Current machine-learning approaches for information extraction often include features based on large volumes of knowledge in form of gazetteers, word clusters, etc. In this paper we consider a CRF-based approach for Russian named entity recognition based on multiple lexicons. We test our system on the open Russian collections “Persons-1000” and “Persons-1111” labeled with personal names. We additionally annotated the collection “Persons-1000” with names of organizations, media, locations, and geo-political entities and present the results of our experiments for one type of names (Persons) for comparison purposes, for three types (Persons, Organizations, and Locations), and five types of names. We also compare two types of labeling schemes for Russian: IO-scheme and BIO-scheme.