ChapterPDF Available

Determination of nitric oxide by the chemiluminescence reaction with ozone

Authors:
... Nitric oxide (NO) was measured in the plasma (nmol/dL), urine (nmol/24 h), and renal cortex (nmol/mg protein) samples by chemiluminescence using the Nitric Oxide Analyzer (NOA™280, Sievers Instruments Inc., CO, USA), a highsensitivity detector for NO [16]. ...
Article
Full-text available
Previous studies in our laboratory have suggested that P2X7 could contribute to the progression of diabetic nephropathy and modulated klotho expression. The aim of this study was to investigate if P2X7 receptor is related to the expression of klotho in the onset of diabetic nephropathy in rats. Seven-week-old male Wistar rats weighing 210 g were all uninephrectomized; two-third of the animals were induced to diabetes with 60 mg/kg streptozotocin i.v., and one-third received its vehicle (control rats). At 4th day of the fifth week of the protocol, half of the diabetic rats received a small interfering RNA targeting for P2X7 mRNA, and the other half received its vehicle. Euthanasia was made at the eighth week. Diabetic animals reproduced all classic symptoms of the disease; besides, they showed reduced renal function and low NO bioavailability; also, SOD1, SOD2, and catalase were increased, probably due to the oxidative stress which was elevated in this situation. Metabolic data of diabetic rats did not change by silencing P2X7 receptor. For the other hand, silencing P2X7 was able to contribute to balance oxidative and nitrosative profile, ultimately improving the renal function and increasing plasma and membrane forms of klotho. These findings suggest that the management of P2X7 receptor can benefit the kidneys with diabetic nephropathy. Further studies are needed to show the therapeutic potential of this receptor inhibition to provide a better quality of life for the diabetic patient.
... Some of these methods rely on the reaction of NO • with ozone (see section above on ozone-based chemiluminescence detection of nitric oxide and related species), and therefore require that NO2 • be reduced to NO • using particular catalytic converters. The latter are usually nonspecific due to reduction of other nitrogen-containing compounds (106,107). Nitrogen dioxide can also be converted to NO • photolytically using UV-LED irradiation (108). Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) in alkaline solution reacts with NO2 ...
Article
Full-text available
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this review, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO) and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols and 3-nitrotyrosine. Moreover, we highlight state-of-the art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
... These samples and the plasma and urine were then deproteinized with 95% ethanol (3:1) and centrifuged at 4, 000 × g for 5 min. The supernatant was subjected to analysis for NO content by using the NO/O zone technique described previously [31] with the Sievers analyzer (Sievers 280 NOA, Sievers, Boulder, CO). Protein levels in renal tissue were determined by the Bradford method [32]. ...
Article
Full-text available
Background/aims: Physical training has beneficial effects on endothelial function and can influence the regeneration of the endothelial cell. We investigated the effect of physical training on cisplatin (CP)-induced acute kidney injury and assessed the impact of training on endothelial structure and function, and on the inflammatory processes in rats. Methods: We injected male Wistar rats subjected to previous physical training in treadmill running (trained, TR) or not (sedentary, SED) with CP (5 mg/kg) (TR+CP and SED+CP groups, respectively). Five days after the injections, blood and urine samples were collected to evaluate renal function and kidneys were harvested for morphological, immunohistochemical, enzyme-linked immunosorbent assay, and analysis of nitric oxide (NO) levels. Results: Rats treated with CP showed increased levels of plasma creatinine and sodium and potassium fractional excretion. These alterations were associated with increase in tubulointerstitial lesions and macrophage number, reduction of endothelial cells, and increased VEGF, vimentin, and α-smooth muscle actin expression in the outer renal medulla in the SED+CP group. We also found increased levels of renal IL-1β and increased excretion of monocyte chemoattractant protein-1 and transforming growth factor-β compared with controls. These changes were milder in trained rats, associated with increased levels of renal tissue NO, and increased expression of p-eNOS and stromal cell-derived factor-1α (a chemokine involved in kidney repair) in the kidneys of CP-injected trained rats. Conclusions: The protective effect of previous training in CP-treated rats was associated with reduced endothelial cell lesions and increased renal production of NO in trained rats.
... For calibration, the area under the curve was converted to micromolar concentrations of NO using a sodium nitrite standard curve as reference. Levels of NO detected in the reaction medium were corrected for background by subtracting the amount of NO present in DMEM supplemented with 0.25% FBS [32]. Experiments were performed in triplicate. ...
Article
Full-text available
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.
... We used the chemiluminescence method to measure serum NOx concentration as previously described [45][46][47][48]. The nitric oxide analyzer (Sievers model 280) from GE Analytical Instruments (Boulder, CO) was used. ...
Article
Full-text available
Nitric oxide (NO) is an important molecule for vasomotor tone, and elevated NO signaling was previously hypothesized as a unique and adaptive physiological change in highland Tibetans. However, there has been lack of NO data from Tibetans living at low altitude and lowlander immigrants living at high altitude, which is crucial to test this hypothesis. Here, through cross-altitude (1990–5018 m) and cross-population (Tibetans and Han Chinese) analyses of serum NO metabolites (NOx) of 2086 individuals, we demonstrate that although Tibetans have a higher serum NOx level compared to lowlanders, Han Chinese immigrants living at high altitude show an even higher level than Tibetans. Consequently, our data contradict the previous proposal of increased NO signaling as the unique adaptive strategy in Tibetans. Instead, Tibetans have a relatively lower circulating NOx level at high altitude. This observation is further supported by data from the hypoxic experiments using human umbilical vein endothelial cells and gene knockout mice. No difference is detected between Tibetans and Han Chinese for endothelial nitric oxide synthase (eNOS), the key enzyme for circulating NO synthesis, suggesting that eNOS itself is unlikely to be the cause. We show that other NO synthesis-related genes (e.g. GCH1) carry Tibetan-enriched mutations significantly associated with the level of circulating NOx in Tibetans. Furthermore, gene network analysis revealed that the downregulation and upregulation of NOx is possibly achieved through distinct pathways. Collectively, our findings provide novel insights into the physiological and genetic mechanisms of the evolutionary adaptation of Tibetans to high-altitude hypoxia.
... The emission of a photon from electrically excited nitrogen dioxide is in the red and near-infrared region of the spectrum, and it is detected by a thermoelectrically cooled redsensitive photomultiplier tube. The sensitivity for the measurement of NO and its reaction products in liquid samples is~1 picomole [29]. ...
Article
Full-text available
Diabetes mellitus is characterized by increased levels of reactive oxygen species (ROS), leading to high levels of adenosine triphosphate (ATP) and the activation of purinergic receptors (P2X7), which results in cell death. Klotho was recently described as a modulator of oxidative stress and as having anti-apoptotic properties, among others. However, the roles of P2X7 and klotho in the progression of diabetic nephropathy are still unclear. In this context, the aim of the present study was to characterize P2X7 and klotho in several stages of diabetes in rats. Diabetes was induced in Wistar rats by streptozotocin, while the control group rats received the drug vehicle. From the 1st to 8th weeks after the diabetes induction, the animals were placed in metabolic cages on the 1st day of each week for 24 h to analyze metabolic parameters and for the urine collection. Then, blood samples and the kidneys were collected for biochemical analysis, including Western blotting and qPCR for P2X7 and klotho. Diabetic rats presented a progressive loss of renal function, with reduced nitric oxide and increased lipid peroxidation. The P2X7 and klotho expressions were similar up to the 4th week; then, P2X7 expression increased in diabetes mellitus (DM), but klotho expression presented an opposite behavior, until the 8th week. Our data show an inverse correlation between P2X7 and klotho expressions through the development of DM, which suggests that the management of these molecules could be useful for controlling the progression of this disease and diabetic nephropathy.
... The results were analysed by software, and the concentration of each sample was normalized to their respective protein concentrations. 31 ...
Article
Full-text available
Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro . Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19–20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro . Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro . These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.
Article
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quarternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in developing design new drugs and therapies.
Article
Full-text available
Ingested inorganic nitrate (NO3⁻) has multiple effects in the human body including vasodilation, inhibition of platelet aggregation, and improved skeletal muscle function. The functional effects of oral NO3⁻ involve the in vivo reduction of NO3⁻ to nitrite (NO2⁻) and thence to nitric oxide (NO). However, the potential involvement of S-nitrosothiol (RSNO) formation is unclear. We hypothesised that the RSNO concentration ([RSNO]) in red blood cells (RBCs) and plasma is increased by NO3⁻-rich beetroot juice ingestion. In healthy human volunteers, we tested the effect of dietary supplementation with NO3⁻-rich beetroot juice (BR) or NO3⁻-depleted beetroot juice (placebo; PL) on [RSNO], [NO3⁻] and [NO2⁻] in RBCs, whole blood and plasma, as measured by ozone-based chemiluminescence. The median basal [RSNO] in plasma samples (n = 22) was 10 (5-13) nM (interquartile range in brackets). In comparison, the median values for basal [RSNO] in the corresponding RBC preparations (n = 19) and whole blood samples (n = 19) were higher (p < 0.001) than in plasma, being 40 (30-60) nM and 35 (25-80) nM, respectively. The median RBC [RSNO] in a separate cohort of healthy subjects (n = 5) was increased to 110 (93-125) nM after ingesting BR (12.8 mmol NO3⁻) compared to a corresponding baseline value of 25 (21-31) nM (Mann-Whitney test, p < 0.01). The median plasma [RSNO] in another cohort of healthy subjects (n = 14) was increased almost ten-fold to 104 (58-151) nM after BR supplementation (7 × 6.4 mmol of NO3⁻ over two days, p < 0.01) compared to PL. In conclusion, RBC and plasma [RSNO] are increased by BR ingestion. In addition to NO2⁻, RSNO may be involved in dietary NO3⁻ metabolism/actions.
Article
Introduction: Acute kidney injury is a serious public health problem, especially in intensive care units, where patients may require dialysis support, resulting in 50% mortality. Aim: To evaluate the effects of moderate aerobic exercise on the recovery phase of acute kidney injury induced by gentamicin in rats. Main methods: Male adult Wistar rats were allocated into 4 groups: W10+R30, G10+R30, W10+EX30 and G10+EX30; W10 received water (gentamicin vehicle) and G10 received gentamicin for 10days; R30 remained resting and EX30 made exercise for 30days after gentamicin suspension. Training was performed on treadmill. Blood, 24h urine and kidneys were collected for renal function and oxidative stress, antioxidant, TGF-β and histological analysis. Key findings: Gentamicin treatment caused decreased renal function significant oxidative stress, reduced urinary nitric oxide and increased TGF-β. G10+R30 presented partial recovery of metabolic data, renal function and lipoperoxidation levels, although they were still altered compared to W10+R30. Besides, we observed the presence of lymphomononuclear infiltrate in the kidneys of G10+R30. G10+EX30 vs G10+R30 showed additional improvement of all the mentioned parameters, showing at histology, regeneration of the tubule epithelium. Significance: Our data suggest that moderate exercises could help in the recovery of metabolic parameters, renal function and structure on gentamicin-induced AKI, perhaps due to restoration of redox balance. This could protect the kidneys from further insults like challenges with nephrotoxic drugs or the aging per se.
ResearchGate has not been able to resolve any references for this publication.