King Saud University ### Journal of Saudi Chemical Society ### **ORIGINAL ARTICLE** # Practical synthesis of methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-heptanoate Xinpeng Jiang a, Xueyan Wang b, Xing Huang b, Guizhou Li b, Chuanming Yu a,b,* Received 29 December 2016; revised 25 January 2017; accepted 28 January 2017 Available online 23 February 2017 ### **KEYWORDS** Misoprostol; Dehydrate cyclization; Friedel-Crafts acylation; Piancatelli rearrangement **Abstract** The key intermediate of misoprostol, methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-h eptanoate was prepared from commercially available suberic acid in 40% yield over five steps. The key step involved a ZnCl₂ catalyzed Friedel-Crafts reaction between furan and 2,9-oxonanedione. Sulfuric acid catalyzed methylation of 8-(furan-2-yl)-8-oxooctanoic acid followed by sequential reduction and ZnCl₂ catalyzed Piancatelli rearrangement resulted in the formation of the key intermediate of misoprostol. © 2017 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). ### 1. Introduction Misoprostol, a 15-deoxy-16-hydroxy-16-methyl prostaglandin E_1 (PGE₁) methyl ester, is developed for the treatment of peptic ulcer disease [1,2] and for labor induction with Mifepristone [3,4]. As a synthetic analog of prostaglandin E_1 , misoprostol can avoid the major side effects caused by PGE₁, including fetal bradycardia, pregnant women's emesis, somnolence, and headache. Therefore the synthesis of misoprostol has attracted lot of attention in recent years (Fig. 1). E-mail address: ycm@zjut.edu.cn (C. Yu). Peer review under responsibility of King Saud University. Production and hosting by Elsevier The two-component coupling strategy is one of the most efficient routes to assemble misoprostol [5–7]. The essential feature of this approach (Fig. 1) is the conjugate addition of 1-indo-4-methyloct-1-en-4-ol 3 [8] to methyl 7-(3-hydroxy-5-o xocyclopent-1-en-1-yl)-heptanoate 2. To date, a series of researches have been devoted to preparing the key intermediate 2. In 1976, Kobayash and co-workers [9] found 2 could be prepared mainly by reduction of lactone following selective epoxidation of the olefin in the ring of cyclopentenol giving epoxyalcohol with a double bond in the side chain of the molecule (Scheme 1-a). In 1977, a route developed by Collins et al. [10] revealed an eight-step synthesis of 2 from monomethyl azelate in 12% overall yield (Scheme 1-b). The same year, Kieczykowski et al. [11] employed lithium tert-butyl acetate, 1,5-dibromopentane and lithium imine salts synthesized ketone ester, after sequential three-step transforming intermediate 2 could be obtained in 30% yield (Scheme 1-c). Alternatively, Naora and co-workers [12] used cyclooctanone to do the transformation (Scheme 1-d). In 1994, Holland et al. [13] synthesized of 2 using 2-ethyl-cyclopentanone and methyl-7- ^a College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China ^b Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China ^{*} Corresponding author at: College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China. Fax: +86 571 88320867. 588 X. Jiang et al. Figure 1 Prostaglandin E₁, misoprostol and two-component coupling retrosynthetic analysis for misoprostol. Scheme 1 Different protocols for the synthesis of methyl 7-(3-hydroxy-5-oxo-1- cyclopenten-1-yl)-heptanoate 2. bromoheptanoate as starting materials in six steps with an overall yield of 23% (Scheme 1-e). Later, Rodríguez et al. [14] reported enzymatic cleavage of dimethyl suberate with porcine pancreatic lipase (PPL) gave a half ester, which was then converted into a mixed anhydride. After reaction with furan, it was reduced with NaBH₄ and isomerization to afford 2 (Scheme 1-f). Nevertheless, the majority of these current composite methods bear some disadvantages, including low yields, uneconomic and environmental unfriendly reaction conditions. Herein, we present a practical and efficient synthesis of methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-heptano ate from readily available suberic acid, which is not only more environmental friendly, but also can shorten synthesis steps and enhance overall yields. The synthetic roadmap toward methyl 7-(3-hydroxy-5-oxo cyclopent-1-en-1-yl)-heptanoate 2 was designed on the basis of retrosynthetic analysis shown in Fig. 2. According to Rodríguez's synthesis, 2 could be prepared through a ZnCl₂ catalyzed Piancatelli isomerization of methyl 8-(furan-2-yl)-8-hydroxyoctanoate 8 [15], which could be obtained by reduction with NaBH₄ from methyl 8-(furan-2-yl)-8-oxooctanoate 7. Disconnection of the C—C bond linking furan with carbon chain revealed 2,9-oxonanedione 5 as potential intermediates in the synthetic direction. 2,9-oxonanedione itself could be easily prepared from dehydrate cyclization of suberic acid 4. ### 2. Experimental All reagents were purchased from commercial sources and used without purification. **Figure 2** Retrosynthetic analysis for key intermediate **2**. ¹H NMR and ¹³C NMR were obtained from Varian Mercury-Plus 400 MHz (AVANCE Ⅲ 500 MHz) and 100 MHz. Mass spectra were measured with a Thermo Finnigan LCQ Advantage instrument using ESI ionization. ### 2.1. Synthesis of 2,9-oxonanedione (5) [16] Suberic acid (4.998 g, 28.7 mmol) was added to a solution of acetic anhydride (10.0 mL, 106 mmol) at room temperature. The mixture was stirred at 120 °C for 3 h until the acid was not detected. Distillation of the solvent under reduced pressure gave the product as white solid (4.429 g, 99%). $^1\mathrm{H}$ NMR (500 MHz, CDCl₃) δ 2.48–2.39 (m, 4H), 1.70–1.59 (m, 4H), 1.42–1.31 (m, 4H). ### 2.2. Synthesis of 8-(furan-2-yl)-8-oxooctanoic acid (6a) [17] To a solution of 2, 9-oxonanedione **5** (142 mg, 0.9 mmol) in CH_3NO_2 (1.0 mL) at 40 °C was added furan (0.17 mL, 2.5 eq.) dropwise and then $ZnCl_2$ (12 mg, 0.1 eq.). When the addition was completed, the mixture was stirred for 1 h until TLC indicated the total consumption of **5**, the reaction mixture was then filtered to remove precipitated suberic acid (56 mg, 35%). The residue was purified by column chromatography on silica gel (hexane/EtOAc = 2:1) to give **6a** (93 mg, 46%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.18 (d, J = 3.2 Hz, 1H), 6.53 (d, J = 1.6 Hz, 1H), 2.83 (t, J = 7.4 Hz, 2H), 2.37 (t, J = 7.4 Hz, 2H), 1.88–1.54 (m, 4H), 1.52–1.42 (m, 4H). MS (ESI): m/z: 247.2 [M + 23]⁺. # 2.3. One-pot synthesis of 8-(furan-2-yl)-8-oxooctanoic acid (6a) Suberic acid (4.995 g, 28.7 mmol) was added to a solution of acetic anhydride (10.0 mL, 106 mmol) at room temperature. The mixture was stirred at 120 °C for 3 h until the acid was not detected. Distillation of the solvent under reduced pressure gave the crude product. To a solution of the crude product in CH₃NO₂ (15.0 mL) at 40 °C was added furan (5.2 mL, 2.5 eq.) dropwise and then ZnCl₂ (0.375 g, 0.1 eq.). When the addition was completed, the mixture was stirred for 1 h until TLC indicated the total consumption of 5, the reaction mixture was then filtered to remove precipitate, which was washed with ice water and then dried to give 1.730 g of suberic acid in 35% recovery yield. The filtrate was added with 10% aqueous NaOH (30 mL), extracted with EtOAc (20 mL), then 37% HCl was added in aqueous layer until adjusted pH = 1. The aqueous phase was extracted with DCM (30 mL \times 5). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated using a rotary evaporator under reduced pressure to give **6a** (3.105 g, 48%), and the adjusted yield was 74% based on 35% of **4** recovery. This crude product was used in the next step without further purification. # 2.4. Synthesis of 8-(furan-2-yl)-8-oxooctanoic acid (6a) from recovered suberic acid Following the procedure of one-pot synthesis of 8-(furan-2-yl)-8-oxooctanoic acid, recovered suberic acid (1.730 g, 10.0 mmol) was reacted with acetic anhydride (3.5 mL, 37.0 mmol) afforded 2,9-oxonanedione. The crude product was then reacted with furan (1.8 mL, 2.5 eq.) and ZnCl₂ (0.136 g, 0.1 eq.) in CH₃NO₂ (5.0 mL) afforded 1.025 g of **6a** in 46% yield. The adjusted yield was 61% based on 25% of suberic acid recovery. # 2.5. Synthesis of methyl 8-(furan-2-yl)-8-oxooctanoate (7) [14] Compound **6a** (1.140 g, 5.1 mmol) was dissolved in MeOH (15.0 mL), and added to H_2SO_4 (60 μ L, 1.02 mmol) in one portion. After stirring at 100 °C for 4 h, reaction was cooled to ambient temperature. After removal of MeOH under reduced pressure, saturated aqueous NaHCO₃ (20 mL) was added to the crude product, then added EtOAc (25 mL) and washed with brine (25 mL). Drying over Na₂SO₄ was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 6:1) to give 7 (1.176 g, 97%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.06 (d, J = 3.2 Hz, 1H), 6.41 (dd, J = 3.6 Hz, J = 1.6 Hz, 1H), 3.53 (s, 3H), 2.69 (t, J = 7.4 Hz, 2H), 2.18 (t, J = 7.5 Hz, 2H), δ 1.67–1.43 (m, 4H), δ 1.33–1.18 (m, 4H). MS (ESI): m/z: 261.1 [M + 23]⁺. # 2.6. Synthesis of methyl 8-(furan-2-yl)-8-hydroxyoctanoate (8) [14] To a solution of 7 (1.021 g, 4.3 mmol) in MeOH (7 mL) at 0 °C was added NaBH₄ (0.238 g, 6.6 mmol), in small portions, until the starting material was completely consumed. After quenching with saturated aqueous NH₄Cl (25 mL) and removal of the MeOH under reduced pressure, the crude product was dissolved in EtOAc (25 mL) and washed with brine (25 mL). Drying over Na₂SO₄ was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 6:1) to give **8** (0.950 g, 93%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.28 (m, 1H), 6.28–6.24 (m, 1H), 6.16 (d, J = 3.2 Hz, 1H), 4.59 (t, J = 6.8 Hz, 590 X. Jiang et al. 1H), 3.61 (s, 3H), 2.61 (br, 1H), 2.25 (t, J = 7.5 Hz, 2H), 1.83–1.73 (m, 2H), 1.61–1.52 (m, 2H), 1.36–1.21(m, 6H). MS (ESI): m/z: 263. 1 [M + 23]⁺. 2.7. Synthesis of methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-heptanoate (2) [14] Compound **8** (0.926 g, 3.9 mmol) was dissolved in dioxane (5.5 mL) and water (3.6 mL), stabilized with hydroquinone (1 mg), and added of ZnCl₂ (2.035 g, 15.0 mmol). The reaction mixture was refluxed for 6 h. The solvent was removed under reduced pressure and the residue was taken up in EtOAc (30 mL) and washed twice with a saturated aqueous NaHCO₃ (15 mL). The EtOAc phase was washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure affording a mixture of **9** and **2**. The crude mixture of **9** and **2** was dissolved in toluene (6.0 mL) and treated with Et₃N (0.35 mL, 2.5 mmol) and anhydrous chloral (23 μ L, 0.24 mmol). The solution was stirred until TLC showed completion of the reaction. Removal of the solvent under reduced pressure and the residue was purified by column chromatogra- phy on silica gel (hexane/EtOAc = 2:1) to give **2** (0.554 g, 60%) as a yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 7.14 (s, 1H), 4.95 (d, J = 6.4 Hz, 1H), 3.67 (s, 3H), 2.82 (dd, J = 18.4 Hz, J = 6.0 Hz, 1H), 2.35–2.27 (m, 3H), 2.20 (t, J = 7.6 Hz, 2H), 1.76 (s, 1H), 1.68–1.58 (m, 2H), 1.55–1.46 (m, 2H), 1.39–1.31 (m, 4H). 13 C NMR (100 MHz, CDCl₃) δ 205.99, 174.09, 155.93, 147.75, 68.50, 51.15, 44.91, 34.07, 28.95, 28.83, 27.22, 24.85, 24.43. MS (ESI): m/z: 263.1 [M + 23] $^{+}$. #### 3. Results and discussion The synthesis of **2** starting from suberic acid proceeded as shown in Scheme 3. In order to examine our hypothesis, our investigation commenced with conversion of suberic acid **4** to 2,9-oxonanedione **5** under different conditions. No desired product was observed when the polar solvents like DMSO and DMF were used (entries 1 and 2, Table 1), but *n*-heptane and dioxane gave **5** in 86% and 96% yield respectively (entries 3 and 4, Table 1). Screening of the other solvents revealed that *o*-dichlorobenzene exhibited similar efficiency in 97% yield Scheme 2 One-pot synthesis and large-scale of 6a. Scheme 3 Synthesis of 2 from suberic acid 4. Reagents and conditions: a) acetic anhydride, 120°C, 3h; furan, ZnCl₂, CH₃NO₂, 40°C, 1h, 48% (74%); b) H₂SO₄, MeOH, 97%; c) NaBH₄, MeOH, 0°C, 93%; d) ZnCl₂, hydroquinone, dioxane:H₂O (1.5:1), reflux; e) chloral, Et₃N, toluene, r.t., 60%. **Table 1** Dehydrate cyclization of suberic acid **4** using acetic anhydride.^a $$O_2$$ C O_2 H O_2 C O_2 H O_3 C O_4 | Entry | Solvent | Temp (°C) | Yield (%) ^b | |----------------|-------------------|-----------|------------------------| | 1 | DMSO | 120 | 0 | | 2 | DMF | 120 | 0 | | 3 | n-Heptane | 98 | 86 | | 4 | Dioxane | 100 | 96 | | 5 | o-Dichlorobenzene | 120 | 97 | | 6 | Chlorobenzene | 120 | 97 | | 7 ^c | Acetic anhydride | 120 | 99 | | 8 ^c | Acetic anhydride | 140 | 83 | ^a Reaction conditions: **4** (28.7 mmol), acetic anhydride (1.85 eq.) in solvent (20 mL). (entry 5, Table 1) comparable to chlorobenzene's yield (entry 6, Table 1). However, when acetic anhydride was used as both reactant and solvent, 5 could be obtained in quantitative yields (entry 8, Table 1). We found increasing the temperature to 140 °C could not improve yields (entry 9, Table 1). Thus the optimized reaction condition was suberic acid 4 with excess acetic anhydride stirring at 120 °C for 3 h gave 5 in 99% yield. Afterward, we continued the synthesis by optimizing the Lewis acid catalyzed Friedel-Crafts reaction of furan with 2,9-oxonanedione 5. In the absence of Lewis acid, the reaction produced no ideal acylation product 6a (entry 1, Table 2). When AlCl₃ was used as a catalyst, the reaction afforded **6a** in 10% yield (entry 2, Table 2). Then we screened other Lewis acids such as FeCl₃ which afforded **6a** in 41% yield (entry 3, Table 2), considering 21% of starting material suberic acid recovered and could be used in the next round of dehydrate cyclization, the adjusted yields were calculated and used to evaluate the following conditions. While catalysts such as FeCl₂·4H₂O, BF₃·Et₂O and B(C₆F₅)₃ only showed low to moderate catalytic activity (entries 4, 5 and 6, Table 2), ZnCl₂ successfully enhanced the adjusted yield of 6a to 57% (entry 9. Table 2). Other trifluoromethanesulfonates, such as Zn(OTf)₂, Mg(OTf)₂ afforded low to moderate yields (entries 7 and 8, Table 2). Decreasing the equivalent of ZnCl₂ could get the similar adjusted yield when used 0.2 equivalent of ZnCl₂ (entry 10, Table 2). As for solvents, dichloromethane (DCM), chloroform (CHCl₃) and tetrahydrofuran (THF), showed inferior results in comparison with CH₃NO₂, and only low to moderate yields were obtained (entries 11, 12 and 13, Table 2). In addition, conducting the reaction at 40 °C was the better choice compared to 30 °C (43% adjusted yield) and 50 °C (39% adjusted yield) (entries 14 and 15, Table 2). With regard to reaction time, we found prolonging the reaction time from 0.5 h to 1 h could increase the yield of 6a, and the adjusted yield was enhanced to 71% due to higher recovery of 2 (entries 5 and 16, Table 2). We then tried to obtain **6a** in one-pot synthesis. As illustrated in Scheme 2, suberic acid **4** (28.7 mmol, 4.995 g) was Table 2 Friedel-Crafts reaction of 2,9-oxonanedione with furan using Lewis acids catalysts. | Entry | Catalyst (eq.) | Temp (°C) | Solvent | Yield ^b (%) of 6a (4) | Yield ^b (%) of 6b | Adjusted yield ^c (%) | |-----------------|--------------------------------------------|-----------|---------------------------------|----------------------------------|------------------------------|---------------------------------| | 1 | _ | 40 | CH ₃ NO ₂ | _ | _ | | | 2 | AlCl ₃ (0.2) | 40 | CH_3NO_2 | 10 (6) | 5 | 11 | | 3 | FeCl ₃ (0.2) | 40 | CH_3NO_2 | 41 (21) | 6 | 52 | | 4 | FeCl ₂ .4H ₂ O (0.2) | 40 | CH_3NO_2 | 37 (17) | 7 | 45 | | 5 | BF ₃ .Et ₂ O (0.1) | 40 | CH_3NO_2 | 22 (20) | 7 | 28 | | 6 | $B(C_6F_5)_3$ (0.05) | 40 | CH_3NO_2 | 16 (42) | 8 | 28 | | 7 | $Zn(OTf)_2 (0.1)$ | 40 | CH_3NO_2 | 48 (22) | 6 | 62 | | 8 | $Mg(OTf)_2 (0.03)$ | 40 | CH_3NO_2 | 19 (44) | 16 | 34 | | 9 | $ZnCl_2$ (0.2) | 40 | CH_3NO_2 | 44 (23) | 9 | 57 | | 10 | $ZnCl_2(0.1)$ | 40 | CH_3NO_2 | 42 (27) | 5 | 58 | | 11 | $ZnCl_2$ (0.2) | 40 | DCM | 36 (0) | 6 | 36 | | 12 | ZnCl ₂ (0.2) | 40 | CHCl ₃ | 25 (31) | 6 | 36 | | 13 | $ZnCl_2$ (0.2) | 40 | THF | - | - | - | | 14 | $ZnCl_2$ (0.2) | 30 | CH_3NO_2 | 37 (13) | 6 | 43 | | 15 | ZnCl ₂ (0.2) | 50 | CH_3NO_2 | 33 (16) | 9 | 39 | | 16 ^d | ZnCl ₂ (0.1) | 40 | CH ₃ NO ₂ | 46 (35) | 9 | 71 | ^a Reaction conditions: 5 (0.96 mmol), furan (2.5 eq.) in solvent (1 mL) for 0.5 h. ^b Isolated yield. ^c Acetic anhydride (106 mmol, 3.7eq.) was used as reactant and solvent. b Isolated yield by column chromatography on silica gel (hexane/EtOAc = 2:1). ^c Yield based on 4 recovery. d The reaction time was 1 h. 592 X. Jiang et al. first quantitatively cyclized to 2,9-oxonanedione 5. After distillation under reduced pressure to remove acetic acid and acetic anhydride, the resulting crude product 5 was then dissolved in nitromethane, and stirred with furan (2.5 eq., 71.8 mmol) and zinc chloride (0.1 eq., 2.9 mmol) at 40 °C for 1 h to afford crude products. Subsequent filtration, salification, acidification and extraction afforded 6a (3.105 g) in 74% adjusted yield, based on 35% of 4 recovery. The recovered 4 could also be reused in the next round to give 6a in 61% adjusted yield. After that, sulfuric acid catalyzed methylation of 8-(furan-2-yl)-8-oxooctanoic acid **6a** to afford methyl ester **7** in 97% yield. Then reduction of ketone in MeOH at 0 °C gave hydroxyester **8**. Comparing with 1.1 equivalent (88% yield) and 1.5 equivalent (92% yield) of NaBH₄, 1.2 equivalent of NaBH₄ afforded **8** in 93% yield. After purification, **8** was used directly in the following isomerization to give **2**. The ZnCl₂ catalyzed isomerization was carried out in dioxane/H₂O (1.5:1) and reflux for 6 h, giving a mixture of the hydroxycyclopentenone **9** and **2**. A catalytic amount of chloral catalyzed further isomerization of hydroxycyclopentenone **9** in toluene afforded **2** in 60% yield. #### 4. Conclusion In summary, we have developed a simple and efficient method to synthesize methyl 7-(3-hydroxy-5-oxocyclopent-1-en-1-yl)-heptanoate, a valuable key intermediate of misoprostol, via a dehydrate cyclization/Friedel-crafts acylation strategy. Compared with the previous reports, this synthesis was shortened to five steps, and the overall yield was improved to 40%. The process from commercially available starting material suberic acid 4 to a key intermediate 6a was significantly optimized with good yields and easy workups. Further applications of this approach to build prostaglandin drugs are being conducted in our laboratory. #### Acknowledgements This work was supported by the National Natural Science Foundation of China (grant number 21506191, 21676252, 21406203). ### Appendix A. Supplementary data Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jscs.2017.01.004. ### References - J.N. Hunt, J.L. Smith, C.L. Jiang, L. Kessler, Effect of synthetic prostaglandin E₁ analog on aspirin-induced gastric bleeding and secretion, Dig. Dis. Sci. 28 (1983) 897–902. - [2] D.E. Wilson, E. Quadros, T. Rajapaksa, A. Adams, M. Noar, Effects of misoprostol on gastric acid and mucus secretion in man, Dig. Dis. Sci. 31 (1986) 126S–129S. - [3] A. Bugalho, C. Bique, F. Machungo, S. Bergstrom, Vaginal misoprostol as an alternative to oxytocin for induction of labor in women with late fetal death, Acta Obstet. Gyn. Scan. 74 (1995) 194–198. - [4] M. Jerbi, S. Hidar, W. Sahraoui, H. Essaidi, M. Fekih, M. Bibi, A. Chaieb, H. Khairi, Mifepristone 100mg for early medical abortion, Journal de Gynécologie Obstétrique et Biologie de la Reproduction 34 (2005) 257–261. - [5] F.S. Alvarez, D. Wren, A. Prince, Prostaglandins. IX. Synthesis of (±)-prostaglandin E1, (±)-11-deoxyprostaglandins E1, F1α, and F1β, and (±)-9-oxo-13- cis-prostenoic acid by conjugate addition of vinylcopper reagents, J. Am. Chem. Soc. 94 (1972) 7823–7827. - [6] A.F. Kluge, K.G. Untch, J.H. Fried, Prostaglandins. X. Synthesis of prostaglandin models and prostaglandins by conjugage addition of a functionalized organocopper reagent, J. Am. Chem. Soc. 94 (1972) 7827–7832. - [7] K.A. Babiak, J.R. Behling, J.H. Dygos, K.T. McLaughlin, J.S. Ng, V.J. Kalish, S.W. Kramer, R.L. Shone, One-pot synthesis of protected prostaglandins from alkynes and cyclopentenones. In situ generation of higher order cyanocuprates derived from alkenylzirconium intermediates, J. Am. Chem. Soc. 112 (1990) 7441–7442. - [8] C.J. Sih, R.G. Salomon, P. Price, R. Sood, G. Peruzzotti, Total synthesis of prostaglandins. VI. Stereospecific total synthesis of prostaglandins via reaction of α-alkylcyclopentenones with organocuprates, J. Am. Chem. Soc. 97 (1975) 857–865. - [9] M. Kobayashi, S. Kurozumi, T. Toru, S. Ishimoto, An alternative synthesis of prostaglandin intermediates, Chem. Lett. 5 (1976) 1341–1342. - [10] P.W. Collins, E.Z. Dajani, D.R. Driskill, M.S. Bruhn, C.J. Jung, R. Pappo, Synthesis and gastric antisecretory properties of 15deoxy-16-hydroxyprostaglandin E analogs, J. Med. Chem. 20 (1977) 1152–1159. - [11] G.R. Kieczykowski, C.S. Pogonowski, J.E. Richman, R.H. Schlessinger, Prostaglandins. An efficient synthesis of a 2-alkyl-4-hydroxycyclopentenone, J. Org. Chem. 42 (1977) 175–176. - [12] H. Naora, T. Ohnuki, A. Nakamura, A New Method of Synthesizing 7-(2-Hydroxy-5-oxo-1-cyclopentenyl)heptanoic Acid and Related Compounds, Bull. Chem. Soc. Jpn. 61 (1988) 2401–2404. - [13] H.L. Holland, E.S. Ratemi, L. Contreras, Synthesis of (\pm) -15-thia-15-deoxy-PGE₁ methyl ester, Can. J. Chem. 72 (1994) 1–5. - [14] A. Rodríguez, M. Nomen, B.W. Spur, J.J. Godfroid, An efficient asymmetric synthesis of prostaglandin E₁, Eur. J. Org. Chem. 10 (1999) 2655–2662. - [15] G. Piancatelli, M. D'Auria, F. D'Onofrio, Synthesis of 1,4-dicarbonyl compounds and cyclopentenones from furans, Synthesis 9 (1994) 867–889. - [16] F. Oger, A. Lecorgne, E. Sala, V. Nardese, F. Demay, S. Chevance, D.C. Desravines, N. Aleksandrova, R.M.L. Guével, S. Lorenzi, A.R. Beccari, P. Barath, D.J. Hart, A. Bondon, D. Carettoni, G.R. Simonneaux, G. Salbert, Biological and biophysical properties of the histone deacetylase inhibitor suberoylanilide hydroxamic acid are affected by the presence of short alkyl groups on the phenyl ring, J. Med. Chem. 53 (2010) 1937–1950. - [17] D.W. Delorme, S. Hyung; V. Arkadii, Preparation of hydroxamic acids as inhibitors of histone deacetylase, WO 0170675A2.