Content uploaded by Dr-Yohannes Yihdego Woldeyohannes
Author content
All content in this area was uploaded by Dr-Yohannes Yihdego Woldeyohannes on Feb 13, 2017
Content may be subject to copyright.
Hydrology2017,4,10;doi:10.3390/hydrology4010010
www.mdpi.com/journal/hydrology
Article
HighlightingtheRoleofGroundwaterinLake–
AquiferInteractiontoReduceVulnerabilityand
EnhanceResiliencetoClimateChange
YohannesYihdego
1,2,
*,JohnAWebb
2
,andBabakVaheddoost
3
1
SnowyMountainsEngineeringCorporation(SMEC),Sydney,NewSouthWales2060,Australia
2
EnvironmentalGeoscience,LaTrobeUniversity,Melbourne,Victoria3086,Australia;
john.webb@latrobe.edu.au
3
HydraulicLab.,IstanbulTechnicalUniversity,Istanbul34467,Turkey;babakwa@gmail.com
*Correspondence:yohannesyihdego@gmail.com
AcademicEditor:AbdonAtangana
Received:22December2016;Accepted:8February2017;Published:13February2017
Abstract:AmethodispresentedtoanalyzetheinteractionbetweengroundwaterandLake
Linlithgow(Australia)asacasestudy.Asimplisticapproachbasedona“node”representingthe
groundwatercomponentisemployedinaspreadsheetofwaterbalancemodelingtoanalyzeand
highlighttheeffectofgroundwateronthelakelevelovertime.Acomparisonismadebetweenthe
simulatedandobservedlakelevelsoveraperiodoftimebyswitchingthegroundwater“node“on
andoff.Abucketmodelisassumedtorepresentthelakebehavior.Althoughthisstudy
demonstratestheunderstandingofLakeLinlithgow’sgroundwatersystem,thecurrentmodel
reflectsthecontemporaryunderstandingofthelocalgroundwatersystem,illustrateshowtogo
aboutmodelingindata‐scarceenvironments,andprovidesameanstoassessfocalareasforfuture
datacollectionandmodelimprovements.Resultsshowthatthisapproachisconvenientforgetting
first‐handinformationontheeffectofgroundwateronwetlandorlakelevelsthroughlakewater
budgetcomputationviaanoderepresentingthegroundwatercomponent.Themethodcanbeused
anywhereandtheapplicabilityofsuchamethodisusefultoputinplacerelevantadaptation
mechanismsforfuturewaterresourcesmanagement,reducingvulnerabilityandenhancing
resiliencetoclimatechangewithinthelakebasin.
Keywords:lake–groundwaterinteraction;waterbalance;wetland;ecosystem;hydrology;climate
change;adaptation
1.Introduction
Whenwaterdemandexceedswateravailability,waterscarcityisinevitable.Climatechange,
populationgrowth,andeconomicdevelopmentaddtowaterscarcityrisksmainlyinaridregions[1–6].
Concerteddatacollectioneffortsareusuallylackingindevelopingcountries,especiallywhenit
comestogroundwatersystems.Manylakestudiesencountereddifficultiesinestimatinggroundwater
ordefiningaplausible,appropriateconceptualmodeloftheaquifersystemathand[7–11].Prudent
understandingofthe(ground)watersystemformsamajorinhibitingfactorforeffectivewater
management.Watermanagementbasedonsuchmodelsmayhaveunintendedorevendetrimental
consequences.
Wetland’simportancehasbeenrecognizedbytheRamsarconventionduetothepossible
impactsitmayhaveonpeopleinthenextdecadesandhowitsconservationcanamelioratepoverty
conditions.Recentresearchhasbeendonetoassesstherelationshipbetweengroundwaterand
surfacewater,duetothedependabilityofecosystemsongroundwatercontributions[12–16].The
pressureongroundwaterresourcesbytheseactivitieshasalertedtheinterestofenvironmental
Hydrology2017,4,10 2of18
authorities,whoneedtoassessthehydrodynamicbetweenwetlands,adjacentgroundwater,and
surfacewater[17–64].Manyactivitieshavebeencarriedouttovalidatethehydrogeological
conceptualmodelinthewetlandvicinity.Agroupofobservationwellsinstalledaroundthewetland
hasenabledtheassessmentthroughnon‐linearDarcy’sexpressiontoapproximatevolumesof
rechargeanddischargefromtheaquifertothewetland.
Groundwaterisimportantforunderstandinglakesystemsduetoitsinfluenceonalake’swater
budget,nutrientbudget,andacidbufferingcapacity[21,22].Asaresult,groundwaterflowstoand
fromlakeshaveoftenbeenestimatedusingsimpleflowgridsandone‐dimensionalDarcian
calculations.Groundwaterinteractionwithlakescanbespatiallyandtemporallyvariable,however.
Otherwaterbalanceapproacheshavealsobeenusedthatemployedarepresentativegroundwater
headunderneaththelakeforcalculatingthefluxovertheentirelakearea.Themostsophisticated
wayofinvestigatinglake–groundwaterinteractionsisbyexplicitlyincludinglakesingroundwater
flowmodels[10,28–30].Waterresourcesmanagersrelyontoolsthatassistwithstreamliningsupply
anddemand[25–27,31,49].
Modelinglake–aquiferinteractionisanessentialmilestoneinlimnologicalstudies[32].
Groundwaterisoneofthemostimportanthydrologicalvariablesofthewaterbudgetinlakes;
however,thisvariable,duetoitsnature,cannotbeaddressedwithoutuncertainties[32,33].Many
scientists,however,havetriedtomodeltheinteractionbetweengroundwaterandsurfacewater
usingvariousstatistical,conceptual,orempiricalmodels(e.g.,Lohman[34];Edelman[2];Lewiset
al.[35];Postetal.[36];Jakovovicetal.[37];Yihdegoetal.[38]).
Theroleofgroundwaterinwetlandwaterbudgetisofgreatconcerntoecologists,water
managers,andenvironmentalscientists[39].Groundwateriscriticalforunderstandingmostlake
systemsbecauseitinfluencesalake’swaterbudgetandnutrientbudget[40].Severalstudieshave
reportedontheuseofamassbalanceapproachtosimulatelakelevelsfromhydrologicaland
meteorologicaldata[41,42].Therehavebeenmanydifferentempirical,analytical,andnumerical
approachesforsimulatinglake–groundwaterinteractions(e.g.,fixedlakestages,High‐Knodes,and
LAK3packagethroughnumericalmodeling).Theadvantagesanddisadvantagesoftheseapproaches
havebeendocumentedbymanyresearchers.ManyhighlysophisticatedmodelslikeLAKPackage
arenotwidelyusedduetodataandresourceconstraints[17,35,43].ThelimiteduseofLAKPackage
isattributabletothelackofstandardizationandassociatedgraphicaluserinterfaces,complexthree‐
dimensionaldiscretizationanddataneeds,andspatialandtemporalcomplexityinherentin
includingsurfacewaterfeaturesinagroundwatermodel.Whilesophisticatedapproachesoffermore
detail,theiradvantagesmaybeoffsetbyassociatedcomplexityandeveninstabilityofthesolution
procedure[44].Consequently,afull‐featuredLAKpackageisnotanautomaticchoicefor
practitioners,regulators,andthewidercommunity;rather,thechosenmethodshoulddependon
boththehydrogeologicalconditionsandthemodelingobjectives[39,45–48].
WithintheGlenelgHopkinsCatchmentManagementAuthorityarea,LakeLinlithgowandthe
nearbyshallowlakesareconsideredtobeofenvironmentalimportanceduetothedrainageand/or
degradationofmanyotherwetlandsthroughoutthisregion[32,52,53].However,inrecentyearsLake
Linlithgowhasbeenaffectedbyalgalbloomsandhighlakesalinities,andhasbecomedryoverthe
summerduringmostyearssince2000.ThenormalseasonalfluctuationforLakeLinlithgowis10,000
μS/cminwinterandspring,risingto16,000μS/cminlateautumn[60].However,during1999,the
lowestsalinitylevelsrecordedwere27,000μS/cmandtheypeakedat58,000μS/cm(seawater)inthe
autumn,beforesharplyincreasingto63,000μS/cmpriortodryingoutinFebruary2000.Extensive
researchwascarriedouttocharacterizefuturechangesingroundwatersalinizationwithinthebasalt
aquifersintheHamiltonarea,includingLakeLinlithgow,usinghydrogeological,chemical,and
isotopictechniques[14,32,50].Theaimofthisstudyistoimproveourunderstandingoflake–aquifer
interactionthroughanalyzingthegroundwatercomponentofLakeLinlithgowasacasestudy.
Hydrology2017,4,10 3of18
2.StudyArea
LakeLinlithgowcoversanareaof9.65km2andisthelargestinaseriesofhighlytomoderately
salinewetlands,locatedapproximately16kmeastofHamilton,westernVictoria(Figure1).Thelake
isfedbyBoonawahCreekandthereisnosurfaceoutlet.ThecatchmentareaforLakeLinlithgowis
85km2.ThevolcanicplainssurroundingLakeLinlithgowaretopographicallysubdued,comprising
aflattoundulatingplainwithaverageelevationof~200mAustralianHeightDatum(AHD),gently
increasinginelevationfromsouthtonorth(Figure1).Theplainisdottedwithseveralprominent
eruptionpointsandanumberofsmallerlow‐reliefvolcaniccones.Thevolcanicplainisdeeply
dissected(upto80m)bystreamsonitswesternandsouthwesternmargins.
Figure1.DigitalelevationmodelshowingtherelativeelevationoftheterrainsurroundingLake
Linlithgow.
Thepre‐EuropeanvegetationcomprisedRiverRedGum,SwampGum,MannaGum,
Blackwood,andLightwoodalongmoderatelyinciseddrainagelines,andTea‐tree,SilverBanksia,
andLightwoodontheblackself‐mulchingclaysassociatedwiththemarginsofswampsandlakes
(i.e.,BuckleySwamp)[55].Thepoorlydevelopeddrainagelinesassociatedwiththeheadwatersof
GrangeBurn,VioletCreek,andMuddyCreekwereoftendominatedbygrasslands.LakeLinlithgow
andLakeKennedy(Figure2)werepresumablyvegetatedwithsalt‐tolerantspeciessuchasplantain,
Australiansaltgrass,andstreakedarrowgrass,andarerelativelyunalteredsinceEuropean
settlement.
Themostsignificantlandusechangeoccurredbetween1900and1920,withtheconversionto
introducedpasture[55].
Hydrology2017,4,10 4of18
Figure2.Landsatimagery(takeninFebruary2004)showingtheLakeLinlithgowarea.
2.1.Hydrology
Theaveragerainfalloverthecatchmentisabout689mm,recordedatHamiltonResearchCentre.
Rainfallrecordsoverthelast45yearsclearlyshowthatrainfallishighlyvariable,butoverthelast
decadetherehasbeenasubstantialdrop,withannualrainfallbelowthelong‐termaverage.
Maximumrainfallisreceivedoverwinter(thewettestmonthsareJulyandAugust)andexceedsor
equalsevaporationforMaytoSeptember,whengroundwaterrechargeismostlikelytooccur.June
toSeptemberrainfallcontributes45%tothemeanannualprecipitationinthecatchment;pan
evaporationishighestfromOctobertoAprilandtotals1053mm.
2.2.Geology
ThebasementgeologyoftheareaconsistsofCambrianvolcanics,EarlyPaleozoicturbidites,and
Siluriansandstone,intrudedbyDevoniangranites(Figure3).Thesebasementrocksdonotoutcrop
aroundLakeLinlithgow.
Thedisruptionofthedrainagesystembythebasaltflowsformedthelakesinthecenterofthe
catchment.LakeLinlithgowsitsonfirstphase(~4Ma)basalts,andisencircledbysecondphase(~2
Ma)basaltflows,formingarelativelyflatlakebedwithsteepbanks.Lunettesoccurontheeastern
andnortheasternmarginofthelake,~4mabovethecurrentmaximumlakelevel[50].Thereisalocal
groundwaterflowsystemaroundLakeLinlithgow[32,55],andaregionaltointermediate
groundwaterflowsysteminthesurroundingvolcanicplain(Figure4).
PotentiometricsurfacecontoursfortheNewerVolcanicsaquiferindicatethatLakeLinlithgow
isagroundwaterthrough‐flowlake,withgroundwaterflowenteringthelakefromtheeastand
leavingtowardsthewest(Figure4).Groundwaterentersthroughaseriesofspringsandseepsalong
theeasternlakemargin,mostlyfromthesecondphasebasaltaquifer,whichterminateshere[50,54–
56].HydrographsfromboresinthebasaltaquifersurroundingLakeLinlithgow(Figure5)showa
strongcorrelationwiththelakelevel.Thedecliningtrendof20cm/yearfrom1997to2001isclearly
aresponsetobelow‐averagerainfall[14].Thepalaeosolslyingbetweensuccessivebasaltphases
hinderoutflowfromthelakeandactasbarrierstogroundwaterflow(Figure6).
Hydrology2017,4,10 5of18
Figure3.GeologicalmapoftheareasurroundingLakeLinlithgow.
Figure4.LakeLinlithgowandassociatedwetlands(gray)andbasaltaquiferpotentiometricsurface
contours(mAHD).
Hydrology2017,4,10 6of18
Figure5.Comparisonofborehydrographswiththelakelevel.Thepositionsoftheboresareshown
inFigure4;screeneddepthofB57685isfrom82.5to88.5m.
Figure6.West–EastandSouth–NorthhydrogeologicalcrosssectionsthroughLakeLinlithgow[50,55].
2.3.LakeHydrology
MonthlylakelevelandsalinitydataareavailableforLakeLinlithgowfrom1964to2007,when
thelakedriedout,althoughthesalinitymeasurementsareavailableonlysporadicallyfrom1964to
1974(Figure7).LakeLinlithgowhasamediandepthof1.45m,buttypicallyvariesseasonallybyup
to1m(Figure7).AgraphofcumulativedeviationofrainfallfromthemeanforHamiltonResearch
Stationshowsastrongcorrelationwithlakelevels;peaksinthelakelevelgenerallycorrespondto
periodsofabove‐averagerainfall(Figure7).Inyearsofbelow‐averagerainfall,thelakedriesout
duringsummer,asoccurredinJanuary–Aprilof1983,2000,and2001,butafterasuccessionofhigh
rainfallyears,lakelevelsrisesubstantially(Figure7).
Hydrology2017,4,10 7of18
Figure7.Lakelevelwithvariationinrainfall.
LakeLinlithgowistypicallysaline(median12400μS/cm).Thelargeseasonalvariationinlake
leveliscorrelatedwithasubstantialrangeinlakesalinity(3300–98,900μS/cm;Figure8).Thereisa
generaltendencyforLakeLinlithgowtobecomemoresalineuntilthelakedriesout(Figure8).
Figure8.Relationshipbetweenmeasuredlakedepthandsalinityfortheperiod1964–2007.
3.Methodology
Aspreadsheetmodelwasemployedtoanalyzeforthecurrentstudy[32].Anexplanationofthe
modelisgivenbelow.
3.1.WaterBalanceModel
Monthlytime‐stepmodelingofthelakewaterlevelwascarriedoutusingExcelspreadsheets,
andtheresultingwaterbudgetwasusedasinputforthesaltbudget.Thelakewaterbalanceis
calculatedbyestimatingallthelake’swatergainsandlosses,andthecorrespondingchangein
volumeisexpressedas:
Volumechange=Surfacewaterinflow+Rainfall+Q
in
−Evaporation−Surface
wateroutflow−Q
out
,(1)
whereQ
in
isthegroundwaterinflowandQ
out
thegroundwateroutflow.
Thenetfluxofthegroundwaterflow(Q
in
−Q
out)
canbecalculatedas:
Q=C(H
lake
−H
aquifer
)inm
3
∙month
−1
,(2)
Hydrology2017,4,10 8of18
whereCistheconductanceofthelakebedsediments(m2∙month−1)andHisthewaterlevelinthelake
andsurroundingaquifer(m).Hydraulicconductivitycanbeexpressedas
C=K×A/Linm2∙month−1,(3)
whereKisthehydraulicconductivityofthelakebedsediments(m∙month−1)andAandLarethelake
area(m2)andlakebedsedimentthickness(m),respectively.Theformulationissimilartothatusedin
theriver(RIV)andlakepackages,whichspecifiesthefluxthroughtheriverbedorlakebedasa
functionofstage,potentiometricheadintheconnectedcells,andtheriverbedorlakebedconductance
inwhichthelakebedconductance,COND,ateachcelliseitherspecifiedbytheuserinthelake
packageinputfile,orcalculatedfromthelakebedgeometryandhydraulicconductivity.Aswiththe
riverpackage,flowfromthelaketothegroundwaterintheLAKpackageislimitedwhenthehead
inacellfallsbelowthelakebedbottom.Also,ifthestageofthelakeisbelowthetopofthelakebed,
thelakecellisdryandseepageintothegroundwateriscutoffforthatcell.Inthisspreadsheetmodel,
asimilarprocedurewasappliedtoformulatetheboundaryconditionsthatcontrolthesolutionof
potentiometrichead.
Thetemporalareaisestimatedfromthelakestage–area–volumerelationshipbuiltin[42],while
thelakebedsedimentisestimatedusingthesoilerosionmodelofthecatchment.Thewaterlevelin
thesurroundingaquiferisupdated(Haquifer‐new)usingtheinflowandoutflowcalculatedforthe
previousmonth(Haquifer‐pre)is
Haquifer‐pre=Q/A×Sy(m)(4)
Haquifer‐new=Hin‐old+Hin(m),(5)
whereAisthesurfaceareaoftheinteractingaquiferandSyisthespecificyieldoftheaquifer.The
modelrequiresknownhydrometeorologicaldata(inflowfromtherivers,rainfallonthelakesurface,
aquiferarea,andevaporationfromthelake)andestimatestheunknownnetgroundwaterfluxdue
tointeractionofthelakewiththesurroundingaquiferbycomparingthesimulatedandrecordedlake
levelsandcalculatingaresidual.Themodelwascalibratedusingsolveranditeration.Thenet
groundwatercomponentisrepresentedasanodeintheequationtoswitchonandoffandassessthe
significanceofthegroundwaterintheoveralllakewaterbudget,asexplainedthroughthefluctuation
andlakeleveltrendovertime.
3.2.LakeWaterBudgetandModelParameters
3.2.1.LakeStorage
Bathymetrydataarenotavailableforthelake;however,thearea–depthrelationshipwas
estimated.Thelakeareawasmeasuredfrom12Landsatimagestakenbetween1972and2004and
correlatedwiththemeasuredlakedepthinthemonthwhentheimagesweretaken(Figure9).The
lakeareawasestimatedusingENVIsoftware(withthresholdmethodandgrowbutton);thisismore
accuratethantheGIS(vector)methodusedby[50]becauseitfindssimilarpixelsselectedforthe
waterbodyandtherebybetteridentifiesthenaturalboundary.Thelineofbestfit(withr2=0.99)to
thearea/depthdatagivestherelationshipforLakeLinlithgowas:
A(t)=1.545(D(t))5−23.09(D(t))4+135.9(D(t))3−393.7(D(t)2+561.1(D(t)−305.8.(6)
Thepolynomialrelationshipbetweenlakearea(A(t))andlakedepth(D(t))isduetothelake’s
relativelyflatlakebedandsteepbanks,andgivesabetterfitforthedepth–arearelationshipthanthe
logarithmfunctionusedby[50],whichhadasmallerr2value.
Thelakevolumeatthebeginningofagivenmonthcanthereforebecalculatedfromthedepth
andareaattheendoftheprecedingmonth.Thelakedepthmustbefirstadjusted,becausethe
minimumreadingonthebaseofthelakelevelgaugeis~1.3m.Thus,thisvalueisdeductedfromthe
recordedlakeleveltogetthetruelakedepth.Forthemodeling,theinitialvolumeinSeptember1964
wascalculatedfromthemeasuredwaterdepthinthatmonth(2.79m).
Hydrology2017,4,10 9of18
Figure9.RelationshipbetweenlakeareaderivedfromLandsatimageryandmeasuredlakedepth.
3.2.2.PrecipitationonLake
Monthlyprecipitationistakenfromthenearestrainfallstation(HamiltonResearchCentre),
whichliesapproximately13kmsouthwestofLakeLinlithgow,andismultipliedbythelakeareato
givethevolumeofdirectrainfallintothelake.Theprecipitationdataareonlyavailableupuntil2001;
valuesforthesubsequenttimeperiodhavebeenextrapolatedfromtherainfallatCarinyastation(~65
kmfromHamiltonResearchCentre)usingthecorrelationbetweenrainfallatHamiltonResearch
CentreandCarinya.
3.2.3.SurfaceFlowtotheLake
SurfaceinflowtoLakeLinlithgowisreceivedthroughBoonawahCreek,forwhichthereareno
gaugingdataavailable.Surfaceinflowscan,however,beestimatedbythetanhcumulativesurplus
rainfallapproach[42]usingtheGrangeBurnflow,whichisgaugedatMorgiana(gaugeno.238219;
Figure1),becausetheGrangeBurnandLakeLinlithgowcatchmentsareadjacentandhavesimilar
topography,soiltype,vegetation,landuse,andrainfall.Thetanhcumulativesurplusrainfall
approachprovidesatoolwithwhichrunoffinGrangeBurncanbepredictedforanygivenmonthly
precipitation/evaporation(Figure10).Usingareascaling,thiscanbeconvertedtoaflowinBoonawah
Creek;thecatchmentareasforBoonawahCreek(atLakeLinlithgow)andGrangeBurnatMorgiana
are85km
2
and997km
2
,respectively.
Figure10.StreamflowmodelingfortheGrangeBurnatMorgiana(gaugeno.238219).Thelocation
ofthegaugestationisshowninFigure1.
Hydrology2017,4,10 10of18
3.2.4.OutflowfromtheLake
TheevaporationfromLakeLinlithgowisestimatedusingmonthlyevaporationdataatHamilton
ResearchStation,wherepanevaporationwasmeasuredfrom1968toJune2000.Theevaporationdata
fromJuly2000hasbeenextrapolatedfromWhiteSwanReservoirstationbyestablishingacorrelation
betweenpanevaporationatHamiltonResearchCentreandWhiteSwanReservoir.Evaporationdata
from1964to1968arelackingatWhiteSwanReservoir,soevaporationforthisperiodwasestimated
fromthecorrelationofevaporationattheHamiltonResearchCentrewiththatattheMelbourne
regionaloffice.Alocalcalibrationcoefficientwasusedtoadjusttheseasonalpanevaporationdata
fromHamiltonResearchCentreforthebestfitofthemodel.Theoptimizedlocalcalibration
coefficientis1.18;thistakesintoaccountthespatialvariationinposition,elevation,andstorageeffect
betweenHamiltonResearchCentreandLakeLinlithgow.
3.2.5.GroundwaterInflowandOutflowEstimation
Groundwaterinflow/outflowwasinitiallyestimatedusingDarcy’sLaw.Thewidthsofthe
groundwaterinflowandoutflowzonesalongthelakeperimeterare~6.1kmand3.6kmrespectively.
Thecross‐sectionalareaiscalculatedbymultiplyingthewidthofthegroundwaterinflow/outflow
zonebythesaturatedthickness(8m)ofthefirstphasebasaltaquiferinhydrauliccontactwiththe
lake.Theaveragehydraulicconductivityofthebasaltaquifer(0.09m/day)isderivedfrom
groundwaterflowratescalculatedusinggroundwaterradiocarbonagesbyBennetts[50].The
hydraulicgradienteithersideofthelake,deriveddirectlyfromthepotentiometriccontours,is3.7×
10−3(Figure4).SimilartoLakeBurrumbeet,anaveragevalueof0.000864m/dhasbeenchosenforthe
permeabilityofthelakefloorinordertoestimatethegroundwateroutflowthroughthelakebed.
Usingthesefigures,themonthlygroundwateroutflowandinflowfrom/tothelakewereestimated
as~0.29MLand~0.48ML,respectively.
Modelcalibration,carriedoutbyadjustinginputparameterssothatthesimulatedlakelevelsfit
theobservedlakelevel,givesthenetgroundwaterflowestimation.Inthiscasetheoptimizedlake–
aquiferconductance(C)valueis2.71×103m2/day,whichisequivalenttoahydraulicconductivity
valueoflakeshoresedimentsofabout7m/day;thisfallswithintherangeofprevioushydraulic
conductivityestimatesforthesesandbeaches.Theoptimizedspecificyieldandaquiferareaare0.1
and45km2,respectively[32].
Theoptimizedspecificyieldcomparesreasonablywithpreviousspecificyieldestimatesofthe
basaltaquifer,whichrangeupto0.18[51].Theaquiferareainhydrauliccontactwiththelake(45
km2)issignificantcomparedwiththecatchmentareaofLakeLinlithgow(85km2),indicatingthat
lakelevelfluctuationsdirectlyimpactabouthalfofthebasaltaquiferinthecatchmentarea.
Thebestpossiblefitofthewaterbudgetmodelwasattainedat~0.37×106Land3.1×106L
monthlyaveragegroundwateroutflowandinflow,withtheexceptionofdryperiods.Thevalueof
optimizedgroundwateroutflowcomparescloselywiththeinitialestimate.
4.ResultsandDiscussion
4.1.LakeWaterLevels
Thepredictedlakelevelsshowgoodagreementwiththemeasuredlakeleveldata(Figure11),
withanr2valueof~0.85(Figure12).Thesumofthesquareddifferencesdidnotexceed0.4m,except
forafewoutliers(Figure13).
Thewaterbalanceshowsthatthemajorinfluenceonlakelevelsisevaporation(Table1),
accountingforanaverageof54%ofthetotalwaterbudget.Ithasthegreatestinfluenceinsummer,
reachingupto99%ofthetotalbudget,butdecreasedduringdryperiods,becauseitisproportional
tothelakearea[32].Groundwaterinflowcontributesabout1%ofthelakewaterbudget.Eventhough
groundwateroutflowisminor(0.1%),itdominatesthelakewaterlossesduringearlywinter(June),
atimewhenevaporationisverysmall(Figure14).
Hydrology2017,4,10 11of18
Figure11.LakeLinlithgowmeasuredwaterlevelsandacomparisontomodeledresultsfortheperiod
1964–2007.
Figure12.CorrelationbetweenobservedandcalculatedlakeelevationinAHDm.
Table1.Averagelong‐term(1964–2007)monthlycontribution(inpercent)ofeachLakeLinlithgow
waterbudgetcomponenttotheoveralllakewaterbudget.
Evaporation
(%)
Groundwater
Outflow(%)
Precipitation
(%)
Surface
Inflow(%)
Groundwater
Inflow(%)
540.13781
198
198
199
199
200
200
201
201
Oct-63 Apr-69 Sep-74 Mar-80 Sep-85 Mar-91 Aug-96 Feb-02 Aug-07
Lake level (m AHD)
observed lake level predicted lake level
R2 = 0.8446
197.0
197.5
198.0
198.5
199.0
199.5
200.0
200.5
201.0
197.0 197.5 198.0 198.5 199.0 199.5 200.0 200.5 201.0
Actual lake leve l (m AHD)
Predicted lake level (m AHD)
Hydrology2017,4,10 12of18
Figure13.Temporaldistributionofsquaredifferencebetweenobservedandcalculatedlakelevels.
Figure14.AnnualwaterbalanceofLakeLinlithgow(1965–2006).
Thus,LakeLinlithgowisagroundwaterthrough‐flowlake,andthelake–groundwater
interactionisimportantsinceitaffectstheenvironmentalhealthofthismajorwetland.
4.2.WaterBudgetErrorsandSensitivityAnalysis
Asensitivityanalysisshowsthatthemodelismostsensitivetoevaporationandprecipitation
(Figure15),andsurfaceinflowtoalesserextent.However,themostlikelysourceoferrorwithinthe
modelisestimatingtheungaugedsurfaceinflow(i.e.,BoonawahCreek)bythetanhrelationship
fromGrangeBurn;thiscouldbeinerrorifthethresholdvalueatwhichcumulativesurplusrainfall
becomesrunoffinGrangeBurnatMorgianaisdifferenttothatofthesmallercatchmentofBoonawah
Creek.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
Dec-62 Jun-68 Dec-73 May -79 Nov-84 May-90 Oc t-95 A pr-01 Oct -06
Lake level difference square (m)
Hydrology2017,4,10 13of18
Figure15.RelativesensitivityofLakeLinlithgowwaterbalancemodeltochangesinthewaterbudget
components.
4.3.Interpretation
Toassesstheeffectofgroundwatercomponent,whichisthemainobjectiveofthispaper,further
analysiswascarriedoutthroughasecondmodelrunwithoutagroundwatercomponent.The
calculatedwaterlevelsfollowedthesametrendasobservedlakelevels,butwereonaveragelower
thantheobservedvalues.Thelowercalculatedlakelevelimpliesthatthetotalobservedlakestorage
islowerthanwouldbeexpectedifthelakedidnothavegroundwaterinflow(Figure16).
Figure16.Observedandsimulatedlakelevel(deactivatingthegroundwaternodefromthemodel).
Theeffectofgroundwaterisevidentfromthegraph.Thesimulatedvolumetriccomponentof
thegroundwaterofthelakewaterbudgetisshowninFigure17.Thebaseflowisestimated(G=260)
(Figure10)usingthetanhcumulativesurplusrainfallapproach.Thissimplisticmodelseemsa
197.5
198.0
198.5
199.0
199.5
200.0
200.5
201.0
Oct-63 Apr-69 Sep-74 Mar-80 Sep-85 Mar-91 Aug-96 Feb-02 Aug-07
Lake level (m AHD)
observed lake level predicted lake level
Hydrology2017,4,10 14of18
reliableandmodesttooltoseethelake–groundwaterrelationshipataglanceandwillbeusefulif
constrainedbythemassbalanceandreliableestimateofparameters[9,32,51].Thisapproachcould
beadoptedformuchwetlandmanagement.Thismodelwillgiveinsightintothegroundwater–
surfacewaterrelationshipandguideourfuturedatagatheringfromsensitiveparameters.The
parametersusedaresmallandconvenientformanagementpractice.
Figure17.VolumetricgroundwatercomponentintheLakeLinlithgowwaterbudget.
Theneedforstudyoftheinteractionoflakesandgroundwaterstemsfromthefactthat
groundwateriscommonlyignoredoristheresidualterminlakewater.Becauseallvariablesina
lakewaterbudgetarerarelymeasured,itisimpossibletoadequatelyevaluatetheerrorsorthe
residual.
Evenifgroundwaterisincludedaspartofalakewaterbalancestudy,improperplacementof
wellscanleadtoamisunderstandingoftheinteractionbetweenlakesandgroundwater.Nomatter
howmanywellsareusedtodefinethewatertableinthesettings,themapsshowsagradienttowards
thelake,andtherewouldbenowaytodetecttheout‐seepagethatoccurs.Ifonlyoneorafewwells
areplacednearalake,thegroundwaterflowsystemwouldnotbeadequatelydefinedandwouldbe
subjecttomisinterpretation[16,55,58].
Overalongperiodoffallinglakelevelsfrom1968uptothedroughtperiod1982/3,thesimulated
lakelevelsaremorethanonemeterlowerthantheobservedlevelsduetothelackofgroundwater
inflow.However,thereisagoodmatchbetweenthesimulatedandactuallakelevelsduringaperiod
ofrisinglakelevels,indicatingthatthegroundwateroutflowfromLakeLinlithgowrechargingthe
aquiferisverysmall.Whenthegroundwatercomponentisaddedtothemodel,itaccuratelyfollows
theobservedlevels(Figure11).
GroundwaterisanimportantcomponentofthewaterbalanceofLakeLinlithgow,anditsflow
isinfluencedbythelakelevel.Ifthelakelevelrises,groundwateroutflowandthereforelakerecharge
intothesurroundingaquiferwillincrease.Ifthelakeleveldecreases,groundwaterdischargefrom
theaquiferintothelakewillincrease.Thisinteractioncausesinertiainthelake–groundwatersystem,
delayingreactionstoexternal(meteorological)stresses(Figure17).Thisphenomenoncanbeshown
usingthelakewaterbalancemodel.Ifthemodelisrunwithnogroundwatercomponents,it
overshootsafterperiodsofriseorrecession(Figure16).
-150
-100
-50
0
50
100
150
Dec-62 Jun-68 Dec-73 May-79 Nov-84 May-90 Oct-95 Apr-01 Oct-06
Volume (ML )
Hydrology2017,4,10 15of18
5.Conclusions
Thispaperaimsatanunderstandingofthegroundwatersysteminwetlands,viaacasestudyat
LakeLinlithgow,Australia.
Whenthemodelwasrunbasedonsurfacewaterbalancecomponents(viaswitchingthe“node”
off,i.e.,intheabsenceofgroundwater),therewasaprogressiveseparationbetweenobservedand
calculatedlakelevels.Thecalculatedlevelsimplythatthelakeshouldaccumulatemorestoragethan
isactuallyobserved.Thisseparationcouldnotbeattributedtosystematicerrorsinsurfacerunoff,
precipitation,andevaporationmeasurements.Rather,itisanindicationofsubterraneanwaterfluxes
(i.e.,groundwater).
Theresultsofsuchanalysisleadtoabetterunderstandingofthegroundwatersystemwithina
lake/wetlandecosystem.
Uncertaintiesassociatedwiththegroundwatercomponentofthelakewaterbudgetincrease
unpredictabilityandunreliabilityandfurthercomplicatethefuturemanagementofwetlands.No
matterhowmanywellsareusedtodefinethewatertableinthesettings,thegroundwaterflow
systemwouldnotbeadequatelydefinedandwouldbesubjecttomisinterpretation.Thepresent
methodgivesabetterwayofstudyingsurfacewater–groundwaterinteraction,whichisingreat
demandinthecurrentstrategyforbetterwetlandandintegratedwaterresourcesmanagement.The
resultunderscorestheneedtoputinplacerelevantadaptationmechanismstoreducevulnerability
andenhanceresiliencetoclimatechangewithinthelakebasin.
Acknowledgments:Wewouldliketothanktheanonymousreviewers.Themanuscripthasbenefittedfromthe
reviewers’andeditors’comments.
AuthorContributions:Y.Y.andJ.W.conceivedanddesignedtheresearch;Y.Y.performedtheresearch;Y.Y.
andJ.W.analyzedthedata;B.V.contributedanalysistools;Y.Y.wrotethepaper.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Dausman,A.M.;Doherty,J.;Langevin,C.D.;Dixon,J.Hypothesistestingofbuoyantplumemigration
usingahighlyparameterizedvariable‐densitygroundwatermodel.Hydrogeol.J.2010,18,147–160.
2. Edelman,J.H.GroundwaterHydraulicsofExtensiveAquifers(No.13);InternationalLivestockResearch
Institute,WageningenUniversity:Wageningen,TheNetherlands,1983.
3. Yihdego,Y.;Drury,L.Minewatersupplyassessmentandevaluationofthesystemresponsetothe
designeddemandinadesertregion,centralSaudiArabia.Environ.Monit.Assess.J.2016,188,619.
4. Yihdego,Y.;Drury,L.Minedewateringandimpactassessment:CaseofGulfregion.Environ.Monit.Assess.
J.2016,188,634.
5. Yihdego,Y.;Paffard,A.PredictingopenmineinflowandrecoverydepthintheDurvuljinsoum,Zavkhan
Province,Mongolia.InMineWaterandtheEnvironment;Springer:Berlin/Heidelberg,Germany,2016;pp.
1–10.
6. Yihdego,Y.;Paffard,A.Hydro‐engineeringsolutionforasustainablegroundwatermanagementatacross
borderregion:CaseofLakeNyasa/Malawibasin,Tanzania.Int.J.ofGeo‐Eng.2016,7,23.
7. Christensen,S.;Doherty,J.Predictiveerrordependencieswhenusingpilotpointsandsingularvalue
decompositioningroundwatermodelcalibration.Adv.WaterResour.2008,31,674–700.
8. Tonkin,M.;Doherty,J.Calibration‐constrainedMonteCarloanalysisofhighly‐parameterizedmodels
usingsubspacetechniques.WaterResour.Res.2008,45,12.
9. Yihdego,Y.;Webb,J.A.HydrogeologicalconstraintsonthehydrologyofLakeBurrumbeet,southwestern
Victoria,Australia.In21stVUEESCConference,VictorianUniversitiesEarthandEnvironmentalSciences
Conference;Hagerty,S.H.,McKenzie,D.S.,Yihdego,Y.,Eds.;AbstractsNo88,12;GeologicalSocietyof
Australia:Sydney,Australia,2007.
10. Yihdego,Y.ThreedimensionalgroundwatermodeloftheaquiferaroundLakeNaivashaarea,Kenya.
M.Sc.Thesis,DepartmentofWaterResources,ITC,UniversityofTwente:Enschede,TheNetherlands,
March2005.
Hydrology2017,4,10 16of18
11. Yihdego,Y.;Webb,J.A.CharacterizinggroundwaterdynamicsinWesternVictoria,Australiausing
Menyanthessoftware.InProceedingsofthe10thAustralasianEnvironmentalIsotopeConferenceand3rd
AustralasianHydrogeologyResearchConference,Perth,Australia,1–3December2009.
12. Rosenberry,D.O.;Lewandowski,J.;Meinikmann,K.;Nützmann,G.Groundwater‐thedisregarded
componentinlakewaterandnutrientbudgets.Part1:Effectsofgroundwateronhydrology.Hydrol.Process.
2015,29,2895–2921.
13. Scibek,J.;Allen,D.M.;Cannon,A.J.;Whitfield,P.H.Groundwater–surfacewaterinteractionunder
scenariosofclimatechangeusingahigh‐resolutiontransientgroundwatermodel.J.Hydrol.2007,333,165–
181.
14. Yihdego,Y.;Webb,J.A.Modelingofborehydrographstodeterminetheimpactofclimateandlanduse
changeinatemperatesubhumidregionofsoutheasternAustralia.Hydrogeol.J.2011,19,877–887.
15. Yihdego,Y.;Webb,J.A.;Leahy,P.ResponsetoParker:Rebuttal:ENGE‐D‐13‐00994R2“Modellingoflake
levelunderclimatechangeconditions:LakePurrumbeteinsoutheasternAustralia”.Environ.EarthSci.J.
2016,75,1,1–4.
16. Yihdego,Y.;Webb,J.A.Assessmentofwetlandhydrologicaldynamicsinamodifiedcatchmentbasin:Case
ofLakeBuninjon,Victoria,Australia.WaterEnviron.Res.J.2017,89,144–154.
17. Doherty,J.;Hunt,R.J.Responsetocommenton“Twostatisticsforevaluatingparameteridentifiabilityand
errorreduction”.J.Hydrol.2010,380,489–496.
18. Doherty,J.;Johnston,J.M.Methodologiesforcalibrationandpredictiveanalysisofawatershedmodel.J.
Am.WaterResour.Assoc.2003,39,251–265.
19. Yihdego,Y.DroughtandPestManagementInitiatives(Bookchapter11).InHandbookofDroughtandWater
Scarcity(HDWS):Vol.3:ManagementofDroughtandWaterScarcity;Eslamian,S.,Eslamian,F.A.,Eds.;Francis
andTaylor,CRCGroup:Burlington,MA,USA,2016.
20. Yihdego,Y.DroughtandGroundwaterQualityinCoastalArea(Bookchapter15).InHandbookofDrought
andWaterScarcity(HDWS):Vol.2:EnvironmentalImpactsandAnalysisofDroughtandWaterScarcity;
Eslamian,S.,Eslamian,F.A.,Eds.;FrancisandTaylor,CRCGroup:Burlington,MA,USA,2016.
21. Lewandowski,J.;Meinikmann,K.;Nützmann,G.;Rosenberry,D.O.Groundwater–thedisregarded
componentinlakewaterandnutrientbudgets.Part2:Effectsofgroundwateronnutrients.Hydrol.Process.
2015,29,2922–2955.
22. Shaw,G.D.;White,E.S.;Gammons,C.H.Characterizinggroundwater–lakeinteractionsanditsimpacton
lakewaterquality.J.Hydrol.2013,492,69–78.
23. Yihdego,Y.;Al‐Weshah,R.HydrocarbonassessmentandpredictionduetotheGulfWaroildisaster,North
Kuwait.J.WaterEnviron.Res.2016,doi:10.2175/106143016X14798353399250.
24. Yihdego,Y.;Al‐Weshah,R.Gulfwarcontaminationassessmentforoptimalmonitoringandremediation
cost–benefitanalysis,Kuwait.Environ.EarthSci.2016,75,1–11.
25. Gallagher,M.R.;Doherty,J.Predictiveerroranalysisforawaterresourcemanagementmodel.J.Hydrol.
2007,34,513–533.
26. Hunt,R.J.;Doherty,J.;Tonkin,M.J.Aremodelstoosimple?Argumentsforincreasedparameterization.
GroundWater2007,45,254–262.
27. Yihdego,Y.;Eslamian,S.DroughtManagementInitiativesandObjectives(Bookchapter1).InHandbookof
DroughtandWaterScarcity(HDWS):Vol.3:ManagementofDroughtandWaterScarcity;Eslamian,S.,
Eslamian,F.A.,Eds.;FrancisandTaylor,CRCGroup:Burlington,MA,USA,2016,41.
28. Shaw,G.D.;Mitchell,K.L.;Gammons,C.H.Estimatinggroundwaterinflowandleakageoutflowforan
intermontanelakewithastructurallycomplexgeology:GeorgetownLakeinMontana,USA.Hydrogeol.J.
2016,1–15.
29. Skahill,B.;Doherty,J.Efficientaccommodationoflocalminimainwatershedmodelcalibration.J.Hydrol.
2006,329,122–139.
30. Tonkin,M.;Doherty,J.Ahybridregularisedinversionmethodologyforhighlyparameterizedmodels.
WaterResour.Res.2005,41,W10412.
31. Yihdego,Y.Datavisualizationtoolasaframeworkforgroundwaterflowandtransportmodels.In
ProceedingsoftheInternationalConferenceon“MODFLOWandmore2013”,TranslatingScienceintoPractice,
IntegratedGroundwaterModellingCentre(IGWMC),ColoradoSchoolofMines,University:Golden,CO,
USA,2013.
Hydrology2017,4,10 17of18
32. Yihdego,Y.;Webb,J.A.Modellingofseasonalandlong‐termtrendsinlakesalinityinsouth‐western
Victoria,Australia.J.Environ.Manag.2012,112,149–159.
33. Gallagher,M.R.;Doherty,J.Parameterestimationanduncertaintyanalysisforawatershedmodel.Environ.
Model.Softw.2006,22,1000–1020.
34. Lohman,S.W.Ground‐WaterHydraulics;USGovernmentPrintingOffice:Washington,DC,USA,1972;p.
70.
35. Lewis,M.A.;Cheney,C.S.;ÓDochartaigh,B.E.GuidetoPermeabilityIndices;CR/06/160N;BritishGeological
Survey,NaturalEnvironmentalCouncil:London,UK,2006.
36. Post,V.;Kooi,H.;Simmons,C.Usinghydraulicheadmeasurementsinvariable‐densitygroundwaterflow
analyses.GroundWater2007,45,6,664–671.
37. Jakovovic,D.;Werner,A.D.;deLouw,P.G.;Post,V.E.;Morgan,L.K.Saltwaterupcomingzoneofinfluence.
Adv.WaterResour.2016,94,75–86.
38. Yihdego,Y.;Reta,G.;Becht,R.Hydrologicalanalysisasatechnicaltooltosupportstrategicandeconomic
development:CaseofLakeNavaisha,Kenya.WaterEnviron.J.2016,30,40–48.
39. Yihdego,Y.;Reta,G.;Becht,R.HumanimpactassessmentthroughatransientnumericalmodellingonThe
UNESCOWorldHeritageSite,LakeNavaisha,Kenya.Environ.EarthSci.2017,76,9.
40. Yihdego,Y.;Webb,J.A.Validationofamodelwithclimaticandflowscenarioanalysis:CaseofLake
BurrumbeetinSoutheasternAustralia.Environ.Monit.Assess.2016,188,1–14.
41. Jones,R.N.;McMahon,T.A.;Bowler,J.M.Modellinghistoricallakelevelsandrecentclimatechangeatthree
closedlakes,WesternVictoria,Australia(c.1840–1990).J.Hydrol.2001,246,159–180.
42. Yihdego,Y.;Webb,J.A.Anempiricalwaterbudgetmodelasatooltoidentifytheimpactofland‐usechange
onstreamflowinsoutheasternAustralia.WaterResour.Manag.2012,27,4941–4958.
43. James,S.C.;Doherty,J.;Eddebarh,A.A.Post‐calibrationuncertaintyanalysis:YuccaMountain,Nevada,
USA.GroundWater2009,47,851–869.
44. Tonkin,M.;Doherty,J.;Moore,C.Efficientnonlinearpredictiveerrorvarianceanalysisforhighly
parameterizedmodels.WaterResour.Res.2007,43,7.
45. Doherty,J.;Skahill,B.Anadvancedregularizationmethodologyforuseinwatershedmodelcalibration.J.
Hydrol.2006,327,564–577.
46. Doherty,J.Groundwatermodelcalibrationusingpilotpointsandregularization.GroundWater2003,41,2,
170–177.
47. Moore,C.;Doherty,J.Thecostofuniquenessingroundwatermodelcalibration.Adv.WaterResour.2006,
29,605–623.
48. Yihdego,Y.;Becht,R.Simulationoflake–aquiferinteractionatLakeNavaisha,Kenyausingathree‐
dimensionalflowmodelwiththehighconductivitytechniqueandaDEMwithbathymetry.J.Hydrol.2013,
503,111–122.
49. Yihdego,Y.;Al‐Weshah,R.Engineeringandenvironmentalremediationscenariosduetoleakagefromthe
GulfWaroilspillusing3‐Dnumericalcontaminantmodellings.J.Appl.WaterSci.2016,doi:10.1007/s13201‐
016‐0517‐x.
50. Bennetts,D.Hydrology,HydrogeologyandHydro‐GeochemistryofGroundwaterFlowSystemswithin
theHamiltonBasaltPlains,WesternVictoria,andTheirRoleinDryLandSalinisation.Ph.D.Thesis,
DepartmentofEarthSciences,LaTrobeUniversity,Melbourne,Australia,September2005.
51. Yihdego,Y.;Webb,J.A.Useofaconceptualhydrogeologicalmodelandatimevariantwaterbudget
analysistodeterminecontrolsonsalinityinLakeBurrumbeetinsoutheastAustralia.Environ.EarthSci.
2015,73,1587–1600.
52. Yihdego,Y.;Webb,J.A.;Leahy,P.Modellingoflakelevelunderclimatechangeconditions:Lake
PurrumbeteinsoutheasternAustralia.Environ.EarthSci.2015,73,3855–3872.
53. Yihdego,Y.;Webb,J.A.;Leahy,P.Modellingwaterandsaltbalancesinadeep,groundwater‐throughflow
lake—LakePurrumbete,southeasternAustralia.Hydrol.Sci.J.2016,61,186–199.
54. Yihdego,Y.ModellingofLakeLevelandSalinityforLakePurrumbeteinWesternVictoria,Australia;ACo‐
OperativeResearchProjectbetweenLaTrobeUniversityandEPAVictoria;EPAVictoria:Melbourne,
Australia,2010.
55. Yihdego,Y.Modellingboreandstreamhydrographandlakelevelinrelationtoclimateandlanduse
changeinSouthwesternVictoria,Australia.Ph.D.Thesis.FacultyofScience,TechnologyandEngineering,
Melbourne,LaTrobeUniversity,Melbourne,Australia,May2010.
Hydrology2017,4,10 18of18
56. Yihdego,Y.;Webb,J.A.CharacterizinggroundwaterdynamicsusingTransferFunction‐Noiseandauto‐
regressivemodellinginWesternVictoria,Australia.InProceedingsofthe5thIASME/WSEASInternational
ConferenceonWaterResources,HydraulicsandHydrology(WHH’10),23–25February2010,Cambridge,
UK.
57. Yihdego,Y.;Al‐Weshah,R.Assessmentandpredictionofsalineseawatertransportingroundwaterusing
using3‐Dnumericalmodelling.Environ.Process.J.2016,doi:10.1007/s40710‐016‐0198‐3.
58. Winter,T.C.Effectsofwatertableconfigurationonseepagethroughlakebeds.Limnol.Oceanogr.1981,26,
925–934.
59. Yihdego,Y.EvaluationofFlowReductionduetoHydraulicBarrierEngineeringStructure:CaseofUrban
AreaFlood,ContaminationandPollutionRiskAssessment.J.Geotech.Geol.Eng.2016,34,1643–1654.
60. Al‐Weshah,R.;Yihdego,Y.ModellingofStrategicallyVitalFreshWaterAquifers,Kuwait.Environ.Earth
Sci.2016,75,1315,doi:10.1007/s12665‐016‐6132‐1.
61. Yihdego,Y.;Danis,C.;Paffard,A.3‐Dnumericalgroundwaterflowsimulationforgeological
discontinuitiesintheUnkheltsegBasin,Mongolia.Environ.EarthSci.J.2015,73,4119–4133.
62. Yihdego,Y.;Webb,J.A.InCharacterizinggroundwaterdynamicsinWesternVictoria,Australiausing
Menyanthessoftware,Proceedingsofthe10thAustralasianEnvironmentalIsotopeConferenceand3rd
AustralasianHydrogeologyResearchConference,Perth,Australia,01–03December2009.
63. Yihdego,Y.;Webb,J.A.InModellingofSeasonalandLong‐termTrendsinLakeSalinityinSouthwestern
Victoria,Australia,ProceedingsofWaterDownUnder,14–17April2008;EngineersAustralia:Adelaide,
Australia.
64. Yihdego,Y.Engineeringandenviro‐managementvalueofradiusofinfluenceestimatefrommining
excavation.J.Appl.WaterEng.Res.2017,doi:10.1080/23249676.2017.1287022.
©2017bytheauthors;licenseeMDPI,Basel,Switzerland.Thisarticleisanopenaccess
articledistributedunderthetermsandconditionsoftheCreativeCommonsAttribution
(CCBY)license(http://creativecommons.org/licenses/by/4.0/).