ArticlePDF Available

UTICAJ ĐUBRENJA NA MASU NODULA I SADRŽAJ AZOTA U NODULAMA SOJE (GLYCINE MAX (L.) MERR)

Authors:
  • Institute of Field and Vegetable Crops
  • Institute for Vegetable Crops Smederevska Palanka
  • Agricultural Faculty

Abstract

Soja (Glycine max (L.) Merr) je jednogodišnja leguminozna biljka. Pripada porodici Fabaceae. Soja se u svetu gaji na oko 117 mil. ha i zauzima vodeće mesto među proteinsko-uljanim kulturama. Ogled sa sojom izveden je na pseudogleju. Istraživanja su obavljena sa ciljem da se ispita uticaj đubrenja azotom na masu nodula i sadržaj azota u nodulama soje, na lokalitetu Brezovo Polje u Brčkom, na zemljištu tipa pseudoglej. Primenje su četiri varijante N đubrenja: 1.) 0 kg/ha, kontrola; 2.) 50 kg/ha; 3.) 100 kg/ha i 4.) 150 kg/ha. Najveća masa nodula bila je u kontrolnoj varijanti dok je u varijanti sa najvećom količinom hraniva bila najmanja masa nodula. Najveći sadržaj azota u nodulama bio je u varijanti sa primenom 50 kg ha-1 i iznosio je 4,93 %, dok je najmanji sadržaj azota u nodulama bio u kontrolnoj varijanti. Pozitivna nesignifikantna korelaciona veza ostvarena je između mase nodula i sadržaja azota u nodulama (r=0,19).
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
119
UDK: 633.34:631.454;546.17
Originalni naučni rad
UTICAJ ĐUBRENJA NA MASU NODULA I SADRŽAJ AZOTA U NODULAMA SOJE
(GLYCINE MAX (L.) MERR)
P. Stevanović, V. Popović, V. Filipović, D. Terzić,
M. Tatić, V. Rajičić, D. Simić, M. Tabaković
Izvod: Soja (Glycine max (L.) Merr) je jednogodišnja leguminozna biljka. Pripada
porodici Fabaceae. Soja se u svetu gaji na oko 117 mil. ha i zauzima vodeće mesto među
proteinsko-uljanim kulturama. Ogled sa sojom izveden je na pseudogleju. Istraživanja su
obavljena sa ciljem da se ispita uticaj đubrenja azotom na masu nodula i sadržaj azota u
nodulama soje, na lokalitetu Brezovo Polje u Brčkom, na zemljištu tipa pseudoglej. Primenje
su četiri varijante N đubrenja: 1.) 0 kg/ha, kontrola; 2.) 50 kg/ha; 3.) 100 kg/ha i 4.) 150
kg/ha.
Najveća masa nodula bila je u kontrolnoj varijanti dok je u varijanti sa najvećom
količinom hraniva bila najmanja masa nodula. Najveći sadržaj azota u nodulama bio je u
varijanti sa primenom 50 kg ha-1 i iznosio je 4,93 %, dok je najmanji sadržaj azota u
nodulama bio u kontrolnoj varijanti. Pozitivna nesignifikantna korelaciona veza ostvarena je
između mase nodula i sadržaja azota u nodulama (r=0,19).
Ključne reči: soja, đubrenje, masa nodula, sadržaj azota u nodulama, pseudoglej,
korelacije.
Uvod
Soja (Glycine max (L.) Merr) je leguminozna biljka, koja zbog povoljnog hemijskog
sastava zrna ima stalnu tendenciju rasta površina i proizvodnje u svetu i kod nas. Mesto
porekla ove biljne vrste je Kina. Prvi pisani navodi o soji potiču iz 3000. godine p. n. e. Novija
istorija soje počinje u 19. veku u Americi odakle započinje širenje po celom svetu i soja
zauzima značajno mesto u poljoprivredi. Soja se u svetu gaji na približno 117 mil.ha (Faostat,
2016.) i zauzima vodeće mesto među među proteinsko-uljanim kulturama. Najveći svetski
proizvođači soje su SAD sa oko 29% ukupnih svetskih površina pod sojom, zatim sledi Brazil
sa oko 24% i Argentina sa 17% ukupnih svetskih površina. U Europi se gaji na oko 450000
ha. Spisak proizvoda koji se dobijaju od soje je velik i pored raznih prehrambenih proizvoda i
aditiva, soja je sirovina u industriji guma, boja, lakova, lepila, farmaceutskoj industriji, i sve
popularnija sirovina za biodizel. Proteini soje čine oko 2/3 svetske proizvodnje biljnih
proteina dok 1/3 biljnih ulja potiče od soje. Prosečni višegodišnji svetski prinosi soje su oko
2,5 t ha-1. Visoki i stabilni prinosi soje se ostvaruju kada se gaje sorte visokog genetičkog
potencijala i drugih agronomskih osobina uz primenu pravilne tehnologije gajenja. U
Institutu za ratarstvo i povrtartvo do 2017. godine 136 sorti soje iz 5 grupa zrenja. Sve
domaće sorte soje prilagođene su za gajenje na našem podneblju i imaju stabilne i visoke
prinose zrna (Popović, 2010, Živanović & Popović, 2016). Neracionalnim korišćenjem
zemljišta njegova proizvodna svojstva mogu biti značajno umanjena zbog toga treba da
upoznamo svojstva zemljišta posebno na parcelama na kojima se odvija intenzivna
Dr Petar Stevanović, Inspektorat Republike Srpske, Tr g RS 8, Banja Luka, Bosna i Hercegovina; Dr Vera Popović,
naučni saradnik, dr Mladen Tatić, viši nauč ni saradnik, Institut za ratarstvo i povrtarstvo, Maksima Gorkog 30, Novi Sad,
Srbija; Dr Dra gan Terzić, na učni saradnik, Institut za krmno bilje, Globoder, Kruševac, Srbija; Dr Vladi mir Filipović,
naučni saradnik, Institut za lekovito bilje “dr Josif Pančić” Beograd, Srbija; dr Vera Rajičić, viši naučni saradnik, Centar
za strna žita, Kragujevac, Srbija, Prof dr Ljubiša Kolarić, Docent, Univerzitet u Beogradu, Poljoprivredni fakultet,
Nemanjina 6, Zemun-Beograd, Srbija; dr Divna Simić, naučni saradnik, Institut PKB Agroekonomik, Be ograd, Srbija; dr
Marijenka Tabaković, naučni saradnik, Institut za Кук уруз, Zemun Polje, Srbija.
E-mail prvog autora: nikola.pavle@teol.net
Rad je na stao kao rezultat istraživanja u okviru projekata ТR 31025 i 31022 koje finansira Ministarstvo prosvete,
nauke i tehnološkog razvoja Republike Srbije.
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
120
poljoprivredna proizvodnja. Na osnovu dobijenih podataka treba da odredimo neophodne
agrotehničke mere koje će nam omogućiti povećanje plodnosti zemljišta i unaprediti
poljoprivrednu proizvodnju (Glamočlija i sar., 2015. Popović i sar., 2012, 2013, 2015, 2016a,
2016b). Jedan od uslova za postizanje visokih i stabilnih prinosa je pravilno đubrenje azotom
i primena inokulacije semena pre setve soje (Stevanović i sar., 2016a, 2016b).
Agrotehnički značaj soje je u njenom simbioznom odnosu s efektivnim sojevima
nitrogenih kvržičnih bakterija Bradyrhizobium japonicum koje kroz prirodni proces fiksiraju
anorganski azot (N2) iz vazduha i pretvaraju ga u amonijačni oblik (NH4 +) pristupačan
biljkama u zamenu za ugljenehidrate. Na taj način se smanjuju potrebe useva za mineralnom
ishranom azotom i obogaćuje se zemljište za idući usev u plodoredu, što zajedno značajno
smanjuje troškove proizvodnje, a samim time i povećava profit. S obzirom da se biološki
vezani azot ne ispira iz zemljišta, nema ni ispiranja nitrata u podzemne vode i eutrofikacije.
Sama simbiozna zajednica menja mikrobiološku sliku zemljišta što pozitivno utiče na
biogenost, a time i na kvalitet zemljišta i na prinose (Sudarić, 2007). Primenom predsetvene
bakterizacije semena soje Nitragin-om maksimalno se koristi prirodni proces simbiozne
fiksacije azota u gajenju soje. Formiranje kvržica i fiksacija azota veoma su složeni procesi
osetljivi prema središnjim uslovima koji utiču na biljke, bakterije i njihove interakcije
(Hungria i Stacey, 1997, Hungria et al., 2005, Stevanović i sar., 2016a). U simbiozi sa sojom
živi i formira kvržice Bradyrhizobium japonicum, Bradyrhizobium elkani i Sinorhizobium fredi
(Martinez Romero and Caballero-Mellado, 1996). Kvržične bakterije u simbiozi sa biljkom
domaćinom stvaraju aktivne nodule-kvržice (biološke fabrike azota) na njenom korenu i na
taj način fiksiraju do 180 kg ha-1 N godišnje iz vazduha (Milošević i Jarak, 2005). Sojevi
Rizobium su mezofilni mikroorganizmi, a optimalna temperatura za rast i razmnožavanje
rizobiuma je oko 25 oC, i ne rastu ispod 10oC ili iznad 37oC (Rice et al., 1995). Optimalna
vlažnost za obrazovanje kvržica je 60–70 % od punog vodnog kapaciteta zemljišta. U
oraničnom sloju zemljišta gde je povoljna aeracija i vlaga, formira se veći broj kvržica, dok ih
u sloju ispod 30 cm skoro i nema (Graham, 2000). Reakcija zemljišta je među najvažnijim
ekološkim činiocima koji utiču na zastupljenost i efektivnost sojeva Rhizobium. Zastupljenost
ovih mikroorganizama je veoma mala u kiselim zemljištima (pH < 5,5) te se kao rezultat
javlja izostanak nodulacije i značajno smanjenje prinosa suve materije (Jarak i sar., 1999,
Stevanović i sar., 2016a). Zbog velike osetljivosti kvržičnih bakterija na pH vrednosti,
fiksacija azota ne dolazi do izražaja (Milić i sar., 2001). Smanjenjem kiselosti povećava se
mikrobiološka aktivnost u zemljištu tipa pseudoglej (Jarak i sar., 2003).
Nodulacija (nodulacioni index) se ocenjuje na osnovu broja kvržica (nodula) po biljci:
ako je broj kvržica u rasponu od 0–5, nodulacija je slaba; ako ima 6-10 kvržica, nodilacija je
srednja; sa 11–15 kvržica, nodulacija je dobra; sa 16–20 kvržica, nodulacija je vrlo dobra i sa
preko 20 kvržica nodulacija je odlična (http:// vasatwiki.icrisat.org). Kvalitet
mikrobiološkog đubriva odnosno uspešnost inokulacije, može se kontrolisati šest nedelja
posle klijanja semena preko brojnosti (po biljci) i morfoloških karakteristika nodula odnosno
indexa nodulacije. Nodulacija korena leguminoza je pokazatelj uspešnosti simbioze između
biljke i Rhizobium/Bradyrhizobium. Pri preseku nodule/kvržice uočava se u centralnom delu
crveno polje (leghemoglobin) koje pokazuje da je simbioza uspešna, odnosno da postoji
azotofiksaciona aktivnost. Kada se završi fiksacija azota bakteroidi se liziraju i tkivo kvržice
je mrke boje (Milošević i Jarak, 2005, Stevanović i sar., 2016a). Potencijal za simbioznu
nitrofiksaciju se procenjuje na osnovu pokazatelja simbiozne nitrofiksacije, a to su: broj
kvržica, masa kvržica, masa nadzemnog dela biljke, sadržaj azota u nadzemnom delu biljke i
kvržicama (Milić i sar., 2002).
Cilj ovog rada je ispitivanje uticaja đubrenja azotom, na masu nodula i sadržaj azota u
nodulama soje. Na osnovu rezultata daće se preporuke za savremenu tehnologiju
proizvodnje soje.
Materijal i metod rada
Istraživanja su obavljena sa ciljem da se ispita uticaja đubrenja azotom na morfološku
karakteristiku nodula, na masu nodula soje i na sadržaj azota u nodulama soje, na lokalitetu
Brezovo Polje u Brčkom, na zemljištu pseudogleju. Površina osnovne parcele iznosila je 10,8
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
121
m2 (6,0m x 1,8m). a površina obračunske parcelice 5,4 m2. Ispitivana je sorta Bačka (0 grupa
zrenja), stvorena u Institutu za ratarstvo i povrtarstvo u Novom Sadu. Faktor je bio đubrenje,
primenje su četiri varijante azotne prihrane: 0 kg/ha - kontrola; 50 kg/ha N; 100 kg/ha azota
i 150 kg/ha azota. Gustina useva bila je ista za sve varijante i iznosila je 500.000 biljaka po
hektaru. Ogled je postavljen kao jednofaktorijalni, metodom razdeljenih parcela (split-plot) u
četiri ponavljanja. Tokom izvođenja ogleda primenjena je standardna agrotehnika za
proizvodnju soje, izuzimajući proučavane faktore. Predusev soji bio je kukuruz. Duboko
oranje (25 cm) je obavljeno u jesen neposredno posle berbe kukuruza. Predsetvena
priprema zemljišta obavljena je u proleće setvospremačem. Setva je obavljena početkom
aprila meseca. Neposredno pred setvu unet je KAN prema predviđenom planu đubrenja.
Seme je neposredno pred setvu inokulisano mikrobiološkim preparatom Nitragin-om. U toku
vegetacionog perioda u dva navrata je izvedeno ručno plevljenje korova i okopavanje. Počev
od momenta obrazovanja kvržica, u intervalu od 15 dana, uzimani su uzorci od po 10 biljaka
sa svakog ponavljanja, na kojima su utvrđivani masa kvržica kao i sadržaj azota u njima.
Laboratorijske analize sadržaja azota u kvržicama soje urađene su po metodi Kjeldahl. Žetva
je obavljena ručno u tehnološkoj zrelosti biljaka.
Dobijeni rezultati su obrađeni pomoću analize varijanse a ocena dobijenih razlika
LSD testom. U radu je izvršena i ocena korelacionih veza između ispitivanih parametara.
Rezultati su prikazani pomoću tabela i grafikona.
Meteorološki uslovi
Meteorološki podaci dobijeni su iz Meteorološke stanice, Brčko, Bosna i Hercegovina,
graf 1. Na području Republike Srbije, u uslovima semiaridne klime, u većini proizvodnih
godina nedostatak padavina predstavlja ograničavajući faktor u biljnoj proizvodnji na
otvorenom polju (Popović, 1976; Popović, 2010; 2015). Pored meteoroloških uslova i
zemljište je važan uslov za uspešnu proizvodnju.
Ogled je izveden na pseudogleju. Zemljište je bilo jako kisele reakcije, slabo
humusno, slabo karbonatno, srednje obezbeđeno sa P2O5 i dobro obezbeđeno sa K2O. U
ispitivanoj godini su zabeležene temperature od 19,7oC i bile su više od višegodišnjeg
proseka za 2,1 oC dok je količina padavina u toku vegetacionog perioda iznosila 166 mm i bila
je manja od potreba soje za 284 mm (graf. 1). Uslovi nisu bili povoljni za proizvodnju soje.
Biljke nisu imale dovoljno vlage u kritičnim fazama razvoja biljaka.
0
5
10
15
20
25
30
35
40
IV V VI VII VIII IX
M e s e c i
0
10
20
30
40
50
60
70
80
Temperature
Padavine
Ukupno
198 1 /91
438 ,3 mm
Prose k
198 1 /91
17,6
0C
Temperatura (0
C)
Padavine (mm)
Sušni period
Grafikon. 1. Klimadijagram po Walter-u, Brčko, B & H
Graph. 1. Walter diagram, Brčko, B & H
Pored količine padavina od presudnog značaja za uspeh proizvodnje soje je i njihov
raspored tokom vegetacionog perioda (IV VIII meseca). Izuzetno je važno da biljke soje u
kritičnim periodima vegetacije ne budu izložene suši. Najveće potrebe soje za vlagom su u fazi
cvetanja, kada suša može značajno da smanji prinos. Optimalna relativna vlažnost vazduha u
fazi od cvetanja do formiranja mahuna i semena je 70-80%. Potrebe za vodom ukupno su
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
122
450-480 mm, dnevne potrebe 1-5mm, a u pojedinim mesecima su: u aprilu 10-40 mm; u
maju 30-60 mm; u junu 90-110 mm; u julu 100-125 mm; u avgustu 100-125 mm; u
septembru 50-80 mm (Popović, 2010; Glamočlija i sar., 2015, Popović i sar., 2015, Živanović
& Popović, 2016). Padavine među meteorološkim faktorima imaju dominantan uticaj u
proizvodnji soje.
Rezultati istraživanja i diskusija
Masa nodula soje
Masa nodula/kvržica i broj nodula predstavljaju indikatore efikasnosti fiksacije azota
(Gwata i sar., 2004, Stevanović i sar, 2016a). Prosečan broj kvržica po biljci soje kreće se i do
nekoliko stotina (Jug i sar. 2005), a u zavisi od sadržaja vode u zemljištu, pH zemljišta,
temperature, mineralne prihrane azotom, saliniteta, ali i od sorte i soja B. japonicum
(Singleton i Bohlool, 1984.; Redžepović i sar., 1991). Primenom predsetvene bakterizacije
semena soje Nitragin-om maksimalno se koristi prirodni proces simbiozne fiksacije azota u
gajenju soje i na taj način se obezbeđuje ekološki prihvatljiva i ekonomski opravdana
proizvodnja (Stevanović i sar., 2016a).
Pokazatelj nodulacijske sposobnosti fiksacije azota je masa kvržica po biljci. Razlike u
vrednostima mase nodula između varijanti đubrenja bile su statistički značajne. Ispitivani
parametar na pseudogleju iznosio je u kontrolnoj varijanti, 10,07 mg/nodula i opadao je sa
primenom većih doza azota. Masa nodula u kontrolnoj varijanti bila je statistički značajno
veća u odnosu na varijante sa primenom đubriva od 100 kg ha-1 i 150 kg ha-1 N. Primena
mineralnog đubriva značajno je uticala na smanjenje mase nodula na korenu soje u
poređenju sa kontrolom.
Tab. 1. Uticaj đubrenja azotom na ispitivane parametre soje
Effect of nitrogen fertilization on the examined parameters of soybean
Prihrana / Nutrition
Parametar
Parameter Kontrola
Control 50 100 150 Prosek
Average
Std.
Err.
Std.
Dev.
Masa nodula soje
Mass of soybean nodules,
mg/nodul
10,07 8,98 8,16 7,93 8,78 0,29 1,01
Sadržaj azota u nodulama
soje, %
Nitrogen content soybean, %
4,50 4,93 4,66 4,77 4,72 0,11 0,42
Parametar
Parameter
Masa kvržica soje
Mass of soybean nodules
Sadržaj azota u kvržicama
soje
Nitrogen content of soybean
0,5 1,15 0,84
LSD 0,1 1,67 1,22
Najveća masa nodula bila je u kontrolnoj varijanti a najmanja u varijanti sa 150 kg ha-
1 N. Između kontrolne varijante i varijante sa primenom 50 kg ha-1 nije ostvarena statistički
značajna razlika, tabela 1, graf. 2.
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
123
50 100 Kont rola 150
Prihrana
6,5
7,0
7,5
8,0
8,5
9,0
9,5
10,0
10,5
11,0
11,5
masa kvržica
Grafikon 2. Uticaj đubrenja azotom na masu kvržica soje
Graph. 2. Effect of nitrogen fertilizer on soybean nodule mass
Sadržaj azota u nodulama soje razlikovao se između varijanti azotne prihrane.
Ispitivani parametar iznosio je u kontrolnoj 4,50% i rastao je sa povećanom dozom hraniva.
Najveći sadržaj azota u nodulama bio je u varijanti sa primenom 50 kg ha-1 N, i iznosio je 4,93
%, dok je najmanji sadržaj azota u nodulama bio u kontrolnoj varijanti. Između ispitivanih
varijanti nije ostvarena statistički značajna razlika, tabela 1, graf. 3.
50 100 Kontrola 150
Prihrana
3,6
3,8
4,0
4,2
4,4
4,6
4,8
5,0
5,2
5,4
5,6
5,8
Sadržaj azota u kvržicama
Grafikon 3. Uticaj đubrenja azotom na sadržaj azota u kvržicama na korenu soje
Graph 3. Effect of nitrogen fertilizer on nitrogen content in nodules on the roots of soybean
Stevanović i sar. 2016a. navode da je uspešna nodulacija zavisila od više abiotskih i
biotskih interakcija u zemljištu. Uslovi uspevanja, količina i raspored padavina i tip zemljišta
imali su veliki uticaj na nodulaciju. Autori navode da se broj kvržica soje, u obe ispitivane
godine i na oba lokaliteta gajenja, ravnomerno smanjivao sa povećanjem količine
upotrebljenih azotnih hraniva. Azotna hraniva dovela su do smanjenja brojnosti i aktivnosti
simbioznih azotofiksatora. Azot je inhibirao pripajanje i ulazak soja Rizobium u korenovu
dlačicu.
Korelacije ispitivanih parametara
Rezultati istraživanja pokazuju da između mase nodula i sadržaja azota u nodulama
ostvarena je pozitivna nesignifikantna korelaciona veza (r=0,19), tabela 2.
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
124
Tab. 2. Korelacije ispitivanih osobina
Correlations investigated traits
Parametar
Parameter
Masa kvržica soje
Soybean nodule mass
Sadržaj azota u kvržicama
Nitrogen content in nodules
Masa kvržica soje
Soybean nodule mass 1,00 0,19
Sadržaj azota u kvržicama
Nitrogen content in nodules 0,19 1,00
Milošević i sar. 2005. u svojim istraživanjima navode da primena inokulacije (NS
Nitragin-om) uglavnom stimuliše nodulaciju korena soje, naročito u varijantama gde nije
primenjeno azotno mineralno đubrivo. Zaoravanje žetvenih ostataka (kukuruzovina)
pozitivno utiče na broj kvržica.
Iako su kvržične bakterije sposobne da prežive 3–5 godina, a u pojedinim zemljištima
i do 13 godina (Brunel et al., 1988, cit. po Milošević et al., 1994), istraživanja su pokazala da
primena mikrobnih preparata/inokulata za leguminoze neposredno pre setve utiče
pozitivno na broj nodula/kvrzica (biofabrika azota), povećanje rasta i prinos biljke, uštede
mineralnog azotnog đubriva, kvalitet zrna i biološku aktivnost zemljišta (Milošević i Jarak,
2005). Rizobiumi deluju i stimulativno na rast i razviće biljaka produkcijom biološki aktivnih
materija (vitamina, giberelina i auksina) (Milošević i Jarak, 2005). Autori navode da se
primenom biofertilizatora u proizvodnji leguminoza zadovoljavaju se osnove u sistemu
održive poljoprivrede: stabilnost i kvalitet prinosa, očuvanje ekološke ravnoteže uz
održavanje biološke aktivnosti zemljišta, što se reflektuje na zdravlje/kvalitet zemljišta.
Njihovom primenom smanjuje se upotreba skupih azotnih đubriva, zatim utiče se na
dinamiku i pravac mikrobioloških procesa koji posredno utiču na održavanje i povećanje
plodnosti zemljišta.
Zaključak
Na osnovu rezultata istraživanja uticaja azotnih hraniva na ispitivane parametre soje
mogu se doneti sledeći zaključci:
Najveća masa nodula bila je u kontrolnoj varijanti a najmanja u varijanti sa 150 kgha-1
N.
Između kontrolne varijante i varijante sa primenom 50 kg ha-1 nije ostvarena
statistički značajna razlika u masi nodula.
Najveći sadržaj azota u nodulama bio je u varijanti sa primenom 50 kg ha-1, i iznosio
je 4,93 %, dok je najmanji sadržaj azota u nodulama bio u kontrolnoj varijanti.
Pozitivna nesignifikantna korelaciona veza ostvarena je između mase nodula i
sadržaja azota u nodulama (r=0,19).
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
125
Literatura
1. Glamočlija, Dj., Janković, S., Popović, V., Filipović, V., Kuzevski, J., Ugrenović, V. (2015).
Alternativne ratarske vrste u konvencionalnom i organskom sistemu gajenja.
Monografija, IPN-Beograd, Srbija. 1-355; 150-157.
2. Graham, P.H. (2000): Nodule formation in legumes. In: J.Edelberg (ed.) Encyclopedia of
microbiology., 2ed., vol.3., 407 – 417, Academyc Press. San Diego.
3. Gwata, E.T., Woffordds Pfahler, P.L., Boote, K.J. (2004.): Genetics of Promiscuous
Nodulationin Soybean: Nodule Dry Weight and Leaf Color Score. Journal of Heredity:
95(2):154–157.
4. Milić V., Mrkovački, N.B., Hrustić, M. (2002.): Odnos potencijala za azotofiksaciju i
prinosa soje. Naučni institut za ratarstvo i povrtarstvo Novi sad, 36, 133-136.
5. Milošević, N., Milić, V., Govedarica, M., Hadžić, V. (1994): Tehnologija proizvodnje
nitragina: kvržične bakterije kao zahtev u proizvodnji soje. Zbornik radova, Institut za
ratarstvo i povrtarstvo, Novi Sad, 22, 269–279.
6. Milošević, N., Jarak, M. (2005): Značaj azotofiksacije u snabdevanju biljaka azotom. U
azot agrohemijski, agrotehnički, fiziološki i ekološki aspekti (Ur. R. Kastori), Naučni
institut za ratarstvo i povrtarstvo, Novi Sad, 305–352.
7. Milošević, N., Marinković, J. (2009): Rizobiumi – biođubriva u proizvodnji leguminoza.
Zbornik radova, Instituta za ratarstvo i povrtarstvo, Novi Sad. Sveska 46, 44-54.
8. http://vasatwiki.icrisat.org: Biological nitrogen fixation, Extension Agronomist, A&M
University, Texas.
9. http://fao.org 2016.
10. Hungria, M., Stacey, G. (1997): Molecular signals exchanged between host plants and
rhizobia: basic aspects and potential application in agriculture. Soil Biology and
Biochemistry 29: 819–830. 6.
11. Hungria, M., Loureiro, M.F., Mendes, I.C., Campo, R.J., Graham, P.H. (2005): Inoculant
preparation, production and application. In: Werner D, Newton WE (eds) Nitrogen
fixation in agriculture forestry, ecology and the environment. Series: nitrogen
fixationin agriculture, forestry, ecology, and the environment. Springer, Berlin
Heidelberg New York: 223–253.
12. Jarak, M., Govedarica, M., Milošević, N., Đurić, S., Petrov, S. (1999): Uticaj teških metala
na kvržične bakterije lucerke. Zbornik radova, Naučni institut za ratarstvo i
povrtarstvo, Novi Sad, 32, 247-252.
13. Jarak , M., Đukić, D., Govedarica, M., Milošević, N., Jeličić, Z., Đurić, S. (2003): Production
of lu cerne as af fected by bacterization and lim ing. Optimal forage Systems for Animal
production and the Environment. Grass land science in Europe, 8, 641 – 644.
14. Jug, D., Blažinkov, M., Redžepović, S., Jug, I., Stipešević, B. (2005.): Utjecaj različitih
varijanata obrade tla na nodulaciju i prinos soje. Poljoprivreda 11 (2): 38-43.
15. Martinez-Romero, E., CaballeroMellado, J. (1996): Rhizobium phylogenies and bacterial
genetic diversity. Critical Rev. Plant Science, 15, 113-140.
16. Milić V., Jarak M., Mrkovački N. (2001): Mikrobiološka đubriva u proizvodnji pasulja,
graška i lucerke. Zbornik radova, Naučni institut za ratarstvo i povrtarstvo, Novi Sad,
35, 75-81.
17. Milošević, N., Jarak, M. (2005): Značaj azotofiksacije u snabdevanju biljaka azotom. U.
Azot agrohemijski, agrotehnički, fiziološki i ekološki aspekti (Ur. R. Kastori), Naučni
institut za ratarstvo i povrtarstvo, Novi Sad, 305–352.
18. Popović, V. (2010): Agrotehnicki i agroekološki uticaji na proizvodnju semena pšenice,
kukuruza i soje. Doktorska disertacija, Univerzitet u Beogradu, Poljoprivredni fakultet,
Zemun, 55-66.
19. Popović, V. (2015): Pojam, podela i značaj bioloških resursa u poljoprivredi. U: Dražić G.
Eds. Оčuvanje i unapređenje bioloških resursa u službi ekoremedijacije. Beograd. 1-
407. ISBN 978-86-86859-41-9; 29-51.
20. Popović, V., Tatić, M., Đekić, V., Kostić, M., Ilić, A. (2012): Istraživanje produktivnosti i
kvaliteta novostvorenih NS sorti i linija soje (Glycine max (L.) Merr.) u području
Pančeva, Bilten za alternativne biljne vrste, 2012, 44, 85, 21-27.
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
126
21. Popović, V., Glamočlija, Đ., Sikora, V., Đekić, Vera, Červenski, J, Simić, D. (2013): Genotypic
specificity of soybean [Glycine max (L.) Merr.] under conditions of foliar fertilization.
Romanian Agricultural Research, Romania. No. 30. 259-270.
22. Popović, V., Miladinović, J., Vidić, M., Vučkovi S., Dolijanović Ž., Ikanović, J., Zivanovic, Lj.,
Kolarić, Lj. (2015): Suša limitirajući faktor u proizvodnji soje. Efekat navodnjavanja na
prinos i kvalitet soje [Glycine max (L.) Merr.]. / Drought – Limiting factors in soybean
production. The effect of irrigation on yield of soybean [Glycine max (L.) Merr.].
Zbornik radova, XXIX Savetovanje agronoma, veterinara i tehnologa, Institut PKB
Agroekonomik, Beograd, 25-26.02.2015., 11-21.
23. Popović, V., Vidić, M., Vučković, S., Dolijanović, Ž., Đukić, V., Čobanović, L., Veselić, J.
(2016a). Potencijal rodnosti NS sorti soje - Glycine max u proizvodnom rejonu Srbije.
Zbornik naučnih radova Instituta PKB Agroekonomik, Beograd, Vol. 22. br. 1-2, 19-30.
24. Popovic, V., Tatic, M., Sikora, V., Ikanovic, J., Drazic, G., Djukic, V., Mihailovic, B., Filipovic,
V., Dozet, G., Jovanovic, Lj., Stevanovic, P. (2016b): Variability of yield and chemical
composition in soybean genotypes grown under different agroecological conditions of
Serbia. Romanian Agricultural Research, No. 33, 29-39.
25. Popović, Ž. (1976): Fiziologija bilja. Naučna knjiga, Beograd, 206-216.
26. Redžepović, S., Sikora, S., Sertić, Ð., Manitašević, J., Šoškić, M., Klaić, Ž. (1991.): Utjecaj
fungicida i gnojidbe mineralnim dušikom na bakterizaciju i prinos soje. Znanost i
praksa u poljoprivrednoj tehnologiji 21: 43-49. 13.
27. Rice WA, Ollsen EP, Collins MM (1995): Simbiotic effectiveness of R. melioti at low root
temperature. Plant at soil. 170; 351-358.
28. Singleton, P.W., Bohlool, B.B. (1984.): Effect of Salinity on Nodule Formation by
Soybean. Plant Physiology 74. 72-76.
29. Stevanović, P. (2002): Uticaj đubrenja azotom i inokulacije semena na prinos i kvalitet
soje na černozemu i pseudogleju. Magistarski rad, Univerzitet u Beogradu,
Poljoprivredni fakultet, Zemun.
30. Stevanović, P., Popović, V., Glamočlija, Đ., Tatić M., Spalević, V., Jovović, Z., Simić, D.,
Maksimović, L. (2016a): Uticaj azotnih hraniva na nodulaciju soje (Glycine max) na
černozemu i pseudogleju. XXX Savetovanja agronoma, veterinara, tehnologa i
agroekonomista. Padinska Skela. Beograd.Vol. 22. 1-2, 67-76.
31. Stevanović, P., Popović, V., Ikanović, J., Sikora, V., Filipović, V., Ugrenović, V., Kolarić, Lj.,
Tabaković, M. (2016): Efekat lokaliteta, azotnih hraniva i inokulacije semena
biofertilizatorom NS Nitragin-om na produktivnost komponente prinosa soje (Glycine
max). / Effect of localities, nitrogen fertilization and seed inoculation NS Nitragin
biofertilizer the productivity of yield components of soybean (Glycine max). Radovi sa
XXX Savetovanja agronoma, veterinara, tehnologa i agroekonomista. Beograd. Vol. 22.
br. 1-2, 85-97.
32. Sudarić, A. (2007.): Tehnologija proizvodnje soje. Poljoprivredni institut Osijek. Osijek.
33. Živanović Lj. & Popović V. (2016): Proizvodnja soje (Glycine max) u svetu i kod nas.
Zbornik radova XXI Savetovanje o biotehnologiji sa međunarodnim učešćem, 11-12.
Mart2016., Čačak, vol. 21 (23), 129-135.
Radovi sa XXXI Savetovanja agronoma, veterinara, tehnologa i agroekonomista. 2017. Vol. 23. br. 1-2. 119-128.
127
UDC: 633.34:631.454;546.17
Original scientific paper
INFLUENCE OF FERTILIZATION AT THE NITROGEN CONTENT AND MASS
OF THE NODULE OF SOYBEAN (GLICYNE MAX (L.) MERR)
P. Stevanović, V. Popović, V. Filipović, D. Terzić,
M. Tatić, V. Rajičić, D. Simić,M. Tabaković
Summary
Soybean (Glycine max (L.) Merr) is an annual legume plant. It belongs to the family
Fabaceae. Soybeans are grown in the world at around 117 million ha and occupies a leading
position among the protein-oil crops. The experiment was carried out with soybean on
pseudogley. The trial was conducted in order to investigate the effect of nitrogen fertilization
on the mass of nodules and nitrogen content in soybean nodules at the site of Brezovo Polje
in Brčko, on pseudogley. Applied four variants nitrogen fertilization: 1) 0 kg ha-1, control; 2)
50 kg ha-1; 3) 100 kg ha-1, and 4) 150 kg ha-1.
Maximum mass of nodules was in control variant and the variant with the highest
amount of nutrients the minimum weight of nodules. The highest content of nitrogen in
nodules was in the variant with the application of 50 kg ha-1 and amounted to 4.93%, while
the lowest content of nitrogen in nodules was in control variant. Positive non-significant
correlation was achieved between the weight of nodules and nitrogen content in nodules (r =
0.19).
Key words: soybean, fertilization, mass nodules, nitrogen content in soybean
nodules, pseudogley, correlation.
Petar Stevanovic, Ph.D., Inspection Affairs Administration of Republic Srps ka, Square 8, 78000 Banja L uka, Bosnia-
Herzegovina; V era Popović, PhD, Research Associate, Mladen Tatić, Ph.D., Senior Research Associate, Institute of Field
and Vegetable Crops, Maksima Gorkog 30, Novi Sad, Serbia; Vladimir Filipović, Ph.D., Research Associate, In stitute for
Medicinal pla nt “dr J osif Pančić” Bel grade, Serbi a; Dragan Terzić, Ph.D., Research Associate, Institute of Forage crops,
Kruševac, Serbia; Vera Rajičić, Ph.D., Senior Research Associate, Center of Smal grain, Kragujevac, Serbia; Ljubiša
Kolarić, Ph.D., Full Professor, University of Belgrade, Faculty of Agriculture, Nemanjina 6, Zemun-Belgrade, Serbia;
Divna Simić, Ph.D., Research Associate, Institute PKB Agroekonomik, Belgrade, Serbia. dr Marijenka Tabaković, Research
Associate, Maize Research Institute, Zemun Polje, Serbia.
E-mail first author: nikola.pavle@teol.net;
The paper is the result of research within the projects TR 31025 and TR 31022 financed by the Minist ary of
Education, Science, and Technological Development of the Republic of Serbia.
... Many researchers have reported that foliar fertilization treatments significantly increase plant height (Prijić et al., 2003;El-Abady et al., 2008;Yildirim et al., 2008;Ranđelović, 2009;Popović et al., 2013b;), first pod height (Ranđelović, 2009), number of nodes per plant (Odeleye et al., 2007;Ranđelović, 2009;Popović et al., 2017), number of pods per plant (El-Abady et al., 2008;Yildirim et al., 2008;Ranđelović, 2009;Popović et al., 2018), number of grain per plant (Odeleye et al., 2007;El-Abady et al., 2008;Ranđelović, 2009), grain yield per plant (Kaiser et al., 2007;El-Abady et al., 2008;Ranđelović, 2009, Popović et al., 2013a2013c;2018) and 1000-grain weight (Ranđelović, 2009;Popović et al., 2013b, Stevanovic et al., 2016. Popović et al. (2013c) reported that NS soybean varieties 'Galina' (maturity group 0), 'Victoria' and 'Tea' (maturity group I) had higher yield and 1000 grain weight in the variant with foliar fertilization with fitofert (composition: 12% N, 4% P 2 O 5 , 6% K 2 O, 0.013% Mn, 0.010% Fe, 0.008% B, 0.006% Cu, and 0.005% Zn) than in the control. ...
... Soybean was ( Kovcin et al., 1988) and still is the main source of protein in the diet of all farm animals in Serbia, too. Due to high protein content (35-50%) (Clarke andWiseman 2000, Popović et al., 2013;Terzić et al., 2016a;2016b;Stevanović et al., 2017;Tatić at al., 2018) and its efficient use, worldwide consumption of soybean for feeding of livestock has reached 160 million tons, which is about 2/3 of the total amount of all products used as a protein source in farm animal nutrition (Anonymous, 2011). Soybean and soy products, particularly soybean meal, have become increasingly important commodities. ...
Conference Paper
Full-text available
The average area under soybean in the world was 121.53 million ha, yield was 2.76 t ha-1 and production 334.89 million t. The largest areas in the world were in the Americas, followed by Asia, Europe and Africa. The Americas is the top soybean producing continent and which provides 87.1% of global soybean production. The average area under soybean in Europe was 5.038 mil.ha, the average yield 2.08 t ha-1 and soybean production was 10,488,759 t. The highest yields of soybeans in Europe had: Serbia (3.16 t ha-1), Croatia (3.11 t ha-1), Austria (3.06 t ha-1), Slovenia (2.99 t ha-1), Germany (2.73 t ha-1), Switzerland (2.54 t ha-1), France (2.48t ha-1), etc. Serbia's average soybean production in 2016 was 576,446 tons and the yields were higher than the World yield by 0.4 t. Serbia has excellent conditions for soybeans production.
... Soybean was ( Kovcin et al., 1988) and still is the main source of protein in the diet of all farm animals in Serbia, too. Due to high protein content (35-50%) (Clarke andWiseman 2000, Popović et al., 2013;Terzić et al., 2016a;2016b;Stevanović et al., 2017;Tatić at al., 2018) and its efficient use, worldwide consumption of soybean for feeding of livestock has reached 160 million tons, which is about 2/3 of the total amount of all products used as a protein source in farm animal nutrition (Anonymous, 2011). Soybean and soy products, particularly soybean meal, have become increasingly important commodities. ...
Conference Paper
Full-text available
The average area under soybean in the world was 121.53 million ha, yield was 2.76 t ha-1 and production 334.89 million t. The largest areas in the world were in the Americas, followed by Asia, Europe and Africa. The Americas is the top soybean producing continent and which provides 87.1% of global soybean production. The average area under soybean in Europe was 5.038 mil.ha, the average yield 2.08 t ha-1 and soybean production was 10,488,759 t. The highest yields of soybeans in Europe had: Serbia (3.16 t ha-1), Croatia (3.11 t ha-1), Austria (3.06 t ha-1), Slovenia (2.99 t ha-1), Germany (2.73 t ha-1), Switzerland (2.54 t ha-1), France (2.48t ha-1), etc. Serbia's average soybean production in 2016 was 576,446 tons and the yields were higher than the World yield by 0.4 t. Serbia has excellent conditions for soybeans production.
... Meteorological data. In Serbia, are highly variable meteorological conditions, both in terms of atmospheric precipitation and in terms of oscillations in air temperature ( Popovic et al., 2015Popovic et al., , 2018Glamočlija et al., 2015;Stevanović et al., 2017, Terzic et al, 2017). The vegetation period 2017 average precipitation was 340.4 mm in Pančevo and 523 mm in Paraćin (Figure 1). ...
Article
Full-text available
Experimental trips with immortelle they were carried out at two sites: Каcarevo (44° 57'59 "N 20° 41'22" E, municipality of Pancevo, South Banat, Serbia) and Lešje (43°51'10"N 20°41'22" E, Municipality of Paracin, Pomoravlje District, Šumadija and Western Serbia), on two types soil (chernozem and grazing). Needs for quality Helichrysum essential oil in the world growing, because they are more and more use in many branches industrial processing. Total yield of fresh biomass and the content of essential oil immortelle he was in borders of maximum production, which in these plant species starts from third year and it takes about 10 years. Italian immortelle can be successful cultivated in continental areas, in this case in the mountain area Central Serbia and flatland Vojvodina.
Article
Full-text available
The average area under soybean in the world was 121,53 million ha, yield was 2.76 t ha-1 and production 334,89 million t. The largest areas in the world were in the Americas, followed by Asia, Europe and Africa. The Americas is the top soybean producing continent and which provides 87.1% of global soybean production. The average area under soybean in Europe was 5,038 mil. ha, the average yield 2.08 t ha-1 and soybean production was 10,488,759 t. The highest yields of soybeans in Europe had: Serbia (3.16 t ha-1), Croatia (3.11 t ha-1), Austria (3.06 t ha-1), France (2.48t ha-1), etc. Serbia's average soybean production in 2016 was 576,446 tons and the yields were higher than the World yield by 0.4 t. Serbia has excellent conditions for soybeans production.
Article
Full-text available
In the study attempts to analyze soybean production and possibility obtaining biogas from soybean biomass, in order to obtain energy inputs into the profit function and realized a circular economy. This paper presents the results of five-year studies of soybean production analysis in the world and in Serbia, and was also examined soybeans morpho-productive characteristics and on the biogas yield, of the Favorit variety, produced in Pancevo, Serbia. Serbia has excellent conditions for soybeans production. The maximum soybean biomass yield of soybean variety Favorit was 5 t ha-1. The average biogas yield, for tested five years, was 368 m3ha-1. The biogas yield was in positive statistically significant correlations on the plant height (r=0.65*) and in positive correlations with biomass yield. Soybean cultivar with their characteristics justify the sowing and can be used as a raw material in bio-fuels production.
Article
Full-text available
Oil flax is the oldest medicinal plant. Medicinal properties have: mature and dried linseed (Lini seed), flax mucilage (Mucilage Seminis Line), linseed oil (Oleum Lini) and flour (Lini farina). The seed is smooth, shiny, flattened, brown color and oval in shape. Linseed oil is most useful natural oil which is obtained by cold pressing the seeds. The subject of this study is to test the oil flax, variety NS Primus. In the study year of NS Primus had achieved a high yield of 2.200 kg ha-1 and excellent technological quality of grain: oil content ranged from 36.48 to 40.00%. Technological quality of grain is one of the most important properties to which paying attention to create new varieties of flax. Based on the mentioned it is evident that it is an excellent raw material and may have used in many industry sectors, special importance in the healing and in human nutrition. Keywords: flax oil, medicinal plant, NS Primus, grain yield, oil content
Article
Full-text available
Study of the interaction between genotype (G) and year (Y) provides good estimates of genotypes breeding values. In order to investigate the main effects of G, Y and G x Y interactions on yield and quality components of NS soybean genotypes, an experiment with genotypes of different maturity groups was carried out during three-year period. The average yield for all genotypes was 4,716 kg ha-1. Genotype, year and interaction G x Y had statistically significant effect on the yield, p<0.05, p<0.01. The highest grain yields per unit area had, on an average, was recorded in genotype Venera (4,962 kg ha-1), significantly higher than genotype Vojvodjanka (4,522 kg ha-1), p<0.05. The highest yield stability was recorded by genotypes of MG 0. The average protein content of all examined genotypes was 37.60%. Year, genotype and G x Y interaction had statistically significant effects on protein content. Genotype Galina had on an average the highest protein content (38.11%), significantly higher than genotypes Trijumf, Valjevka and Venera, p<0.05. Significantly higher protein content was achieved during 2008 and 2009 compared with 2010, p<0.05, p<0.01. Average protein yield for all genotypes was 1,711 kg ha-1. The highest protein yields had genotype Venera, significantly higher than genotype Vojvodjanka, p<0.05. The average oil content for all examined genotypes was 21.51%. The most favorable year for oil synthesis in the test period was 2008 (22.41%). Statistically significantly higher oil content was recorded in 2008 (22.41%) compared to 2010 (20.22%) and significantly higher than in 2009 (21.89%), p<0.05. Genotype Valjevka (21.78%) had on average significantly higher oil content than genotype Trijumf, p<0.05. The average oil yield for all genotypes was 1,014 kg ha-1. On average the highest oil yield was recorded in genotype Venera. The yield was negatively statistically significant correlated with protein content, highly negatively significant correlated with air temperature and positively significant correlated by protein yield, oil yield and precipitation. The goal of the breeder was to create highly productive soybean varieties, followed by quality grain. This research can constitute the basis for further soybean breeding.
Research
Full-text available
Stress caused by the drought is the most serious limiting factor in soybean production. Abiotic stress in soybeans cause: water deficit and nutrition and high temperature. The effects of adverse climatic factors, temperature extremes and deficit of precipitation on crop production can be reduced by selecting tolerant varieties, early planting and proper production technology. In the experimental study, the soybean grain yield and protein yield and oil cultivars Galina were examined, in an organic cropping system, the natural water regime and irrigation conditions. Average yields of soybeans ranged from 3,560 kg ha-1 (natural water regime) up to 4502 kg ha-1 (irrigation). In irrigated conditions, grain yield and protein yield was significantly higher than in the variant without irrigation. Research shows that the average increase in grain yield (26.46%) and protein yield (26.18%) in the variant with irrigation were achieved. Oil yield was higher in varieties with irrigation compared to natural water regime but the difference was not significant. Irrigation is desirable effective measure in soybean production in drought years and is a prerequisite for economically profitable soybean production.
Article
Full-text available
The Leguminosae is one of the largest families of plants. It has a broad geographical distribution. The principal legume species have defined sites of origin and these coincide with the diversification centers for their “specific” symbiotic bacteria. These nitrogen-fixing bacteria, which form nodules in the roots or stems of the plants, belong to different bacterial lineages (Rhizobium, Bradyrhizobium, and Azorhizobium) related to other nonsymbiotic bacteria. A remarkable characteristic of these bacteria is their large genetic diversity. The genetic relationships among the different bacterial groups are being defined based mainly on the analysis of the sequences of the ribosomal genes. Recent results point out the need to have a broader genomic scope. Gene maps, genome sizes, and sequence of metabolic genes would serve to validate the present Rhizobium and Bradyrhizobium phylogenies. More realistic phylogenies should perhaps consider lateral transfer between clusters of bacteria.A compilation of records of bacterial genetic diversity, including enterobacteria and pathogens, is presented and compared with Rhizobium diversity. It is proposed that human activities are having important effects on microbe diversity.
Article
Full-text available
Rhizobia have the ability to infect and establish a N2-fixing symbiosis with many leguminous and a few nonleguminous plants. The result of this interaction is the formation of a novel plant organ, the nodule, where N2 fixation occurs. Research has shown that the establishment of this symbiosis requires coordinate bacterial and plant gene expression that is regulated through the mutual exchange of diffusible signal molecules. For example, each legume host exudes signals, mostly flavonoids, that induce the transcription of bacterial genes (i.e. nod, nol or noe genes), whose protein products are.required for the infection process. It is now known that some of these bacterial nodulation genes encode proteins involved in the biosynthesis of novel lipo-chitin oligosaccharide (LCO) nodulation signals active on the roots of the plant host. Both the induction of bacterial nodulation gene expression and the activity of the LCO nodulation signals are host specific. These two communication steps are likely determine to a large extent the specificity of rhizobia-legume host range. At present, only limited efforts are being made to put this basic information concerning the mechanisms of rhizobia-legume communication to practical use. However, there are promising results that suggest that nodulation of economically important legume crops, such as soybean and bean, can be enhanced by the exogenous application of nodulation gene-inducing compounds. It may be possible to modify commercial inoculant preparations to include nodulation gene-inducing compounds. Alternatively, it may be possible to select for legume host varieties that produce large amounts of nodulation gene-inducing compounds. Additional results provide clues that additional complexities are likely to be discovered in the communication networks that control rhizobial-host interaction. These complexities are further compounded by the myriad of interactions that occur in the plant rhizosphere. Yet, the speed of research advances in this area leads one to be optimistic concerning the advance in our basic understanding of rhizobial-host interaction and the eventual application of this information for agronomic benefit.
Article
Full-text available
The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT) Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth), DH) Multiple Diskharrowing at 10-15 cm as primary tillage, and NT) No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.
Article
Full-text available
A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C(2)H(2) reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.
Article
The symbiotic relationship between the soybean plant and rhizobium results in fixation of atmospheric nitrogen (N(2)) in the root nodules, with the result that nitrogenous fertilization of the soybean is unnecessary. The effectiveness of nodule formation and N(2) fixation with rhizobial strains is under genetic control with two general categories identified: (1) promiscuous, which produces functional nodules with cowpea-type rhizobial strains; and (2) nonpromiscuous, which forms no or nonfunctional nodules with these strains. The segregation pattern of this promiscuity trait was studied using nodule dry weight (NDW) and leaf color score (LCS) as indicators of N(2) fixation effectiveness. Individual plants in each of six populations [P(1) = nonpromiscuous, P(2) = promiscuous, F(1) = P(1) x P(2) (and the reciprocal cross), BC(1)(P(1)) = F(1) (female) x P(1), BC(1)(P(2)) = F(1) (female) x P(2), F(2)] were scored for these characters after inoculation with a rhizobial strain that would distinguish between both types. For NDW, nonpromiscuity was found to be partially dominant (h/d = 0.37), controlled by four loci. For LCS, nonpromiscuity was shown to be almost completely dominant (h/d = 0.74), controlled by two loci. LCS was a more meaningful estimate of N(2) fixation because it represented the total effectiveness of nodulation to provide nitrogen for the plant.