Available via license: CC BY 4.0
Content may be subject to copyright.
Ecology and Evoluon 2017; 1–13
|
1
www.ecolevol.org
Received:2July2016
|
Revised:22November2016
|
Accepted:18December2016
DOI:10.1002/ece3.2734
ORIGINAL RESEARCH
Water, land, re, and forest: Mul- scale determinants of
rainforests in the Australian monsoon tropics
Stefania Ondei1 | Lynda D. Prior1 | Grant J. Williamson1 | Tom Vigilante2,3 |
David M. J. S. Bowman1
ThisisanopenaccessarcleunderthetermsoftheCreaveCommonsAribuonLicense,whichpermitsuse,distribuonandreproduconinanymedium,
providedtheoriginalworkisproperlycited.
©2017TheAuthors.Ecology and EvoluonpublishedbyJohnWiley&SonsLtd.
1SchoolofBiologicalSciences,Universityof
Tasmania,SandyBay,Tas.,Australia
2WunambalGaamberaAboriginalCorporaon,
Kalumburu,WA,Australia
3BushHeritageAustralia,Melbourne,Vic.,
Australia
Correspondence
StefaniaOndei,SchoolofBiologicalSciences,
UniversityofTasmania,SandyBay,Tas.,
Australia.
Email:stefania.ondei@utas.edu.au
Funding informaon
WunambalGaamberaAboriginalCorporaon;
BushHeritageAustralia.
Abstract
Thesmallrainforestfragmentsfoundinsavannalandscapesarepowerful,yetoen
overlooked,model systems to understand the controls of these contrasng ecosys-
tems.Weanalyzed the relaveeectofclimac variables on rainforestdensityata
subconnentallevel, and employedhigh-resoluon,regional-level analyses toassess
theimportanceoflandscapesengsandreacvityindeterminingrainforestdensity
inafrequentlyburntAustraliansavannalandscape.Esmatesofrainforestdensity(ha/
km2)acrossthe Northern Territory and Western Australia, derived from preexisng
maps,wereusedtocalculatethecorrelaonsbetweenrainforestdensityandclimac
variables. A detailed map of the northern Kimberley (Western Australia) rainforests
wasgeneratedandanalyzedtodeterminetheimportanceofgeologyandtopography
incontrollingrainforests,andtocontrastrainforestdensityonfrequentlyburntmain-
landandnearbyislands.InthenorthwesternAustralian,tropicsrainforestdensitywas
posivelycorrelated with rainfallandmoisture index, andnegavelycorrelated with
potenal evapotranspiraon. At a regional scale, rainforests showed preference for
complex topographic posions and more ferle geology. Compared with mainland
areas,islandshadsignicantlylowerreacvity,withnodierencesbetweenterrain
types.Theyalsodisplayedsubstanallyhigherrainforestdensity,evenonlevelterrain
wheregeomorphologicalprocessesdonotconcentratenutrientsorwater.Ourmul-
scaleapproachcorroborates previous studies that suggest moist climate, infrequent
res,and geologyareimportant stabilizing factorsthatallow rainforestfragmentsto
persistinsavannalandscapes.Thesefactorsneedtobeincorporatedinmodelstopre-
dictthefutureextentofsavannasandrainforestsunderclimatechange.
KEYWORDS
Australianmonsoontropics,re,geologicsubstrates,rainfallgradients,rainforests,topographic
reprotecon
1 | INTRODUCTION
The global extent of closed canopy tropical rainforests and savan-
nas is determined by climate, especially mean annual precipitaon
(Lehmannetal.,2014;Murphy&Bowman,2012).However,ataround
1,000–2,000mm/yearrainforestandsavannaformvegetaonmosa-
ics (Hirota, Holmgren,van Nes, & Scheer,2011; Staver,Archibald,
&Levin,2011a,2011b).Tropicalsavannasarecharacterizedbya low
2
|
ONDEI Et al.
treecoverandahighbiomassofC4grasses,whichsupportsfrequent
resinthedryseason(Bond,Woodward,&Midgley,2005;Homann,
Jaconis,etal.,2012). Bycontrast,tropicalrainforestshaveaspecies-
rich tree ora that formdense canopies, lile grass, and infrequent
reacvity.
Themechanismsthatcontrolpaerningofrainforestandsavanna
mosaicsaredisputed,withdebatepolarizedbetweentheimportance
of reand soils. One view is that edaphic factors like soil nutrients
arethe maincontrolofrainforest–savannamosaics,and reisnot a
cause but rathera consequence of vegetaon paerns (Lloydetal.,
2008;Veenendaaletal.,2015).Althoughsavannasoilsmayhavesu-
cientnutrientstockstosupportrainforesttrees(Bond,2010;Vourlis
etal.,2015),rainforestsaregenerallyfoundonmorenutrient-richsoils
comparedwithsavannas(Dantas,Batalha,&Pausas,2013;Silvaetal.,
2013).Inferlesavannasoilsareknowntolimitexpansionofrainfor-
est(Silvaetal.,2013),whiledeeperandmoreferlesubstratesallow
rainforesttogrowindrierclimates(knownas“edaphiccompensaon”;
Ash,1988;Webb,1968). However,itisnot clearwhetherthesepat-
ternsresultfromadirectedaphiceectorfromlocalfeedbacks.Soils
underneathrainforestsareoenmorerichinnutrients,comparedwith
savannas, regardless ofthe inherent ferlity of soil parent material
(Dantasetal.,2013;Silvaetal.,2013),becauseofnutrientacquision
andcycling(Silvaetal.,2008).Treecanopycoverandcanopyproduc-
vityincreasesoilnutrient content(Paiva,Silva,&Haridasan,2015),
parcularly N concentraon and availability (Schmidt & Stewart,
2003). Consequently, there are substanal praccal dicules in
makingecologicallymeaningful measurementsofsoils ferlityvaria-
on,parcularlyacross rainforestecotones,whereforestboundaries
waxandwane(Silvaetal.,2013;Warman,Bradford,&Moles,2013).
Thealternaveviewisthatrainforestandsavannaare“bi-stable”in
regionswithintermediateproducvity,andtherealizaonofvegetaon
depends on landscape re history (Bond etal., 2005; Dantas, Hirota,
Oliveira, & Pausas, 2016; Homann, Geiger, etal., 2012; Murphy &
Bowman,2012;Staveretal.,2011a;Warman&Moles,2009).Thisview
isbasedonalternavestablestate(ASS)theorywherebystabilizingfeed-
backsholdrainforestorsavannainspecic“basinsofaracon”(Hirota
etal.,2011).Resolvingthe roleofedaphicfactors incontrollingrainfor-
est boundaries directly orindirectly via feedbacks is complex and de-
mandsmulplelinesofevidence,includingdirectmeasurementsofsoils,
modeling,andexperiments(Bowman,Perry,&Marston,2015).Analysis
ofremotesensingesmates ofcanopycoverata globalscalehasbeen
presentedasevidenceforthebimodaldistribuonofrainforestsandsa-
vannas(Staveretal.,2011b).Ithasbeenarguedthattheintensityofthe
bimodalitymaybeastascalarfactassociatedwiththeuseofregres-
siontree(CART)analyses,whichimpose disconnuiesinsatellitetree
cover esmates (Hanan,Tredennick, Prihodko, Bucini, & Dohn, 2014,
2015;Staver&Hansen,2015),althoughglobal canopyheightanalyses,
based on products derived fromLiDAR measurements, conrmed the
bimodalitydetectedthroughsatellitedata(Xuetal.,2016).
Regional-levelanalyses based on remote sensing have been em-
ployedinstudiesinvesgangtheenvironmentalcontrolsofdierent
types of vegetaon(Dahlin, Asner, & Field, 2014; Fensham,Fairfax,
& Archer, 2005; Murphy etal., 2010). However, there has been
surprisinglylimitedanalysisofrainforest–savannamosaicsataregional
level.In an important pioneering study,Ash (1988) synthesized data
fromtopographicmaps,aerialphotography,andelddatatocreatea
modelof the environmentalcontrolsofrainforestsandsavanna veg-
etaoninthe wet tropicsofNorth Queensland (Australia),to assess
therelaonshipbetweenrainforestlocaon andenvironmental char-
acteriscs. Ash (1988) concluded that the distribuon of rainforest
boundariescanbeempiricallypredictedbasedonwateravailabilityand
topography,and substrate ferlitymight allow rainforeststoexpand
intootherwiseunfavorableenvironments.Thisresearchwassupported
byFensham(1995),whoemployedaerialphotographyandsatelliteim-
agerytoinvesgatetherelaonbetweendryrainforestand environ-
mentalvariablesin NorthQueensland.Tothebest ofourknowledge,
thereareno other map-based analyses of rainforest–savannamosa-
ics at a regionalscale anywhere else in the tropics. These rainforest
patchesare known tobebiodiverse and importantfor abroadcross
seconoffauna(Price,2006;Tun,White,&Mackanga-Missandzou,
1997),yettheyhavebeenpoorlyresearchedcomparedwiththemore
extensivewetrainforests(Sánchez-Azofeifaetal.,2005).
NorthwesternAustralia is an aracvemodelsystembecause it
spansa widerainfall gradientat thedriestextreme oftheAustralian
tropicalrainforestestate(Bowman,2000).TheglobalanalysisofStaver
etal.(2011b)suggeststheregionisdeterminiscallysavanna;yet,ny
patches of rainforestexist, embedded in the savanna matrix. These
environmentsrainforestsaremoreexposedtoreduetotheirhigher
boundary/corerao;nonetheless,insomelocaonsrainforestexpan-
sionhasoccurred(Banfai&Bowman,2006;Bowman,Walsh,&Milne,
2001;Clayton-Greene&Beard,1985).StudiesfromnorthernAustralia
andelsewhere inthe tropicshaveidenedtheimportance ofland-
scapesengindeterminingrainforestdistribuoninareassubjectto
highreacvity.Forexample,rainforestscan bemoreabundant on
islandsthat havelowerreacvitythanadjacentmainlandsavannas
(Clayton-Greene&Beard,1985).Rainforestscan alsobe connedto
steepgullies orvalleys(Bowman,2000;Ibanezetal., 2013;Warman
&Moles, 2009)because ofthe reprotecon theyprovide(Murphy
&Bowman,2012),althoughaddionaleectsofhighernutrientand
wateravailabilitycouldalsobeimportant(Ash,1988).
Weemployedamacroecologicalapproachtodeterminetheeect
ofclimacandgeomorphologicalfactors(topographyandgeology)on
rainforestabundance ata large spaalscale.Geology wasused as a
proxyforthenutrientstockprovidedbytheparentmaterial,toexclude
theeectofvegetaononsoilferlity.Toassessthecorrelaonsbe-
tweenclimate and rainforestdistribuon in the enrenorthwestern
Australian monsoon tropics, we analyzed exisng subconnental-
scale vegetaonmaps. We then assessed the importance of topog-
raphyandgeologyataregionalscale,as theeectsofthese factors
onrainforestdistribuon aredetectable atthis scale,comparedwith
climate(Murphy&Bowman,2012).Todoso,wegeneratedadetailed
map of rainforests in the northern Kimberley (Western Australia),
whichis characterizedbyalimited rainfallrange(200mm/year),and
avarietyofgeologiesandtopographicsengs.Withinthisregion,we
undertookalocal-scale“naturalexperiment”comparingtheinuence
oftopographyandreacvityonrainforestdensityonmainland and
|
3
ONDEI Et al.
adjacent islandswith similar rainfall, geology, and distance fromthe
coastline.Weaddressedthefollowinghypotheses:
• Atasubconnentalscale,factorsassociatedwithwateravailability
arethemainclimacdriversdeterminingrainforestdensity;
• At a regional scale, topography and geology aect rainforest
distribuon;
• At a local scale, the importance of insularity and topography is
directlyrelated to re acvity. In locaons with high reacvity
(mainland),rainforestsarepredominantlyconnedtore-sheltered
sengs,whereasin areaswithlowerreacvity(islands), rainfor-
estswillalsobeabletogrowinmoreexposedsengs.
Collecvelythisstudyinvesgatesthedriversofrainforestdistribu-
onacrossmulple spaal scalesinnorthernAustralia, therebyillumi-
nang the capacity forclimate change and re management to aect
rainforestcoverageand providing insightsforboth theorecalecology
andappliedlandmanagement.
2 | METHODS
2.1 | Geographic context
The Australian monsoon tropics are characterized by a pronounced
wet and dry seasons associated with the Australian summer mon-
soon(Bowman etal.,2010).This regionincludesthe wholeofnorth-
ernAustraliaexcepttheAustralianwet tropics in North Queensland
(Bowman, 2000; Figure1a-c). In contrast to the wet tropics, where
tropicalrainforestsdominate,themonsoontropicssupportvasteuca-
lyptsavannas(Bowman,2000;Figure2a,c).Embeddedinthesesavan-
nasareverysmallpatchesofmonsoontropicalrainforest,rangingfrom
afewtreesto100hainarea(McKenzie,Belbin,Keighery,&Kenneally,
1991). These rainforests have orisc and biogeographic anies
with wet tropical rainforests in both Asia and Australia. They have
been intensively studied given their unusual biogeography and ecol-
ogy,parcularlytheirabilitytopersistinahighlyammabletropical
savannaenvironment(Bowman,2000).Somerainforestsareknownto
growonaquifers(Kenneally,Keighery,&Hyland,1991;Russell-Smith,
1991),whichinsulatethepatchesfromregionalclimate,butourmap-
pingcouldnotdierenatethesetypesfromthemorewidespreadand
drought-adaptedrainforests(Bowman,Wilson,& McDonough,1991;
Russell-Smith, 1991). The locus of the subconnental study was the
Australian monsoon tropics west of the Carpentarian Gap biogeo-
graphicdivide,whichseparatesthebiotaoftheNorthernTerritoryand
Western Australia from Cape York Peninsula (Bowman etal., 2010).
Annual rainfall in this area varies from approximately 1,900mm in
thenortheast to700mmin thesouthwest (Figure1c), thatwould be
expectedto exert astronginuence on theabundanceof rainforest.
Thisanalysiswasmadepossiblebycombiningvegetaonmapspro-
ducedbytheNorthernTerritory andWesternAustraliangovernment
landmanagementagencies, nong that the border betweenthetwo
statesbroadlyalignwiththeOrdAridIntrusion,amajorbiogeographic
boundarythatseparatesthebiotaoftheKimberleyregionofWestern
Australiafromthatofthe“TopEnd”oftheNorthernTerritory(Figure1;
Bowmanetal.,2010;Eldridge,Poer,&Cooper,2011),andthatlikely
aectsrainforestspeciesdiversity.Inaddiontothiscoarse-scalesub-
connentalstudy, weundertook amore detailedanalysisoftherain-
foreststothe west of the Ord AridIntrusion.This region, located at
theextremeendoftheprecipitaongradient whererainforestoccurs
innorthernAustralia,haslimitedspaal variability in rainfall (1,200–
1,400mm),whichallowedustoidenfyecologicalfactors,otherthan
precipitaon, that shape rainforest distribuon. This was based on
ne-scalemappingofthetradionallandsoftheWunambalGaambera
people,henceforthcalledtheWunambalGaamberaCountry.
FIGURE1 Themonsoonrainforest
domaininnorthwesternAustralia.
(a)Thegrayarearepresentsthemonsoon
rainforestdomaininthenorthofWestern
Australia(WA;Kimberetal.,1991)and
theNorthernTerritory(NT).TheOrdArid
Intrusion,themainbiogeographicbarrier
betweenthetwostates,isindicated.
Dashedlinesindicaterainfallisohyets(mm).
Theinsetsshow(b)thestudyareawithin
Australiaand(c)elevation(minimum,0m,
white;maximum,960m,black)
4
|
ONDEI Et al.
TheWunambalGaambera Countryoccupies anarea of9,144km2,
dominatedbybiodiversetropicalsavannasoccurringon deeplyweath-
ered sandstones and basalc base rocks of Precambrian age, oen
cappedbyCainozoiclaterites.Inthisregion,averageannualrainfalloc-
cursalmost enrelyduring thesummerwetseason(November–April),
whiletherestoftheyearisalmostrain-free(Beard,1976).Thelandscapes
areshapedbygeology;thedominantsubstratesareinferlesandstone,
where the Holocenesea-levelrise has created rugged coastlines, and
themoderatelyferlebasaltcountry,characterizedbygentleslopesand
hills(Beard,1979;Specketal.,2010;Figure2b).Thevegetaonispre-
dominantlyeucalypt savanna.Eucalyptus tetrodonta–Eucalyptus miniata
savannasarefoundonthelateritemesasandhills,whileEucalyptus tec-
ca–Eucalyptus grandifoliasavannasarecommonondeeper,claysoils
onplains.Smallpatchesofsemi-deciduous rainforestsareinterspersed
inthesavanna(Figure2c,e),typicallylocatedinre-protectedlocaons
(Vigilante,Bowman,Fisher,Russel-Smith,&Yates,2004).
Fireregimes in the northern Kimberleyare stronglyshapedbyan-
thropogenicignions and have been forover 40,000years(O’Connor,
1995).This ancient tradion ofAboriginal remanagementis likely to
havemaintainedbiodiverseopensavannahabitatsand protectedsmall
isolatedrainforest fragments(Mangglamarra,Burbidge, & Fuller,1991;
Trauernicht, Brook, Murphy, Williamson, & Bowman, 2015; Vigilante,
Murphy,&Bowman,2009).ThecessaonofAboriginalremanagement
in many northern Australian environments has been associated with
degradaonof somerainforestsand otherre-sensive plant commu-
nies(Russell-Smith&Bowman,1992;Trauernicht,Murphy,Portner,&
Bowman,2012),althoughinrarelyburntareastherecanbeexpansionof
rainforest(Bowman&Fensham,1991;Clayton-Greene&Beard,1985).
2.2 | Rainforest mapping and analyses
2.2.1 | Subconnental scale—climac drivers of
rainforest density
The distribuon and areal extent of the rainforests in the north-
western Australian monsoon tropics was determined by blending
exisng vegetaon maps. Total coverage of rainforest in Western
Australiaand Northern Territorywas calculated fora lace ofgrid
FIGURE2 (a)ExtentofthemappedareainthenorthernKimberley;(b)themaingeologytypesinthearea,and(d)rainforestdensity,
expressedashaperkm2ofland.Inthisarea,rainforeststypicallyoccuras(c)smallpatches(green)surroundedbysavanna(brown),with(e)sharp
boundariesbetweenthetwovegetationtypes
(a)
(d)
(b) (c)
(e)
|
5
ONDEI Et al.
cells 50×50km in area. The Western Australia map (1:200,000)
wasderivedfromKimber,Forster,andBehn(1991),whousedsemi-
automatedclassicaonofLandsat imagery taken in 1986 and did
not dierenate oriscs or structure variaon among rainforests.
The Northern Territory vegetaon data (1:80,000), based on in-
terpretaon of aerial photography classied according to Russell-
Smith (1991), were supplied by the Department of Land Resource
Management,© NorthernTerritoryof Australia.In calculangrain-
forest coverage in the Northern Territory lace cells, we selected
bothdryandwetrainforest typesbecausetheyarestructurally and
oriscally similar to the Western Australian rainforests (Bowman,
1992;Kenneallyetal.,1991).Wecombined the Western Australia
and Northern Territory data to create a map of the northwestern
rainforestdomain,extendingfrom11.00°Sto18.00°Sinlatudeand
from122.14°Eto 138.00°E in longitude (Figure1).Thisresulted in
192and63gridcellsintheNorthernTerritoryandWesternAustralia,
respecvely. For each grid cell, mean annual rainfall, precipitaon
seasonality(coecientofvariaonofmonthlyrainfallexpressedasa
percentage),potenalevapotranspiraon, moistureindex(meanan-
nual precipitaon over potenal evapotranspiraon; Thornthwaite,
1948),andannualmeantemperaturewerecalculated forthecenter
pointofeachcell.Rainfall,precipitaonseasonality,andtemperature
datawereobtained from WorldClim Global ClimateData(Hijmans,
Cameron,Parra, Jones,& Jarvis,2005),and moistureindex andpo-
tenalevapotranspiraonweredownloadedfromtheGlobalAridity
and PET database (Zomer, Trabucco, Bossio, & Verchot, 2008).
Minimum, maximum, and median values of the climac variables
werecalculated separately for theWesternAustralia and Northern
Territorygridcells.
2.2.2 | Regional scale—regional drivers of
rainforest density
We generated a map of the rainforests in the northern Kimberley,
covering the enre Wunambal Gaambera Country and expanding
theanalysis totheadjacent coastalareas (totalsurface12,572km2),
asfollows. Orthophotos (scale 1:8,000)takenduring the dryseason
(May–August)oftheyears2005–2007wereusedcreateamapofthe
rainforestpatcheslocatedinthestudyarea.Alaceof30×30mcells
wasoverlaidontheorthophotos,andeverycell wasmanuallyclassi-
edas“rainforest,”“savanna,”or“other.”Thevegetaontypeofeach
cellwas considered tobethe one occupyingthehighest proporon
ofthecell.Amapoftherainforestpatcheswasproducedbymerging
theconguouscellsclassiedas“rainforest”(Figure2d).Ahelicopter
surveywasconductedtovalidatethemap.Theight path,designed
toincludelocaonswithbothhighandlowrainforestcover,included
coastalandinlandareasaswellasislands.Itcoveredthemaingeologic
substrates,inparcularbasalt,sandstone,andlaterite.Weewalong
theselectedpathatanaverageheightof300mabovethegroundfor
atotallengthof550kmon22September2013.Waypoints,collected
every10s,were visually idened as “rainforest”or“savanna.” The
pointswerethen buered 30m and intersected with the rainforest
map. A confusion matrix was generated to calculate map accuracy,
omissionandcommission errors,andkappacoecientof agreement
(Congalton,1991).
Patch size, distance from the coastline, and distance from the
nearestdrainagelinewerecalculatedforeveryrainforestpolygonon
theregionalscalemap.Rainforestdensitywascalculatedashaofrain-
forestperkm2ofland,basedonagridof1×1kmsizecellsforcom-
putaonalreasons. Foreach cell,wealso calculated:(1)the geology
category,based on the predominant geology type in each 1×1km
cell;and(2)thetopographiccategory,basedonthepredominanttopo-
graphic posion index (TPI;Jenness, 2006) in the cell. The TPI was
calculatedforeverypixelinthemappedareafroma30-mresoluon
digital elevaon model (DEM), based on the dierencein elevaon
betweeneachpixelandtheaverageelevaonof theeight neighbor-
ingpixels;valueslowerthan −1wereclassiedas “valley,”andvalues
higherthan+1as“ridge.”Intermediatevalueswereclassiedas “at”
or“slope”dependingon theslopeofthepixel(≤4° foratareas,>4°
forslopes),obtainedfromthe30-mDEM.(3)Eachgridcellwasfurther
classiedashaving “complex”or“level” terrain,nong that complex
terrainisoenassociatedwithrockiness.Cellsinwhichthecategories
“valley”+“ridge”+“slope”occupiedmore than50%ofthecellwere
classied as “complex,” the others as “level,” The average rainforest
densityin thenorthern Kimberleywasthencalculated foreach geo-
logicsubstrateandTPIbasedontherainforestdensitygrid.
2.2.3 | Local- scale natural experiment–Mainland
versus Islands
Weexpected there wouldbe dierences inre acvity andrainfor-
estdistribuon between islandsandmainland, because islandshave
been subject to fewer human ignions due to infrequent visitaon
inrecentmes(Vigilante etal.,2013)andtheseaprovidesanatural
rebreakfromsurroundinglandscaperes.Totestthis,wecompared
rainforestdensitygridcellsonislandsandthemainland.Weselected
areasthatweregeographically,oriscally,andecologicallysimilarby
extracngfromthe“regionalscaledataset”onlygridcellswiththefol-
lowingaributes:meanannualrainfallbetween1,250and1,382mm/
year,distancefromthe coastline <5km (equivalent to the radiusof
the biggest island hence the maximum distance from the coastline
onislands),andgeologydevelopedonbasalt,laterite,orcoastalsedi-
ments. Islands and coastal areas of the northern Kimberley are o-
riscally similar, with only a very small group of taxa recoded only
fromislands(Lyons,Keighery,Gibson,&Handasyde,2014).Gridcells
locatedon the BougainvillePeninsula were includedinthe category
“islands,”dueitsnarrowneckwhichmakesitfunconallyequivalent
toanislandintermsofisolaonfromthemainland.
Fireacvitywascalculatedfroma15-yearrehistorymap(2000–
2014),createdatapixelresoluonof250mbasedon MODISsatel-
lite imagery,accessed via North AustralianFire Informaon website
(hp://www.renorth.org.au/na3/).Due tothe coarse resoluonof
there historymap,itwasimpossibleto accuratelylocateeveryre
scar,sothedatawereusedtoprovidecoarse-scaleinformaonabout
dierencesinreacvitybetweenthemainlandandislands.Forevery
cell of the rainforestdensity grid, the area-weighted proporon of
6
|
ONDEI Et al.
yearsburntwas calculated bydividingtheaverage number ofyears
inwhich thecell wasburnt by15, thetotalnumberofyearsinves-
gated.The averagereacvity peryear andrainforestdensitywere
calculatedforcellsclassiedas“island”or“mainland”and,withineach
category,“complex”or“level”terrain.
2.3 | Stascal analyses
Atasubconnentalscale,weemployedthePearsonproductmoment
correlaoncoecienttoexaminecorrelaonsamongrainforestden-
sityandtheclimacvariables,andpresentedtheresultsinaconstel-
laondiagram.Forpresentaon(butnottheanalysis),weaggregated
thegridcellsinto200-mmmeanannualrainfallbinsandcalculatedthe
averagerainforestdensityforeachbin.
Ataregionalscale,we rsttested forspaal autocorrelaonin
rainforest density and assessed minimum sampling distance, es-
matedbyplongthesemi-varianceasafunconofdistance,using
thesowareR(RCoreTeam,2013)andtheRpackagegeoR(Ribeiro
&Diggle,2001;AppendixS1).Wethentestedwhetherthefactors
terrainandgeologyarerelatedtorainforestdensity.Wealsochecked
whetherrainforestdensitywasassociatedwithgeologywithinlevel
and complex terrain types. Todo this, we used generalized linear
models(GLMs)andcompletesubsetregressionandmodelselecon
basedonAkaike’sinformaoncriterion(AIC;Burnham&Anderson,
2002),calculatedusing theRpackage “MuMIn”(Bartoń,2009).We
used the compound Poisson-gamma distribuon, included in the
tweediefamilyofdistribuons,whichallowsregressionmodelingof
zero-inatedposiveconnuousdata(Rpackages“tweedie”[Dunn,
2014] and “statmod” [Smyth,Hu, Dunn, Phipson, & Chen, 2015]).
To assess the importance of each variable,we calculated Akaike
weights(wi),which representtheprobabilitythat a given modelis
thebestinthecandidateset(Burnham&Anderson,2004).Wethen
calculatedvariableimportance(w+) asthesummed wiofthe mod-
els in which thevariable occurs. w+ values higher than 0.73 were
considered to indicatethat the variable is a stascally important
predictor (Murphyetal., 2010). Model summaries are provided in
AppendixS2.
When comparing mainland versus islands, we examined dif-
ferences in rainforest density and re acvity between locaons,
tesng for the factors insularity (island or mainland) and terrain
(complex or level).Todo so, we employed GLMs, using the com-
poundPoisson-gammadistribuon for both rainforestdensityand
reacvity,completesubsetregression,andmodelseleconbased
on AIC as described above.Variable importance was assessed by
FIGURE3 Comparisonoftherainforest
domaininWesternAustralia(WA)and
NorthernTerritory(NT),showing(a)
averageannualrainfall,(b)moisture
index,(c)meanannualtemperature,
(d)precipitationseasonality,and(e)
potentialevapotranspiration(PET).Boxes
indicatemedianvaluesandupperand
lowerquartiles,barsthe10thand90th
percentiles
|
7
ONDEI Et al.
calculangw+, asdescribedabove.Modelsummaries areprovided
inAppendixS2.
3 | RESULTS
3.1 | Subconnental scale
ThenorthwesternAustralianrainforestdomaincoveredan areaof
640,000km2,ranging fromthe coastlinetoamaximumof 350km
inland.RainforestdensitywaslowerwestoftheOrdAridIntrusion:
inWestern Australiarainforest densityrangedfrom0to 8.7haof
rainforestper km2ofland (average1.1±0.2ha/km2),while inthe
NorthernTerritory the rangewas0–19.0ha/km2 of land(average
1.4±0.2ha/km2). The Northern Territory showed higher median
valuesandabroaderrangeofbothmean annualrainfallandmois-
tureindex(Figure3a,b).Meanannualtemperatureandprecipitaon
seasonalityshowedhighermedianandmaximumvaluesinWestern
Australia and minimum in the Northern Territory (Figure3c,d),
while annual potenal evapotranspiraon had a similar range in
thetwo statesbut highermedianvalues inthe NorthernTerritory
(Figure3e).
Therewasaposivecorrelaonbetweenrainforestdensityand
bothmeanannualrainfallandmoistureindex(Figures4and5),which
were also posively correlated. Potenal evapotranspiraon was
negavely correlated with rainforest density, moisture index, and
rainfall,whileprecipitaonseasonalitywasnegavelycorrelatedwith
rainfalland moisture index. Meanannual temperaturewasnot cor-
relatedwithanyoftheclimac variablesinvesgatednorwithrain-
forestdensity.
3.2 | Regional scale
Intotal,2,902points were assessed during the aerial survey. There
wasastrongconcordancebetweentherainforestmapandtheaerial
assessment,witharesulngoverallmapaccuracyof93%(Kappacoef-
cient.78; AppendixS3).A highaccuracywas obtainedforsavanna
points (95% for both producer’s and user’s accuracy), meaning few
savannapoints weremistaken forrainforest. Weaributethe lower
producer’s and user’s accuracy for rainforests (83% and 82%, re-
specvely)tothe orisccomposionof themonsoonvine thickets,
where semi-deciduous species can dominate (Beard, 1979), making
poronsof theforest patchesundetectablefromorthophotostaken
duringthedryseason.
Savannawasbyfarthemostcommonvegetaon,covering98.9%
ofthe area.Wedetectedatotal of6,460rainforest patchescover-
ing10,300ha,equivalentto 0.82% of the mapped land. Patchsize
rangedfrom 0.1to 220ha andaveraged1.6ha±0.1(SE).Seventy-
vepercentof patchesweresmallerthan1ha,and only2.5%were
larger than 10ha (Figure6a).More than 40% of the mapped rain-
forestpatcheswerelocatedwithin1kmofthecoastline(Figure6b),
butpatchesweredetectedupto47kminland(average4.7km±0.1
[SE]).Asimilarpaernwasidenedfordistancefromdrainagelines,
with64%ofthepatcheslocatedwithin1kmofthenearestdrainage
line(Figure6c),but someup to32kmdistant(average1.7km±0.0
[SE]).
Rainforest density was strongly dependent on both terrain
(w+=1.00) and geology (w+=1.00); averagerainforest density was
higheronrelavelyferlesubstrates(laterite,coastalsediments,and
basalt),and lower onalluviumand colluvium andinferlesandstone
(Figure7a). Average rainforest density was also higher in complex
terrain such as ridges, slopes, and valleysand lower on level areas
(Figure7b).Themodelincludinggeologyandterrainexplained32.1%
of the deviance.The preference for relavelynutrient-rich geology
was independent on terrain, as on both level and complexterrains
rainforest density was strongly associated with geology (w+=1.00
inboth cases;AppendixS4). Geologyexplained13% ofdevianceon
complexterrainand10%ofdevianceonlevelterrain.
FIGURE4 Constellationdiagramshowingthestrength
anddirectionofcorrelationsamongrainforestdensityandthe
climaticvariablesaverageannualrainfall,moistureindex,potential
evapotranspiration(PET),precipitationseasonality,andmeanannual
temperatureinthemonsoonrainforestdomaininnorthwestern
Australia.Positivecorrelationsarerepresentedbyblacklines,
negativecorrelationsbygraylines.Correlationsstrongerthan.4or
−.4areindicated;widerlinesindicatestrongercorrelations,narrower
linesweakercorrelations
FIGURE5 Averagerainforestdensitybyaverageannualrainfall,
calculatedwithintherainforestdomainintheAustralianmonsoon
tropics.Thenumbersaboveeachcolumnrepresentthenumber
ofgridcellincludedinthatrainfallinterval.Errorbarsrepresent
standarderror
8
|
ONDEI Et al.
3.3 | Mainland versus Islands
Thegridcellsonbasalt,laterite,andcoastalsubstratesandwithin5km
ofthe coastcovered anarea of332.4km2 onislands and693.1km2
onthemainland. Thetotalareacoveredby rainforestswas47.0km2
ontheislands,comparedwith13.6km2onthemainland,sothatrain-
forestdensitywassevenmeshigherontheislands(Table1).Islands
weremoretopographicallycomplexthanthemainland(Table1).There
wasstascal supportfor aninuence ofboth insularity(w+=1.00)
andterrain(w+=1.00)on rainforestdensity(Table2),andthemodel
includingboth explained35%of deviance.There waslessre acv-
ityonislands(average0.061±0.003mesburntperyear)thanon
themainland(average0.266±0.004mesburntperyear;w+=1.00),
andinsularityaloneaccountedfor39.1%ofdeviance.Contrarytoex-
pectaons,therewasnostascalsupportforaneectofterrainon
reacvity(w+=0.48;Table2).
4 | DISCUSSION
WefoundthatinnorthwesternAustralianmonsoontropicsrainforest
patchesare ny andscaeredacross a vastsavannamatrix. Due to
theirsmallsize, these rainforest fragments areessenallyundetect-
ableattheresoluonemployedbyglobal-levelassessments(Murphy
&Bowman,2012;Staveretal.,2011b).Atasubconnentalscale,the
strongcorrelaonbetweenrainforestdensityandannualrainfall,po-
tenalevapotranspiraon,andmoistureindexhighlightedtheprimacy
ofwatersupplycomparedwithmeanannualtemperatureandprecipi-
taonseasonality,andsupportedourrsthypothesis.Thiscorrelaon
iscongruouswith the observaon that atrendof increasing rainfall
innorthernAustraliasince the 1940s is the key driver of rainforest
patch expansion (Banfai & Bowman, 2007; Bowman etal., 2001).
These ndings are also consistent with the global trend of increas-
ingproporonofrainforest(anddecreasingsavanna)asmeanannual
precipitaonincreases(Hirotaetal.,2011;Murphy&Bowman,2012).
InthedrierlandscapeswestoftheOrdAridIntrusion,rainforestspe-
ciesdiversityisalsolowerthantotheweereastandmostofthe
FIGURE6 FrequencydistributionofrainforestpatchesinthenorthernKimberleyregionaccordingto(a)size,(b)distancefromthecoastline,
and(c)distancefromthenearestdrainageline.Notethelogarithmicscaleforthexaxes
FIGURE7 Rainforestdensityinrelationto(a)geologicsubstrate,
and(b)topographicpositioninthenorthernKimberley(regional
analysis).Rainforestdensitywashighestoncoastalsediments,basalt,
andlateriticsubstrates.Itwasalsohigheronridges,slopes,and
valleys,andalmostabsentinflatareas.Errorbarsrepresentstandard
errors
|
9
ONDEI Et al.
speciesinWestern Australia are assubsetof those intheNorthern
Territory(Kenneallyetal., 1991). However, thepresenceof rainfor-
estsinthenorthwesternAustralianmonsoontropicsshowedthatthe
regioncannotbedenedasdeterminiscallysavannabasedsolelyon
climate(Murphy&Bowman,2012).Similarly,rainforestpatchesexist
throughout much of the tropics globally, which suggests that in all
butaridtropicalregions,climate aloneisnottheonlyfactorcontrol-
lingrainforestdistribuon (Staver etal., 2011b). InBrazil,forexam-
ple, small patches of deciduous and semi-deciduous rainforests are
interspersedin a matrix ofsavannaplants (Cerrado) or thornscrubs
(Caanga)andarerestrictedto slopes and moist, nutrient-rich sites
(Leal, da Silva, Cardoso, Tabarelli, & Lacher, 2005; Oliveira-Filho &
Raer,2002).Likewise,inIvoryCoastthedominantsavannavegeta-
onisscaeredwithsmallpatchesofdryrainforest(Goetze,Hörsch,
&Porembski,2006).
Wealsofoundsupportforoursecondhypothesisthattopography
and geologyaect rainforest distribuon. Theinuence of topogra-
phyonrainforestdensitywasmanifestinthehigherrainforestdensity
oncomplex comparedwith levelterrain.Rainforestdensitywasalso
higheronnutrient-richbasaltcomparedwiththenutrient-poorsand-
stone,despitethehigherrefrequencyandintensityrecordedonba-
salt(Vigilanteetal.,2004).Thispaernisconsistentwiththeedaphic
compensaonhypothesis (Ash,1988;Webb&Tracey,1981), whose
underlyingmechanismisprobablythe eect ofincreasedferlity in
enhancingplantgrowth,allowingtreestoreachthethresholdsizethat
triggersthe switchfrom savannato rainforestthroughgrass shading
(Homann,Geiger, etal., 2012; Murphy& Bowman, 2012). It is im-
portant to note that geology and terrainare typically not indepen-
dent.Forexample, inthenorthern Kimberleyroundedhillsaremore
commononbasalt,whilesteepgorgesarefrequentlyfoundonsand-
stone(Vigilanteetal., 2004). However,in ouranalysis wewereable
todemonstrateaneectofgeologyalonebycomparingareasonthe
sameterrain, showingthat thereare morerainforestson basaltthan
onlessferlegeologies.
There was onlyparal support for our third hypothesis that in-
sularity and topographic eects are directly related to re acvity.
Clearly,thereweremorerainforestsonislands,wheretherewasalso
lessreacvitycomparedwiththemainland.Theimportanceofrein
restricngrainforestshasbeendemonstratedbyrainforestexpansion
inothersavannalandscapeswhererehasbeenexcluded,innorthern
Australia(Fensham& Butler,2004; Scoetal., 2012)and elsewhere
(Bond, Midgley,Woodward, Homan, & Cowling, 2003). Rainforest
speciesaretypicallylessretolerantthansavannaspeciesduetothin-
ner bark and less developedpost-rerecovery mechanisms (Lawes,
Midgley, & Clarke,2013; Ondei, Prior, Vigilante, & Bowman, 2015;
Pausas,2015). However,we failed to detect acorrespondingdier-
enceinreacvitybetweenterraintypesonthemainlandandfound
onlyaminordierenceonislands.Therearetwopossiblereasonsfor
this lack of correspondence,which are not mutually exclusive. One
isthat terrain, orassociated rockiness,did exertaninuence onre
acvity,butthiswas obscuredbythecoarsescaleofthe gridcellsin
ouranalysis(1×1km).Anotherpossiblereasonisthatthehigherrain-
forestdensity oncomplexterrain is theresultofwaterand nutrient
accumulaon (Ash, 1988; Daws, Mullins, Burslem,Paton, & Dalling,
2002),ratherthantopographicreprotecon.Nonetheless,thepres-
enceofrainforestonlevelterrainonislands,butnotonthemainland,
suggeststhat reis animportantcontrollerof rainforestdistribuon
intheregion.
Wesuggestthatrainforestdensityisdeterminedbythe interplayof
reacvityandplantgrowthrates(Figure8a).Fireacvityisshapedby
insularity and possiblyterrain complexity, while plant growth ratesare
knowntobecontrolledbywateravailabilityand thenutrientstockpro-
videdbythegeologicalsubstratecontrol(Murphy&Bowman,2012),with
aneectofterraininenhancingwaterandsoilaccumulaon(Ash,1988).
Growthratesaectthecapacityofrainforesttreestogrowrapidlyandes-
capethe“retrap,”therebydevelopingaclosedcanopywhichshadesout
grassbiomass,reducingrefrequencywhichinturnreinforcesrainforest
TABLE1 Extent,rainforestcover,averagerainfall,andextentof
thegeologicsubstratesandterraintypeontheselectedgridcells
usedtocomparerainforestdensityonislandsandthemainlandin
thenorthernKimberley
Islands Mainland
Totalland(km2)332.4 693.1
Rainforestarea(km2)47.0 13.6
Rainforestdensity(ha/km2)14.1 2.0
Averagerainfall(mm/year) 1348±1 1307±1
Geologytype(%)
Basalt 64.4 81.2
Coastalsediments 0.5 2.7
Laterite 35.1 16.1
Terraintype(%)
Complex 62.8 55.6
Level 37.2 44.4
TABLE2 Averagereacvity,measuredasmesburntperyear,andaveragerainforestdensity,measuredasha/km2,forcomplexandlevel
terrainslocatedontheselectedgridcellsonislandsandmainlandinthenorthernKimberley
Level terrain Complex terrain w+
Mainland Islands Mainland Islands Terrain Insularity
Fireacvity(averagemesburntper
year±SE)
0.26±0.01 0.08±0.01 0.27±0.01 0.05±0.00 0.48 1.00
Rainforestdensity(ha/km2±SE)0.30±0.06 6.81±0.73 4.29±0.42 19.69±0.88 1.00 1.00
The w+indicatesthestascalsupportforthetermsterrainandinsularitywhencomparingmainlandandislands(fullresultsarepresentedinAppendixS2).
10
|
ONDEI Et al.
expansion(Dantasetal.,2013;Homann,Geiger,etal.,2012;Murphy&
Bowman,2012).OurndingsaresummarizedinFigure8b,whichshows
characteriscpaernsofrainforestfragmentsinthelandscapeandhow
these fragments are likelyto expand in response to a weng climate
undercontrasngferlityandreregimes.Rainforestexpansionshould
beproporonally greaterin lower-rainfallareas thatcurrentlyhavelow
rainforestdensity,like thenorthernKimberley, becausetherearemore
landscapenichesavailableforoccupancy,suchasnutrient-richandre-
protectedsites.Aprediconofourworkisthat,underthecurrentweng
trend,therewillbeconnuingrainforestexpansion inthe Kimberley,as
has been observed elsewhere in the Australiantropics (Russell-Smith,
Stanton,Edwards,&Whitehead,2004).
FIGURE8 SynthesisoftheenvironmentaldeterminantsofrainforestfragmentsinthenorthernKimberley.(a)Diagramshowingthepositive
(+)andnegative(−)effectsofenvironmentalfactorsonrainforestdensity.Dottedlinesrepresentprobableeffects.(b)Toprow:obliqueaerial
photographsshowingexamplesofthedensityofrainforestfragmentsonsiteswithcontrastinggeology(sandstonevs.basalt)andfireactivity
inthenorthernKimberley.Secondrow:3Drenderingsofrainforestdistribution(darkgreen)onsandstone(nutrient-poor)andbasalt(nutrient-
rich)landscapeundercurrentdryclimate.Bottomrow:3Drenderingsofplausiblerainforestdensityunderaclimateaswetascoastalregionsof
theNorthernTerritory.Inthisstudy,wedemonstratedthatinsularsiteshavesubstantiallylowerfireactivitythanenvironmentallycomparable
mainlandsavannaareas.Underthecurrentclimate,rainforestdensityishighestonfertileinfrequentlyburntareas,andinfrequentlyburnt
landscapesisconfinedtotopographicallyfire-protectedsettings,particularlyonnutrient-poorgeology.Underawetterclimate,weexpectthe
rainforestpatchestoexpandandnewpatchestoestablishinsuitablelandscapeniches,withthegreatestexpansiononbasaltlandscapes.The
exactamountofexpansionisunpredictablebecauseoftheinfluenceoffireactivityandfiremanagement
|
11
ONDEI Et al.
5 | CONCLUSION
Wehaveshownthatthedensityofmonsoonrainforestinthenorth-
western Australian savanna is aected by moisture availability,
substrate, and re. The eect of these drivers appears to involve
complicatedfeedbacksandinteracon,suchasthecombinedeects
ofpotenalreproteconandincreasedproducvityintopographi-
callycomplexterrains.Weacknowledgethatourcorrelaveanalysis
cannotseparatecause andeect,ortestthere-drivenASSmodel
in explaining the distribuon of rainforests. To do this demands
analysis of vegetaon boundary dynamics coupled with contrasts
of substrate type and re history. This can be achieved through
carefully designed regional-scale analysis of rainforest boundaries
trends,suchas eldsurveysandhistoricalsequences ofaerialpho-
tography(Banfai&Bowman,2006;Butleretal.,2014;MacDermo,
Fensham,Hua,&Bowman,2016)andisthesubjectofasubsequent
paper.Despiteits limitaons, ourapproachis an important stepin
understandingthe eect ofclimatechange and anthropogenicdis-
turbancesonnaturallyfragmentedrainforestselsewhereinthetrop-
icalsavannabiome.
ACKNOWLEDGMENTS
This study was supported by the Wunambal Gaambera Aboriginal
Corporaon and Bush Heritage Australia as part of their “Healthy
Country”landmanagement plan. We thank the UunguuRangersand
TradionalOwnersforthesupportprovidedintheeld.Wewouldalso
liketothanktheanonymousreviewersfortheirvaluablecommentsand
suggesonswhichgreatlyhelpedimprovingthequalityofthepaper.
CONFLICT OF INTEREST
Nonedeclared.
REFERENCES
Ash,J.(1988).Thelocaonandstabilityofrainforestboundariesinnorth-
easternQueensland,Australia.Journal of Biogeography,15(4),619–630.
Banfai,D. S.,& Bowman,D.M.J.S. (2006).Fortyyears oflowland mon-
soonrainforestexpansioninKakaduNaonalPark,NorthernAustralia.
Biological Conservaon,131(4),553–565.
Banfai,D.S.,&Bowman,D.M.J.S.(2007).Driversofrain-forestboundary
dynamicsin KakaduNaonalPark,northernAustralia:Aeldassess-
ment.Journal of Tropical Ecology,23(1),73–86.
Bartoń,K.(2009).MuMIn: Mul-Model Inference.Rpackageversion0.12.2.
Retrievedfrom:hp://CRAN.R-project.org/package=MuMIn.
Beard,J. S. (1976). The monsoon forest ofthe Admirality Gulf, Western
Australia.Vegetao,31,177–192.
Beard,J. S. (Ed.) (1979). Vegetaon survey of Western Australia: Kimberley
1:1 000 000 vegetaon series sheet 1. Perth,Australia: University of
WesternAustraliaPress.
Bond,W.J.(2010).Donutrient-poorsoilsinhibitdevelopmentofforests?A
nutrientstockanalysis.Plant and Soil,334(1),47–60.
Bond,W.,Midgley,G., Woodward,F.,Homan,M.,&Cowling,R.(2003).
Whatcontrols SouthAfricanvegetaon-climate orre? South African
Journal of Botany,69(1),79–91.
Bond,W.J.,Woodward,F.I.,&Midgley,G.F.(2005).Theglobaldistribuon
ofecosystemsinaworldwithoutre.New Phytologist,165(2),525–537.
Bowman,D.(1992).Monsoonforestsinnorth-westernAustralia.II.Forest-
savannatransions.Australian Journal of Botany,40(1),89–102.
Bowman,D.M.J.S.(2000).Australian rainforests: Islands of green in a land of
re.Cambridge,UK:CambridgeUniversityPress.
Bowman,D.M.J.S., Brown,G. K.,Braby,M. F.,Brown,J.R., Cook,L. G.,
Crisp, M. D., … Ladiges, P.Y. (2010). Biogeographyof the Australian
monsoontropics.Journal of Biogeography,37(2),201–216.
Bowman,D.,&Fensham,R.(1991).Responseofamonsoonforest-savanna
boundary to re protecon, Weipa, northern Australia. Australian
Journal of Ecology,16(1),111–118.
Bowman,D. M.J.S., Perry,G.L. W.,& Marston, J.B. (2015). Feedbacks
andlandscape-levelvegetaondynamics.Trends in Ecology & Evoluon,
30(5),255–260.
Bowman, D. M.J. S., Walsh, A., & Milne, D.J. (2001). Forest expansion
andgrasslandcontraconwithinaEucalyptussavannamatrixbetween
1941and 1994atLitcheldNaonalPark intheAustralian monsoon
tropics.Global Ecology and Biogeography,10(5),535–548.
Bowman,D.M.J.S.,Wilson,B.A.,&McDonough,L.(1991).Monsoonforests
in NorthwesternAustralia I. Vegetaonclassicaon and the environ-
mentalcontroloftreespecies.Journal of Biogeography,18(6),679–686.
Burnham,K. P.,&Anderson,D. R.(2002).Model selecon and mulmodel
inference: A praccal informaon-theorec approach. New York, NY:
Springer.
Burnham, K. P., & Anderson, D. R. (2004). Mulmodelinference under-
standing AIC and BIC in model selecon. Sociological Methods &
Research,33(2),261–304.
Butler,D. W.,Fensham, R.J., Murphy, B.P.,Haberle,S. G., Bury,S.J., &
Bowman, D.M. J. S. (2014). Aborigine-managed forest, savanna and
grassland: Biome switching in montane eastern Australia. Journal of
Biogeography,41(8),1492–1505.
Clayton-Greene, K., & Beard, J. (1985). The re factor in vine thicket
and woodland vegetaon of the Admiralty Gulf region, north-west
Kimberley, WesternAustralia. Proceedings of the Ecological Society of
Australia,13,225–230.
Congalton,R. G. (1991).A reviewof assessingthe accuracy ofclassica-
ons of remotelysensed data. Remote Sensing of Environment,37(1),
35–46.
Dahlin,K.M.,Asner,G.P.,&Field,C.B.(2014).Linkingvegetaonpaerns
to environmental gradients and human impacts in a mediterranean-
typeislandecosystem.Landscape Ecology,29(9),1571–1585.
Dantas,V. D.L., Batalha, M. A., & Pausas, J. G. (2013). Fire drivesfunc-
onal thresholds on the savanna–forest transion. Ecology, 94(11),
2454–2463.
Dantas,V.D.L.,Hirota,M.,Oliveira,R.S.,&Pausas,J.G.(2016).Disturbance
maintainsalternavebiomestates.Ecology Leers,19(1),12–19.
Daws, M., Mullins, C., Burslem, D. R. P., Paton, S., & Dalling,J. (2002).
Topographicposionaectsthewaterregimeinasemideciduoustrop-
icalforestinPanamá.Plant and Soil,238(1),79–89.
Dunn,P.K. (2014). Tweedie: tweedie exponenal family models.R package
version 2.2.1. Retrieved from: hps://cran.r-project.org/web/pack-
ages/tweedie/index.html
Eldridge,M.D.,Poer,S.,&Cooper,S.J.(2011).Biogeographicbarriersin
north-westernAustralia: Anoverviewand standardisaonof nomen-
clature.Australian Journal of Zoology,59(4),270.
Fensham,R.J.(1995). Floriscsand environmentalrelaonsofinland dry
rainforest in North Queensland, Australia. Journal of Biogeography,
22(6),1047–1063.
Fensham, R. J., & Butler, D. W. (2004). Spaal paern of dry rainfor-
est colonizing unburnt Eucalyptus savanna. Austral Ecology, 29(2),
121–128.
Fensham,R.J., Fairfax,R.J., &Archer,S. R. (2005).Rainfall, landuse and
woody vegetaon cover change in semi-arid Australian savanna.
Journal of Ecology,93(3),596–606.
12
|
ONDEI Et al.
Goetze,D.,Hörsch,B.,&Porembski,S.(2006).Dynamicsofforest–savanna
mosaics in north-eastern Ivory Coast from1954 to 2002. Journal of
Biogeography,33(4),653–664.
Hanan,N.P.,Tredennick,A.T.,Prihodko,L.,Bucini, G.,& Dohn,J.(2014).
Analysis of stable statesin global savannas: Is the CART pulling the
horse?Global Ecology and Biogeography,23(3),259–263.
Hanan,N.P.,Tredennick,A.T.,Prihodko,L.,Bucini, G.,& Dohn,J.(2015).
Analysisofstablestatesinglobalsavannas—AresponsetoStaverand
Hansen.Global Ecology and Biogeography,24(8),988–989.
Hijmans,R.J., Cameron,S. E.,Parra,J. L.,Jones,P.G., &Jarvis,A.(2005).
Veryhighresoluoninterpolatedclimatesurfacesforgloballandareas.
Internaonal Journal of Climatology,25(15),1965–1978.
Hirota,M.,Holmgren,M.,vanNes,E.H.,&Scheer,M.(2011).Globalre-
silience oftropical forest and savanna to crical transions. Science,
334(6053),232–235.
Homann,W.A.,Geiger,E.L.,Gotsch,S.G.,Rossao,D.R.,Silva,L.C.R.,
Lau, O. L., … Lloret, F. (2012). Ecologicalthresholds at the savanna-
forestboundary:Howplanttraits,resourcesandregovernthedistri-
buonoftropicalbiomes.Ecology Leers,15(7),759–768.
Homann,W.A.,Jaconis,S.Y.,McKinley,K.L.,Geiger,E.L.,Gotsch,S.G.,&
Franco,A.C.(2012).Fuelsormicroclimate?Understandingthedrivers
ofrefeedbacksat savanna–forestboundaries.Austral Ecology,37(6),
634–643.
Ibanez,T.,Borgniet,L.,Mangeas,M.,Gaucherel,C.,Geraux,H.,&Hely,C.
(2013).RainforestandsavannalandscapedynamicsinNewCaledonia:
Towards a mosaic of stable rainforest and savanna states? Austral
Ecology,38(1),33–45.
Jenness, J. (2006). Topographic Posion Index (tpi_jen.avx) extension for
ArcView 3.x. v. 1.3a. Jenness Enterprises.Retrieved from: hp://www.
jennessent.com/arcview/tpi.htm.
Kenneally,K. F.,Keighery,G. J.,&Hyland, B. P.M. (1991). Floriscs and
phytogeography of Kimberley rainforests. In N. L. McKenzie, R. B.
Johnston& P.G.Kendrick(Eds.),Kimberley rainforests of Australia (pp.
93–131).ChippingNorton,NSW,Australia:SurreyBeayandSons.
Kimber, P. C., Forster, J. E., & Behn, G. A. (1991). Mapping Western
Australianrainforests—Anoverview.InN.L.McKenzie,R.B.Johnston
& P. G. Kendrick (Eds.), Kimberley ranforests of Australia. Chipping
Norton,NSW,Australia:SurreyBeay&Sons.
Lawes, M. J.,Midgley, J. J., & Clarke,P.J. (2013). Costs and benets of
relavebarkthicknessinrelaontoredamage:Asavanna/forestcon-
trast.Journal of Ecology,101(2),517–524.
Leal, I. R., da Silva,J., Cardoso, M., Tabarelli, M., & Lacher,T. E. (2005).
Changing the course of biodiversityconservaon in the Caanga of
northeasternBrazil.Conservaon Biology,19(3),701–706.
Lehmann,C.E.R.,Anderson,T.M.,Sankaran,M.,Higgins,S.I.,Archibald,S.,
Homann,W.A.,…Bond,W.J.(2014).Savannavegetaon-re-climate
relaonshipsdieramongconnents.Science,343(6170),548–552.
Lloyd,J.,Bird,M.I.,Vellen,L.,Miranda,A.C.,Veenendaal,E.M.,Djagbletey,
G.,…Farquhar,G.D.(2008).Contribuonsofwoodyand herbaceous
vegetaontotropicalsavannaecosystemproducvity:Aquasi-global
esmate.Tree Physiology,28(3),451–468.
Lyons, M., Keighery, G., Gibson, L., & Handasyde, T. (2014). Flora and
vegetaon communies of selected islands othe Kimberley coast
of Western Australia. Records of the Western Australian Museum,
Supplement,81,205–243.
MacDermo,H.J.,Fensham,R.J.,Hua, Q.,&Bowman,D.M.J.S.(2016).
Vegetaon,re and soil feedbacks of dynamic boundaries between
rainforest, savanna and grassland. Austral Ecology, doi:10.1111/
aec.12415.
Mangglamarra, G., Burbidge, A. A., & Fuller, P. J. (1991). Wunambal
wordsforrainforestandotherKimberleyplants and animals.InN. L.
McKenzie,R. B.Johnston &P.G.Kendrick (Eds.),Kimberley rainforest
Australia(pp.413–421).Canberra,Australia:SurreyBeayandSons.
McKenzie, N. L., Belbin, L., Keighery, G. J., & Kenneally, K. F. (1991).
Kimberley rainforest communies: Paerns of species composion
and Holocene biogeography.In N. L. McKenzie, R. B. Johnston& P.
G. Kendrick (Eds.), Kimberley rainforests of Australia (pp. 423–452).
ChippingNorton,NSW,Australia:SurreyBeay&Sons.
Murphy,B.P.,&Bowman,D.M.J.S.(2012).Whatcontrolsthedistribuon
oftropicalforestandsavanna?Ecology Leers,15(7),748–758.
Murphy,B.P.,Paron,P.,Prior,L.D.,Boggs,G.S.,Franklin,D.C.,&Bowman,
D.M.J.S.(2010).Usinggeneralizedautoregressiveerrormodelstoun-
derstandre-vegetaon-soilfeedbacksin amulga-spinifexlandscape
mosaic.Journal of Biogeography,37(11),2169–2182.
O’Connor, S. (1995). Carpenter’s Gap rockshelter 1: 40,000 years of
Aboriginaloccupaon inthe NapierRanges,Kimberley,WA.Australia
Archaeology,40,58–59.
Oliveira-Filho,A.T.,& Raer,J.A. (2002).Vegetaonphysiognomies and
woody ora ofthe cerrado biome. In P. S. Oliveira,& R. J. Marquis
(Eds.),The Cerrados of Brazil(pp.91–120). New York,USA:Columbia
UniversityPress.
Ondei, S., Prior,L. D., Vigilante, T.,& Bowman, D. M. J. S. (2015). Post-
reresproungstrategiesofrainforestandsavannasaplingsalongthe
rainforest–savannaboundaryintheAustralianmonsoon tropics.Plant
Ecology,217(6),711–724.
Paiva,A.,Silva,L.,&Haridasan,M.(2015).Producvity-eciencytradeos
in tropical gallery forest-savanna transions: Linking plant and soil
processesthrough lierinput and composion.Plant Ecology, 216(6),
775–787.
Pausas, J. G. (2015). Bark thickness and re regime.Funconal Ecology,
29(3),315–327.
Price, O. F. (2006). Movements offrugivorous birds among fragmented
rainforestsintheNorthernTerritory,Australia.Wildlife Research,33(6),
521–528.
RCoreTeam.(2013). R: A language and environment for stascal comput-
ing[Online].Vienna,Austria: R Foundaonfor StascalCompung.
Retrievedfromhp://www.R-project.org/
RibeiroJr, P.J., & Diggle, P.J. (2001). geoR: A package forgeostascal
analysis.R News,1(2),15–18.
Russell-Smith,J.(1991). Classicaon,speciesrichness, andenvironmen-
tal relaons ofmonsoon rain forest in northernAustralia. Journal of
Vegetaon Science,2(2),259–278.
Russell-Smith, J., & Bowman, D. M. J. S. (1992). Conservaon of mon-
soonrainforest isolatesin the NorthernTerritory,Australia.Biological
Conservaon,59(1),51–63.
Russell-Smith,J.,Stanton, P.J.,Edwards,A.C., &Whitehead,P.J.(2004).
Rain forest invasion ofeucalypt-dominated woodland savanna, Iron
Range,north-easternAustralia:II. Ratesof landscapechange.Journal
of Biogeography,31(8),1305–1316.
Sánchez-Azofeifa,G.A.,Kalacska,M.,Quesada,M.,Calvo-Alvarado,J.C.,
Nassar,J.M.,&Rodríguez,J.P.(2005).Needforintegratedresearchfor
asustainablefuturein tropicaldryforests.Conservaon Biology,19(2),
285–286.
Schmidt,S., &Stewart,G.R.(2003).δ15Nvalues oftropicalsavannaand
monsoon forestspecies reect root specialisaons and soil nitrogen
status.Oecologia,134(4),569–577.
Sco,K., Seereld, S.A., Douglas,M.M., Parr,C. L., Schatz,J. O.N.,&
Andersen,A.N.(2012).Doeslong-termreexclusioninanAustralian
tropicalsavannaresultinabiomeshi?Atestusingthereintroducon
ofre.Austral Ecology,37(6),693–711.
Silva, L. R., Homann, W., Rossao, D., Haridasan, M., Franco, A., &
Horwath,W.(2013).Cansavannasbecomeforests?Acoupledanalysis
ofnutrient stocks and rethresholdsin central Brazil.Plant and Soil,
373(1–2),829–842.
Silva, L. C. R., Sternberg, L., Haridasan, M., Homann,W.A., Miralles-
Wilhelm,F., &Franco,A. C.(2008).Expansionof gallery forestsinto
centralBraziliansavannas.Global Change Biology,14(9),2108–2118.
Smyth, G., Hu, Y., Dunn, P., Phipson, B., & Chen, Y. (2015). Statmod:
Stascal modelling. R package version 1.4.21. Retrievedfrom: hp://
cran.r-project.org/package=statmod.
|
13
ONDEI Et al.
Speck, N., Bradley, J., Lazarides, M., Twidale, C., Slatyer, R., Stewart, G.,
& Paerson, R. (2010).The lands and pastoral resources of the North
Kimberleyarea,W.A.No.4.CSIRO Land Research Surveys,2010(1),1–116.
Staver,A.C.,Archibald, S.,&Levin,S. (2011a).Treecoverin sub-Saharan
Africa:Rainfallandreconstrainforestandsavannaasalternavesta-
blestates.Ecology,92(5),1063–1072.
Staver,A.C.,Archibald,S.,&Levin,S.A.(2011b).Theglobalextentandde-
terminantsofsavanna andforestas alternavebiomestates.Science,
334(6053),230–232.
Staver,A. C., & Hansen, M. C. (2015).Analysis of stable states in global
savannas:IstheCARTpulling thehorse?—Acomment.Global Ecology
and Biogeography,24(8),985–987.
Thornthwaite,C.W.(1948).Anapproachtowardaraonalclassicaonof
climate.Geographical Review,38(1),55–94.
Trauernicht,C.,Brook, B.W.,Murphy,B.P.,Williamson,G.J.,&Bowman,
D.M. J.S.(2015). Local andglobal pyrogeographic evidencethat in-
digenousremanagementcreatespyrodiversity.Ecology and Evoluon,
5(9),1908–1918.
Trauernicht,C.,Murphy,B.P.,Portner,T.E.,&Bowman,D.M.J.S.(2012).
Treecover–reinteraconspromotethepersistenceofare-sensive
conifer in a highly ammable savanna. Journal of Ecology, 100(4),
958–968.
Tun,C.E.G.,White,L.J.T.,&Mackanga-Missandzou,A.(1997).Theuse
by rain forestmammals of natural forest fragments in an equatorial
Africansavanna.Conservaon Biology,11(5),1190–1203.
Veenendaal, E., Torello-Raventos, M., Feldpausch, T., Domingues, T.,
Gerard,F.,Schrodt,F.,…Ford,A.(2015).Structural,physiognomicand
above-groundbiomassvariaoninsavanna–foresttransionzoneson
three connents–howdierent are co-occurring savanna and forest
formaons?Biogeosciences,12(10),2927–2951.
Vigilante,T.,Bowman, D. M.J. S., Fisher,R.,Russel-Smith, J.,& Yates,C.
(2004). Contemporary landscape burning paerns in the far North
Kimberleyregionofnorth-westAustralia:Humaninuencesandenvi-
ronmentaldeterminants.Journal of Biogeography,31,1317–1333.
Vigilante,T.,Murphy, B.P.,& Bowman, D.M. J.S.(2009). Aboriginalre
useinAustraliantropicalsavanna:Ecologicaleectsandmanagement
lessons. In M.A. Cochrane (Ed.), Tropical re ecology: Climate change,
land use and ecosystem dynamics(pp.143–167).Heidelberg,Germany:
Springer-Praxis.
Vigilante,T.,Toohey,J.,Gorring,A.,Blundell,V.,Saunders,T.,Mangolamara,
S.,…Morgan,K.(2013).Islandcountry:Aboriginalconnecons,values
and knowledge of the Western Australian Kimberley islands in the
contextofanislandbiologicalsurvey.Records of the Western Australian
Museum, Supplement,81,145–181.
Vourlis,G.,deAlmeidaLobo,F.,PintoJr,O.,Zappia,A.,Dalmagro,H., de
Arruda,P.,&de SouzaNogueira,J.(2015).Variaonsin aboveground
vegetaon structure along a nutrient availability gradient in the
Brazilianpantanal.Plant and Soil,389(1–2),307–321.
Warman,L., Bradford,M. G., &Moles,A.T.(2013).A broadapproach to
abrupt boundaries: Looking beyond the boundary at soil aributes
withinandacrosstropicalvegetaontypes.PLoS One,8(4),e60789.
Warman,L., & Moles,A.T.(2009).Alternave stable statesinAustralia’s
WetTropics:Atheorecalframeworkfortheelddataandaeld-case
forthetheory.Landscape Ecology,24(1),1–13.
Webb,L.J. (1968).Environmentalrelaonshipsof thestructural typesof
Australianrainforestvegetaon.Ecology,49(2),296–311.
Webb,L.,& Tracey,J.(1981).Australian rainforests:Paernsand change.
In A. Keast (Ed.), Ecological biogeography of Australia (pp. 605–694).
Boston,MAandLondon,UK:TheHagueandDr.W.JunkbvPublishers.
Xu,C.,Hantson,S.,Holmgren,M.,van Nes,E.H., Staal,A.,&Scheer,M.
(2016).Remotelysensedcanopyheightrevealsthreepantropicaleco-
systemstates.Ecology,97(9),2518–2521.
Zomer,R. J., Trabucco,A., Bossio, D. A., &Verchot,L. V. (2008). Climate
changemigaon:Aspaalanalysisofgloballandsuitabilityforclean
development mechanism aorestaonand reforestaon. Agriculture,
Ecosystems & Environment,126(1),67–80.
SUPPORTING INFORMATION
AddionalSupporngInformaonmaybefoundonlineinthesupport-
inginformaontabforthisarcle.
How to cite this arcle:OndeiS,PriorLD,WilliamsonGJ,
VigilanteT,andBowmanDMJS.Water,land,re,andforest:
Mul-scaledeterminantsofrainforestsintheAustralian
monsoontropics.Ecol Evol.2017;00:1–13.doi:10.1002/
ece3.2734.