Content uploaded by Jörg-Henrik Heine
Author content
All content in this area was uploaded by Jörg-Henrik Heine on Feb 14, 2017
Content may be subject to copyright.
Sequenzbasierte Distanzmaße f¨
ur Kongruenz
im Holland-Modell der Interessen- und
Umweltorientierungen
J¨
org–Henrik Heine1, Heinz Leitg¨
ob2,
Florian G. Hartmann3& Christian Tarnai3
1Technische Universit¨
at M¨
unchen
2Katholische Universit¨
at Eichst¨
att-Ingolstadt
3Universit¨
at der Bundeswehr Neubiberg (bei M¨
unchen)
21. September 2016
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 1 / 14
Hintergrund
1Theorie der Pers¨
onlichkeits- und Interessenorientierungen:
(Holland, 1997)
Sechs Pers¨
onlichkeits- und Interessenorientierungen (R I A S E C)
Hexagonale Anordnung der sechs Dimensionen repr¨
asentiert
psychologische N¨
ahe (Calculus–Hypothese)
2Kongruenz-Hypothese:
Passung von individuellen Interessen und beruflichen Umwelten
Positive Auswirkungen auf das Wohlbefinden, die
Mitarbeiterzufriedenheit und Leistung
Unterschiedliche empirische Evidenz
3Holland–Code:
Bestimmung in der Regel mit Tests: z.B. AIST–R – Bergmann und
Eder (2005) oder EXPLORIX – J¨
orin, Stoll, Bergmann und Eder (2003)
St¨
arkste Interessen Orientierung: Individueller Pers¨
onlichkeitstyp z.B.:
R–Typ, I–Typ, A–Typ,....
Differenziertere Beschreibung: Hinzunahme der zweit- und drittgr¨
oßten
Interessen –>3 Letter-Code z.B. RIE–Typ, ESC–Typ, . . . 120
Kombinationsm¨
oglichkeiten
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 2 / 14
Distanzmaße (’klassische’) f¨
ur Kongruenz
Brown–C–Index:
(Brown & Gore, 1994)
. . . Specifically, a value of C is obtai-
ned for individuals by first sequenti-
ally comparing the first, second, and
third letters in an individual’s three
letter person and environment codes,
and then calculating C by the followi-
ng formula: C= 3×(Xi)+2(Xi)+(Xi)
where Xiare scores (3, 2, 1, and 0)
assigned to each comparison on the
basis of hexagonal distance between
the letters (3 = identical P and E
letters, 2 =adjacent hexagonal positi-
on, 1 = alternate hexagonal positions,
0 = opposite hexagonal positions).
Iachan–Index: (Iachan, 1984)
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 3 / 14
Distanzmaße aus der Sequenzdatenanalyse
Sequenz: ”
By sequence I mean an ordered list of elements“
(Abbott, 1995, S. 94).
Holland-3-Letter-Codes: Sequenzen der L¨
ange 3 mit den
Orientierungen als nicht-repetitive Elemente.
Ordnung: Reihung nach abnehmender Ausgepr¨
agtheit der drei
dominierenden Orientierungen
–>Stellen–Gewichtung.
Sequenzdatenanalyse: Feststellung der (Un-)¨
Ahnlichkeit zwischen
zwei Sequenzen mittels geeignetem Distanzmaß
–>hier: Hamming- und Levenshtein-Distanz.
Erweiterung: Im Rahmen der Hexagon Hypothese unterschiedliche
¨
Ahnlichkeiten der sechs Orientierung
–>Kostensensitivit¨
at.
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 4 / 14
Distanzmaße . . . formale Darstellung
Hamming Distanz dH(a,b):Vergleich der Sequenzen aund bder
l¨
ange ran jeder Stelle pund bestimmung der Substitutionskosten csp
csp=(0|ap=bp
1|ap6=bp
;dH(a,b) =
r
X
p=1
csp(1)
Levenshtein Distanz dL(a,b):Neben Substitution (csp) Einf¨
uhrung
von zus¨
atzlichen Operationen (1) Einf¨
ugen mit den Kosten cipund
(2) L¨
oschen mit den Kosten cdp; finden des Minimums ...
dL(ap,bp∗) =
r
X
p=1
min
d(ap−1,bp∗) + cdp
d(ap−1,bp∗
−1) + csp
d(ap−1,bp∗
−1) + cip
(2)
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 5 / 14
Erweiterungen der Distanzmaße aus der
Sequenzdatenanalyse
1Kostensensitivit¨
at
R I A S E C
R 0.00 0.25 0.50 0.75 0.50 0.25
I 0.25 0.00 0.25 0.50 0.75 0.50
A 0.50 0.25 0.00 0.25 0.50 0.75
S 0.75 0.50 0.03 0.00 0.25 0.50
E 0.50 0.75 0.50 0.25 0.00 0.25
C 0.25 0.50 0.75 0.50 0.25 0.00
2Stellen–Gewichtung
Vergabe von Gewichten wpnach Position pinnerhalb der
3-Letter-Codes
z.B.: 1. Stelle: w1= 1.5; 2. Stelle: w2= 1.25; und 3. Stelle: w3= 1
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 6 / 14
Datenbasis
’Simulierte’ ¨
Ahnlichkeits- bzw. Distanzmatrizen f¨
ur jedes
untersuchte Kongruenzmaß
F¨
ur alle m¨
oglichen 3-Letter-Code Kombinationen
Dimension: 120 x 120
Symetrische Matrizen
jede Kombination ist genau einmal bzw. bei vernachl¨
assigung der
Reihenfolge zweimal enthalten
...
.
.
.
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 8 / 14
Programm – Software
1R(R Core Team, 2015) R version 3.2.2 (2015-08-14)
2Selbst entwickelte R-Funktionen f¨
ur folgende Kongruenzmaße
Funktion iachan.holland() zur Berechnung des Iachan Index (Iachan,
1984).
Funktion brown.c.holland() zur Berechnung des C Index nach Brown
und Gore (1994).
Funktion hamming.holland() zur Berechnung der Stellen–gewichteten,
kostensensitiven Hammig Distanz (Hamming, 1950).
Funktion levenshtein.holland() zur Berechnung der
Stellen–gewichteten, kostensensitiven Levenshtein Distanz (Levenshtein,
1966).
3Package: smacof version 1.8-13 (Mair, Leeuw, Borg & Groenen,
2016)
Berechnung der 2 dimensionalen, ordinalen MDS L¨
osung
Funktion: smacofSym() mit den folgenden Argumenten:
delta = ’simulierte datenmatrizen’
ndim = 2
itmax = 10000
type = ’ordinal’
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 9 / 14
Konfigurationen - klassische Indices
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
−1.0 −0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration iachan (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC
REI
RES
RIA
RIC
RIE RIS
RSA
RSC
RSE RSI
IAC
IAE
IAR
IAS
ICA
ICE
ICR
ICS
IEA
IEC IER
IES
IRA
IRC
IRE
IRS ISA
ISC
ISE
ISR
ACE
ACI
ACR
ACS
AEC
AEI
AER
AES
AIC
AIE
AIR
AIS
ARC
ARE
ARI
ARS
ASC
ASE
ASI
ASR
SAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC SEI
SER
SIA
SIC
SIE
SIR
SRA
SRC
SRE
SRI
EAC
EAI
EAR
EAS
ECA
ECI
ECR
ECS
EIA
EIC
EIR
EIS
ERA
ERC
ERI
ERS
ESA
ESC
ESI
ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI CRS
CSA
CSE
CSI
CSR
(a) Stress = 0.3912; Iteration = 427;
iachan.holland(a,b)
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−1.0 −0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration brown (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC REI
RES
RIA
RIC
RIE
RIS
RSA
RSC
RSE
RSI
IAC
IAE
IAR
IAS
ICA ICE
ICR
ICS
IEA
IEC
IER
IES IRA
IRC
IRE
IRS
ISA
ISC
ISE
ISR
ACE
ACI
ACR
ACS
AEC
AEI
AER
AES
AIC
AIE
AIR
AIS
ARC ARE
ARI
ARS
ASC
ASE
ASI
ASR
SAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC
SEI
SER
SIA SIC
SIE
SIR SRA
SRC
SRE SRI
EAC
EAI
EAR
EAS
ECA
ECI
ECR
ECS
EIA
EIC
EIR
EIS
ERA
ERC
ERI
ERS
ESA
ESC
ESI
ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI
CRS
CSA
CSE
CSI
CSR
(b) Stress = 0.4004; Iteration = 846;
brown.c.holland(a,b)
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 10 / 14
Konfigurationen - neue Indices ungewichtet
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration hammingUngew (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC
REI
RES
RIA
RIC
RIE
RIS
RSA
RSC
RSE
RSI
IAC
IAE
IAR
IAS
ICA
ICE
ICR
ICS
IEA
IEC
IER
IES
IRA
IRC
IRE
IRS
ISA
ISC
ISE
ISR
ACE
ACI
ACR
ACS
AEC
AEI
AER
AES
AIC
AIE
AIR
AIS
ARC
ARE
ARI
ARS
ASC
ASE
ASI
ASRSAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC
SEI
SER
SIA
SIC
SIE
SIR
SRA
SRC
SRE
SRI
EAC
EAI
EAR
EAS
ECA
ECI
ECR
ECS
EIA
EIC
EIR
EIS
ERA
ERC
ERI
ERS
ESA
ESC
ESI
ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI
CRS
CSA
CSE
CSI
CSR
(c) Stress = 0.2785; Iteration = 53;
hamming.holland( a, b, costs = "hexa", weights =
c(1,1,1))
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●●
●
●
●●
●
●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
−1.0 −0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration levenshteinUngew (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC
REI
RES
RIA
RIC
RIE
RIS
RSA
RSC
RSE
RSI
IAC
IAE IAR
IAS
ICA
ICE ICR
ICS
IEA
IEC
IER
IES
IRA
IRC
IRE
IRS
ISA
ISC
ISE
ISR
ACE
ACI
ACR
ACS AEC
AEI AER
AES AIC
AIE
AIR
AIS
ARC
ARE
ARI
ARS ASC
ASE
ASI ASR
SAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC
SEI
SER
SIA
SIC
SIE
SIR
SRA
SRC
SRE
SRI
EAC
EAI EAR
EAS
ECA
ECI ECR
ECS
EIA EIC
EIR
EIS
ERA ERC
ERI
ERS
ESA ESC
ESI ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI
CRS
CSA
CSE
CSI
CSR
(d) Stress = 0.2096; Iteration = 25;
levenshtein.holland( a, b, costs = "hexa", weights =
c(1,1,1))
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 11 / 14
Konfigurationen - neue Indices
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●
●●
●
●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●●
●
●
●
●
●
●
●
−1.0 −0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration hamming (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC
REI
RES
RIA RIC
RIE
RIS
RSA
RSC
RSE
RSI
IAC
IAE
IAR
IAS
ICA
ICEICR
ICS
IEA
IEC
IER
IES
IRA
IRC
IRE
IRS
ISAISC
ISE
ISR
ACE
ACI
ACR
ACS
AEC
AEI
AER
AES
AIC
AIE
AIR
AIS ARC
ARE
ARI
ARS
ASC
ASE
ASI
ASR
SAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC
SEISER
SIA
SIC
SIE
SIR
SRA
SRC
SRE
SRI
EAC
EAI
EAR
EAS ECAECI
ECR
ECS
EIA EIC
EIR
EIS ERA ERC
ERI
ERS
ESA
ESC
ESI
ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI
CRS
CSA
CSE
CSI
CSR
(e) Stress = 0.2728; Iteration = 28;
hamming.holland( a, b, costs = "hexa", weights =
c(1.5,1.25,1))
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●●
●
●
●
●
●
●●●
●●
●
●●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
−1.0 −0.5 0.0 0.5 1.0
−0.5 0.0 0.5
Konfiguration levenshtein (Index)
Dimension 1
Dimension 2
RAC
RAE
RAI
RAS
RCA
RCE
RCI
RCS
REA
REC
REI
RES
RIA
RIC
RIE
RIS
RSA
RSC
RSE
RSI
IAC
IAE IAR
IAS
ICA
ICE ICR
ICS
IEA
IEC
IER
IES
IRA
IRC
IRE
IRS
ISA ISC
ISE ISR
ACE
ACI
ACR
ACS AEC
AEIAER
AES
AIC
AIE
AIR
AIS
ARC
ARE
ARI
ARS
ASC
ASE
ASI
ASR
SAC
SAE
SAI
SAR
SCA
SCE
SCI
SCR
SEA
SEC
SEI
SER
SIA
SIC
SIE
SIR
SRA
SRC
SRE
SRI
EAC
EAI EAR
EAS
ECA ECI ECR
ECS
EIA EIC
EIR
EIS
ERA ERC
ERI
ERS
ESA ESC
ESI ESR
CAE
CAI
CAR
CAS
CEA
CEI
CER
CES
CIA
CIE
CIR
CIS
CRA
CRE
CRI
CRS
CSA
CSE
CSI
CSR
(f) Stress = 0.1747; Iteration = 18
levenshtein.holland( a, b, costs = "hexa", weights =
c(1.5,1.25,1))
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 12 / 14
Zusammenfassung – Diskussion
1Vergleich der Kongruenzmaße: Die Sequenzbasierten
Kongruenzmaße schneiden besser ab
Geringere Stress Werte bei der 2 Dimensionalen, ordinalen MDS
Konfigurationen lassen Hexagonale Anordnung deutlicher erkennen
2Gewichtung: Die Stelle-Gewichtung hat eine Einfluss auf die
Anpassung an die Circumplex–Struktur
f¨
ur die kostensensitive Hamming und Levenshtein Distanz
Geringere Stress Werte mit Stellen-Gewichtung
Frage: Stellen-Gewichte letztlich arbitr¨
ar?
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 13 / 14
Literatur
Abbott, A. (1995, August). Sequence Analysis: New Methods for Old Ideas. Annual Review
of Sociology,21, 93–113.
Bergmann, C. & Eder, F. (2005). AIST-R Allgemeiner Interessen-Struktur-Test mit
Umwelt-Struktur-Test (UST-R) - Revision. G¨
ottingen: Beltz Test.
Brown, S. D. & Gore, P. A. (1994, Dezember). An Evaluation of Interest Congruence Indices:
Distribution Characteristics and Measurement Properties. Journal of Vocational
Behavior,45 (3), 310–327.
Hamming, R. (1950, April). Error detecting and error correcting codes. Bell System Technical
Journal, The,29 (2), 147–160.
Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and
work environments (3rd ed.) (Bd. xiv). Odessa, FL, US: Psychological Assessment
Resources.
Iachan, R. (1984). A measure of agreement for use with the Holland classification system.
Journal of Vocational Behavior,24 (2), 133–141.
J¨
orin, S., Stoll, F., Bergmann, C. & Eder, F. (2003). EXPLORIX – Das Werkzeug zur
Berufswahl und Laufbahnplanung. Bern: Huber.
Levenshtein, V. I. (1966, Februar). Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady,10, 707.
Mair, P., Leeuw, J. D., Borg, I. & Groenen, P. J. F. (2016, April). smacof: Multidimensional
Scaling. Zugriff am 2016-09-16 auf https://CRAN.R-project.org/package=smacof
R Core Team, V. (2015). R: A Language and Environment for Statistical Computing. Vienna,
Austria. Zugriff auf http://www.R-project.org/ (ISBN 3-900051-07-0)
Heine (TU M¨
unchen) Sequenzbasierte Distanzmaße 21. September 2016 14 / 14