Article

Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies

IMR Press
Journal of Integrative Neuroscience
Authors:
To read the full-text of this research, you can request a copy directly from the author.

Abstract

Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the author.

... In another study, Ehrman & Oxford [14] further found that females also reported more frequent strategy use than males on metacognitive strategic behaviors such as checking, monitoring, and planning one's learning performance. Importantly, the findings of significant gender differences in both cognitive and metacognitive strategy use in these early primary studies provide indirect yet critical support for the later findings uncovered by functional magnetic resonance imaging (fMRI) techniques [2,20,22]. Overall, females showed a stronger and wider response than males not only in the amygdala, which is responsible for emotional regulation, but also in the prefrontal cortex areas, where cognitive processing and higher order mental functioning such as planning, monitoring, and problem solving occur [3]. The above discussion suggests that the quantity dimension of strategic learning as operationalized by SILL can offer diagnostic information regarding gender differences in cognitive and metacognitive functioning in the task of language learning. ...
... Essentially, because boredom control and emotion control are intrinsically associated with emotion regulation [4,21], the neurobiological function of which the amygdala is responsible for. Sensibly, therefore, Tseng et al.'s findings can be credited with being significantly, indirectly notwithstanding, convergent with those by fMRI [2,20,22], in which the responsive magnitude in emotional regulation was directly observed in the brain and more active in females than in males. Critically, the foregoing discussion further suggests that the quality dimension of strategic learning as operationalized by SRlang may provide useful information concerning gender differences in emotional regulation in the task of language learning. ...
... Corresponding to the behavioral performance, the female superiority in emotion decoding is associated with different neural pathways and varied neurodynamics. A recent meta-analysis study showed that the medial prefrontal cortex, anterior cingulate cortex, frontal pole and the thalamus were more recruited in men relative to women during emotion perception, while women showed distinct activation in bilateral amygdala, hippocampus and some regions of the dorsal midbrain (Filkowski et al., 2017), suggesting that males tend to recruit bilateral prefrontal regions involved in rational thinking and cognitive control whereas females tend to recruit bilateral amygdala involved in quick emotional evaluation (AlRyalat, 2017). Regarding neurodynamics, it was reported that females yielded significantly larger P100 to fearful faces than males in emotion discrimination task (Lee et al., 2017), and generated longer latency and higher amplitude P450 component than males when explicitly detecting happy and sad faces among neutral faces (Orozco and Ehlers, 1998), suggesting that female advantage in emotion processing emerges in the early stage of low-level visual feature processing and the late stage of indepth emotionality evaluation. ...
... In contrast, for males, emotional feedback only counteracted effect of monetary cues during the early stage of salience monitoring, but not the late stage of in-depth valuation. This finding was in accordance with the neuroanatomical findings that while males tend to be rational by recruiting bilateral prefrontal regions, females tend to be emotional by recruiting bilateral amygdala when facing with emotional information (AlRyalat, 2017;Filkowski et al., 2017). Actually, females have long been believed to outperform males at recognizing emotions expressions (McClure, 2000;Li et al., 2008;Yuan et al., 2009;Donges et al., 2012;Erol et al., 2013;Lee et al., 2013;Weisenbach et al., 2014;Mason et al., 2016), and more prone to be influenced by emotional information (Schirmer et al., 2002(Schirmer et al., , 2004Kim and Son, 2015). ...
Article
Full-text available
It is widely believed that females outperformed males in emotional information processing. The present study tested whether the female superiority in emotional information processing exists in a naturalistic social-emotional context, if so, what the temporal dynamics underlies. The behavioral and electrophysiological responses were recorded while participants were performing an interpersonal gambling game with opponents’ facial emotions given as feedback. The results yielded that emotional cues modulated the influence of monetary feedback on outcome valuation. Critically, this modulation was more conspicuous in females: opponents’ angry expressions increased females’ risky tendency and decreased the amplitude of reward positivity (RewP) and feedback P300. These findings indicate that females are more sensitive to emotional expressions in real interpersonal interactions, which is manifested in both early motivational salience detection and late conscious cognitive appraisal stages of feedback processing.
... In the validation set (Component 2), for identifying the brain region (voxels) with significantly different ALFF values between MDD and HC groups, we performed a voxel-wise one-way ANCOVA [45À48] to examine the primary effect of the diagnosis (MDD vs. HC), with age [49], gender [50], and years of education [51] as covariates (dependent variable: ALFF value of each voxel; independent variable: diagnosis [MDD/HC], age, gender, years of education). The results were considered significant differences at a corrected p < 0.05 and cluster size > 4482 mm 3 (166 voxels). ...
Article
Full-text available
Background circular RNAs (circRNAs) are expressed abundantly in the brain and are implicated in the pathophysiology of neuropsychiatric disease. However, the potential clinical value of circRNAs in major depressive disorder (MDD) remains unclear. Methods RNA sequencing was conducted in whole-blood samples in a discovery set (7 highly homogeneous MDD patients and 7 matched healthy controls [HCs]). The differential expression of circRNAs was verified in an independent validation set. The interventional study was conducted to assess the potential effect of the antidepressive treatment on the circRNA expression. Findings in the validation set, compared with 52 HCs, significantly decreased circFKBP8 levels (Diff: -0.24; [95% CI -0.39 ~ -0.09]) and significantly elevated circMBNL1 levels (Diff: 0.37; [95% CI 0.09 ~ 0.64]) were observed in 53 MDD patients. The expression of circMBNL1 was negatively correlated with 24-item Hamilton Depression Scale (HAMD-24) scores in 53 MDD patients. A mediation model indicated that circMBNL1 affected HAMD-24 scores through a mediator, serum brain-derived neurotrophic factor. In 53 MDD patients, the amplitude of low-frequency fluctuations in the right orbital part middle frontal gyrus was positively correlated with circFKBP8 and circMBNL1 expression. Furthermore, the interventional study of 53 MDD patients demonstrated that antidepressive treatment partly increased circFKBP8 expression and the change in expression of circFKBP8 was predictive of further reduced HAMD-24 scores. Interpretation whole-blood circFKBP8 and circMBNL1 may be potential biomarkers for the diagnosis of MDD, respectively, and circFKBP8 may show great potential for the antidepressive treatment.
... One important question to address is that whether or not the performance of our prediction may be affected by subject specific information such as gender and age. We know that the pattern of network activity varies from males to females [18,19,20] and from young to old subjects [21,22]. This poses two important questions, 1. ...
... While the majority fMRI-based neuroimaging studies of creativity have reported results based on mixed gender groups (Beaty et al., 2014(Beaty et al., , 2015(Beaty et al., , 2016(Beaty et al., , 2018Gonen-Yaacovi et al., 2013;Jung et al., 2013;Kounios et al., 2008) and thus not designed to address possible gender effects, some structural and functional neuroimaging studies have reported significant gender differences in the neuroanatomical and activation correlates of creativity (Abraham, 2016;Abraham, Thybusch, Pieritz, & Hermann, 2014;Ryman et al., 2014;Takeuchi et al., 2017aTakeuchi et al., , 2017b. Such gender differences have also been reported in terms of structural connectivity (Ingalhalikar et al., 2014) as well as a range of cognitive tasks (AlRyalat, 2017;Bell, Willson, Wilman, Dave, & Silverstone, 2006;Cahill, 2006;Hill, Laird, & Robinson, 2014;Zaidi, 2010). If the gender differences observed in the structural and functional neuroimaging studies are also apparent in our functional connectivity data, it is possible that gender-specific effects may be diluted in a mixed gender group. ...
Article
Full-text available
Introduction Creativity is a complex construct that lies at the core of what has made human civilizations possible. One frequently used measure of creativity is the Abbreviated Torrance Test for Adults that yields an overall creativity score. In this study, we examine the relationship between the task‐related differences in brain functional connectivity and the creativity score in a male and female group of participants. Methods Brain functional connectivity was estimated from the steady‐state visual evoked potential (SSVEP) event‐related partial coherence in a group of 27 females and 27 males while they performed a low‐demand visual vigilance task and the A‐X version of the Continuous Performance Task. Task‐related differences in brain functional connectivity (ΔFC) were correlated with the creativity score separately in the female and male groups. Results We found that the creativity score was correlated with a parieto‐frontal ΔFC component for both the female and male groups. However, significant gender differences were observed in both the timing and the laterality of the parietal component. Females exhibited a left parietal to bilateral frontal ΔFC component correlated with creativity score and this peaked on the appearance of a target in both tasks. By contrast, males demonstrated a right parietal to bilateral frontal ΔFC component correlated with creativity score which peaked on the appearance of the letter following the targets. Conclusion These findings are discussed in the context of the role of the Default Mode Network in creativity, and the role of gender‐related differences in cortical networks that mediate creativity.
Article
The study examined the impact of positive and negative meta-emotions on marital adjustment in married couples. The participants (300 husbands and 300 wives, N=600) were individually administered Meta-Emotion Scale-(Hindi) and Dyadic Adjustment Scale-(Hindi). Results revealed non-significant main effects of spouses and significant main effects of levels of positive and negative meta-emotions on all the facets of marital adjustments. High as compared to low scorer participants on positive meta-emotions and negative meta-emotions demonstrated significantly higher and lower marital adjustment respectively. 'Spouses X levels of positive meta-emotions' interaction had no significant effects on marital adjustment, however, 'spouses X levels of negative meta-emotions' interaction had significant effect on marital consensus facets of marital adjustment and high levels of negative meta-emotions in husbands and wives and, low levels of negative meta-emotions in husbands resulted in similar levels of marital adjustment whereas low level of negative meta-emotions in wives caused higher marital adjustment.
Article
Full-text available
Introduction Neural alterations in limbic and prefrontal circuits in association with self-injurious behavior have been studied primarily in adult borderline personality disorder (BPD). In adolescent patients, research is still sparse. Here, we used resting functional near-infrared spectroscopy (NIRS) to examine oxygenation of the prefrontal cortex (PFC) and its association with symptom severity in adolescents engaging in non-suicidal self-injury (NSSI) and matched healthy controls (HC). Methods Adolescents (12-17 years) with recurrent episodes of NSSI (n = 170) and healthy controls (n = 43) performed a low-demanding resting-state vanilla baseline task. Mean oxygenation of the PFC and functional connectivity within the PFC, were measured using an 8-channel functional NIRS system (Octamon, Artinis, The Netherlands). Various clinical variables derived from diagnostic interviews and self-reports were included in statistical analyses to explore potential associations with PFC oxygenation and connectivity. Results Adolescents with NSSI showed significantly decreased PFC oxygenation compared to HC, as indexed by oxygenated hemoglobin. Lower PFC oxygenation was associated with greater adverse childhood experiences and less health-related quality of life (HRQoL). While there was no evidence for alterations in PFC connectivity in adolescents engaging in NSSI compared to HC, increased PFC connectivity in the full sample was associated with greater adverse childhood experience, a greater BPD pathology, greater depression severity and psychological burden in general, as well as lower HRQoL. Conclusion This study is the first to examine PFC oxygenation using NIRS technology in adolescents engaging in NSSI. Overall, results indicate small effects not specific to NSSI. Clinical implications of these findings and recommendations for further research are discussed.
Article
Full-text available
A remarkable feature of the human brain is its sexual dimorphism. While it is well documented that the sexual dimorphism in brain structure and function exists, its clinical implications in healthy individuals as well as in those who suffer from various neuropsychiatric disorders remain to be further explored. The present paper aims to provide an overview of the remarkable features and the fundamental characteristics of the sexual dimorphism in brain performance along with clinical implications based on the review of the relevant meta-analyses published up-to-date. The primary aim is to highlight and discuss the synthesized results to advance human knowledge in the area of applied psychophysiology and support direct future interdisciplinary research efforts towards improvements in health and quality of life with regard to sexual dimorphism in brain structure–function interrelationships. The review also seeks to advance clinical management approaches to sexually dimorphic neurocognitive conditions. Better understanding of the areas implicated in sex-biased neuropsychiatric disorders can help to improve sex-specific referrals, diagnosis and proactive care management of the patients and achieving treat-to-target goals.
Book
Open Access Data is emerging as a source for cutting edge scholarship. This concise book provides guidance from generating a research idea to publishing results. Both young researchers and well-established scholars can use this book to upgrade their skills with respect to emerging data sources, analysis, and even post-publishing promotion. At the end of each chapter, a tutorial simulates a real example, allowing readers to apply what they learned about accessing open data, and analyzing this data to reach the results. This book can be of use by established researchers analyzing data, publishing, and actively promoting ongoing and research.
Chapter
It is proposed that Homo sapiens’ biological adaptation was accomplished to survive under the environmental conditions that existed during the Paleolithic time. Recent man’s evolution, to a significant extent, corresponds to a cultural type of evolution, not necessarily requiring further overt biological changes. Strategies used for spatial orientation are reviewed; perceptual constancy, reference systems, and cross-cultural differences in visuoperceptual abilities are emphasized. It is pointed out that males usually perform better than females in spatial tests, even though there is not a clear explanation for this difference. The neurological bases of spatial cognition are further discussed, emphasizing the two brain areas supporting spatial cognition: the right parietal lobe and the hippocampus; some neuroimaging studies approaching the pattern of brain activation during different spatial tasks are examined. Finally, visuospatial impairments resulting from brain damage are discussed; it is explained that spatial agnosia represents an impairment in perception and the use of spatial-dependent information resulting from brain pathology. This type of disorder is generally associated with right parietal or parietal-occipital damage.
Article
Full-text available
Short, unfamiliar melodies were presented to young and older adults and to Alzheimer's disease (AD) patients in an implicit and an explicit memory task. The explicit task was yes–no recognition, and the implicit task was pleasantness ratings, in which memory was shown by higher ratings for old versus new melodies (the mere exposure effect). Young adults showed retention of the melodies in both tasks. Older adults showed little explicit memory but did show the mere exposure effect. The AD patients showed neither. The authors considered and rejected several artifactual reasons for this null effect in the context of the many studies that have shown implicit memory among AD patients. As the previous studies have almost always used the visual modality for presentation, they speculate that auditory presentation, especially of nonverbal material, may be compromised in AD because of neural degeneration in auditory areas in the temporal lobes.
Article
Full-text available
The change of emotional responses of the brain with age is widely discussed in literature, some of these studies found the age of 40 to be pivotal in this regard. Taking the advantage of new functional neuroimaging techniques, we conducted a voxel-based meta-analysis to analyze the difference in brain activation during different emotional stimuli between individuals below the age of 40 years in one hand, and individuals above 40 years in the other hand. During different emotional stimuli, individuals above 40 years tend to activate areas that provide better self-control especially during sadness. In contrast, individuals below 40 years activate areas that cause loss of inhibition, especially, during anger.
Article
Full-text available
Introduction: During the late 19th and early 20th century, a 'brain language area' was proposed corresponding to the peri-Sylvian region of the left hemisphere as concluded by clinical observations. This point of view has continued up today. Aim: Departing from contemporary neuroimaging studies, to re-analyze the location and extension the brain language area with regard to the different Brodmann areas. Materials and methods: Using the method known as metaanalytic connectivity modeling seven meta-analytic studies of fMRI activity during the performance of different language tasks are analyzed. Results: It was observed that two major brain systems can be distinguished: lexical/semantic, related with the Wernicke's area, that includes a core Wernicke's area (recognition of words) and an extended Wernicke's area (word associations); and grammatical system (language production and grammar) corresponding to the Broca's complex in the frontal lobe, and extending subcortically It is proposed that the insula plays a coordinating role in interconnecting these two brain language systems. Conclusions: Contemporary neuroimaging studies suggest that the brain language are is notoriously more extended than it was assumed one century ago based on clinical observations. As it was assumed during the 19th century, the insula seemingly plays a critical role in language.
Article
Full-text available
We can predict how an object would look like if we were to see it from different viewpoints. The brain network governing mental rotation (MR) has been studied using a variety of stimuli and tasks instructions. By using activation likelihood estimation (ALE) meta-analysis we tested whether different MR networks can be modulated by the type of stimulus (body vs. non-body parts) or by the type of tasks instructions (motor imagery-based vs. non-motor imagery-based MR instructions). Testing for the bodily and non-bodily stimulus axis revealed a bilateral sensorimotor activation for bodily-related as compared to non-bodily-related stimuli and a posterior right lateralized activation for non-bodily-related as compared to bodily-related stimuli. A top-down modulation of the network was exerted by the MR tasks instructions with a bilateral (preferentially sensorimotor left) network for motor imagery- vs. non-motor imagery-based MR instructions and the latter activating a preferentially posterior right occipito-temporal-parietal network. The present quantitative meta-analysis summarizes and amends previous descriptions of the brain network related to MR and shows how it is modulated by top-down and bottom-up experimental factors.
Article
Full-text available
Six Ss (college students and staff) were required to discriminate previously learned "standard" versions of angular shapes from randomly perturbed "distractor" versions that varied in similarity to the standard. Advance information concerning the identity and the orientation of the test form was provided. Ss were instructed to prepare for the presentation of the test form by mentally rotating an internal representation of the designated standard form (identity cue) into the designated orientation. The time needed to prepare for the presentation of the test form increased linearly with the angular departure of the indicated orientation from a previously learned position. This finding suggests that, in accordance with instructions, Ss performed a mental rotation in preparing for the upcoming test shape. Rate of preparation was not affected by the complexity of the standard form presented as the identity cue. Discriminative reaction time was not affected by either test-form complexity or angular departure of the test form from the learned orientation. In addition, striking individual differences in the pattern of discriminative reaction times were found. (16 ref) (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
Full-text available
Replies to comments made by Archer (see record 2006-11202-012), Lippa (see record 2006-11202-013), and Davies and Shackelford (see record 2006-11202-014) on the current author's original article (see record 2005-11115-001). The current author addresses the criticisms put forth by each of these commenting authors, and concludes that the best available scientific evidence continues to support the gender similarities hypothesis, that males and females are similar on most, but not all, psychological variables. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Article
Full-text available
Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images. Behavioral and coordinate data were taken from the BrainMap database (http://www.brainmap.org/), which documents over 20 years of published functional brain imaging studies. A brain region of interest (ROI) for behavioral analysis can be defined in functional images, anatomical images or brain atlases, if images are spatially normalized to MNI or Talairach standards. Results of behavioral analysis are presented for each of BrainMap's 51 behavioral sub-domains spanning five behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each behavioral sub-domain the fraction of coordinates falling within the ROI was computed and compared with the fraction expected if coordinates for the behavior were not clustered, i.e., uniformly distributed. When the difference between these fractions is large behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically significant behavioral association. The left-right symmetry of ~100K activation foci was evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the classic left-side dominance for language while asymmetry for most sub-domains (~75%) was not statistically significant. Use scenarios were presented for anatomical ROIs from the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten "major representative" functional networks in a previously published resting state fMRI study. Statistically significant behavioral findings for these use scenarios were consistent with published behaviors for associated anatomical and functional regions.
Article
Full-text available
Emotion regulation plays a crucial role in adaptive functioning and mounting evidence suggests that some emotion regulation strategies are often more effective than others. However, little attention has been paid to the different ways emotions can be generated: from the 'bottom-up' (in response to inherently emotional perceptual properties of the stimulus) or 'top-down' (in response to cognitive evaluations). Based on a process priming principle, we hypothesized that mode of emotion generation would interact with subsequent emotion regulation. Specifically, we predicted that top-down emotions would be more successfully regulated by a top-down regulation strategy than bottom-up emotions. To test this hypothesis, we induced bottom-up and top-down emotions, and asked participants to decrease the negative impact of these emotions using cognitive reappraisal. We observed the predicted interaction between generation and regulation in two measures of emotional responding. As measured by self-reported affect, cognitive reappraisal was more successful on top-down generated emotions than bottom-up generated emotions. Neurally, reappraisal of bottom-up generated emotions resulted in a paradoxical increase of amygdala activity. This interaction between mode of emotion generation and subsequent regulation should be taken into account when comparing of the efficacy of different types of emotion regulation, as well as when reappraisal is used to treat different types of clinical disorders.
Article
Full-text available
Competing theories of short-term memory function make specific predictions about the functional anatomy of auditory short-term memory and its role in language comprehension. We analysed high-resolution structural magnetic resonance images from 210 stroke patients and employed a novel voxel based analysis to test the relationship between auditory short-term memory and speech comprehension. Using digit span as an index of auditory short-term memory capacity we found that the structural integrity of a posterior region of the superior temporal gyrus and sulcus predicted auditory short-term memory capacity, even when performance on a range of other measures was factored out. We show that the integrity of this region also predicts the ability to comprehend spoken sentences. Our results therefore support cognitive models that posit a shared substrate between auditory short-term memory capacity and speech comprehension ability. The method applied here will be particularly useful for modelling structure–function relationships within other complex cognitive domains.
Article
Full-text available
Twenty undergraduate subjects were presented with unsignaled 50-ms white noise bursts (95 dB) to probe their perceptual processing while viewing 36 colored photographic slides, depicting pleasant/interesting, neutral/dull, or unpleasant/interesting scenes and objects. Startle magnitudes to the noise bursts as measured by the eyeblink response were largest for unpleasant material and smallest for positive material. This effect was independent of measures of orienting, arousal, and interest in the materials. The results reconcile conflicting animal and human research. Alternative attentional and response matching explanations of these startle probe effects were evaluated. The startle probe is proposed as a broadly useful tool for studying emotion, its development and modification, and for the assessment of pathological anxiety.
Article
Full-text available
This PET study has revealed the neural system involved in implicit face, proper-name and object name processing during an explicit visual 'same' versus 'different' matching task. Within the identified system, some areas were equally active irrespective of modality (faces or names) or type of stimuli (famous and non-famous) while other areas exhibited differential effects. Our findings support the hypothesis that faces and names involve differential pre-semantic processing prior to accessing a common neural system of stored knowledge of personal identity which overlaps with the one associated with object knowledge. The areas specialized for the perceptual analysis of faces (irrespective of whether they are famous or non-famous) are the right lingual and bilateral fusiform gyri, while the areas specialized for famous stimuli (irrespective of whether they are faces or names) spread from the left anterior temporal to the left temporoparietal regions. One specific area, the more lateral portion of the left anterior middle temporal gyrus, showed increased activation for famous faces relative to famous proper names and for famous proper names relative to common names. The differential responsiveness of this region when processing familiar people suggests functional segregation of either personal attributes or, more likely, the demands placed on processes that retrieve stored knowledge when stimuli have highly similar visual features but unique semantic associations.
Article
Full-text available
Memory for famous faces can be used to examine the neural systems underlying retrieval from long-term memory. To date, there have been a limited number of functional neuroimaging investigations examining famous face recognition. In this study, we compared recognition of famous faces to recognition of newly learned faces. Whole-brain, event-related functional magnetic resonance imaging was used to image regional changes in neural activity in 11 subjects during the encoding of unfamiliar faces and during familiarity judgments for: (1) newly learned faces, (2) unfamiliar face distractors, and (3) famous faces. Image analyses were restricted to correct recognition trials. Recognition accuracy and response time to famous and recently learned faces were equivalent. Recognition of famous faces was associated with a widespread network of bilateral brain activations involving the prefrontal, lateral temporal, and mesial temporal (hippocampal and parahippocampal regions) regions compared to recognition of recently encoded faces or unfamiliar faces seen for the first time. Findings are discussed in relation to current proposals concerning the neural regions thought to participate in long-term memory retrieval and, more specifically, in relation to retrieval of information from the person identity semantic system.
Article
Full-text available
Short, unfamiliar melodies were presented to young and older adults and to Alzheimer's disease (AD) patients in an implicit and an explicit memory task. The explicit task was yes-no recognition, and the implicit task was pleasantness ratings, in which memory was shown by higher ratings for old versus new melodies (the mere exposure effect). Young adults showed retention of the melodies in both tasks. Older adults showed little explicit memory but did show the mere exposure effect. The AD patients showed neither. The authors considered and rejected several artifactual reasons for this null effect in the context of the many studies that have shown implicit memory among AD patients. As the previous studies have almost always used the visual modality for presentation, they speculate that auditory presentation, especially of nonverbal material, may be compromised in AD because of neural degeneration in auditory areas in the temporal lobes.
Article
Full-text available
The main purpose of the present study was to: 1) to investigate differences between males and females in brain activation when performing a mental rotation task, 2) investigate hemisphere differences in brain activation during mental rotation. Brain activation was measured with functional magnetic resonance imaging (fMRI). Image acquisition was performed with a 1.5 Tesla Siemens Vision MR scanner equipped with 25 m T/m gradients. Scanning of anatomy was done with a T1-weighted 3D FLASH pulse sequence. Serial imaging with 70 BOLD sensitive echo planar (EPI) whole brain measurements was done during stimulus presentations, divided into 7 blocks of 10 EPI multi-slice volume measurements each. Eleven subjects were presented with black-and-white drawings of 3-D shapes taken from the set of 3-D perspective drawings developed by Shepard and Metzler [1], alternated with 2-D white bars as control stimuli. In the experimental condition, the subjects were shown 36 pairs of 3-D drawings, presented in three blocks of 12 pairs of drawings. The drawings were always presented pairwise. On half of the trials, the two 3-D shapes were congruent but portrayed with different orientation, in the other half the two shapes were incongruent. MR data were analyzed with the SPM-96 analysis software. After subtraction of activity related to the 2-D control stimuli, clusters of significant activation were found in the superior parietal lobule (BA 7), more intensely over the right hemisphere, and bilaterally in the inferior frontal gyrus (BA 44/45). Males showed predominantly parietal activation, while the females showed inferior frontal activation. It is suggested that males and females may differ in the processing strategy used when approaching a 3-D mental rotation task, males using a 'gestalt' strategy and females using a 'serial' reasoning strategy.
Article
Full-text available
The new functional neuroimaging techniques, PET and functional MRI (fMRI), offer sufficient experimental flexibility and spatial resolution to explore the functional neuroanatomical bases of different memory stages and processes. They have had a particular impact on our understanding of the role of the frontal cortex in memory processing. We review the insights that have been gained, and attempt a synthesis of the findings from functional imaging studies of working memory, encoding in episodic memory and retrieval from episodic memory. Though these different aspects of memory have usually been studied in isolation, we suggest that there is sufficient convergence with respect to frontal activations to make such a synthesis worthwhile. We concentrate in particular on three regions of the lateral frontal cortex--ventrolateral, dorsolateral and anterior--that are consistently activated in these studies, and attribute these activations to the updating/maintenance of information, the selection/manipulation/monitoring of that information, and the selection of processes/subgoals, respectively. We also acknowledge a number of empirical inconsistencies associated with this synthesis, and suggest possible reasons for these. More generally, we predict that the resolution of questions concerning the functional neuroanatomical subdivisions of the frontal cortex will ultimately depend on a fuller cognitive psychological fractionation of memory control processes, an enterprise that will be guided and tested by experimentation. We expect that the neuroimaging techniques will provide an important part of this enterprise.
Article
Full-text available
Cognitive function requires a high level of functional interaction between regions of a network supporting cognition. Assuming that brain activation changes denote an advanced state of disease progression, changes in functional connectivity may precede changes in brain activation. The objective of this study was to investigate changes in functional connectivity of the right middle fusiform gyrus (FG) in subjects with mild cognitive impairment (MCI) during performance of a face-matching task. The right middle FG is a key area for processing face stimuli. Brain activity was measured using functional MRI. There were 16 MCI subjects and 19 age-matched healthy controls. The linear correlation coefficient was utilized as a measure of functional connectivity between the right middle FG and all other voxels in the brain. There were no statistical differences found in task performance or activation between groups. The right middle FG of the healthy control and MCI groups showed strong bilateral positive linear correlation with the visual cortex, inferior and superior parietal lobules, dorsolateral prefrontal cortex (DLPFC) and anterior cingulate. The healthy controls showed higher positive linear correlation of the right middle FG to the visual cortex, parietal lobes and right DLPFC than the MCI group, whereas the latter had higher positive linear correlation in the left cuneus. In the healthy controls, the right middle FG had negative linear correlation with right medial frontal gyrus and superior temporal gyrus and with left inferior parietal lobule (IPL), angular gyrus, superior frontal gyrus and anterior cingulate gyrus, but the MCI group had negative linear correlation with the left IPL, angular gyrus, precuneus, anterior cingulate, and to right middle temporal gyrus and posterior cingulate gyrus. In the negatively linearly correlated regions, the MCI group had reduced functional connectivity to the frontal areas, right superior temporal gyrus and left IPL. Different regions of the cuneus and IPL had increased functional connectivity in either group. The putative presence of Alzheimer's disease neuropathology in MCI affects functional connectivity from the right middle FG to the visual areas and medial frontal areas. In addition, higher linear correlation in the MCI group in the parietal lobe may indicate the initial appearance of compensatory processes. The results demonstrate that functional connectivity can be an effective marker for the detection of changes in brain function in MCI subjects.
Article
Full-text available
Functional magnetic resonance imaging (fMRI) was used to explore the neural correlates of semantic judgments to visual words in a group of 9- to 15-year-old children. Subjects were asked to indicate if word pairs were related in meaning. Consistent with previous findings in adults, children showed activation in bilateral inferior frontal gyri (Brodmann area [BA] 47, 45) and left middle temporal gyrus (BA 21). Words with strong semantic association elicited significantly greater activation in bilateral inferior parietal lobules (BA 40), suggesting stronger integration of highly related semantic features. By contrast, words with weak semantic association elicited greater activation in left inferior frontal gyrus (BA 45) and middle temporal gyrus (BA 21), suggesting more difficult feature search and more extensive access to semantic representations. We also examined whether age and skill explained unique variance in the patterns of activation. Increasing age was correlated with greater activation in left middle temporal gyrus (BA 21) and inferior parietal lobule (BA 40), suggesting that older children have more elaborated semantic representations and more complete semantic integration processes, respectively. Decreasing age was correlated with activation in right superior temporal gyrus (BA 22) and decreasing accuracy was correlated with activation in right middle temporal gyrus (BA 21), suggesting the engagement of ancillary systems in the right hemisphere for younger and lower-skill children.
Article
Full-text available
Mental rotation is a hypothesized imagery process that has inspired controversy regarding the substrate of human spatial reasoning. Two central questions about mental rotation remain: Does mental rotation depend on analog spatial representations, and does mental rotation depend on motor simulation? A review and meta-analysis of neuroimaging studies help answer these questions. Mental rotation is accompanied by increased activity in the intraparietal sulcus and adjacent regions. These areas contain spatially mapped representations, and activity in these areas is modulated by parametric manipulations of mental rotation tasks, supporting the view that mental rotation depends on analog representations. Mental rotation also is accompanied by activity in the medial superior precentral cortex, particularly under conditions that favor motor simulation, supporting the view that mental rotation depends on motor simulation in some situations. The relationship between mental rotation and motor simulation can be understood in terms of how these two processes update spatial reference frames.
Article
Full-text available
In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.
Article
Full-text available
this paper (except the resliced images labeled "Axial" in Fig. 2). The brain images at the left show in color the voxels that produced a significantly higher MR signal intensity (based on smoothed data) during the epochs containing faces than during those containing objects (1a) and vice versa (1b) for 1 of the 12 slices scanned. These significance images (see color key at right for this and all figures in this paper) are overlaid on a T1-weighted anatomical image of the same slice. Most of the other 11 slices showed no voxels that reached significance at the p , 10
Article
Previous neuroimaging research has shown that the cerebellum is often activated during autobiographical memory (AM) retrieval. However, the reliability of that activation, its localization within the cerebellum, and its relationship to other areas of the AM network remains unknown. The current study used Activation Likelihood Estimation meta-analysis (ALE) as well as resting-state and task-related functional connectivity analyses to better characterize cerebellar activation in relation to AM. The ALE meta-analysis was run on 32 neuroimaging studies of AM retrieval. The results revealed a cluster of reliable AM-related activity within the Crus I lobule of the right posterior cerebellum. Using the peak ALE coordinate within Crus I as a seed region, both task-related and resting state functional connectivity analyses were run on fMRI data from 38 healthy participants. To determine the specificity of connectivity patterns to Crus I, we also included a cerebellar seed region in right Lobule VI previously identified in an ALE meta-analysis as associated with working memory. Resting-state functional connectivity analyses indicated that Crus I was intrinsically connected with other areas of the AM network as well as surrounding and contralateral cerebellar regions. In contrast, the Lobule VI seed was functionally connected with cerebral and cerebellar regions typically associated with working memory. The task-related connectivity analyses revealed a similar pattern, where the Crus I seed exhibited significant connectivity with key nodes of the AM network while the Lobule IV seed did not. During the semantic control task, both Crus I and Lobule VI showed significant correlations with a network of regions that was largely distinct from the AM network. Together these results indicate that right Crus I lobule is reliably engaged during AM retrieval and is functionally connected to the AM network both during rest, and more importantly, during AM retrieval.
Article
Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation.
Article
A virtual reality environment was used to test memory performance for simulated “real-world” spatial and episodic information in a 22-year-old male, Jon, who has selective bilateral hippocampal pathology caused by perinatal anoxia. He was allowed to explore a large-scale virtual reality town and was then tested on his memory for spatial layout and for episodes experienced. Topographical memory was tested by assessing his ability to navigate, recognize previously visited locations, and draw maps of the town. Episodic memory was assessed by testing the retrieval of simulated events which consisted of collecting objects from characters while following a route through the virtual town. Memory for the identity of objects, as well as for where they were collected, from whom, and in what order, was also tested. While the first task tapped simple recognition memory, the latter three tested memory for context. Jon was impaired on all topographical tasks and on his recall of the context-dependent questions. However, his recognition of objects from the virtual town, and of “topographical” scenes (as evaluated by standard neuropsychological tests), was not impaired. These findings are consistent with the view that the hippocampus is involved in navigation, recall of long term allocentric spatial information and context-dependent episodic memory, but not visual pattern matching. Hippocampus 2001;11:715–725. © 2001 Wiley-Liss, Inc.
Article
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template.
Article
We examined gender differences in mental integration of images in visuospatial short-term memory. College students were asked to imagine the combined abstract shape that would be formed by integrating two separate shapes briefly shown on a computer screen. The shapes were presented in four conditions: (1) simultaneously at the center of the screen, (2) simultaneously side-by-side, (3) sequentially at the center, and (4) sequentially side-by-side. Men were faster than women in all four conditions, but were significantly more accurate than women only when the two separate shapes were presented simultaneously side-by-side or sequentially at the center of the screen. We suggest that gender differences in basic visuospatial processes such as image integration may help to explain well-established gender differences in more complex spatial tasks.
Article
The occipital cortex (OC) of early-blind humans is activated during various nonvisual perceptual and cognitive tasks, but little is known about its modular organization. Using functional MRI we tested whether processing of auditory versus tactile and spatial versus nonspatial information was dissociated in the OC of the early blind. No modality-specific OC activation was observed. However, the right middle occipital gyrus (MOG) showed a preference for spatial over nonspatial processing of both auditory and tactile stimuli. Furthermore, MOG activity was correlated with accuracy of individual sound localization performance. In sighted controls, most of extrastriate OC, including the MOG, was deactivated during auditory and tactile conditions, but the right MOG was more activated during spatial than nonspatial visual tasks. Thus, although the sensory modalities driving the neurons in the reorganized OC of blind individuals are altered, the functional specialization of extrastriate cortex is retained regardless of visual experience.
Article
In classical Pavlovian fear conditioning, a neutral stimulus (conditioned stimulus, CS) comes to be evaluated as threatening due to its association with an aversive stimulus (unconditioned stimulus, UCS), and elicits fear. In a subtype of fear conditioning paradigms, called instructed fear or anticipatory anxiety, subjects are made aware of the CS-UCS association prior to actually experiencing it. Initial fear elicitation during this type of conditioning results from the negative evaluation of the CS as a consequence of CS-UCS contingency awareness. Prior reports have suggested that this conscious appraisal process is mediated by a variety of brain regions, including rostral dorsomedial prefrontal/dorsal anterior cingulate cortex (dmPFC/dACC), lateral prefrontal cortex (lPFC), posterior cingulate, hippocampus/parahippocampus, and nucleus accumbens, but there is little overlap between results. We reasoned that a formal meta-analysis of existing instructed fear studies should help narrow down the search for conscious appraisal areas in fear conditioning to those consistently activated across studies. We found consistent activation in rostral dmPFC but not in the other candidate areas. These results allow for maintaining the theory that the rostral dmPFC is involved in conscious threat appraisal. We also report a meta-analysis of uninstructed (classical) fear conditioning studies in which we found notable activation in more posterior parts of the dmPFC/dACC that overlapped with some of the instructed fear activations. These data suggest that mid regions of the dmPFC/dACC are part of a "core" fear network that is activated irrespective of how fear was learnt.
Article
A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.
Article
With the rapid growth of neuroimaging research and accumulation of neuroinformatic databases the synthesis of consensus findings using meta-analysis is becoming increasingly important. Meta-analyses pool data across many studies to identify reliable experimental effects and characterize the degree of agreement across studies. Coordinate-based meta-analysis (CBMA) methods are the standard approach, where each study entered into the meta-analysis has been summarized using only the (x, y, z) locations of peak activations (with or without activation magnitude) reported in published reports. Image-based meta-analysis (IBMA) methods use the full statistic images, and allow the use of hierarchical mixed effects models that account for differing intra-study variance and modeling of random inter-study variation. The purpose of this work is to compare image-based and coordinate-based meta-analysis methods applied to the same dataset, a group of 15 fMRI studies of pain, and to quantify the information lost by working only with the coordinates of peak activations instead of the full statistic images. We apply a 3-level IBMA mixed model for a "mega-analysis", and highlight important considerations in the specification of each model and contrast. We compare the IBMA result to three CBMA methods: ALE (activation likelihood estimation), KDA (kernel density analysis) and MKDA (multi-level kernel density analysis), for various CBMA smoothing parameters. For the datasets considered, we find that ALE at sigma=15 mm, KDA at rho=25-30 mm and MKDA at rho=15 mm give the greatest similarity to the IBMA result, and that ALE was the most similar for this particular dataset, though only with a Dice similarity coefficient of 0.45 (Dice measure ranges from 0 to 1). Based on this poor similarity, and the greater modeling flexibility afforded by hierarchical mixed models, we suggest that IBMA is preferred over CBMA. To make IBMA analyses practical, however, the neuroimaging field needs to develop an effective mechanism for sharing image data, including whole-brain images of both effect estimates and their standard errors.
Article
Subjects were required to discriminate previously learned "standard" versions of angular shapes from randomly perturbed "distractor" versions that varied in similarity to the standard. Advance information concerning the identity and the orientation of the test form was provided. Subjects were instructed to prepare for the presentation of the test form by mentally rotating an internal representation of the designated standard form (identity cue) into the designated orientation. The time needed to prepare for the presentation of the test form increased linearly with the angular departure of the indicated orientation from a previously learned position. This finding suggests that, in accordance with instructions, subjects performed a mental rotation in preparing for the upcoming test shape. Rate of preparation was not affected by the complexity of the standard form presented as the identity cue. DIscriminative departure of the test form presented as the identity cue. Discriminative reaction time was not affected by either test-form complexity or angular departure of the test form from the learned orientation. In addition, striking individual differences in the pattern of discriminative reaction times were found. The implications of these results for (a) the nature of the processes and representations underlying the mental rotation task and (b) the nature of visual comparison processes are discussed.
Article
The time required to recognize that two perspective drawings portray objects of the same three-dimensional shape is found to be (i) a linearly increasing function of the angular difference in the portrayed orientations of the two objects and (ii) no shorter for differences corresponding simply to a rigid rotation of one of the two-dimensional drawings in its own picture plane than for differences corresponding to a rotation of the three-dimensional object in depth.
Article
When nuclear magnetic resonance images (MRIs) of the brain are acquired in rapid succession they exhibit small differences in signal intensity in positions corresponding to focal areas of activation. These signal changes result from small differences in the magnetic resonance signal caused by variations in the oxygenation state of the venous vasculature. Using this non-invasive functional MRI (fMRI) method, it is possible to localize functional brain activation, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though numerous technical challenges remain, fMRI is increasingly becoming a key method for understanding the topographical organization of the human brain.
Article
This chapter recounts efforts to dissect the cellular and circuit basis of a memory system in the primate cortex with the goal of extending the insights gained from the study of normal brain organization in animal models to an understanding of human cognition and related memory disorders. Primates and humans have developed an extraordinary capacity to process information "on line," a capacity that is widely considered to underlay comprehension, thinking, and so-called executive functions. Understanding the interactions between the major cellular constituents of cortical circuits-pyramidal and nonpyramidal cells-is considered a necessary step in unraveling the cellular mechanisms subserving working memory mechanisms and, ultimately, cognitive processes. Evidence from a variety of sources is accumulating to indicate that dopamine has a major role in regulating the excitability of the cortical circuitry upon which the working memory function of prefrontal cortex depends. Here, I describe several direct and indirect intercellular mechanisms for modulating working memory function in prefrontal cortex based on the localization of dopamine receptors on the distal dendrites and spines of pyramidal cells and on interneurons in the prefrontal cortex. Interactions between monoamines and a compromised cortical circuitry may hold the key to understanding the variety of memory disorders associated with aging and disease.
Article
Using functional magnetic resonance imaging (fMRI), we found an area in the fusiform gyrus in 12 of the 15 subjects tested that was significantly more active when the subjects viewed faces than when they viewed assorted common objects. This face activation was used to define a specific region of interest individually for each subject, within which several new tests of face specificity were run. In each of five subjects tested, the predefined candidate "face area" also responded significantly more strongly to passive viewing of (1) intact than scrambled two-tone faces, (2) full front-view face photos than front-view photos of houses, and (in a different set of five subjects) (3) three-quarter-view face photos (with hair concealed) than photos of human hands; it also responded more strongly during (4) a consecutive matching task performed on three-quarter-view faces versus hands. Our technique of running multiple tests applied to the same region defined functionally within individual subjects provides a solution to two common problems in functional imaging: (1) the requirement to correct for multiple statistical comparisons and (2) the inevitable ambiguity in the interpretation of any study in which only two or three conditions are compared. Our data allow us to reject alternative accounts of the function of the fusiform face area (area "FF") that appeal to visual attention, subordinate-level classification, or general processing of any animate or human forms, demonstrating that this region is selectively involved in the perception of faces.
Article
Target detection is the process of bringing a salient stimulus into conscious awareness. Target detection evokes a prominent event-related potential (ERP) component (P3) in the electroencephalogram (EEG). We combined the high spatial resolution of functional magnetic resonance imaging (fMRI) with the high temporal resolution of EEG to investigate the neural generators of the P3. Event-related brain activation (ERBA) and ERPs were computed by time-locked averaging of fMRI and EEG, respectively, recorded using the same paradigm in the same subjects. Target detection elicited significantly greater ERBAs bilaterally in the temporal-parietal cortex, thalamus and anterior cingulate. Spatio-temporal modelling of ERPs based on dipole locations derived from the ERBAs indicated that bilateral sources in the temporal-parietal cortex are the main generators of the P3. The findings provide convergent fMRI and EEG evidence for significant activation of the temporal-parietal cortex 285-610 ms after stimulus onset during target detection. The methods developed here provide a novel multimodal neuroimaging technique to investigate the spatio-temporal aspects of processes underlying brain function.
Article
The data reviewed here indicate that electrical stimulation of the dominant ventrolateral thalamus can produce deficits in language processing that are not seen after similar stimulation of the nondominant ventrolateral thalamus. The nature of the language deficit produced varies, depending upon the rostrocaudal location of the stimulation site. Stimulation of the anterior left ventrolateral thalamus in right-handed patients resulted in production of a repeated erroneous word, stimulation of the medial ventrolateral thalamus evoked perseveration, and stimulation of the posterior ventrolateral thalamus and anterior pulvinar resulted in misnaming and omissions. Additional studies have examined the effect of electrical thalamic stimulation on verbal and nonverbal short-term memory. Left (but not right) ventrolateral thalamic stimulation during verbal memory input greatly decreased subsequent recall errors, while stimulation during verbal memory retrieval increased recall errors. This finding contrasted with those obtained from studies on nonverbal memory, in which right ventrolateral stimulation during memory input decreased recall errors, while left thalamic stimulation at the same stage increased recall errors. Left pulvinar stimulation disrupted verbal memory processing, while right pulvinar stimulation disrupted nonverbal memory processing. Limited evidence suggests that the effects of thalamic electrical stimulation on verbal memory may persist for several days after the stimulation has ended. The lateralization of thalamic functions also affects the motoric aspects of speech production. Left (but not right) ventrolateral thalamic stimulation disrupted speech articulation and increased the expiratory phase of respiration. The fact that these motor effects were evoked from the same general area of the thalamus that produced the language deficits discussed above raises the possibility that the thalamus is involved in coordinating the cognitive and motoric aspects of language production. A model of thalamic function is discussed in which defined regions of the thalamus operate as a "specific alerting response," increasing the input to memory of category-specific material while simultaneously inhibiting retrieval from memory.
Article
Evidence is now converging which suggests that, at the area level, working-memory processes within the dorsolateral and ventrolateral frontal cortices are organised according to the type of processing required, rather than according to the nature (i.e. domain) of the information being processed, as has been widely assumed. In a recent study using functional magnetic-resonance imaging (fMRI), performance of visual spatial and visual non-spatial working-memory tasks was shown to involve identical regions of the lateral prefrontal cortex when all factors unrelated to the type of stimulus material were appropriately controlled. These results concur fully with recent reviews of the imaging literature, which demonstrate that spatial, visuospatial and verbal working-memory studies have produced distributed patterns of overlapping activation foci within these lateral frontal regions. Moreover, two recent positron-emission tomography studies have demonstrated that either, or both, the ventrolateral and dorsolateral frontal regions can be activated in spatial working-memory tasks, depending on the precise executive processes that are called upon by the task being performed. Similarly, when the executive requirements of a simple verbal working-memory task (e.g. forwards versus backwards digit span) are manipulated, differential activation within these two frontal cortical areas is observed. The results provide further evidence that the mid-dorsolateral and mid-ventrolateral frontal cortical areas make distinct "executive" contributions to memory and correspond with a fractionation of working-memory processes in psychological terms.
Article
Most functional imaging studies of memory retrieval investigate memory for standardized laboratory stimuli. However, naturally acquired autobiographical memories differ from memories of standardized stimuli in important ways. Neuroimaging studies of natural memories may reveal distinctive patterns of brain activation and may have particular value in assessing clinical disorders of memory. This study used functional magnetic resonance imaging to investigate brain activation during successful retrieval of autobiographical memories elicited by name-cued recall of family members and friends. The caudal part of the left posterior cingulate cortex was the most strongly activated region and was significantly activated in all eight subjects studied. Most subjects also showed significant activation of the left anterior orbitomedial, anterior middle frontal, precuneus, cuneus, and posterior inferior parietal cortices, and the right posterior cingulate and motor cortices.Our findings are consistent with prior studies showing posterior cingulate cortex activation during autobiographical memory retrieval. This region is also consistently activated during retrieval of standardized memory stimuli when experimental designs emphasizing successful retrieval are employed. Our results support the hypothesis that the posterior cingulate cortex plays an important role in successful memory retrieval. The posterior cingulate cortex has strong reciprocal connections with entorhinal and parahippocampal cortices. Studies of early Alzheimer's disease, temporal lobectomy, and hypoxic amnesia show that hypometabolism of the posterior cingulate cortex is an early and prominent indicator of pathology in these patients. Our findings suggest that autobiographical memory retrieval tasks could be used to probe the functional status of the posterior cingulate cortex in patients with early Alzheimer's disease or at risk for that condition.
Article
The lateral prefrontal cortex is critical for the control and organization of information in working memory. In certain situations, effective reorganization can attenuate task difficulty, suggesting a dissociation between lateral prefrontal activity and basic memory demand. In a verbal working memory task, we investigated the enhancement of performance that occurs when incoming information can be reorganized into higher-level groups or chunks. In the fMRI scanner, volunteers heard and repeated a sequence of digits. Mathematically structured sequences, encouraging 'chunking', were compared with unstructured, random sequences. Though structured sequences were easier to remember, fMRI showed increased lateral prefrontal activation for these sequences. Specifically, both the dorsolateral and ventrolateral prefrontal cortices were activated preferentially for the structured sequences during encoding. When visual stimuli that can be chunked using spatial structure are used, similar results are observed. These results demonstrate that cognitively less demanding tasks may elicit greater lateral prefrontal recruitment. Thus, the lateral prefrontal cortex appears to play a general role in strategically recoding information from memory, in order to optimize performance.
Article
Functional MRI was used to investigate the role of medial temporal lobe and inferior frontal lobe regions in autobiographical recall. Prior to scanning, participants generated cue words for 50 autobiographical memories and rated their phenomenological properties using our autobiographical memory questionnaire (AMQ). During scanning, the cue words were presented and participants pressed a button when they retrieved the associated memory. The autobiographical retrieval task was interleaved in an event-related design with a semantic retrieval task (category generation). Region-of-interest analyses showed greater activation of the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval relative to semantic retrieval. In addition, the left inferior frontal gyrus showed a more prolonged duration of activation in the semantic retrieval condition. A targeted correlational analysis revealed pronounced functional connectivity among the amygdala, hippocampus, and right inferior frontal gyrus during autobiographical retrieval but not during semantic retrieval. These results support theories of autobiographical memory that hypothesize co-activation of frontotemporal areas during recollection of episodes from the personal past.
Article
One of the most popular experimental paradigms for functional neuroimaging studies of working memory has been the n-back task, in which subjects are asked to monitor the identity or location of a series of verbal or nonverbal stimuli and to indicate when the currently presented stimulus is the same as the one presented n trials previously. We conducted a quantitative meta-analysis of 668 sets of activation coordinates in Talairach space reported in 24 primary studies of n-back task variants manipulating process (location vs. identity monitoring) and content (verbal or nonverbal) of working memory. We found the following cortical regions were activated robustly (voxelwise false discovery rate = 1%): lateral premotor cortex; dorsal cingulate and medial premotor cortex; dorsolateral and ventrolateral prefrontal cortex; frontal poles; and medial and lateral posterior parietal cortex. Subsidiary meta-analyses based on appropriate subsets of the primary data demonstrated broadly similar activation patterns for identity monitoring of verbal stimuli and both location and identity monitoring of nonverbal stimuli. There was also some evidence for distinct frontoparietal activation patterns in response to different task variants. The functional specializations of each of the major cortical components in the generic large-scale frontoparietal system are discussed. We conclude that quantitative meta-analysis can be a powerful tool for combining results of multiple primary studies reported in Talairach space. Here, it provides evidence both for broadly consistent activation of frontal and parietal cortical regions by various versions of the n-back working memory paradigm, and for process- and content-specific frontoparietal activation by working memory.
Article
Coordinate-based, voxel-wise meta-analysis is an exciting recent addition to the human functional brain mapping literature. In view of the critical importance of selection criteria for any valid meta-analysis, a taxonomy of experimental design should be an important tool for aiding in the design of rigorous meta-analyses. The coding scheme of experimental designs developed for and implemented within the BrainMap database provides a candidate taxonomy. In this study, the BrainMap experimental-design taxonomy is described and evaluated by comparing taxonomy fields to data-filtering choices made by subject-matter experts carrying out meta-analyses of the functional imaging literature. Fifteen publications reporting a total of 46 voxel-wise meta-analyses were included in this assessment. Collectively these 46 meta-analyses pooled data from 351 publications, selected for experimental similarity within each meta-analysis. Filter implementations within BrainMap were graded by ease-of-use (A-C) and by stage-of-use (1-3). Quality filters and content filters were tabulated separately. Quality filters required for data entry into BrainMap were classed as mandatory (five filters), being above the use grading system. All authors spontaneously adopted the five mandatory filters in constructing their meta-analysis, indicating excellent agreement on data quality among authors and between authors and the BrainMap development team. Two non-mandatory quality filters (group size and imaging modality) were applied by all authors; both were Stage 1, Grade A filters. Field-of-view filters were the least-accessible quality filters (Stage 3, Grade C); two field-of-view filters were applied by six and four authors, respectively. Authors made a total of 115 content-filter choices. Of these, 78 (68%) were Stage 1, Grade A filters; 16 (14%) were Stage 2, Grade A; and 21 (18%) were Stage 2, Grade C. No author-applied filter was absent from the taxonomy.
Article
Following the theoretical framework of coordinate and categorical principals for visuo-spatial processing, originally formulated by [Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: AQ computational approach. Psychological Review, 94, 148-175], we present data from an fMRI study on mental rotation, using the classic [Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703] task, comparing males and females. Subjects were presented with black-and-white drawings of 3-D shapes taken from the set of 3-D perspective drawings developed by [Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701-703], alternated with 2-D white bars as control stimuli. The drawings were presented pairwise, as black and white drawings against a black circular background. On half of the trials, the two 3-D shapes were congruent but portrayed with different orientation, in the other half the two shapes were incongruent. Analysis of response accuracy and reaction times did not reveal any significant differences between the sexes. However, clusters of significant neuronal activation were found in the superior parietal lobule (BA 7), more intensely over the right hemisphere, and bilaterally in the inferior frontal gyrus (BA 44/45). Males showed predominantly parietal activation, while the females, in addition, showed inferior frontal activation. We suggest that males may be biased towards a coordinate processing approach, and females biased towards a serial, categorical processing approach.
Article
Whether men activate different brain regions during various emotions compared to women or whether gender differences exist in transient emotional states has been the subject of only few studies. We used event-related functional magnetic resonance imaging (fMRI) to investigate gender differences during the perception of positive or negative emotions. The experiment comprised two emotional conditions (pleasant/unpleasant visual stimuli) during which fMRI data were acquired. Altogether, 38 healthy volunteers (19 males, 19 females) were investigated. When subtracting the activation values of men from those of women, suprathreshold positive signal changes were detected in the right posterior cingulate, the left putamen and the left cerebellum during positive mood induction, and in bilateral superior temporal gyri and cerebellar vermis during negative mood induction. The subtraction of activation values of women from those of men yielded no significant differences. Our findings suggest gender-related neural responses to emotional stimuli and could contribute to the understanding of mechanisms underlying gender-related vulnerability of the prevalence and severity of neuropsychiatric disorders.
Article
Autobiographical memory (AM) entails a complex set of operations, including episodic memory, self-reflection, emotion, visual imagery, attention, executive functions, and semantic processes. The heterogeneous nature of AM poses significant challenges in capturing its behavioral and neuroanatomical correlates. Investigators have recently turned their attention to the functional neuroanatomy of AM. We used the effect-location method of meta-analysis to analyze data from 24 functional imaging studies of AM. The results indicated a core neural network of left-lateralized regions, including the medial and ventrolateral prefrontal, medial and lateral temporal and retrosplenial/posterior cingulate cortices, the temporoparietal junction and the cerebellum. Secondary and tertiary regions, less frequently reported in imaging studies of AM, are also identified. We examined the neural correlates of putative component processes in AM, including, executive functions, self-reflection, episodic remembering and visuospatial processing. We also separately analyzed the effect of select variables on the AM network across individual studies, including memory age, qualitative factors (personal significance, level of detail and vividness), semantic and emotional content, and the effect of reference conditions. We found that memory age effects on medial temporal lobe structures may be modulated by qualitative aspects of memory. Studies using rest as a control task masked process-specific components of the AM neural network. Our findings support a neural distinction between episodic and semantic memory in AM. Finally, emotional events produced a shift in lateralization of the AM network with activation observed in emotion-centered regions and deactivation (or lack of activation) observed in regions associated with cognitive processes.
Article
Effective mental functioning requires that cognition be protected from emotional conflict due to interference by task-irrelevant emotionally salient stimuli. The neural mechanisms by which the brain detects and resolves emotional conflict are still largely unknown, however. Drawing on the classic Stroop conflict task, we developed a protocol that allowed us to dissociate the generation and monitoring of emotional conflict from its resolution. Using functional magnetic resonance imaging (fMRI), we find that activity in the amygdala and dorsomedial and dorsolateral prefrontal cortices reflects the amount of emotional conflict. By contrast, the resolution of emotional conflict is associated with activation of the rostral anterior cingulate cortex. Activation of the rostral cingulate is predicted by the amount of previous-trial conflict-related neural activity and is accompanied by a simultaneous and correlated reduction of amygdalar activity. These data suggest that emotional conflict is resolved through top-down inhibition of amygdalar activity by the rostral cingulate cortex.