ThesisPDF Available

An analysis of high-bar and low-bar back-squat techniques in Olympic weightlifters and powerlifters

Authors:

Abstract and Figures

The barbell back-squat is one of the most common exercises in strength and conditioning practice; especially in Olympic weightlifting and powerlifting. There are two main bar placements within the back-squat; the high-bar and low-bar positions. The high-bar position, favoured by Olympic weightlifters, closely resembles the upright body position of the two competition lifts of the sport; the snatch and clean and jerk. The low-bar position, favoured by powerlifters, typically allows greater loads to be lifted by utilising the posterior-chain musculature during the back-squat (one of the three competition lifts in the sport). Unfortunately, little research exists comparing the high-bar back-squat with the low-bar back-squat, and no research has examined either lift above 90% of one repetition maximum. Furthermore, no authors have biomechanically compared the high-bar back-squat to the Olympic lifts (e.g. snatch and clean and jerk). The aims of this thesis were to (1) review the current literature and quantitatively assess the kinetic and kinematic findings among the limited research; (2) compare and contrast the high-bar back-squat and low-bar back-squat up to maximal effort; and (3) assess the differences and/or similarities between the high-bar back-squat and the Olympic lifts. Through an extensive literature review, the high-bar back-squat was found to commonly present a larger hip angle, smaller knee angle and equivalent ankle angle compared to the low-bar back-squat; inferring the high-bar placement creates a more upright truck position for the lifter and requires more quadriceps muscle activation. Experimentally, these findings were confirmed with the high-bar back-squat producing larger hip angles and smaller knee angles compared to the powerlifters (16–21% larger and 10–12% smaller, respectively) and low-bar controls (16–21% larger and 10–12% smaller, respectively). While the Olympic weightlifters and powerlifters lifted similar relative loads, the low-bar controls were able to lift 2.5–5.2% larger relative loads compared to the high-bar controls. As expected, the high-bar back-squat also showed similar kinematics to the snatch and the clean but substantially different kinetics across all loads lifted. Performing a back-squat with a low-bar placement, situates the lifter (advanced and recreational) in a stronger position to lift larger loads compared to the high-bar placement. The establishment of a more advantageous kinematic posture during the low-bar back-squat could potentially maximise the utilisation of the stronger posterior hip musculature thus increasing the stability and moment arm at the hip. The low-bar back-squat therefore appears to provide the best chance of lifting the largest relative load. The kinematic similarities in posture between the high-bar back-squat and the Olympic lifts suggests the potential of similar trunk, hip and thigh muscular activity of key stabilising muscles and repetitive positional alignment in the “catch” position. The differing kinetics however, are more likely due to technical differences between the high-bar back-squat, snatch and clean; wherein the Olympic lifts require additional elements of upper-body strength and stability. The high-bar back-squat does appear to yield an efficient carryover to the Olympic lifts as a suitable supplementary exercise; provided the technical components of the lifts are maintained.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.
Article
Full-text available
Handheld load has been reported to enhance horizontal jump performance, however little is known about its influence on ground reaction forces (GRF), especially in female athletes. This study investigated the effects of individualized optimal handheld loading on the technical and physical ability to apply GRF during horizontal jumping in female netball players. Maximal effort, single standing, horizontal jumps were performed by 13 female netballers. Participants performed the jumps under 2 conditions: 1) unloaded, and 2) loaded. Eccentric mean horizontal GRF significantly increased with loading (p<0.05; Effect Size [ES]= 0.74). The ratio of horizontal-to-total GRF significantly increased (p<0.05; ES=0.57), however resultant GRF did not, suggesting that the technical ability to apply force in the direction of intended movement may be of greater importance than the magnitude of force applied. Jump distance also increased from 188.2±16.1 cm to 196.4±13.6 cm (p<0.01; ES=0.55) with handheld load. In conclusion, individualized optimal handheld loading improved single horizontal jump performance in this population of athletes; most likely through various mechanisms that allowed for increased eccentric horizontal GRFs and the technical ability of force application. Findings could have practical implications for the strength and conditioning coach, trainer and athlete. © Georg Thieme Verlag KG Stuttgart · New York.
Article
Full-text available
Gomes, WA, Brown, LE, Soares, EG, da Silva, JJ, Silva, FHDdO, Serpa, ÉP, Corrêa, DA, Vilela Junior, GdB, Lopes, CR, and Marchetti, PH. Kinematic and sEMG analysis of the back squat at different intensities with and without knee wraps. J Strength Cond Res 29(9): 2482-2487, 2015-The purposes of this study were to measure the acute effects of knee wraps (KWs) on knee and hip joint kinematics, dynamic muscle activation from the vastus lateralis (VL) and gluteus maximus (GM), and rating of perceived exertion (RPE) during the back squat exercise at 2 different intensities. Fourteen resistance-trained men (age: 24 ± 4 years, height: 176 ± 6 cm, body mass: 81 ± 11 kg, back squat 1 repetition maximum [1RM]: 107 ± 30 kg, 3 ± 1 year of back squat experience) performed 1 set of 3 repetitions under 4 different conditions, to a depth of approximately 90 degrees of knee joint flexion, and in random order: KWs at 60% 1RM (KW60), KWs at 90% 1RM (KW90), without knee wraps (NWs) at 60% 1RM (NW60), and NWs at 90% 1RM (NW90). The dependent variables obtained were vertical and horizontal bar displacement, peak joint angle in the sagittal plane (hip and knee joints), concentric and eccentric muscle activation (by integrated electromyography) from the VL and GM, and RPE. For muscle activity, there were significant decreases in the VL NWs at 60% 1RM (p = 0.013) and a significant increase NWs at 90% 1RM (p = 0.037). There was a significant increase in VL muscle activity at 90% 1RM, when compared with 60% 1RM (KW: p = 0.001, effect size (ES) = 1.51 and NW: p < 00.001, ES = 1.67). There was a decrease in GM muscle activity NWs only at 60% 1RM (p = 0.014). There was a significant increase in GM muscle activity at 90% 1RM, when compared with 60% 1RM (KW: p < 0.001 and NW: p < 0.001). For peak hip joint flexion angle, there was significant decreases between intensities (90% 1RM < 60% 1RM) only to NWs condition (p = 0.009), and there was greater knee flexion NWs for both intensities: 60% 1RM (p < 0.001) and 90% 1RM (p = 0.018). For normalized vertical barbell displacement, there were significant differences between intensities when using KWs (p = 0.022). There were significant differences in RPE between 60 and 90% 1RM for each condition: KWs (p < 0.001) and NWs (p < 0.001). In conclusion, the use of KWs results in decreased muscle activation of the VL at the same intensity (90% 1RM).
Poster
Full-text available
The purpose of this study was to establish the internal consistency and test-retest reliability of prime-mover electromyogram and acceleration for the dominant arm during an antigravity, within-arm’s length, stand-reaching task without trunk restraint. Ten healthy young adults participated in two experimental sessions, approximately 7-10 days apart. During each session, subjects performed 15 trials of flexion- and abduction-reaching tasks guided by two auditory cues — preparatory, at which they visually focused attention in line with the target, and final, at which they reached out and touched the target as quickly and as accurately as possible. Surface EMG using wireless sensors were sampled from anterior and middle deltoid. Reliability was established using Cronbach’s alpha, intraclass correlation coefficients (ICC 2, k) and standard error of measurements (SEM) for electromyographic reaction time, burst duration and normalized amplitude along with peak accelerations. Results indicated high degree of inter-trial and test-retest reliability for both flexion (Cronbach’s α range = 0.92-0.99; ICC range = 0.82-0.92) as well as abduction (Cronbach’s α range = 0.94-0.99; ICC range = 0.81-0.94). The SEM associated with response variables for flexion and abduction ranged from 1.55-3.26% and 3.33-3.95% of means, respectively. Findings of this study revealed that electromyographic and accelerometer data collected from prime movers of the arm during a relatively functional stand-reaching task were highly reproducible. Given its high reliability and portability, the proposed test could have applications in clinical and laboratory settings to quantify upper limb function.
Article
Full-text available
The primary aim of this study was to compare rating of perceived exertion (RPE) values measuring repetitions in reserve (RIR) at particular intensities of 1RM in experienced (ES) and novice squatters (NS). Further, this investigation compared average velocity between ES and NS at the same intensities. Twenty-nine individuals (24.0±3.4yrs.) performed a one-repetition maximum (1RM) squat followed by a single repetition with loads corresponding to 60, 75, and 90% of 1RM and an 8-repetition set at 70% 1RM. Average velocity was recorded at 60, 75, and 90% 1RM and on the first and last repetitions of the 8-repetition set. Subjects reported an RPE value that corresponded to an RIR value (RPE-10 = 0-RIR, RPE-9 = 1-RIR, and so forth). Subjects were assigned to one of two groups: 1) ES (n=15, training age: 5.2±3.5yrs.), 2) NS (n=14, training age: 0.4±0.6yrs.). The mean of the average velocities for ES were slower (P<0.05) than NS at 100% and 90% 1RM. However, there were no differences (P>0.05) between groups at 60%, 75%, or for the 1st and 8th repetitions at 70% 1RM. Additionally, ES recorded greater RPE at 1RM than NS (P=0.023). In ES there was a strong inverse relationship between average velocity and RPE at all percentages (r= -0.88, P<0.001), and a strong inverse correlation in NS between average velocity and RPE at all intensities (r=-0.77,P=0.001). Our findings demonstrate an inverse relationship between average velocity and RPE/RIR. ES exhibited slower average velocity and higher RPE at 1RM than NS, signaling greater efficiency at high intensities. The RIR-based RPE scale is a practical method to regulate daily training load and provide feedback during a 1RM test.
Article
This study sought to analyze the effects of subjects' wearing weightlifting lumbar support belts on surface electromyographic recordings of the erector spinae muscle group while the subject executed parallel squats. Ten healthy college-age men with weightlifting experience participated in this study. Participants completed a total of 6 repetitions of high-bar parallel back-squats at loads equaling 60% of their 1 repetition maximum. Experimental conditions required subjects to perform 6 squats, 3 while wearing a belt and 3 without. Electromyographic electrodes recorded muscle activity at 800 Hz on both the right and left erector spinae at the lumbar (L3-L5) and thoracic (T5-T7) regions during all lifts. The results indicate that subjects' mean erector spinae activity was greater (p < 0.0125) in the lumbar region of the spine when wearing weight belts (+/-258 SD; 69.0 analog-to-digital units) during squatting exercises than the mean activity in subjects who were not wearing weight belts (+/-235 SD; 71.3 analog-to-digital units).
Article
Three high-skilled powerlifters performed parallel squats with different burden weights. Using a sagittal plane biomechanical model, the moments of force about the bilateral axes of the lumbo-sacral, hip, knee, and ankle joints were determined. A local biomechanical model of the knee was used in order to calculate the knee joint forces induced. The greatest moments were found in the lumbo-sacral joint. The maximum hip moment was greater than that of the knee moment which was greater than the ankle moment. The knee moment had a flexing direction and reached its maximum at the deepest position of the squat, while the lumbo-sacral and hip moments were found to reach their maxima during the first half second of the ascent. One lift that caused a bilateral quadriceps tendon rupture was stimulated and was found to give a maximum knee flexing moment ranging between 335 Nm and 550 Nm. This moment induced a force in each quadriceps tendon of between 10.9 kN and 18.3 kN at the occasion of rupture.