on DInSAR method. The research confirmed relative high accuracy of vertical points movement observed based on SAR images in comparison with the classical leveling. Not only the high effectives of presented method has been proved, but also limitation of that solution has been discussed. The authors summarize their achievement giving directions for future research in this area.
No caption available
… 
No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
35=(*/Ą'*Ï51,&=< 
 :SURZDG]HQLH
2GSRF]ąWNXODW;;ZQDĞZLHFLHZGUDĪDQHVąUDGD-
URZHWHFKQRORJLHVDWHOLWDUQHVáXĪąFH]GDOQHPXZ\]QDF]DQLX
SU]HPLHV]F]HĔ]ZáDV]F]D SLRQRZ\FK SRZLHU]FKQL=LHPL
.LON D PLVML VD WHOLWDU Q\FK PL Q (56 (Q YLVDW 5 DGDUVDW
7HUUD6 $5; S R]ZROL áR VWRV XQNRZR GREU]H SR]QDü LFK
]DOHW\LRJUDQLF]HQLD1LHNWyUH]W\FKPLVMLQDGDOWUZDMą1D
SU]HVWU]HQLODWSRWZLHUG]LáDVLĊQLH]Z\NOHZ\VRNDGRNáDGQRĞü
ZRGQLHVLHQLXGRDQDOL]]PLDQZ\VRNRĞFLSRZLHU]FKQLSU]\
7UHĞü 'ZXOHWQLRNUHVQDMQRZV]HMPLVMLVDWHOLWDUQHM(XURSHMVNLHM$JHQFML.RVPLF]QHMSR]ZDODQDGRNRQDQLHSLHUZV]\FKJáĊEV]\FK
DQDOL]PRĪOLZRĞFL]DVWRVRZDQLD]REUD]RZDĔUDGDURZ\FKGODFHOyZZ\]QDF]DQLDSU]HPLHV]F]HĔSLRQRZ\FKQDWHUHQDFKSU]H-
NV]WDáFRQ\FK6DWHOLWD6HQWLQHO$GDMH PRĪOLZRĞFL SURZDG]HQLD WDNLFK DQDOL]Z F\NOX GQLRZ\P :DUW\NXOH GRNRQDQR
REV]HUQHJRZSURZDG]HQLDZWHFKQRORJLF]QHDVSHNW\SU]HWZDU]DQLDVDWHOLWDUQ\FK]REUD]RZDĔUDGDURZ\FK1DVWĊSQLHGRNRQDQR
DQDOL]\RNUHVRZ\FK]PLDQZ\VRNRĞFLRZ\FKSRZLHU]FKQLWHUHQXZODWDFKQDWHUHQLHJyUQLF]\PMHGQHM]SROVNLFKNR-
SDOĔJáĊELQRZ\FKQDED]LHWHFKQRORJLL',Q6$5:\ND]DQRSU]\GDWQRĞüRPDZLDQHMPHWRG\NLMHMZ]JOĊGQąZ\VRNąGRNáDGQRĞü
ZSRUyZQDQLX]NODV\F]QąQLZHODFMąWHFKQLF]Qą2PyZLRQRUyZQLHĪRJUDQLF]HQLDSUH]HQWRZDQHMPHWRG\NLSRGDMąFNLHUXQNL
SU]\V]á\FKEDGDĔZW\P]DNUHVLH
$EVWUDFW7KHWZR\HDUSHULRGRIWKHODWHVWVDWHOOLWHPLVVLRQRIWKH(XURSHDQ6SDFH$JHQF\SURYLGHGLPDJHVWKDWVXSSRUWWKHDQDO\VLV
RIJURXQGYHUWLFDOGLVSODFHPHQWLQPLQLQJDUHDV6DWHOOLWH6HQWLQHO$JLYHVWKHSRVVLELOLW\WRFDUU\RXWVXFKDQLQYHVWLJDWLRQ
LQWKHF\FOHRIGD\V,QWKLVSDSHUDFRPSUHKHQVLYHLQWURGXFWLRQWRWKHWHFKQRORJLFDODVSHFWVRIWKHSURFHVVLQJRIVDWHOOLWH
LPDJHVKDVEHHQSUHVHQWHG7KHHVVHQWLDOUHVHDUFKZDVIRFXVHGRQWKHDQDO\VLVRISHULRGLFYHUWLFDOPRYHPHQWVRIWKHWHUUDLQ
VXUIDFHORFDWHGDERYHXQGHUJURXQGPLQLQJRSHUDWLRQIURPWR7KH6$5LPDJHVSURFHVVLQJZDVSHUIRUPHGEDVHG
RQ',Q6$5PHWKRG7KHUHVHDUFKFRQ¿UPHGUHODWLYHKLJKDFFXUDF\RIYHUWLFDOSRLQWVPRYHPHQWREVHUYHGEDVHGRQ6$5
LPDJHVLQFRPSDULVRQZLWKWKHFODVVLFDOOHYHOLQJ1RWRQO\KLJKHIIHFWLYHQHVVRIWKHSUHVHQWHGPHWKRGKDVEHHQSURYHGEXW
DOVROLPLWDWLRQRIWKDWVROXWLRQKDVEHHQGLVFXVVHG7KHDXWKRUVVXPPDUL]HWKHLUDFKLHYHPHQWE\JLYLQJGLUHFWLRQVIRUIXWXUH
UHVHDUFKLQWKLVDUHD
$*+Z.UDNRZLH
'UKDELQĪ$JQLHV]ND
0DOLQRZVND)
0JULQĪ:RMFLHFK7:LWNRZVNL)
5R]ZDĪDQLDQDGGRNáDGQRĞFLą]REUD]RZDĔUDGDURZ\FK
VDWHOLW\6HQWLQHO$Z\NRU]\VWDQ\FKQDWHUHQDFKJyUQLF]\FK
(YDOXDWLRQRIWKH6HQWLQHO$UDGDULQWHUIHURPHWU\DFFXUDF\DSSOLHGLQPLQLQJ
DUHDV
PURIGUKDELQĪ5\V]DUG
+HMPDQRZVNL)
6áRZDNOXF]RZH
,Q6$56HQWLQHO$SU]HPLHV]F]HQLDSLRQRZHSRZLHU]FKQLJHRGH]MDPLHUQLFWZRJyUQLF]H
.H\ZRUGV
,Q6$56HQWLQHO$VXUIDFHVXEVLGHQFHJHRGHV\PLQHVXUYH\LQJ
SHZQ\FKSUREOHPDFK ]ZLą]DQ\FK]SRNU\FLHPVSyMQRĞFLą
UR]G]LHOF]RĞFLąDSU]HGHZV]\VWNLP]HVWRVXQNRZRZ\VRNLPL
NRV]WDPLSR]\VNDQLD]REUD]RZDĔVDWHOLWDUQ\FK1DOHĪ\MHGQDN
SRGNUHĞOLüĪHMHVWWRMHG\QDSUDNW\F]QLHWHFKQRORJLDNWyUD
REHFQLHSR]ZDODZVSRVyE]GDOQ\ZLDU\JRGQ\LQLH]DOHĪQ\
Z\]QDF]Dü ]PLDQ\Z\VRNRĞFLRZH ]QDF]Q\FK SRZLHU]FKQL
WHUHQX6KDQNHU=HENHU1DMQRZV]DPLVMD(XURSHMVNLHM
$JHQFML.RVPLF]QHM (6$ ]ZLą]DQD]VDWHOLWDPL6HQWLQHO
$L%SR]ZDODQDVSRU\RSW\PL]PJG\ĪWH]REUD]RZDQLD
VDWHOLWDUQHVąEH]SáDWQHLRJyOQLHGRVWĊSQH3R]ZROLWRRJUD-
QLF]\üGRW\FKF]DVRZ\PRQRSROVSHFMDOLVW\F]Q\FK¿UPZ]D-
NUHVLHSR]\VNDQLDDUFKLZL]DFMLLRSUDFRZDQLDUDGDURJUDPyZ
35=(*/Ą'*Ï51,&=<1U 
GOD FHOyZ Z\]QDF]DQLD SU]HPLHV]F]HĔ LRFKURQ\ WHUHQyZ
SU]HNV]WDáFRQ\FK :DUWR ]DWHPGEDü RUR]SRZV]HFKQLHQLH
LQIRUPDFMLGRW\F]ąF\FKPLVML6HQWLQHO]ZáDV]F]DZNUĊJDFK
]DZRGRZ\FKJHRGHWyZJyUQLF]\FKNWyU]\ZSHZQ\FKSU]\-
SDGNDFKZZDUXQNDFKRJUDQLF]RQ\FKPRĪOLZRĞFLSURZDG]H-
QLDQD]LHPQHJRPRQLWRULQJXSU]HPLHV]F]HĔPRJąZGUDĪDü
WĊ ]GDOQą WHFKQRORJLĊ 1LQLHMV]\ DUW\NXáVWDQRZL REV]HUQH
ZSURZDG]HQLH ZV]F]HJyá\SU]HWZDU]DQLD V\JQDáyZ UDGD-
URZ\FK6HQWLQHO$SRND]XMąFQDNRQNUHWQ\PSU]\NáDG]LH
GRNáDGQRĞüX]\VNLZDQąZVWRVXQNXGRQD]LHPQHMQLZHODFML
NODV\F]QHM'RW\FKF]DVRZHEDGDQLDZ]DNUHVLH]DVWRVRZDQLD
UDGDURJUDPyZPLVML6HQWLQHOĞZLDGF]ąRMHMSU]\GDWQRĞFLGR
Z\]QDF]DQLDSU]HPLHV]F]HĔSLRQRZ\FKWHUHQyZJyUQLF]\FK
]DUyZQRZ3ROVFH0LUHNMDNLQDĞZLHFLH&URVHWWR
LLQ6RZWHULLQ-HGQDNQDOHĪ\E\üĞZLDGRP\P
VSRU\FKRJUDQLF]HĔDWDNĪHV\VWHPDW\F]Q\FKEáĊGyZPHWRG\
:DUW\NXOH ZVND]DQR QS QD SUREOHP WHJR W\SX SU]HV]DFR-
ZDĔ UyĪQLF Z\VRNRĞFL ZVNXWHN QLHXZ]JOĊGQLRQ\FK ZSá\-
ZyZUXFKyZSR]LRP\FKWHUHQX2V]DFRZDQRLFKZ]JOĊGQ\
XG]LDá Z Z\]QDF]RQ\FK REQLĪHQLDFK ]ZUDFDMąFXZDJĊ QD
LFK ]QDF]HQLH JáyZQLH Z UHMRQDFK F]\QQ\FK LGXĪ\FKSyO
HNVSORDWDF\MQ\FK.RUHNWDW\FKEáĊGyZEĊG]LHSU]HGPLRWHP
GDOV]\FKEDGDĔ
 &KDUDNWHU\VW\NDSURJUDPX6HQWLQHO
(XUR SHMVND $JHQ FMD .RV PLF]QD (6$ UR] ZLMD QRZ ą
URG]LQĊVDWHOLWyZ6HQWLQHOZUDPDFKSURJUDPX&RSHUQLFXV
3LHUZV]\VDWHOLWD6HQWLQHO$6$]RVWDáZáąF]RQ\ZNZLHW-
QLXURNXRVLąJDMąFGRFHORZąRUELWĊVLHUSQLDURNX
'ZDODWD SyĨQLHMZNZLHWQLXURNXEOLĨQLDF]\VDWHOLWD
6HQWLQHO%6%GRáąF]\áGRZF]HĞQLHMV]HMPLVML1DSRNáD-
GDFK]DPRQWRZDQH]RVWDá\V\VWHP\6$56\QWKHWLF$SHUWXUH
5DGDUSR]ZDODMąFHQDGRVWDUF]DQLHGDQ\FKGRPRQLWRURZDQLD
UXFKyZSRZLHU]FKQLWUHQX68+(7&]ĊVWRWOLZRĞü
]REUD] RZDĔ Z RGQL HVLHQLX GR Z F]HĞQLHMV] \FK PLVML (6$
]RVWDáD]PQLHMV]RQD]GQLZSU]\SDGNXVDWHOLWyZ(56
RUD](56OXEGQLZSU]\SDGNXVDWHOLWyZ(19,6$7
GRGQLGODVDWHOLW\6$:\NRU]\VWDQLHGDQ\FK]VDWHOLW\
6%VNUDFDF\NO]REUD]RZDĔGRGQL'ODREV]DUX3ROVNL
GDQH]VDWHOLW\6%GRVWĊSQHVąGRSLHURRGZU]HĞQLD
URNX=DPRQWRZDQHLQVWUXPHQW\6$5QDVDWHOLWDFK6$RUD]
6%SUDFXMąZSDĞPLH&RF]ĊVWRWOLZRĞFL*+]<DJXH
0DUWLQH]LLQ:\NRU]\VWXMąF]WHU\WU\E\VNDQRZDQLD
UyĪQLąFHVLĊUR]G]LHOF]RĞFLąRUD]]DVLĊJLHP
± 6WULS0DS60
± ,QWHUIHURPHWULF:LGH6ZDWK0RGH,:
± ([WUD:LGH6ZDWK0RGH(:
± :DYH:9
0RĪOLZHSRWHQFMDOQHSRNU\FLHWU\EHP,:SUH]HQWXMHU\V
:UHMRQLH(XURS\VWRVRZDQ\MHVWWU\E,:]WU]HPDSDVD-
PLREVHUZDFMLVNDQRZDQ\WHFKQLNą7HUUDLQ2EVHUYDWLRQ E\
3URJUHVVLYH6FDQV7236'DMHRQSRNU\FLHRV]HURNRĞFL
NPLUR]G]LHOF]RĞFLSLNVHODP[P=DVDGQLF]ąUyĪQLFąZ
RGQLHVLHQLXGRVWRVRZDQ\FKGRW\FKF]DVZVDWHOLWDFK(56RUD]
(19,6$7(XURSHMVNLHM$JHQFML.RVPLF]QHMUR]ZLą]DĔMHVW
ZSURZDG]HQLHUXFKRPHJRHOHPHQWXVNDQXMąFHJRQDVDWHOLWDFK
6$RUD]6%U\V6DWHOLWDSU]HPLHV]F]DMąFVLĊQDGWHUH-
QHPSRRUELFLHSRODUQHMZ\NRQXMHUHMHVWUDFMHZWU]HFKSDVDFK
6XE6ZDWK LMHGQRF]HĞQLH ZNDĪG\P ]SDVyZ Z\NRQXMH
VNDQRZDQLHZ VHULDFK%XUVW:WHQVSRVyEX]\VNLZDQ\
MHVWSRMHG\QF]\REUD]UDGDURZ\VNáDGDMąF\VLĊ]HOHPHQWyZ
>[6XE6ZDWKV[[%XUVWV @6SRVyEG]LDáDQLDWHFKQLNL
7236SRND]DQRVFKHPDW\F]QLHQDU\VXQNXQU=DVWRVRZDQH
UR]ZLą]DQLHSR]ZDODQD]REUD]RZDQLHZLĊNV]HMSRZLHU]FKQL
ZF]DVLHMHGQHJRSU]HORWXDOHMHGQRF]HĞQLHZ\PDJDDSOLND-
FMLQRZ\FKDOJRU\WPyZZREUyEFHGDQ\FK7U\E7236E\á
ZF]HĞQLHM LPSOHPHQWRZDQ\ HNVSHU\PHQWDOQLH ZVDWHOLWDFK
7HUUD6$5;RUD]5$'$56$7<DJXH0DUWLQH]LLQ
,QIRUPDFMH ] VDWHOLWyZ 6HQWLQHO GRVWĊSQH VąZ SRVWDFL
WU]HFKW\SyZSURGXNWyZ]DOHĪQ\FKRGVWRSQLDSU]HWZRU]HQLD
± /HYHOVXURZHGDQHSRFKRG]ąFHEH]SRĞUHGQLR]VDWHOLW\
± /HYHO SU]HWZRU]RQH LQIRUPDFMHZ RSDUFLX RGDQH]
SR]LRPXL]DSLVDQHZIRUPDWDFK6LQJOH/RRN&RPSOH[
6/&OXE*URXG5DQJH'HWHFWHG*5'
± /HYHO UyZQLHĪWZRU]RQ\QDSRGVWDZLHGDQ\FK]SR-
]LRPXQD]\ZDQH2FHDQSURGXFWV2&1
'ODFHOyZLQWHUIHURPHWULLUDGDURZHMQDMXĪ\WHF]QLHMV]\P
]SURGXNWyZ MHVW/HYHOZ SRVWDFLREUD]X 6/& 7DEHOD
SUH]HQWXMHSRGVWDZRZHLQIRUPDFMH]ZLą]DQH]REUD]HP6/&
X]\VNLZDQ\P ZWU\ELH,QWHUIHURPHWULF :LGH6ZDWK 0RGH
,:1DWHUHQLH3ROVNLGRVWĊSQHVą]REUD]RZDQLDZWU\ELH
,:]]DVWRVRZDQąWHFKQLNąVNDQRZDQLD7HUUDLQ2EVHUYDWLRQ
E\3URJUHVVLYH6FDQV7236
 2EUyEND]REUD]RZDĔVDWHOLW\6HQWLQHO
3URFHGXUD]ZLą]DQD]REUyENą]GMĊü]WU\EX7236]EOL-
ĪRQDMHVW ZVZRMHM LVWRFLHGR GRW\FKF]DVRZ\FKUR]ZLą]DĔ
5\V0RĪOLZHSRWHQFMDOQHSRNU\FLHVDWHOLW\6HQWLQHOZWU\ELH,:]F]ĊVWRWOLZRĞFLąGQL68+(7
)LJ3RWHQWLDOSRVVLELOLW\RI6HQWLQHOFRYHUDJHRQFHHYHU\GD\V68+(7
35=(*/Ą'*Ï51,&=< 
VWRVRZDQ\FKGODVDWHOLWyZWDNLFKMDNQS(56(19,6$7=
XZDJLMHGQDNQDRGPLHQQ\VSRVyEREUD]RZDQLDWHUHQXZWU\-
ELH,:NRQLF]QHMHVWZSURZDG]HQLHNLONX]PLDQZSURFHGXU]H
X]\VNLZDQLDLQWHUIHURJUDPX8]\VNDQLHZáDĞFLZHJRREUD]X
LQWHUIHURPHWU\F]QHJRVWDQRZLSRGVWDZĊGRVWRVRZDQLDWDNLFK
PHWRGLQWHUIHURPHWU\F]Q\FKMDNPHWRGDUyĪQLFRZD',Q6$5
PHWRGDVWDELOQ\FKUR]SUDV]DF]\36,Q6$5PHWRGDPDá\FK
ED] 6% $6 F]\ LFK NR PELQDFML : SRQL ĪV]\P UR]G] LDOH
VFKDUDNWHU\]RZDQRSURFHGXUĊREOLF]HQLRZąPHWRG\REUD]R-
ZDQLD7HUUDLQ2EVHUYDWLRQE\3URJUHVVLYH6FDQV7236]H
ZVND]DQLHPQDUyĪQLFHZ]JOĊGHPZF]HĞQLHMV]\FKUR]ZLą]DĔ
3LHUZV]\PNURNLHPZSURFHVLHREOLF]HĔLQWHUIHURPHWU\F]-
Q\FK MHV W Z\VHOHNFMR QRZDQLH RGSR ZLHGQLFK ]REU D]RZDĔ
'DQH]PLVML6HQWLQHOGRVWĊSQHVąRQOLQH]DSRĞUHGQLFWZHP
SU] \JRWRZDQH JR VHUZH UD 6HQWLQH O 'DWD +X E SURJUDPX
&RSHUQLFXV3R Z\PDJDQHMUHMHVWUDFML XĪ\WNRZQLNDPRĪOL-
ZHMHVWSU]HJOąGDQLHLSREUDQLHZ\EUDQHJRSURGXNWXPLVML
=REUD]RZDQLDGRVWĊSQHVąZIRUPDFLH7,))]GRGDWNRZ\PL
LQIRUPDFMDPLZSOLNDFKH;WHQVLEOH0DUNXS/DQJXDJH;0/
-HGHQVNRPSUHVRZDQ\REUD]]WU\EX,:ZIRUPLHSURGXNWX
6/&]DMPXMHRNRáR*%SDPLĊFL'RGDWNRZ\PLLQIRUPDFMD-
PLNRQLHF]Q\PLGRREOLF]HĔVąGDQHRRUELWDFKSUHF\]\MQ\FK
NWyUHPRĪQDSREUDüUyZQLHĪ]VHUZHUDSURJUDPX'DQHWHVą
JHQHURZDQHZLORĞFLMHGHQSOLNQDG]LHĔLGRVWDUF]DQHGQL
SR]REUD]RZDQLX=SREUDQ\FK]GMĊüUDGDURZ\FKPRĪOLZHMHVW
Z\EUDQLHIUDJPHQWXGDQ\FKGRGDOV]HMSUDF\3RREOLF]HQLX
LQWHUIHURJUDPXNRQLHF]Q\MHVWGRGDWNRZ\NURNW]ZGHEUXVW
3ROHJDRQ QDSRáąF]HQLXZV]\VWNLFKRVREQ\FKF]ĊĞFLLQWHU-
IHURJUDPXZMHGQąFDáRĞü:LGRF]QHOLQLHSRG]LDáXSRV]F]H-
JyOQ\FKF]ĊĞFLREUD]X]RVWDMąXVXQLĊWHU\V
5\V,GHDSUDF\ZWU\ELH,:7236$5VDWHOLWyZ6HQWLQHO68+(7
)LJ7KHLGHDRIRSHUDWLRQLQVDWHOOLWHV6HQWLQHOLQ,:7236$5PRGH68+(7
7DEHOD 3RGVWDZR ZH LQIRUPDFMH G RW\F]ąFH SURGXN WX 6/&
Z WU\ELH , QWHUIHURPHWULF :LGH 6ZDWK 0RGH ,:
68+(7<DJXH0DUWLQH]LLQ
7DEOH %DVLFLQIRUPDWLRQDFFRUGLQJWRWKH SURGXFW6/& LQ
WKH PRGH ,QWHUIHURPHWULF :LGH 6ZDWK 0RGH ,:
68+(7<DJXH0DUWLQH]LLQ
&KDUDNWHU\VW\ND :DUWRĞü
6]HURNRĞü]REUD]RZDQLD NP
.ąW]REUD]RZDQLD 
,ORĞüSDVyZ
'áXJRĞüÃEXUVW¶ V§NP
&]ĊVWRWOLZRĞü]REUD]RZDQLD GQL
'áXJRĞüIDOL FP
3RODU\]DFMD SRGZyMQD+++9999+
SRMHG\QF]D++99
5\V(IHNW]áRĪHQLDGZyFKIUDJPHQWyZEXUVWVREUD]X6HQ
WLQHOZWU\ELH,:
)LJ(IIHFWRIPDWFKLQJ WZRSDUWVRI WKH6HQWLQHOLPDJHLQ
WKH,:PRGH
35=(*/Ą'*Ï51,&=<1U 
2EVHUZRZDQDUyĪQLFDID]ǻijGZyFK]GMĊüUDGDURZ\FK
VNáDGDVLĊ]68+(7:
ǻijǻijIǻijHOǻijGLVSǻijatmǻijQ
JG]LH
ǻijI± F]ĊĞüID]\Z\QLNDMąFD]NU]\ZL]Q\=LHPLUHGX-
NRZDQDZREOLF]HQLDFK
ǻijHO± F]ĊĞüID]\Z\QLNDMąFD]WRSRJUD¿LWHUHQXUHGX-
NRZDQDZREOLF]HQLDFK
ǻijGLVS±F]Ċ Ğü ID]\ R GSRZLD GDMąFD ] D GHIRUP DFMH SR-
ZLHU]FKQL
ǻijatm±ZDUWRĞüZ\QLNDMąFD]ZSá\ZXDWPRVIHU\ZLOJRW-
QRĞüWHPSHUDWXUDFLĞQLHQLH
ijQ± V]XP
1DMLVWRWQLHMV]ąVNáDGRZą]SXQNWXZLG]HQLDSU]HPLHV]F]HĔ
SRZLHU]FKQL WHUHQXMHVW F]ĊĞüID]\ R]QDF]RQDǻijGLVSNWyUą
PRĪQDX]\VNDüVWRVXMąFWHFKQLNĊ'LIIHUHQWLDO,QWHUIHURPHWULF
',Q6$5 : NROHMQ\P UR]G]LDOH ]DSUH]HQWRZDQR Z\QLNL
SU]\NáDGRZ\FKDQDOL]LQWHUIHURPHWU\F]Q\FKSRUyZQDQ\FK]
SRPLDUDPLQLZHODF\MQ\PL
 5H]XOWDW\LG\VNXVMDZ\QLNyZ
:DQDOL]DFK Z\NRU]\VWDQRGZD ]REUD]RZDQLD ]RNUHVX
VDWHOLW\6HQWLQHO$:\EyU]REUD]RZDĔ]ZLą]DQ\
E\á]LQWHUZDáHPSRPLDUyZQLZHODF\MQ\FKZWHUHQLH*áyZQH
LQIRUPDFMHR]DOHĪQRĞFLDFKSU]HVWU]HQQ\FKLF]DVRZ\FK]REUD-
]RZDĔ]DSUH]HQWRZDQH]RVWDá\ZWDEHOL:W\P]HVWDZLHQLX
NRU]\VWQDMHVWNUyWNDED]DSURVWRSDGáD%SHUSNWyUD]ZLĊNV]D
ZDUWRĞüVSRG]LHZDQHM NRKHUHQFML'XĪDUR]G]LHOF]RĞü F]D-
VRZD%WHPSZSá\ZD]NROHLQLHNRU]\VWQLHQDVSRG]LHZDQH
UH]XOWDW\:\SDGNRZąW\FKZLHONRĞFLMHVWPRGHORZDQDNRKH-
UHQFMDRZDUWRĞFLGODGZyFKDQDOL]RZDQ\FK]REUD]RZDĔ
3U]HSURZDG]HQLHREOLF]HĔFHOHPX]\VNDQLDLQWHIHURJUDPX
UyĪQLFRZHJR',Q6$5RGE\áRVLĊ]]DVWRVRZDQLHPSURJUDPX
61$3-HVWWRQDU]ĊG]LHUR]ZLMDQHLXGRVWĊSQLDQHSU]H](6$
)UDJPHQWX]\VNDQHJRLQWHUIHURJUDPXUyĪQLFRZHJR]DSUH]HQ-
WRZDQRQDU\VXQNXD:LGRF]QHSUąĪNLLQWHUIHURPHWU\F]-
QHZVND]XMą QDUXFK\ SRZLHU]FKQL WHUHQX3HáQH SU]HMĞFLH
PLĊG]\EDUZDPLRGSRZLDGD]DSHáQą]PLDQĊGáXJRĞFLIDOL
2EVHUZRZDQD]PLDQDQDSRZLHU]FKQLWHUHQX]DSLVDQDMHVWZ
SLNVHODFKUDVWUDZSRVWDFLOLF]E]]DNUHVXʌZUDSSHG
SKDVH7D]ZLQLĊWDID]DPRĪH]RVWDüSU]HOLF]RQDQDZDUWR-
ĞFLʌQ FR ZVSRVyEVFKHPDW\F]Q\SRND]DQRQDU\V
3URFHVWHQQD]\ZDQ\MHVWUR]ZLQLĊFLHPID]\XQZUDSSHG
SKDVH-HVW WRNOXF]RZ\PRPHQWZDQDOL]DFKLQWHUIHURPH-
WU\F]Q\FK&KDQJ+DQVVHQ+DQVVHQ:DQDOL-
]RZDQ\P SU]\NáDG]LH GODGZyFK ]REUD]RZDĔ 6HQWLQHO$
]MHGQHJR ]SROVNLFK UHMRQyZ HNVSORDWDFMLJyUQLF]HM HIHNW
UR]ZLQLĊFLDID]\SRND]DQRQDU\VXQNXQU E 'RGDWNRZR
Z\NRU]\VWDQRLQIRUPDFMĊRNRKHUHQFMLREUD]XWZRU]ąFPDVNĊ
]SURJRZąZDUWRĞFLąQDSR]LRPLH3LNVHOHRPQLHMV]HM
NRKHUHQFML]RVWDá\RGU]XFRQH]GDOV]\FKDQDOL]
,QWHUSUHWDFMDWDNX]\VNDQ\FKZ\QLNyZSR]ZDODMHG\QLH
SRWZLHUG]LüUXFK\SRZLHU]FKQLWHUHQXRUD]RNUHĞOLüSU]\EOL-
ĪRQąVNDOĊW\FK]PLDQSRQLHZDĪUyĪQLFDID]\UHMHVWURZDQD
MHVWZNLHUXQNXREUD]RZDQLDVDWHOLW\/LQHRI6LJKW/26
RUD] ]DOHĪ\RG NąWDSDGDQLD IDOL L QFLGHQFH DQJOH=DWHP
PRĪ OLZRĞü S RUyZQ DQLD Z\Q LNyZ L QWHUIHU RPHWU \F]Q\FK
]GDQ\PLSRPLDURZ\PLZ\PDJDXZ]JOĊGQLHQLDW\FKDVSHN-
WyZ+DQVVHQ3U]HOLF]RQHZDUWRĞFLID]\QDZDUWRĞFL
UXFKyZSLRQRZ\FKRUD]]DSLVUDVWUDZ]GH¿QLRZDQ\PXNáD-
G]LH RGQLHVLHQLD ]DSUH]HQWRZDQR QDU\VXQNX QU F7DN
X]\VNDQHZ\QLNLPRJąE\üZ\HNVSRUWRZDQHGRSURJUDPyZ
QS*,6RZ\FKFHOHPGDOV]HMLQWHUSUHWDFML
5\V (WDS\SU]HMĞFLDRGLQWHUIHURJUDPXGRZDUWRĞFLUXFKyZSLRQRZ\FKDSUąĪNLLQWHUIHURPHWU\F]QHMDNRHIHNWSUDF\
QDGZyFK]REUD]RZDQLDFK6HQWLQHO$EUR]ZLQLĊWDUyĪQLFDID]FREOLF]HQLHSLRQRZ\FKUXFKyZSRZLHU]FKQL
WHUHQXLSU]HMĞFLH]XNáDGX]GMĊFLDGRXNáDGX:*6GZL]XDOL]DFMDZ\QLNyZZSU]HJOąGDUFHLQWHUQHWRZHM
)LJ6WDJHRI ZRUNIURPWKH LQWHUIHURJUDPWRYHUWLFDOPRYHPHQWV D LQWHUIHURPHWULFVWULSHVIURP WKH 6HQWLQHO$
DFXTLVLWLRQVESKDVHXQZUDSSHGFFDOFXODWLRQRIWKH YHUWLFDOPRYHPHQW DQGWUDQVIRUPDWLRQWRWKH:*6
V\VWHPGYLVXDOL]DWLRQRIWKHUHVXOWVLQDZHEEURZVHU
35=(*/Ą'*Ï51,&=< 
7DEHOD ,QIRUPDFMHRZ\NRU]\VWDQ\FK]REUD]RZDQLDFKPLVML
6HQWLQHO$
7DEOH ,QIRUPDWLRQDERXWWKHUDGDUDFXTLVLWLRQVRI6HQWLQHO
$
1XPHU %SHUS>P@ %WHPS>GQL@ 0RGHORZDQD
NRKHUHQFMD 7\S
  0DVWHU
    6ODYH
: DQDO L]RZDQ\ P UHMRQL H E\á\ Uy ZQLHĪ Z\ NRQ\ZDQ H
SRPLDU\ QLZHODF\MQH /RNDOL]DFMD SXQNWyZ SRPLDURZ\FK
]RVWDáDSRUyZQDQD ] UDVWUHPUyĪQLFZ\VRNRĞFL X]\VNDQ\P
]VDWHOLW\6HQWLQHO$:SUH]HQWRZDQ\P Z\QLNX REOLF]HĔ
LQWHUIHURPHWU\F]Q\FKZLGRF]QHVą EUDNL ZGDQ\FKU\V
:\QLNDMą RQH ]H VáDEHM NR KHUHQFML Z WHUHQDFK ]L HORQ\FK
WDNLFKMDNSDUNLSRODF]\ODV\=NROHLZ\ĪV]DVSyMQRĞüLQ-
IRUPDFMLQDLQWHUIHURJUDPLH]ZLą]DQDMHVW]WHUHQDPL]XUEDQL-
]RZDQ\PLEXG\QNLGURJLSODFH7DPWHĪX]\VNDQRZ\QLNL
]REOLF]HĔLQWHUIHURPHWU\F]Q\FK3RUyZQDQLHZ\QLNyZEDGDĔ
VDWHOLWDUQ\FK]SRPLDUHPQLZHODF\MQ\PPRĪOLZ\E\á]DWHP
ZRJUDQLF]RQ\P REV]DU]H=FDáHMVLHFLREVHUZDF\MQHMZ\-
EUDQRWHSXQNW\NWyUH]QDOD]á\VLĊZREUĊELHSLNVHODUDVWUD
LQWHUIHURPHWU\F]QHJRRNRKHUHQFMLZLĊNV]HMRG5yĪQLFD
RGSRZLHGQLFKZDUWRĞFLSU]HPLHV]F]HQLDSLRQRZHJR]RVWDáD
Z\OLF]RQDZSRVWDFLEáĊGXZ]JOĊGQHJR5R]NáDGX]\VNDQ\FK
EáĊGyZFKDUDNWHU\]XMHVLĊZ\UDĨQ\PWUHQGHP:LGRF]QHMHVW
SU]HMĞFLHRGVWUHI\SU]HV]DFRZDQLDZDUWRĞFLSU]HPLHV]F]HQLD
SLRQRZHJR PDNV\PDOQ\X]\VNDQ\ EáąGZ\QRVL  GR
VWUHI \ QLHGRV]DF RZDQLD PD NV\PDOQ\ E áąG Z\QLyVá 
U\V0RĪHWRE\ü]ZLą]DQH]SU]HPLHV]F]HQLDPLSR]LRP\-
PLNWyUHWRZDU]\V]ąUR]ZLMDMąFHMVLĊHNVSORDWDFMLJyUQLF]HM
LZSá\ZDMąQDZ\]QDF]DQąLQWHUIHURPHW\F]QLHZDUWRĞüUXFKyZ
SLRQRZ\FK6DPLHLH(VIDKDQ\ L LQ (IHNWX WHJRQLH
UHGXNRZDQRMHGQDNZREHFQHMID]LHEDGDĔ
3RGVXPRZXMąFWU]HEDVWZLHUG]LüĪHUDGDURJUDP\SR]\-
VNLZDQHZUDPDFKPLVML6HQWLQHO$SR]ZDODMąQDRSUDFR-
Z\ZDQLHDQDOL]]PLDQZ\VRNRĞFLQDWHUHQDFKDNWXDOQHMEąGĨ
]DNRĔF]RQHMHNVSORDWDFMLJyUQLF]HM:W\PVHQVLHQDGDZDüVLĊ
PRJąWDNĪHGRRFHQ\HZHQWXDOQ\FKZ\SLĊWU]HĔSRZLHU]FKQL
WHUH QX Z UHMR QDFK ]OL NZLGRZD Q\FK NRS DOĔ JáĊE LQRZ\FK
LRGWZDU]DMąFHJRVLĊ]DVREXZyGZJyURWZRU]H,VWRWQąEDULHUą
MHVW NZHVWLDSRNU\FLD SRZLHU]FKQL: UHMRQDFKUROQLF]\FK
LOHĞQ\FKWHFKQRORJLDWDQLHVSHáQLVZRMHMUROLDUDF]HMEĊG]LH
VNXWHF]QDMHG\QLHSXQNWRZRFRPRFQRRJUDQLF]\MHMGRNáDG-
QRĞü%DGDQLDSU]HGVWDZLRQHZDUW\NXOHZVND]XMąQDZ\VRNą
5\V,GHDUR]ZLQLĊFLDID]\+DQVVHQ
)LJ7KHFRQFHSWLRQRISKDVHXQZUDSSLQJ+DQVVHQ
5\V3RUyZQDQLHZ\QLNyZLQWHUIHURPHWULLUDGDURZHM]SRPLDUDPLQLZHODF\MQ\PLZSRVWDFLUR]NáDGXZDUWR
ĞFLEáĊGXZ]JOĊGQHJRZ\UDĪRQHJRZSURFHQWDFK
)LJ&RPSDULVRQRIWKHUHVXOWVRIUDGDULQWHUIHURJUDPVZLWKOHYHOLQJDVWKHGLVWULEXWLRQRIYDOXHVRIWKHUH
ODWLYHHUURUVLQSHUFHQWDJH
35=(*/Ą'*Ï51,&=<1U 
GRNáDGQRĞüZ]JOĊGQą WHFKQRORJLL ',Q6$5ZVWRVXQNX GR
Z\QLNyZNODV\F]QHMQLZHODFMLWHFKQLF]QHMR SRGZ\ĪV]RQHM
GRNáDGQRĞFL
3XEOLNDFMD SRZVW DáD Z UDPDFK SURMHNWX 1DURGRZH JR
&HQWUXP1DXNLQU167
/LWHUDWXUD
&+$1*/+$166(15)$3UREDELOLVWLF$SSURDFKIRU,Q6$5
,(((7UDQVDFWLRQVRQ*HRVFLHQFHDQG5HPRWH6HQVLQJWQRSS
±
&526(77200216(55$72%$55$$$1'&5,33$%±
3HUVLVWHQW
6FDWWHUHU,QWHUIHURPHWU\8VLQJ6HQWLQHO'DWDKWWSVZZZFRQIWRROSUR
+$166( 1 5)   5DG DU ,QWHUIH URPHWU\ ' DWD ,QWHUSU HWDWLRQ DQ G
(UURU$QDO\VLV'RUGUHFKW.OXZHU$FDGHPLF3XEOLVKHUV,6%1

0,5(..:\NRU]\VWDQLHPHWRG\,Q6$5GRPRQLWRURZDQLDRVLDGDQLD
QDREV]DUDFK JyUQLF]\FKQD SRGVWDZLH GDQ\FKVDWHOLW\ 6HQWLQHO$
Ä%XGRZQLFWZR*yUQLF]HL7XQHORZH´5QUV±
6$0,(,((6)$+$1<6+$166(15)7+,(1(19,66(5.9$1
0817(1'$0%26$2QWKHHIIHFWRIKRUL]RQWDOGHIRUPD-
WLRQ RQ ,Q6$5 VXEVLGHQFH HVWLPDWHV Ä3URFHHGLQJV RI)ULQJH 
:RUNVKRS´W
6+$1.(5 3 =(%.( 5 +   3H UVLVWHQW VF DWWHUHU VHO HFWLRQ XVLQ J
PD[LPXPOLNHOLKRRGHVWLPDWLRQ*HRSK\V5HV/HWWYROQR
S/
62:7(5$%,10$0$7&&,*1$)0$56+6$1'$7+$%
$   , QWHUQDWLRQD O -RXUQDO RI $SSOLH G (DUWK 2EVHUY DWLRQ DQG
*HRLQIRUPDWLRQ 0H[LFR&LW\ ODQG VXEVLGHQFH LQ ±  ZLWK
6HQWLQHO,:72365HVXOWV XVLQJ WKH,QWHUPLWWHQW6%$6,6%$6
WHFKQLTXH ,QWHUQDWLRQDO -RXUQDO RI$SSOLHG (DUWK2EVHUYDWLRQV DQG
*HRLQIRUPDWLRQWSS±
68+(76HQWLQHO8VHU+DQGERRNÄ(XURSHDQ6SDFH$JHQF\´W
SS±
<$*8(0$57,1(=135$76,5$2/$30(0%(56*21=$/(=
)5%5&,&56+$85HWDO,QWHUIHURPHWULF3URFHVVLQJRI
6HQWLQHO7236'DWDWQRSS±
$UW\NXáZSá\QąáGRUHGDNFML±SDĨG]LHUQLN
$UW\NXá]DDNFHSWRZDQRGRGUXNX
1$&=(/1<5('$.725
Z]HV]\FLH3U]HJOąGX*yUQLF]HJR]ZUyFLáVLĊGRNDGU
JyUQLF]\FK]]DFKĊWąGRSXEOLNRZDQLDDUW\NXáyZXNLHUXQNRZDQ\FK
QDZ\ZRáDQLH
32/(0,.,±'<6.86-,
7UXGQ\FKSUREOHPyZNWyUHF]HNDMąQDU]HWHOQąPHU\WRU\F]Qą
Z\PLDQĊSRJOąGyZ±MHVWZLHOH2GQLHM±Z]QDF]ąFHMPLHU]H±
]DOHĪ\VNXWHF]QRĞüSUDNW\NLLQDXNLJyUQLF]HMZG]LDáDQLDFKQDU]HF]
EH]SLHF]HĔVWZDJyUQLF]HJRRUD]SRVWĊSXWHFKQLF]QHJR
LHNRQRPLF]QHMHIHNW\ZQRĞFLHNVSORDWDFML]áyĪ
2GQDV]HJRZ\VLáNXZSRV]XNLZDQLXQDMOHSV]\FKUR]ZLą]DĔ
±]DOHĪ\SU]\V]áRĞüSROVNLHJRJyUQLFWZD
... One of possible technologies of the displacement measurement in the natural slopes and scarps of the open pit mines is ground based radar interferometry (Monserrat O. et al. 2014, Gocał J. et al. 2013). This method is based on the same principles as satellite radar interferometry called InSAR (Simons, M., Rosen, P., 2007, Grzybek, R. 2017, Witkowski W. et al. 2017, with such difference that the radar is installed on the ground surface. The choice of the radar's location towards the measured area has a significant influence on the quality, accuracy and the interpretation of the obtained measurements (radarograms). ...
Article
Full-text available
In the Ground Based InSAR technology, the proper setting the measurement conditions is a fundamental factor. The observer decides on the localization of radar both in horizontal and vertical plane, as well as the vertical angle of the antenna beam’ inclination and on the form of the measurement stand, which has to be constructed or adapted. Depending on the observer’s accuracy and optimization of the measurement procedures, the results can be loaded with bigger or smaller errors. The article presents observer-dependent factors, their influence on the accuracy of measurement with the accuracy analysis and author’s geometric corrections of the obtained displacement values. The influence of the localization of radar on the resolution of the obtained radarogram was also discussed. The influence of the applied antennas and the distance to the target on the accuracy measurement were analyzed. The potential area that could be measured from one radar stand was defined. Due to the fact that the displacement values obtained in the direction of wave emission, the formulas were presented to allow the reduction of the obtained values to the values of horizontal displacements, introduced based on all the possible radar configurations in the relation to the monitored area. To obtain coherent images it is necessary to provide a stable radar stand. To achieve this, the measurement and calculation procedure of such control was presented. Following the recommendations formed in the conclusions presented in the article will allow obtaining the result of the highest possible accuracy.
... The values specified by standard deviation (3σ = 16 mm) were connected with interferometric artifacts and with the operation of the underground cooper mine (Figs. 3, 4).The observed rate of surface movements of 22-28 November did not exceed 10 mm (3σ = 8 mm) (Figs. 3 b, 4). The surface movements in the forefield of the mine tailings remained within the error margin (Witkowski et al., 2017). Elevations up to 10 mm were observed in the crown of mine tailings. ...
Article
Anthropogenic activity related to the extraction of gas and oil, raw materials or water pumping leads to slow or rapid ground deformation. The ground motion rate is related to the type of the mined material, geological conditions, mining methods and other factors. Ground subsidence resulting from the collapse of underground post-mining voids occurs gradually. Mining-induced earthquakes and seismic earthquakes are largely unpredictable and have an adverse impact on the local inhabitants and buildings. For this reason, monitoring of this phenomenon is a challenge. The application of interferometric SAR for the evaluation of ground movement has brought satisfactory results over the past twenty years mainly in the regions where no other measurements were conducted during ground subsidence. In this paper we have examined a mining-induced earthquake with a magnitude 4.5 which occurred in an underground copper ore mine in Poland on 29th November 2016 and caused eight fatalities. It also had an impact on ground surface deformation in the vicinity of the mine tailings. An assessment of the earthquake-related impact on surface movement was carried out by Sentinel-1 TOPS time series interferometry. The velocity of ground movement and the scale of the phenomenon were investigated. In addition, the impact of the mining-induced earthquake on Zelazny Most mine tailings site was analyzed. Moreover, the process of dynamic ground compaction was also investigated in detail. Ground movement following the mine earthquake was explored. Two time phases of the movements were determined. The first phase of dynamic ground displacement was rapid and 90% of total ground deformation appeared on the surface within 7 days. The second phase of displacement was a ‘vanishing’ one; it lasted for approx. 3 weeks and 10% of ground deformation appeared on the surface. The study revealed that the maximum observed ground subsidence did not exceed 9 cm. The presented results contribute to a better understanding of post-earthquake ground deformations in the light of their spatial distribution in time.
ResearchGate has not been able to resolve any references for this publication.