ArticlePDF Available

Water, land, fire, and forest: Multi-scale determinants of rainforests in the Australian monsoon tropics

Authors:
  • Wunambal Gaambera Aboriginal Corporation

Abstract

The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high-resolution, regional-level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km2) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi-scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.
Ecology and Evoluon 2017; 1–13 
|
 1
www.ecolevol.org
Received:2July2016 
|
Revised:22November2016 
|
Accepted:18December2016
DOI:10.1002/ece3.2734
ORIGINAL RESEARCH
Water, land, re, and forest: Mul- scale determinants of
rainforests in the Australian monsoon tropics
Stefania Ondei1| Lynda D. Prior1| Grant J. Williamson1| Tom Vigilante2,3|
David M. J. S. Bowman1
ThisisanopenaccessarcleunderthetermsoftheCreaveCommonsAribuonLicense,whichpermitsuse,distribuonandreproduconinanymedium,
providedtheoriginalworkisproperlycited.
©2017TheAuthors.Ecology and EvoluonpublishedbyJohnWiley&SonsLtd.
1SchoolofBiologicalSciences,Universityof
Tasmania,SandyBay,Tas.,Australia
2WunambalGaamberaAboriginalCorporaon,
Kalumburu,WA,Australia
3BushHeritageAustralia,Melbourne,Vic.,
Australia
Correspondence
StefaniaOndei,SchoolofBiologicalSciences,
UniversityofTasmania,SandyBay,Tas.,
Australia.
Email:stefania.ondei@utas.edu.au
Funding informaon
WunambalGaamberaAboriginalCorporaon;
BushHeritageAustralia.
Abstract
Thesmallrainforestfragmentsfoundinsavannalandscapesarepowerful,yetoen
overlooked,model systems to understand the controls of these contrasng ecosys-
tems.Weanalyzed the relaveeectofclimac variables on rainforestdensityata
subconnentallevel, and employedhigh-resoluon,regional-level analyses toassess
theimportanceoflandscapesengsandreacvityindeterminingrainforestdensity
inafrequentlyburntAustraliansavannalandscape.Esmatesofrainforestdensity(ha/
km2)acrossthe Northern Territory and Western Australia, derived from preexisng
maps,wereusedtocalculatethecorrelaonsbetweenrainforestdensityandclimac
variables. A detailed map of the northern Kimberley (Western Australia) rainforests
wasgeneratedandanalyzedtodeterminetheimportanceofgeologyandtopography
incontrollingrainforests,andtocontrastrainforestdensityonfrequentlyburntmain-
landandnearbyislands.InthenorthwesternAustralian,tropicsrainforestdensitywas
posivelycorrelated with rainfallandmoisture index, andnegavelycorrelated with
potenal evapotranspiraon. At a regional scale, rainforests showed preference for
complex topographic posions and more ferle geology. Compared with mainland
areas,islandshadsignicantlylowerreacvity,withnodierencesbetweenterrain
types.Theyalsodisplayedsubstanallyhigherrainforestdensity,evenonlevelterrain
wheregeomorphologicalprocessesdonotconcentratenutrientsorwater.Ourmul-
scaleapproachcorroborates previous studies that suggest moist climate, infrequent
res,and geologyareimportant stabilizing factorsthatallow rainforestfragmentsto
persistinsavannalandscapes.Thesefactorsneedtobeincorporatedinmodelstopre-
dictthefutureextentofsavannasandrainforestsunderclimatechange.
KEYWORDS
Australianmonsoontropics,re,geologicsubstrates,rainfallgradients,rainforests,topographic
reprotecon
1 | INTRODUCTION
The global extent of closed canopy tropical rainforests and savan-
nas is determined by climate, especially mean annual precipitaon
(Lehmannetal.,2014;Murphy&Bowman,2012).However,ataround
1,000–2,000mm/yearrainforestandsavannaformvegetaonmosa-
ics (Hirota, Holmgren,van Nes, & Scheer,2011; Staver,Archibald,
&Levin,2011a,2011b).Tropicalsavannasarecharacterizedbya low
2 
|
   ONDEI Et al.
treecoverandahighbiomassofC4grasses,whichsupportsfrequent
resinthedryseason(Bond,Woodward,&Midgley,2005;Homann,
Jaconis,etal.,2012). Bycontrast,tropicalrainforestshaveaspecies-
rich tree ora that formdense canopies, lile grass, and infrequent
reacvity.
Themechanismsthatcontrolpaerningofrainforestandsavanna
mosaicsaredisputed,withdebatepolarizedbetweentheimportance
of reand soils. One view is that edaphic factors like soil nutrients
arethe maincontrolofrainforest–savannamosaics,and reisnot a
cause but rathera consequence of vegetaon paerns (Lloydetal.,
2008;Veenendaaletal.,2015).Althoughsavannasoilsmayhavesu-
cientnutrientstockstosupportrainforesttrees(Bond,2010;Vourlis
etal.,2015),rainforestsaregenerallyfoundonmorenutrient-richsoils
comparedwithsavannas(Dantas,Batalha,&Pausas,2013;Silvaetal.,
2013).Inferlesavannasoilsareknowntolimitexpansionofrainfor-
est(Silvaetal.,2013),whiledeeperandmoreferlesubstratesallow
rainforesttogrowindrierclimates(knownas“edaphiccompensaon”;
Ash,1988;Webb,1968). However,itisnot clearwhetherthesepat-
ternsresultfromadirectedaphiceectorfromlocalfeedbacks.Soils
underneathrainforestsareoenmorerichinnutrients,comparedwith
savannas, regardless ofthe inherent ferlity of soil parent material
(Dantasetal.,2013;Silvaetal.,2013),becauseofnutrientacquision
andcycling(Silvaetal.,2008).Treecanopycoverandcanopyproduc-
vityincreasesoilnutrient content(Paiva,Silva,&Haridasan,2015),
parcularly N concentraon and availability (Schmidt & Stewart,
2003). Consequently, there are substanal praccal dicules in
makingecologicallymeaningful measurementsofsoils ferlityvaria-
on,parcularlyacross rainforestecotones,whereforestboundaries
waxandwane(Silvaetal.,2013;Warman,Bradford,&Moles,2013).
Thealternaveviewisthatrainforestandsavannaare“bi-stable”in
regionswithintermediateproducvity,andtherealizaonofvegetaon
depends on landscape re history (Bond etal., 2005; Dantas, Hirota,
Oliveira, & Pausas, 2016; Homann, Geiger, etal., 2012; Murphy &
Bowman,2012;Staveretal.,2011a;Warman&Moles,2009).Thisview
isbasedonalternavestablestate(ASS)theorywherebystabilizingfeed-
backsholdrainforestorsavannainspecic“basinsofaracon”(Hirota
etal.,2011).Resolvingthe roleofedaphicfactors incontrollingrainfor-
est boundaries directly orindirectly via feedbacks is complex and de-
mandsmulplelinesofevidence,includingdirectmeasurementsofsoils,
modeling,andexperiments(Bowman,Perry,&Marston,2015).Analysis
ofremotesensingesmates ofcanopycoverata globalscalehasbeen
presentedasevidenceforthebimodaldistribuonofrainforestsandsa-
vannas(Staveretal.,2011b).Ithasbeenarguedthattheintensityofthe
bimodalitymaybeastascalarfactassociatedwiththeuseofregres-
siontree(CART)analyses,whichimpose disconnuiesinsatellitetree
cover esmates (Hanan,Tredennick, Prihodko, Bucini, & Dohn, 2014,
2015;Staver&Hansen,2015),althoughglobal canopyheightanalyses,
based on products derived fromLiDAR measurements, conrmed the
bimodalitydetectedthroughsatellitedata(Xuetal.,2016).
Regional-levelanalyses based on remote sensing have been em-
ployedinstudiesinvesgangtheenvironmentalcontrolsofdierent
types of vegetaon(Dahlin, Asner, & Field, 2014; Fensham,Fairfax,
& Archer, 2005; Murphy etal., 2010). However, there has been
surprisinglylimitedanalysisofrainforest–savannamosaicsataregional
level.In an important pioneering study,Ash (1988) synthesized data
fromtopographicmaps,aerialphotography,andelddatatocreatea
modelof the environmentalcontrolsofrainforestsandsavanna veg-
etaoninthe wet tropicsofNorth Queensland (Australia),to assess
therelaonshipbetweenrainforestlocaon andenvironmental char-
acteriscs. Ash (1988) concluded that the distribuon of rainforest
boundariescanbeempiricallypredictedbasedonwateravailabilityand
topography,and substrate ferlitymight allow rainforeststoexpand
intootherwiseunfavorableenvironments.Thisresearchwassupported
byFensham(1995),whoemployedaerialphotographyandsatelliteim-
agerytoinvesgatetherelaonbetweendryrainforestand environ-
mentalvariablesin NorthQueensland.Tothebest ofourknowledge,
thereareno other map-based analyses of rainforest–savannamosa-
ics at a regionalscale anywhere else in the tropics. These rainforest
patchesare known tobebiodiverse and importantfor abroadcross
seconoffauna(Price,2006;Tun,White,&Mackanga-Missandzou,
1997),yettheyhavebeenpoorlyresearchedcomparedwiththemore
extensivewetrainforests(Sánchez-Azofeifaetal.,2005).
NorthwesternAustralia is an aracvemodelsystembecause it
spansa widerainfall gradientat thedriestextreme oftheAustralian
tropicalrainforestestate(Bowman,2000).TheglobalanalysisofStaver
etal.(2011b)suggeststheregionisdeterminiscallysavanna;yet,ny
patches of rainforestexist, embedded in the savanna matrix. These
environmentsrainforestsaremoreexposedtoreduetotheirhigher
boundary/corerao;nonetheless,insomelocaonsrainforestexpan-
sionhasoccurred(Banfai&Bowman,2006;Bowman,Walsh,&Milne,
2001;Clayton-Greene&Beard,1985).StudiesfromnorthernAustralia
andelsewhere inthe tropicshaveidenedtheimportance ofland-
scapesengindeterminingrainforestdistribuoninareassubjectto
highreacvity.Forexample,rainforestscan bemoreabundant on
islandsthat havelowerreacvitythanadjacentmainlandsavannas
(Clayton-Greene&Beard,1985).Rainforestscan alsobe connedto
steepgullies orvalleys(Bowman,2000;Ibanezetal., 2013;Warman
&Moles, 2009)because ofthe reprotecon theyprovide(Murphy
&Bowman,2012),althoughaddionaleectsofhighernutrientand
wateravailabilitycouldalsobeimportant(Ash,1988).
Weemployedamacroecologicalapproachtodeterminetheeect
ofclimacandgeomorphologicalfactors(topographyandgeology)on
rainforestabundance ata large spaalscale.Geology wasused as a
proxyforthenutrientstockprovidedbytheparentmaterial,toexclude
theeectofvegetaononsoilferlity.Toassessthecorrelaonsbe-
tweenclimate and rainforestdistribuon in the enrenorthwestern
Australian monsoon tropics, we analyzed exisng subconnental-
scale vegetaonmaps. We then assessed the importance of topog-
raphyandgeologyataregionalscale,as theeectsofthese factors
onrainforestdistribuon aredetectable atthis scale,comparedwith
climate(Murphy&Bowman,2012).Todoso,wegeneratedadetailed
map of rainforests in the northern Kimberley (Western Australia),
whichis characterizedbyalimited rainfallrange(200mm/year),and
avarietyofgeologiesandtopographicsengs.Withinthisregion,we
undertookalocal-scale“naturalexperiment”comparingtheinuence
oftopographyandreacvityonrainforestdensityonmainland and
    
|
 3
ONDEI Et al.
adjacent islandswith similar rainfall, geology, and distance fromthe
coastline.Weaddressedthefollowinghypotheses:
• Atasubconnentalscale,factorsassociatedwithwateravailability
arethemainclimacdriversdeterminingrainforestdensity;
• At a regional scale, topography and geology aect rainforest
distribuon;
• At a local scale, the importance of insularity and topography is
directlyrelated to re acvity. In locaons with high reacvity
(mainland),rainforestsarepredominantlyconnedtore-sheltered
sengs,whereasin areaswithlowerreacvity(islands), rainfor-
estswillalsobeabletogrowinmoreexposedsengs.
Collecvelythisstudyinvesgatesthedriversofrainforestdistribu-
onacrossmulple spaal scalesinnorthernAustralia, therebyillumi-
nang the capacity forclimate change and re management to aect
rainforestcoverageand providing insightsforboth theorecalecology
andappliedlandmanagement.
2 | METHODS
2.1 | Geographic context
The Australian monsoon tropics are characterized by a pronounced
wet and dry seasons associated with the Australian summer mon-
soon(Bowman etal.,2010).This regionincludesthe wholeofnorth-
ernAustraliaexcepttheAustralianwet tropics in North Queensland
(Bowman, 2000; Figure1a-c). In contrast to the wet tropics, where
tropicalrainforestsdominate,themonsoontropicssupportvasteuca-
lyptsavannas(Bowman,2000;Figure2a,c).Embeddedinthesesavan-
nasareverysmallpatchesofmonsoontropicalrainforest,rangingfrom
afewtreesto100hainarea(McKenzie,Belbin,Keighery,&Kenneally,
1991). These rainforests have orisc and biogeographic anies
with wet tropical rainforests in both Asia and Australia. They have
been intensively studied given their unusual biogeography and ecol-
ogy,parcularlytheirabilitytopersistinahighlyammabletropical
savannaenvironment(Bowman,2000).Somerainforestsareknownto
growonaquifers(Kenneally,Keighery,&Hyland,1991;Russell-Smith,
1991),whichinsulatethepatchesfromregionalclimate,butourmap-
pingcouldnotdierenatethesetypesfromthemorewidespreadand
drought-adaptedrainforests(Bowman,Wilson,& McDonough,1991;
Russell-Smith, 1991). The locus of the subconnental study was the
Australian monsoon tropics west of the Carpentarian Gap biogeo-
graphicdivide,whichseparatesthebiotaoftheNorthernTerritoryand
Western Australia from Cape York Peninsula (Bowman etal., 2010).
Annual rainfall in this area varies from approximately 1,900mm in
thenortheast to700mmin thesouthwest (Figure1c), thatwould be
expectedto exert astronginuence on theabundanceof rainforest.
Thisanalysiswasmadepossiblebycombiningvegetaonmapspro-
ducedbytheNorthernTerritory andWesternAustraliangovernment
landmanagementagencies, nong that the border betweenthetwo
statesbroadlyalignwiththeOrdAridIntrusion,amajorbiogeographic
boundarythatseparatesthebiotaoftheKimberleyregionofWestern
Australiafromthatofthe“TopEnd”oftheNorthernTerritory(Figure1;
Bowmanetal.,2010;Eldridge,Poer,&Cooper,2011),andthatlikely
aectsrainforestspeciesdiversity.Inaddiontothiscoarse-scalesub-
connentalstudy, weundertook amore detailedanalysisoftherain-
foreststothe west of the Ord AridIntrusion.This region, located at
theextremeendoftheprecipitaongradient whererainforestoccurs
innorthernAustralia,haslimitedspaal variability in rainfall (1,200–
1,400mm),whichallowedustoidenfyecologicalfactors,otherthan
precipitaon, that shape rainforest distribuon. This was based on
ne-scalemappingofthetradionallandsoftheWunambalGaambera
people,henceforthcalledtheWunambalGaamberaCountry.
FIGURE1 Themonsoonrainforest
domaininnorthwesternAustralia.
(a)Thegrayarearepresentsthemonsoon
rainforestdomaininthenorthofWestern
Australia(WA;Kimberetal.,1991)and
theNorthernTerritory(NT).TheOrdArid
Intrusion,themainbiogeographicbarrier
betweenthetwostates,isindicated.
Dashedlinesindicaterainfallisohyets(mm).
Theinsetsshow(b)thestudyareawithin
Australiaand(c)elevation(minimum,0m,
white;maximum,960m,black)
4 
|
   ONDEI Et al.
TheWunambalGaambera Countryoccupies anarea of9,144km2,
dominatedbybiodiversetropicalsavannasoccurringon deeplyweath-
ered sandstones and basalc base rocks of Precambrian age, oen
cappedbyCainozoiclaterites.Inthisregion,averageannualrainfalloc-
cursalmost enrelyduring thesummerwetseason(November–April),
whiletherestoftheyearisalmostrain-free(Beard,1976).Thelandscapes
areshapedbygeology;thedominantsubstratesareinferlesandstone,
where the Holocenesea-levelrise has created rugged coastlines, and
themoderatelyferlebasaltcountry,characterizedbygentleslopesand
hills(Beard,1979;Specketal.,2010;Figure2b).Thevegetaonispre-
dominantlyeucalypt savanna.Eucalyptus tetrodontaEucalyptus miniata
savannasarefoundonthelateritemesasandhills,whileEucalyptus tec-
caEucalyptus grandifoliasavannasarecommonondeeper,claysoils
onplains.Smallpatchesofsemi-deciduous rainforestsareinterspersed
inthesavanna(Figure2c,e),typicallylocatedinre-protectedlocaons
(Vigilante,Bowman,Fisher,Russel-Smith,&Yates,2004).
Fireregimes in the northern Kimberleyare stronglyshapedbyan-
thropogenicignions and have been forover 40,000years(O’Connor,
1995).This ancient tradion ofAboriginal remanagementis likely to
havemaintainedbiodiverseopensavannahabitatsand protectedsmall
isolatedrainforest fragments(Mangglamarra,Burbidge, & Fuller,1991;
Trauernicht, Brook, Murphy, Williamson, & Bowman, 2015; Vigilante,
Murphy,&Bowman,2009).ThecessaonofAboriginalremanagement
in many northern Australian environments has been associated with
degradaonof somerainforestsand otherre-sensive plant commu-
nies(Russell-Smith&Bowman,1992;Trauernicht,Murphy,Portner,&
Bowman,2012),althoughinrarelyburntareastherecanbeexpansionof
rainforest(Bowman&Fensham,1991;Clayton-Greene&Beard,1985).
2.2 | Rainforest mapping and analyses
2.2.1 | Subconnental scale—climac drivers of
rainforest density
The distribuon and areal extent of the rainforests in the north-
western Australian monsoon tropics was determined by blending
exisng vegetaon maps. Total coverage of rainforest in Western
Australiaand Northern Territorywas calculated fora lace ofgrid
FIGURE2 (a)ExtentofthemappedareainthenorthernKimberley;(b)themaingeologytypesinthearea,and(d)rainforestdensity,
expressedashaperkm2ofland.Inthisarea,rainforeststypicallyoccuras(c)smallpatches(green)surroundedbysavanna(brown),with(e)sharp
boundariesbetweenthetwovegetationtypes
(a)
(d)
(b) (c)
(e)
    
|
 5
ONDEI Et al.
cells 50×50km in area. The Western Australia map (1:200,000)
wasderivedfromKimber,Forster,andBehn(1991),whousedsemi-
automatedclassicaonofLandsat imagery taken in 1986 and did
not dierenate oriscs or structure variaon among rainforests.
The Northern Territory vegetaon data (1:80,000), based on in-
terpretaon of aerial photography classied according to Russell-
Smith (1991), were supplied by the Department of Land Resource
Management,© NorthernTerritoryof Australia.In calculangrain-
forest coverage in the Northern Territory lace cells, we selected
bothdryandwetrainforest typesbecausetheyarestructurally and
oriscally similar to the Western Australian rainforests (Bowman,
1992;Kenneallyetal.,1991).Wecombined the Western Australia
and Northern Territory data to create a map of the northwestern
rainforestdomain,extendingfrom11.00°Sto18.00°Sinlatudeand
from122.14°Eto 138.00°E in longitude (Figure1).Thisresulted in
192and63gridcellsintheNorthernTerritoryandWesternAustralia,
respecvely. For each grid cell, mean annual rainfall, precipitaon
seasonality(coecientofvariaonofmonthlyrainfallexpressedasa
percentage),potenalevapotranspiraon, moistureindex(meanan-
nual precipitaon over potenal evapotranspiraon; Thornthwaite,
1948),andannualmeantemperaturewerecalculated forthecenter
pointofeachcell.Rainfall,precipitaonseasonality,andtemperature
datawereobtained from WorldClim Global ClimateData(Hijmans,
Cameron,Parra, Jones,& Jarvis,2005),and moistureindex andpo-
tenalevapotranspiraonweredownloadedfromtheGlobalAridity
and PET database (Zomer, Trabucco, Bossio, & Verchot, 2008).
Minimum, maximum, and median values of the climac variables
werecalculated separately for theWesternAustralia and Northern
Territorygridcells.
2.2.2 | Regional scale—regional drivers of
rainforest density
We generated a map of the rainforests in the northern Kimberley,
covering the enre Wunambal Gaambera Country and expanding
theanalysis totheadjacent coastalareas (totalsurface12,572km2),
asfollows. Orthophotos (scale 1:8,000)takenduring the dryseason
(May–August)oftheyears2005–2007wereusedcreateamapofthe
rainforestpatcheslocatedinthestudyarea.Alaceof30×30mcells
wasoverlaidontheorthophotos,andeverycell wasmanuallyclassi-
edas“rainforest,”“savanna,”or“other.”Thevegetaontypeofeach
cellwas considered tobethe one occupyingthehighest proporon
ofthecell.Amapoftherainforestpatcheswasproducedbymerging
theconguouscellsclassiedas“rainforest”(Figure2d).Ahelicopter
surveywasconductedtovalidatethemap.Theight path,designed
toincludelocaonswithbothhighandlowrainforestcover,included
coastalandinlandareasaswellasislands.Itcoveredthemaingeologic
substrates,inparcularbasalt,sandstone,andlaterite.Weewalong
theselectedpathatanaverageheightof300mabovethegroundfor
atotallengthof550kmon22September2013.Waypoints,collected
every10s,were visually idened as “rainforest”or“savanna.” The
pointswerethen buered 30m and intersected with the rainforest
map. A confusion matrix was generated to calculate map accuracy,
omissionandcommission errors,andkappacoecientof agreement
(Congalton,1991).
Patch size, distance from the coastline, and distance from the
nearestdrainagelinewerecalculatedforeveryrainforestpolygonon
theregionalscalemap.Rainforestdensitywascalculatedashaofrain-
forestperkm2ofland,basedonagridof1×1kmsizecellsforcom-
putaonalreasons. Foreach cell,wealso calculated:(1)the geology
category,based on the predominant geology type in each 1×1km
cell;and(2)thetopographiccategory,basedonthepredominanttopo-
graphic posion index (TPI;Jenness, 2006) in the cell. The TPI was
calculatedforeverypixelinthemappedareafroma30-mresoluon
digital elevaon model (DEM), based on the dierencein elevaon
betweeneachpixelandtheaverageelevaonof theeight neighbor-
ingpixels;valueslowerthan −1wereclassiedas “valley,”andvalues
higherthan+1as“ridge.”Intermediatevalueswereclassiedas “at”
or“slope”dependingon theslopeofthepixel(≤4° foratareas,>4°
forslopes),obtainedfromthe30-mDEM.(3)Eachgridcellwasfurther
classiedashaving “complex”or“level” terrain,nong that complex
terrainisoenassociatedwithrockiness.Cellsinwhichthecategories
“valley”+“ridge”+“slope”occupiedmore than50%ofthecellwere
classied as “complex,” the others as “level,” The average rainforest
densityin thenorthern Kimberleywasthencalculated foreach geo-
logicsubstrateandTPIbasedontherainforestdensitygrid.
2.2.3 | Local- scale natural experiment–Mainland
versus Islands
Weexpected there wouldbe dierences inre acvity andrainfor-
estdistribuon between islandsandmainland, because islandshave
been subject to fewer human ignions due to infrequent visitaon
inrecentmes(Vigilante etal.,2013)andtheseaprovidesanatural
rebreakfromsurroundinglandscaperes.Totestthis,wecompared
rainforestdensitygridcellsonislandsandthemainland.Weselected
areasthatweregeographically,oriscally,andecologicallysimilarby
extracngfromthe“regionalscaledataset”onlygridcellswiththefol-
lowingaributes:meanannualrainfallbetween1,250and1,382mm/
year,distancefromthe coastline <5km (equivalent to the radiusof
the biggest island hence the maximum distance from the coastline
onislands),andgeologydevelopedonbasalt,laterite,orcoastalsedi-
ments. Islands and coastal areas of the northern Kimberley are o-
riscally similar, with only a very small group of taxa recoded only
fromislands(Lyons,Keighery,Gibson,&Handasyde,2014).Gridcells
locatedon the BougainvillePeninsula were includedinthe category
“islands,”dueitsnarrowneckwhichmakesitfunconallyequivalent
toanislandintermsofisolaonfromthemainland.
Fireacvitywascalculatedfroma15-yearrehistorymap(2000–
2014),createdatapixelresoluonof250mbasedon MODISsatel-
lite imagery,accessed via North AustralianFire Informaon website
(hp://www.renorth.org.au/na3/).Due tothe coarse resoluonof
there historymap,itwasimpossibleto accuratelylocateeveryre
scar,sothedatawereusedtoprovidecoarse-scaleinformaonabout
dierencesinreacvitybetweenthemainlandandislands.Forevery
cell of the rainforestdensity grid, the area-weighted proporon of
6 
|
   ONDEI Et al.
yearsburntwas calculated bydividingtheaverage number ofyears
inwhich thecell wasburnt by15, thetotalnumberofyearsinves-
gated.The averagereacvity peryear andrainforestdensitywere
calculatedforcellsclassiedas“island”or“mainland”and,withineach
category,“complex”or“level”terrain.
2.3 | Stascal analyses
Atasubconnentalscale,weemployedthePearsonproductmoment
correlaoncoecienttoexaminecorrelaonsamongrainforestden-
sityandtheclimacvariables,andpresentedtheresultsinaconstel-
laondiagram.Forpresentaon(butnottheanalysis),weaggregated
thegridcellsinto200-mmmeanannualrainfallbinsandcalculatedthe
averagerainforestdensityforeachbin.
Ataregionalscale,we rsttested forspaal autocorrelaonin
rainforest density and assessed minimum sampling distance, es-
matedbyplongthesemi-varianceasafunconofdistance,using
thesowareR(RCoreTeam,2013)andtheRpackagegeoR(Ribeiro
&Diggle,2001;AppendixS1).Wethentestedwhetherthefactors
terrainandgeologyarerelatedtorainforestdensity.Wealsochecked
whetherrainforestdensitywasassociatedwithgeologywithinlevel
and complex terrain types. Todo this, we used generalized linear
models(GLMs)andcompletesubsetregressionandmodelselecon
basedonAkaike’sinformaoncriterion(AIC;Burnham&Anderson,
2002),calculatedusing theRpackage “MuMIn”(Bartoń,2009).We
used the compound Poisson-gamma distribuon, included in the
tweediefamilyofdistribuons,whichallowsregressionmodelingof
zero-inatedposiveconnuousdata(Rpackages“tweedie”[Dunn,
2014] and “statmod” [Smyth,Hu, Dunn, Phipson, & Chen, 2015]).
To assess the importance of each variable,we calculated Akaike
weights(wi),which representtheprobabilitythat a given modelis
thebestinthecandidateset(Burnham&Anderson,2004).Wethen
calculatedvariableimportance(w+) asthesummed wiofthe mod-
els in which thevariable occurs. w+ values higher than 0.73 were
considered to indicatethat the variable is a stascally important
predictor (Murphyetal., 2010). Model summaries are provided in
AppendixS2.
When comparing mainland versus islands, we examined dif-
ferences in rainforest density and re acvity between locaons,
tesng for the factors insularity (island or mainland) and terrain
(complex or level).Todo so, we employed GLMs, using the com-
poundPoisson-gammadistribuon for both rainforestdensityand
reacvity,completesubsetregression,andmodelseleconbased
on AIC as described above.Variable importance was assessed by
FIGURE3 Comparisonoftherainforest
domaininWesternAustralia(WA)and
NorthernTerritory(NT),showing(a)
averageannualrainfall,(b)moisture
index,(c)meanannualtemperature,
(d)precipitationseasonality,and(e)
potentialevapotranspiration(PET).Boxes
indicatemedianvaluesandupperand
lowerquartiles,barsthe10thand90th
percentiles
    
|
 7
ONDEI Et al.
calculangw+, asdescribedabove.Modelsummaries areprovided
inAppendixS2.
3 | RESULTS
3.1 | Subconnental scale
ThenorthwesternAustralianrainforestdomaincoveredan areaof
640,000km2,ranging fromthe coastlinetoamaximumof 350km
inland.RainforestdensitywaslowerwestoftheOrdAridIntrusion:
inWestern Australiarainforest densityrangedfrom0to 8.7haof
rainforestper km2ofland (average1.1±0.2ha/km2),while inthe
NorthernTerritory the rangewas0–19.0ha/km2 of land(average
1.4±0.2ha/km2). The Northern Territory showed higher median
valuesandabroaderrangeofbothmean annualrainfallandmois-
tureindex(Figure3a,b).Meanannualtemperatureandprecipitaon
seasonalityshowedhighermedianandmaximumvaluesinWestern
Australia and minimum in the Northern Territory (Figure3c,d),
while annual potenal evapotranspiraon had a similar range in
thetwo statesbut highermedianvalues inthe NorthernTerritory
(Figure3e).
Therewasaposivecorrelaonbetweenrainforestdensityand
bothmeanannualrainfallandmoistureindex(Figures4and5),which
were also posively correlated. Potenal evapotranspiraon was
negavely correlated with rainforest density, moisture index, and
rainfall,whileprecipitaonseasonalitywasnegavelycorrelatedwith
rainfalland moisture index. Meanannual temperaturewasnot cor-
relatedwithanyoftheclimac variablesinvesgatednorwithrain-
forestdensity.
3.2 | Regional scale
Intotal,2,902points were assessed during the aerial survey. There
wasastrongconcordancebetweentherainforestmapandtheaerial
assessment,witharesulngoverallmapaccuracyof93%(Kappacoef-
cient.78; AppendixS3).A highaccuracywas obtainedforsavanna
points (95% for both producer’s and user’s accuracy), meaning few
savannapoints weremistaken forrainforest. Weaributethe lower
producer’s and user’s accuracy for rainforests (83% and 82%, re-
specvely)tothe orisccomposionof themonsoonvine thickets,
where semi-deciduous species can dominate (Beard, 1979), making
poronsof theforest patchesundetectablefromorthophotostaken
duringthedryseason.
Savannawasbyfarthemostcommonvegetaon,covering98.9%
ofthe area.Wedetectedatotal of6,460rainforest patchescover-
ing10,300ha,equivalentto 0.82% of the mapped land. Patchsize
rangedfrom 0.1to 220ha andaveraged1.6ha±0.1(SE).Seventy-
vepercentof patchesweresmallerthan1ha,and only2.5%were
larger than 10ha (Figure6a).More than 40% of the mapped rain-
forestpatcheswerelocatedwithin1kmofthecoastline(Figure6b),
butpatchesweredetectedupto47kminland(average4.7km±0.1
[SE]).Asimilarpaernwasidenedfordistancefromdrainagelines,
with64%ofthepatcheslocatedwithin1kmofthenearestdrainage
line(Figure6c),but someup to32kmdistant(average1.7km±0.0
[SE]).
Rainforest density was strongly dependent on both terrain
(w+=1.00) and geology (w+=1.00); averagerainforest density was
higheronrelavelyferlesubstrates(laterite,coastalsediments,and
basalt),and lower onalluviumand colluvium andinferlesandstone
(Figure7a). Average rainforest density was also higher in complex
terrain such as ridges, slopes, and valleysand lower on level areas
(Figure7b).Themodelincludinggeologyandterrainexplained32.1%
of the deviance.The preference for relavelynutrient-rich geology
was independent on terrain, as on both level and complexterrains
rainforest density was strongly associated with geology (w+=1.00
inboth cases;AppendixS4). Geologyexplained13% ofdevianceon
complexterrainand10%ofdevianceonlevelterrain.
FIGURE4 Constellationdiagramshowingthestrength
anddirectionofcorrelationsamongrainforestdensityandthe
climaticvariablesaverageannualrainfall,moistureindex,potential
evapotranspiration(PET),precipitationseasonality,andmeanannual
temperatureinthemonsoonrainforestdomaininnorthwestern
Australia.Positivecorrelationsarerepresentedbyblacklines,
negativecorrelationsbygraylines.Correlationsstrongerthan.4or
−.4areindicated;widerlinesindicatestrongercorrelations,narrower
linesweakercorrelations
FIGURE5 Averagerainforestdensitybyaverageannualrainfall,
calculatedwithintherainforestdomainintheAustralianmonsoon
tropics.Thenumbersaboveeachcolumnrepresentthenumber
ofgridcellincludedinthatrainfallinterval.Errorbarsrepresent
standarderror
8 
|
   ONDEI Et al.
3.3 | Mainland versus Islands
Thegridcellsonbasalt,laterite,andcoastalsubstratesandwithin5km
ofthe coastcovered anarea of332.4km2 onislands and693.1km2
onthemainland. Thetotalareacoveredby rainforestswas47.0km2
ontheislands,comparedwith13.6km2onthemainland,sothatrain-
forestdensitywassevenmeshigherontheislands(Table1).Islands
weremoretopographicallycomplexthanthemainland(Table1).There
wasstascal supportfor aninuence ofboth insularity(w+=1.00)
andterrain(w+=1.00)on rainforestdensity(Table2),andthemodel
includingboth explained35%of deviance.There waslessre acv-
ityonislands(average0.061±0.003mesburntperyear)thanon
themainland(average0.266±0.004mesburntperyear;w+=1.00),
andinsularityaloneaccountedfor39.1%ofdeviance.Contrarytoex-
pectaons,therewasnostascalsupportforaneectofterrainon
reacvity(w+=0.48;Table2).
4 | DISCUSSION
WefoundthatinnorthwesternAustralianmonsoontropicsrainforest
patchesare ny andscaeredacross a vastsavannamatrix. Due to
theirsmallsize, these rainforest fragments areessenallyundetect-
ableattheresoluonemployedbyglobal-levelassessments(Murphy
&Bowman,2012;Staveretal.,2011b).Atasubconnentalscale,the
strongcorrelaonbetweenrainforestdensityandannualrainfall,po-
tenalevapotranspiraon,andmoistureindexhighlightedtheprimacy
ofwatersupplycomparedwithmeanannualtemperatureandprecipi-
taonseasonality,andsupportedourrsthypothesis.Thiscorrelaon
iscongruouswith the observaon that atrendof increasing rainfall
innorthernAustraliasince the 1940s is the key driver of rainforest
patch expansion (Banfai & Bowman, 2007; Bowman etal., 2001).
These ndings are also consistent with the global trend of increas-
ingproporonofrainforest(anddecreasingsavanna)asmeanannual
precipitaonincreases(Hirotaetal.,2011;Murphy&Bowman,2012).
InthedrierlandscapeswestoftheOrdAridIntrusion,rainforestspe-
ciesdiversityisalsolowerthantotheweereastandmostofthe
FIGURE6 FrequencydistributionofrainforestpatchesinthenorthernKimberleyregionaccordingto(a)size,(b)distancefromthecoastline,
and(c)distancefromthenearestdrainageline.Notethelogarithmicscaleforthexaxes
FIGURE7 Rainforestdensityinrelationto(a)geologicsubstrate,
and(b)topographicpositioninthenorthernKimberley(regional
analysis).Rainforestdensitywashighestoncoastalsediments,basalt,
andlateriticsubstrates.Itwasalsohigheronridges,slopes,and
valleys,andalmostabsentinflatareas.Errorbarsrepresentstandard
errors
    
|
 9
ONDEI Et al.
speciesinWestern Australia are assubsetof those intheNorthern
Territory(Kenneallyetal., 1991). However, thepresenceof rainfor-
estsinthenorthwesternAustralianmonsoontropicsshowedthatthe
regioncannotbedenedasdeterminiscallysavannabasedsolelyon
climate(Murphy&Bowman,2012).Similarly,rainforestpatchesexist
throughout much of the tropics globally, which suggests that in all
butaridtropicalregions,climate aloneisnottheonlyfactorcontrol-
lingrainforestdistribuon (Staver etal., 2011b). InBrazil,forexam-
ple, small patches of deciduous and semi-deciduous rainforests are
interspersedin a matrix ofsavannaplants (Cerrado) or thornscrubs
(Caanga)andarerestrictedto slopes and moist, nutrient-rich sites
(Leal, da Silva, Cardoso, Tabarelli, & Lacher, 2005; Oliveira-Filho &
Raer,2002).Likewise,inIvoryCoastthedominantsavannavegeta-
onisscaeredwithsmallpatchesofdryrainforest(Goetze,Hörsch,
&Porembski,2006).
Wealsofoundsupportforoursecondhypothesisthattopography
and geologyaect rainforest distribuon. Theinuence of topogra-
phyonrainforestdensitywasmanifestinthehigherrainforestdensity
oncomplex comparedwith levelterrain.Rainforestdensitywasalso
higheronnutrient-richbasaltcomparedwiththenutrient-poorsand-
stone,despitethehigherrefrequencyandintensityrecordedonba-
salt(Vigilanteetal.,2004).Thispaernisconsistentwiththeedaphic
compensaonhypothesis (Ash,1988;Webb&Tracey,1981), whose
underlyingmechanismisprobablythe eect ofincreasedferlity in
enhancingplantgrowth,allowingtreestoreachthethresholdsizethat
triggersthe switchfrom savannato rainforestthroughgrass shading
(Homann,Geiger, etal., 2012; Murphy& Bowman, 2012). It is im-
portant to note that geology and terrainare typically not indepen-
dent.Forexample, inthenorthern Kimberleyroundedhillsaremore
commononbasalt,whilesteepgorgesarefrequentlyfoundonsand-
stone(Vigilanteetal., 2004). However,in ouranalysis wewereable
todemonstrateaneectofgeologyalonebycomparingareasonthe
sameterrain, showingthat thereare morerainforestson basaltthan
onlessferlegeologies.
There was onlyparal support for our third hypothesis that in-
sularity and topographic eects are directly related to re acvity.
Clearly,thereweremorerainforestsonislands,wheretherewasalso
lessreacvitycomparedwiththemainland.Theimportanceofrein
restricngrainforestshasbeendemonstratedbyrainforestexpansion
inothersavannalandscapeswhererehasbeenexcluded,innorthern
Australia(Fensham& Butler,2004; Scoetal., 2012)and elsewhere
(Bond, Midgley,Woodward, Homan, & Cowling, 2003). Rainforest
speciesaretypicallylessretolerantthansavannaspeciesduetothin-
ner bark and less developedpost-rerecovery mechanisms (Lawes,
Midgley, & Clarke,2013; Ondei, Prior, Vigilante, & Bowman, 2015;
Pausas,2015). However,we failed to detect acorrespondingdier-
enceinreacvitybetweenterraintypesonthemainlandandfound
onlyaminordierenceonislands.Therearetwopossiblereasonsfor
this lack of correspondence,which are not mutually exclusive. One
isthat terrain, orassociated rockiness,did exertaninuence onre
acvity,butthiswas obscuredbythecoarsescaleofthe gridcellsin
ouranalysis(1×1km).Anotherpossiblereasonisthatthehigherrain-
forestdensity oncomplexterrain is theresultofwaterand nutrient
accumulaon (Ash, 1988; Daws, Mullins, Burslem,Paton, & Dalling,
2002),ratherthantopographicreprotecon.Nonetheless,thepres-
enceofrainforestonlevelterrainonislands,butnotonthemainland,
suggeststhat reis animportantcontrollerof rainforestdistribuon
intheregion.
Wesuggestthatrainforestdensityisdeterminedbythe interplayof
reacvityandplantgrowthrates(Figure8a).Fireacvityisshapedby
insularity and possiblyterrain complexity, while plant growth ratesare
knowntobecontrolledbywateravailabilityand thenutrientstockpro-
videdbythegeologicalsubstratecontrol(Murphy&Bowman,2012),with
aneectofterraininenhancingwaterandsoilaccumulaon(Ash,1988).
Growthratesaectthecapacityofrainforesttreestogrowrapidlyandes-
capethe“retrap,”therebydevelopingaclosedcanopywhichshadesout
grassbiomass,reducingrefrequencywhichinturnreinforcesrainforest
TABLE1 Extent,rainforestcover,averagerainfall,andextentof
thegeologicsubstratesandterraintypeontheselectedgridcells
usedtocomparerainforestdensityonislandsandthemainlandin
thenorthernKimberley
Islands Mainland
Totalland(km2)332.4 693.1
Rainforestarea(km2)47.0 13.6
Rainforestdensity(ha/km2)14.1 2.0
Averagerainfall(mm/year) 1348±1 1307±1
Geologytype(%)
Basalt 64.4 81.2
Coastalsediments 0.5 2.7
Laterite 35.1 16.1
Terraintype(%)
Complex 62.8 55.6
Level 37.2 44.4
TABLE2 Averagereacvity,measuredasmesburntperyear,andaveragerainforestdensity,measuredasha/km2,forcomplexandlevel
terrainslocatedontheselectedgridcellsonislandsandmainlandinthenorthernKimberley
Level terrain Complex terrain w+
Mainland Islands Mainland Islands Terrain Insularity
Fireacvity(averagemesburntper
year±SE)
0.26±0.01 0.08±0.01 0.27±0.01 0.05±0.00 0.48 1.00
Rainforestdensity(ha/km2±SE)0.30±0.06 6.81±0.73 4.29±0.42 19.69±0.88 1.00 1.00
The w+indicatesthestascalsupportforthetermsterrainandinsularitywhencomparingmainlandandislands(fullresultsarepresentedinAppendixS2).
10 
|
   ONDEI Et al.
expansion(Dantasetal.,2013;Homann,Geiger,etal.,2012;Murphy&
Bowman,2012).OurndingsaresummarizedinFigure8b,whichshows
characteriscpaernsofrainforestfragmentsinthelandscapeandhow
these fragments are likelyto expand in response to a weng climate
undercontrasngferlityandreregimes.Rainforestexpansionshould
beproporonally greaterin lower-rainfallareas thatcurrentlyhavelow
rainforestdensity,like thenorthernKimberley, becausetherearemore
landscapenichesavailableforoccupancy,suchasnutrient-richandre-
protectedsites.Aprediconofourworkisthat,underthecurrentweng
trend,therewillbeconnuingrainforestexpansion inthe Kimberley,as
has been observed elsewhere in the Australiantropics (Russell-Smith,
Stanton,Edwards,&Whitehead,2004).
FIGURE8 SynthesisoftheenvironmentaldeterminantsofrainforestfragmentsinthenorthernKimberley.(a)Diagramshowingthepositive
(+)andnegative(−)effectsofenvironmentalfactorsonrainforestdensity.Dottedlinesrepresentprobableeffects.(b)Toprow:obliqueaerial
photographsshowingexamplesofthedensityofrainforestfragmentsonsiteswithcontrastinggeology(sandstonevs.basalt)andfireactivity
inthenorthernKimberley.Secondrow:3Drenderingsofrainforestdistribution(darkgreen)onsandstone(nutrient-poor)andbasalt(nutrient-
rich)landscapeundercurrentdryclimate.Bottomrow:3Drenderingsofplausiblerainforestdensityunderaclimateaswetascoastalregionsof
theNorthernTerritory.Inthisstudy,wedemonstratedthatinsularsiteshavesubstantiallylowerfireactivitythanenvironmentallycomparable
mainlandsavannaareas.Underthecurrentclimate,rainforestdensityishighestonfertileinfrequentlyburntareas,andinfrequentlyburnt
landscapesisconfinedtotopographicallyfire-protectedsettings,particularlyonnutrient-poorgeology.Underawetterclimate,weexpectthe
rainforestpatchestoexpandandnewpatchestoestablishinsuitablelandscapeniches,withthegreatestexpansiononbasaltlandscapes.The
exactamountofexpansionisunpredictablebecauseoftheinfluenceoffireactivityandfiremanagement
    
|
 11
ONDEI Et al.
5 | CONCLUSION
Wehaveshownthatthedensityofmonsoonrainforestinthenorth-
western Australian savanna is aected by moisture availability,
substrate, and re. The eect of these drivers appears to involve
complicatedfeedbacksandinteracon,suchasthecombinedeects
ofpotenalreproteconandincreasedproducvityintopographi-
callycomplexterrains.Weacknowledgethatourcorrelaveanalysis
cannotseparatecause andeect,ortestthere-drivenASSmodel
in explaining the distribuon of rainforests. To do this demands
analysis of vegetaon boundary dynamics coupled with contrasts
of substrate type and re history. This can be achieved through
carefully designed regional-scale analysis of rainforest boundaries
trends,suchas eldsurveysandhistoricalsequences ofaerialpho-
tography(Banfai&Bowman,2006;Butleretal.,2014;MacDermo,
Fensham,Hua,&Bowman,2016)andisthesubjectofasubsequent
paper.Despiteits limitaons, ourapproachis an important stepin
understandingthe eect ofclimatechange and anthropogenicdis-
turbancesonnaturallyfragmentedrainforestselsewhereinthetrop-
icalsavannabiome.
ACKNOWLEDGMENTS
This study was supported by the Wunambal Gaambera Aboriginal
Corporaon and Bush Heritage Australia as part of their “Healthy
Country”landmanagement plan. We thank the UunguuRangersand
TradionalOwnersforthesupportprovidedintheeld.Wewouldalso
liketothanktheanonymousreviewersfortheirvaluablecommentsand
suggesonswhichgreatlyhelpedimprovingthequalityofthepaper.
CONFLICT OF INTEREST
Nonedeclared.
REFERENCES
Ash,J.(1988).Thelocaonandstabilityofrainforestboundariesinnorth-
easternQueensland,Australia.Journal of Biogeography,15(4),619–630.
Banfai,D. S.,& Bowman,D.M.J.S. (2006).Fortyyears oflowland mon-
soonrainforestexpansioninKakaduNaonalPark,NorthernAustralia.
Biological Conservaon,131(4),553–565.
Banfai,D.S.,&Bowman,D.M.J.S.(2007).Driversofrain-forestboundary
dynamicsin KakaduNaonalPark,northernAustralia:Aeldassess-
ment.Journal of Tropical Ecology,23(1),73–86.
Bartoń,K.(2009).MuMIn: Mul-Model Inference.Rpackageversion0.12.2.
Retrievedfrom:hp://CRAN.R-project.org/package=MuMIn.
Beard,J. S. (1976). The monsoon forest ofthe Admirality Gulf, Western
Australia.Vegetao,31,177–192.
Beard,J. S. (Ed.) (1979). Vegetaon survey of Western Australia: Kimberley
1:1 000 000 vegetaon series sheet 1. Perth,Australia: University of
WesternAustraliaPress.
Bond,W.J.(2010).Donutrient-poorsoilsinhibitdevelopmentofforests?A
nutrientstockanalysis.Plant and Soil,334(1),47–60.
Bond,W.,Midgley,G., Woodward,F.,Homan,M.,&Cowling,R.(2003).
Whatcontrols SouthAfricanvegetaon-climate orre? South African
Journal of Botany,69(1),79–91.
Bond,W.J.,Woodward,F.I.,&Midgley,G.F.(2005).Theglobaldistribuon
ofecosystemsinaworldwithoutre.New Phytologist,165(2),525–537.
Bowman,D.(1992).Monsoonforestsinnorth-westernAustralia.II.Forest-
savannatransions.Australian Journal of Botany,40(1),89–102.
Bowman,D.M.J.S.(2000).Australian rainforests: Islands of green in a land of
re.Cambridge,UK:CambridgeUniversityPress.
Bowman,D.M.J.S., Brown,G. K.,Braby,M. F.,Brown,J.R., Cook,L. G.,
Crisp, M. D., … Ladiges, P.Y. (2010). Biogeographyof the Australian
monsoontropics.Journal of Biogeography,37(2),201–216.
Bowman,D.,&Fensham,R.(1991).Responseofamonsoonforest-savanna
boundary to re protecon, Weipa, northern Australia. Australian
Journal of Ecology,16(1),111–118.
Bowman,D. M.J.S., Perry,G.L. W.,& Marston, J.B. (2015). Feedbacks
andlandscape-levelvegetaondynamics.Trends in Ecology & Evoluon,
30(5),255–260.
Bowman, D. M.J. S., Walsh, A., & Milne, D.J. (2001). Forest expansion
andgrasslandcontraconwithinaEucalyptussavannamatrixbetween
1941and 1994atLitcheldNaonalPark intheAustralian monsoon
tropics.Global Ecology and Biogeography,10(5),535–548.
Bowman,D.M.J.S.,Wilson,B.A.,&McDonough,L.(1991).Monsoonforests
in NorthwesternAustralia I. Vegetaonclassicaon and the environ-
mentalcontroloftreespecies.Journal of Biogeography,18(6),679–686.
Burnham,K. P.,&Anderson,D. R.(2002).Model selecon and mulmodel
inference: A praccal informaon-theorec approach. New York, NY:
Springer.
Burnham, K. P., & Anderson, D. R. (2004). Mulmodelinference under-
standing AIC and BIC in model selecon. Sociological Methods &
Research,33(2),261–304.
Butler,D. W.,Fensham, R.J., Murphy, B.P.,Haberle,S. G., Bury,S.J., &
Bowman, D.M. J. S. (2014). Aborigine-managed forest, savanna and
grassland: Biome switching in montane eastern Australia. Journal of
Biogeography,41(8),1492–1505.
Clayton-Greene, K., & Beard, J. (1985). The re factor in vine thicket
and woodland vegetaon of the Admiralty Gulf region, north-west
Kimberley, WesternAustralia. Proceedings of the Ecological Society of
Australia,13,225–230.
Congalton,R. G. (1991).A reviewof assessingthe accuracy ofclassica-
ons of remotelysensed data. Remote Sensing of Environment,37(1),
35–46.
Dahlin,K.M.,Asner,G.P.,&Field,C.B.(2014).Linkingvegetaonpaerns
to environmental gradients and human impacts in a mediterranean-
typeislandecosystem.Landscape Ecology,29(9),1571–1585.
Dantas,V. D.L., Batalha, M. A., & Pausas, J. G. (2013). Fire drivesfunc-
onal thresholds on the savanna–forest transion. Ecology, 94(11),
2454–2463.
Dantas,V.D.L.,Hirota,M.,Oliveira,R.S.,&Pausas,J.G.(2016).Disturbance
maintainsalternavebiomestates.Ecology Leers,19(1),12–19.
Daws, M., Mullins, C., Burslem, D. R. P., Paton, S., & Dalling,J. (2002).
Topographicposionaectsthewaterregimeinasemideciduoustrop-
icalforestinPanamá.Plant and Soil,238(1),79–89.
Dunn,P.K. (2014). Tweedie: tweedie exponenal family models.R package
version 2.2.1. Retrieved from: hps://cran.r-project.org/web/pack-
ages/tweedie/index.html
Eldridge,M.D.,Poer,S.,&Cooper,S.J.(2011).Biogeographicbarriersin
north-westernAustralia: Anoverviewand standardisaonof nomen-
clature.Australian Journal of Zoology,59(4),270.
Fensham,R.J.(1995). Floriscsand environmentalrelaonsofinland dry
rainforest in North Queensland, Australia. Journal of Biogeography,
22(6),1047–1063.
Fensham, R. J., & Butler, D. W. (2004). Spaal paern of dry rainfor-
est colonizing unburnt Eucalyptus savanna. Austral Ecology, 29(2),
121–128.
Fensham,R.J., Fairfax,R.J., &Archer,S. R. (2005).Rainfall, landuse and
woody vegetaon cover change in semi-arid Australian savanna.
Journal of Ecology,93(3),596–606.
12 
|
   ONDEI Et al.
Goetze,D.,Hörsch,B.,&Porembski,S.(2006).Dynamicsofforest–savanna
mosaics in north-eastern Ivory Coast from1954 to 2002. Journal of
Biogeography,33(4),653–664.
Hanan,N.P.,Tredennick,A.T.,Prihodko,L.,Bucini, G.,& Dohn,J.(2014).
Analysis of stable statesin global savannas: Is the CART pulling the
horse?Global Ecology and Biogeography,23(3),259–263.
Hanan,N.P.,Tredennick,A.T.,Prihodko,L.,Bucini, G.,& Dohn,J.(2015).
Analysisofstablestatesinglobalsavannas—AresponsetoStaverand
Hansen.Global Ecology and Biogeography,24(8),988–989.
Hijmans,R.J., Cameron,S. E.,Parra,J. L.,Jones,P.G., &Jarvis,A.(2005).
Veryhighresoluoninterpolatedclimatesurfacesforgloballandareas.
Internaonal Journal of Climatology,25(15),1965–1978.
Hirota,M.,Holmgren,M.,vanNes,E.H.,&Scheer,M.(2011).Globalre-
silience oftropical forest and savanna to crical transions. Science,
334(6053),232–235.
Homann,W.A.,Geiger,E.L.,Gotsch,S.G.,Rossao,D.R.,Silva,L.C.R.,
Lau, O. L., … Lloret, F. (2012). Ecologicalthresholds at the savanna-
forestboundary:Howplanttraits,resourcesandregovernthedistri-
buonoftropicalbiomes.Ecology Leers,15(7),759–768.
Homann,W.A.,Jaconis,S.Y.,McKinley,K.L.,Geiger,E.L.,Gotsch,S.G.,&
Franco,A.C.(2012).Fuelsormicroclimate?Understandingthedrivers
ofrefeedbacksat savanna–forestboundaries.Austral Ecology,37(6),
634–643.
Ibanez,T.,Borgniet,L.,Mangeas,M.,Gaucherel,C.,Geraux,H.,&Hely,C.
(2013).RainforestandsavannalandscapedynamicsinNewCaledonia:
Towards a mosaic of stable rainforest and savanna states? Austral
Ecology,38(1),33–45.
Jenness, J. (2006). Topographic Posion Index (tpi_jen.avx) extension for
ArcView 3.x. v. 1.3a. Jenness Enterprises.Retrieved from: hp://www.
jennessent.com/arcview/tpi.htm.
Kenneally,K. F.,Keighery,G. J.,&Hyland, B. P.M. (1991). Floriscs and
phytogeography of Kimberley rainforests. In N. L. McKenzie, R. B.
Johnston& P.G.Kendrick(Eds.),Kimberley rainforests of Australia (pp.
93–131).ChippingNorton,NSW,Australia:SurreyBeayandSons.
Kimber, P. C., Forster, J. E., & Behn, G. A. (1991). Mapping Western
Australianrainforests—Anoverview.InN.L.McKenzie,R.B.Johnston
& P. G. Kendrick (Eds.), Kimberley ranforests of Australia. Chipping
Norton,NSW,Australia:SurreyBeay&Sons.
Lawes, M. J.,Midgley, J. J., & Clarke,P.J. (2013). Costs and benets of
relavebarkthicknessinrelaontoredamage:Asavanna/forestcon-
trast.Journal of Ecology,101(2),517–524.
Leal, I. R., da Silva,J., Cardoso, M., Tabarelli, M., & Lacher,T. E. (2005).
Changing the course of biodiversityconservaon in the Caanga of
northeasternBrazil.Conservaon Biology,19(3),701–706.
Lehmann,C.E.R.,Anderson,T.M.,Sankaran,M.,Higgins,S.I.,Archibald,S.,
Homann,W.A.,…Bond,W.J.(2014).Savannavegetaon-re-climate
relaonshipsdieramongconnents.Science,343(6170),548–552.
Lloyd,J.,Bird,M.I.,Vellen,L.,Miranda,A.C.,Veenendaal,E.M.,Djagbletey,
G.,…Farquhar,G.D.(2008).Contribuonsofwoodyand herbaceous
vegetaontotropicalsavannaecosystemproducvity:Aquasi-global
esmate.Tree Physiology,28(3),451–468.
Lyons, M., Keighery, G., Gibson, L., & Handasyde, T. (2014). Flora and
vegetaon communies of selected islands othe Kimberley coast
of Western Australia. Records of the Western Australian Museum,
Supplement,81,205–243.
MacDermo,H.J.,Fensham,R.J.,Hua, Q.,&Bowman,D.M.J.S.(2016).
Vegetaon,re and soil feedbacks of dynamic boundaries between
rainforest, savanna and grassland. Austral Ecology, doi:10.1111/
aec.12415.
Mangglamarra, G., Burbidge, A. A., & Fuller, P. J. (1991). Wunambal
wordsforrainforestandotherKimberleyplants and animals.InN. L.
McKenzie,R. B.Johnston &P.G.Kendrick (Eds.),Kimberley rainforest
Australia(pp.413–421).Canberra,Australia:SurreyBeayandSons.
McKenzie, N. L., Belbin, L., Keighery, G. J., & Kenneally, K. F. (1991).
Kimberley rainforest communies: Paerns of species composion
and Holocene biogeography.In N. L. McKenzie, R. B. Johnston& P.
G. Kendrick (Eds.), Kimberley rainforests of Australia (pp. 423–452).
ChippingNorton,NSW,Australia:SurreyBeay&Sons.
Murphy,B.P.,&Bowman,D.M.J.S.(2012).Whatcontrolsthedistribuon
oftropicalforestandsavanna?Ecology Leers,15(7),748–758.
Murphy,B.P.,Paron,P.,Prior,L.D.,Boggs,G.S.,Franklin,D.C.,&Bowman,
D.M.J.S.(2010).Usinggeneralizedautoregressiveerrormodelstoun-
derstandre-vegetaon-soilfeedbacksin amulga-spinifexlandscape
mosaic.Journal of Biogeography,37(11),2169–2182.
O’Connor, S. (1995). Carpenter’s Gap rockshelter 1: 40,000 years of
Aboriginaloccupaon inthe NapierRanges,Kimberley,WA.Australia
Archaeology,40,58–59.
Oliveira-Filho,A.T.,& Raer,J.A. (2002).Vegetaonphysiognomies and
woody ora ofthe cerrado biome. In P. S. Oliveira,& R. J. Marquis
(Eds.),The Cerrados of Brazil(pp.91–120). New York,USA:Columbia
UniversityPress.
Ondei, S., Prior,L. D., Vigilante, T.,& Bowman, D. M. J. S. (2015). Post-
reresproungstrategiesofrainforestandsavannasaplingsalongthe
rainforest–savannaboundaryintheAustralianmonsoon tropics.Plant
Ecology,217(6),711–724.
Paiva,A.,Silva,L.,&Haridasan,M.(2015).Producvity-eciencytradeos
in tropical gallery forest-savanna transions: Linking plant and soil
processesthrough lierinput and composion.Plant Ecology, 216(6),
775–787.
Pausas, J. G. (2015). Bark thickness and re regime.Funconal Ecology,
29(3),315–327.
Price, O. F. (2006). Movements offrugivorous birds among fragmented
rainforestsintheNorthernTerritory,Australia.Wildlife Research,33(6),
521–528.
RCoreTeam.(2013). R: A language and environment for stascal comput-
ing[Online].Vienna,Austria: R Foundaonfor StascalCompung.
Retrievedfromhp://www.R-project.org/
RibeiroJr, P.J., & Diggle, P.J. (2001). geoR: A package forgeostascal
analysis.R News,1(2),15–18.
Russell-Smith,J.(1991). Classicaon,speciesrichness, andenvironmen-
tal relaons ofmonsoon rain forest in northernAustralia. Journal of
Vegetaon Science,2(2),259–278.
Russell-Smith, J., & Bowman, D. M. J. S. (1992). Conservaon of mon-
soonrainforest isolatesin the NorthernTerritory,Australia.Biological
Conservaon,59(1),51–63.
Russell-Smith,J.,Stanton, P.J.,Edwards,A.C., &Whitehead,P.J.(2004).
Rain forest invasion ofeucalypt-dominated woodland savanna, Iron
Range,north-easternAustralia:II. Ratesof landscapechange.Journal
of Biogeography,31(8),1305–1316.
Sánchez-Azofeifa,G.A.,Kalacska,M.,Quesada,M.,Calvo-Alvarado,J.C.,
Nassar,J.M.,&Rodríguez,J.P.(2005).Needforintegratedresearchfor
asustainablefuturein tropicaldryforests.Conservaon Biology,19(2),
285–286.
Schmidt,S., &Stewart,G.R.(2003).δ15Nvalues oftropicalsavannaand
monsoon forestspecies reect root specialisaons and soil nitrogen
status.Oecologia,134(4),569–577.
Sco,K., Seereld, S.A., Douglas,M.M., Parr,C. L., Schatz,J. O.N.,&
Andersen,A.N.(2012).Doeslong-termreexclusioninanAustralian
tropicalsavannaresultinabiomeshi?Atestusingthereintroducon
ofre.Austral Ecology,37(6),693–711.
Silva, L. R., Homann, W., Rossao, D., Haridasan, M., Franco, A., &
Horwath,W.(2013).Cansavannasbecomeforests?Acoupledanalysis
ofnutrient stocks and rethresholdsin central Brazil.Plant and Soil,
373(1–2),829–842.
Silva, L. C. R., Sternberg, L., Haridasan, M., Homann,W.A., Miralles-
Wilhelm,F., &Franco,A. C.(2008).Expansionof gallery forestsinto
centralBraziliansavannas.Global Change Biology,14(9),2108–2118.
Smyth, G., Hu, Y., Dunn, P., Phipson, B., & Chen, Y. (2015). Statmod:
Stascal modelling. R package version 1.4.21. Retrievedfrom: hp://
cran.r-project.org/package=statmod.
    
|
 13
ONDEI Et al.
Speck, N., Bradley, J., Lazarides, M., Twidale, C., Slatyer, R., Stewart, G.,
& Paerson, R. (2010).The lands and pastoral resources of the North
Kimberleyarea,W.A.No.4.CSIRO Land Research Surveys,2010(1),1–116.
Staver,A.C.,Archibald, S.,&Levin,S. (2011a).Treecoverin sub-Saharan
Africa:Rainfallandreconstrainforestandsavannaasalternavesta-
blestates.Ecology,92(5),1063–1072.
Staver,A.C.,Archibald,S.,&Levin,S.A.(2011b).Theglobalextentandde-
terminantsofsavanna andforestas alternavebiomestates.Science,
334(6053),230–232.
Staver,A. C., & Hansen, M. C. (2015).Analysis of stable states in global
savannas:IstheCARTpulling thehorse?—Acomment.Global Ecology
and Biogeography,24(8),985–987.
Thornthwaite,C.W.(1948).Anapproachtowardaraonalclassicaonof
climate.Geographical Review,38(1),55–94.
Trauernicht,C.,Brook, B.W.,Murphy,B.P.,Williamson,G.J.,&Bowman,
D.M. J.S.(2015). Local andglobal pyrogeographic evidencethat in-
digenousremanagementcreatespyrodiversity.Ecology and Evoluon,
5(9),1908–1918.
Trauernicht,C.,Murphy,B.P.,Portner,T.E.,&Bowman,D.M.J.S.(2012).
Treecover–reinteraconspromotethepersistenceofare-sensive
conifer in a highly ammable savanna. Journal of Ecology, 100(4),
958–968.
Tun,C.E.G.,White,L.J.T.,&Mackanga-Missandzou,A.(1997).Theuse
by rain forestmammals of natural forest fragments in an equatorial
Africansavanna.Conservaon Biology,11(5),1190–1203.
Veenendaal, E., Torello-Raventos, M., Feldpausch, T., Domingues, T.,
Gerard,F.,Schrodt,F.,…Ford,A.(2015).Structural,physiognomicand
above-groundbiomassvariaoninsavanna–foresttransionzoneson
three connents–howdierent are co-occurring savanna and forest
formaons?Biogeosciences,12(10),2927–2951.
Vigilante,T.,Bowman, D. M.J. S., Fisher,R.,Russel-Smith, J.,& Yates,C.
(2004). Contemporary landscape burning paerns in the far North
Kimberleyregionofnorth-westAustralia:Humaninuencesandenvi-
ronmentaldeterminants.Journal of Biogeography,31,1317–1333.
Vigilante,T.,Murphy, B.P.,& Bowman, D.M. J.S.(2009). Aboriginalre
useinAustraliantropicalsavanna:Ecologicaleectsandmanagement
lessons. In M.A. Cochrane (Ed.), Tropical re ecology: Climate change,
land use and ecosystem dynamics(pp.143–167).Heidelberg,Germany:
Springer-Praxis.
Vigilante,T.,Toohey,J.,Gorring,A.,Blundell,V.,Saunders,T.,Mangolamara,
S.,…Morgan,K.(2013).Islandcountry:Aboriginalconnecons,values
and knowledge of the Western Australian Kimberley islands in the
contextofanislandbiologicalsurvey.Records of the Western Australian
Museum, Supplement,81,145–181.
Vourlis,G.,deAlmeidaLobo,F.,PintoJr,O.,Zappia,A.,Dalmagro,H., de
Arruda,P.,&de SouzaNogueira,J.(2015).Variaonsin aboveground
vegetaon structure along a nutrient availability gradient in the
Brazilianpantanal.Plant and Soil,389(1–2),307–321.
Warman,L., Bradford,M. G., &Moles,A.T.(2013).A broadapproach to
abrupt boundaries: Looking beyond the boundary at soil aributes
withinandacrosstropicalvegetaontypes.PLoS One,8(4),e60789.
Warman,L., & Moles,A.T.(2009).Alternave stable statesinAustralia’s
WetTropics:Atheorecalframeworkfortheelddataandaeld-case
forthetheory.Landscape Ecology,24(1),1–13.
Webb,L.J. (1968).Environmentalrelaonshipsof thestructural typesof
Australianrainforestvegetaon.Ecology,49(2),296–311.
Webb,L.,& Tracey,J.(1981).Australian rainforests:Paernsand change.
In A. Keast (Ed.), Ecological biogeography of Australia (pp. 605–694).
Boston,MAandLondon,UK:TheHagueandDr.W.JunkbvPublishers.
Xu,C.,Hantson,S.,Holmgren,M.,van Nes,E.H., Staal,A.,&Scheer,M.
(2016).Remotelysensedcanopyheightrevealsthreepantropicaleco-
systemstates.Ecology,97(9),2518–2521.
Zomer,R. J., Trabucco,A., Bossio, D. A., &Verchot,L. V. (2008). Climate
changemigaon:Aspaalanalysisofgloballandsuitabilityforclean
development mechanism aorestaonand reforestaon. Agriculture,
Ecosystems & Environment,126(1),67–80.
SUPPORTING INFORMATION
AddionalSupporngInformaonmaybefoundonlineinthesupport-
inginformaontabforthisarcle.
How to cite this arcle:OndeiS,PriorLD,WilliamsonGJ,
VigilanteT,andBowmanDMJS.Water,land,re,andforest:
Mul-scaledeterminantsofrainforestsintheAustralian
monsoontropics.Ecol Evol.2017;00:1–13.doi:10.1002/
ece3.2734.
... In more mesic areas, fire can only maintain open savanna grasslands under deliberate human-mediated, high-frequency, late season fire regimes (Veenendaal et al. 2018). It must be acknowledged that vegetation and fire patterns are also shaped by terrain that can alter the spread of fire (Bowman 2000;Ondei et al. 2017), as well as creating environmental gradients that affect the distribution of forests such as rain shadows, although global analyses fire and forest and savanna distributions typically do not consider terrain variables (Hirota et al. 2011;Staver et al. 2011). ...
Preprint
Full-text available
Tropical forest and savanna biomes are pivotal in the functioning of the Earth system. Tropical forests are one of the largest terrestrial biosphere carbon pools, whereas savannas exchange carbon between the biosphere and atmosphere via frequent and extensive landscape fires. Both are biodiverse and under increasing threat due to land clearing and anthropogenic climate change. Reliable mapping of tropical forest and savanna is essential to provide understanding of how anthropogenic impacts are affecting the extent of these biomes. Using Google Maps satellite imagery, we manually classified 24,239 random points as forest, savanna, or anthropogenic landscapes within the tropics. Because fire and climate are correlated, we developed separate geospatial models to rank the importance of climate, topography, and human influence on vegetation present. This modelling confirmed that those areas with more fires had lower probabilities of tropical forest, that forest was most likely in areas with high mean annual rainfall with little seasonal variation in precipitation, and that anthropogenic factors disrupt this environmental predictability. We found there were environments where tropical forest and savanna were equally probable are geographically restricted. These relationships suggest that future drier climates projected under anthropogenic climate change, combined with clearing and burning that have reduced tropical forest extent to a subset of its theoretical distribution, will lead to irreversible loss of tropical forests. Our modelling provides global mapping that can be used track further changes to distribution of rainforests.
... Hypothetically, the Vine Thickets maybe seen as relicts of Tropical Wet Forests (ZB I; Walter and Box 1976) from times when the Top End of Australia was dominated by those forests (Bowman 2000). Research into the presence of these relicts has shown a link between higher rainfall and more nutrient rich soils with added complexity in a preference for complex topographic positioning (Ondei et al. 2017). It is unclear however if this is a preference of the Tropical Dry Forests or a consequence of their extent retracting to refugia due to shifting climates. ...
... Fire plays a major role in controlling rainforest boundaries, with rainforest communities usually limited to topographic positions that are sheltered from frequent fire (Bowman 2000;Wood et al. 2011;Ondei et al. 2017;Bond 2019). Yet the response of rainforest flora to fire is complex, and many rainforest species from tropical to temperate latitudes are capable of surviving occasional fires by resprouting and fire-cued seedling recruitment (e.g. ...
Article
Full-text available
Interactions between rainforest plants and fire occur when fires encroach into rainforest and when rainforest pioneers colonise fire-prone open forests. Although numerous studies show that many rainforest plants survive fire by resprouting and postfire seedling recruitment, data is lacking for several major Australian rainforest types. In this study, we examine fire-resilience traits among 228 taxa of woody rainforest plants in four rainforest classes (subtropical, warm temperate, dry and littoral rainforest) less than 1 year after being burnt in the extensive wildfires of 2019-20. Among taxa with ≥ 5 records of complete crown scorch (126), resprouting occurred in 63% of taxa overall and 61% of late-successional taxa. Fire-cued seedling recruitment occurred in 62% of taxa overall and 48% of late-successional taxa. Surprisingly, species richness of woody plants increased 22% postfire due to high rates of persistence and emergence of new taxa into standing plant populations as seedlings. Stem density increased ~400% postfire due to high rates of resprouting and reproduction through suckering and seedling recruitment, although there was a significant redistribution from medium to smaller stem size classes. Larger stems (>10 cm DBH) were not significantly reduced in rainforest stands. High resprouting rates in small rainforest plants (1 cm DBH, 1m tall) suggests rapid attainment of resprouting capacity. Our findings demonstrate that most subtropical, dry, warm temperate and littoral rainforest plant taxa are resilient to rare fires, and suggest that rainforest plants that invade rarely-burnt open forests may quickly become resistant to removal by infrequent fires, with potential for increased populations through fire-enhanced seedling germination.
... Fire plays a major role in controlling rainforest boundaries, with rainforest communities usually limited to topographic positions that are sheltered from frequent fire (Bowman 2000a;Wood et al. 2011;Ondei et al. 2017;Bond 2019). Yet the response of rainforest flora to fire is complex, and many rainforest species from tropical to temperate latitudes are capable of surviving occasional fires by resprouting and fire-cued seedling recruitment (e.g. ...
Thesis
Full-text available
The expansion of rainforest pioneer trees into long-unburnt open forests is a global phenomenon and widely reported in high rainfall regions of Australia. However, impacts on Australian open forest biodiversity have been little studied beyond the tropics. In this thesis, I asked whether an invading midstorey of rainforest pioneers had adverse impacts on communities of open forest flora and fauna, and on ecosystem function, by examining heathy Eucalypt forest with contrasting fire frequencies and levels of rainforest-invasion in the Bundjalung Wilderness Area of northern NSW. Where rainforest pioneers dominated the midstorey, understorey plant species richness was halved, and ground cover and density of open forest specialists were reduced by ~90% compared to the uninvaded state. Rainforest-invaded open forest also had lower insectivorous bat activity (63% lower) and species richness (35% lower). Forest flammability was also sharply reduced by rainforest pioneers through near-elimination of dense grassy (graminoid) and heathy understorey fuels in exchange for sparse rainforest saplings with less-flammable foliage and crown structure. These findings suggest that rainforest pioneers are ecosystem engineers that modify open forest fuel properties, initiating a positive fire-suppression feedback that facilitates their persistence and the continued transition to a fire-resistant closed forest. I also examined fire-resilience traits among 228 taxa of woody rainforest plants burnt in the extensive 2019-20 bushfires of eastern Australia to determine the reversibility of rainforest-invasion when fire ultimately returns to long-unburnt open forest. Most taxa survived fire by resprouting and/or fire-cued seedling recruitment, and resprouting rates were high across all size classes, including in small rainforest plants (≤1 cm DBH, ≤1m tall). These findings suggest that rainforest plants which invade long-unburnt open forests may quickly become resistant to removal by future fires, allowing rapid re-establishment of midstorey cover from established root stocks. The observed declines in open forest flora, fauna and ecosystem function occurred well before recommended maximum fire-intervals for dry open forest, casting doubt on the suitability of existing guidelines in high rainfall regions. To conserve open forest biodiversity, this research suggests that fires should be of sufficient frequency to prevent a dense rainforest midstorey from eliminating open forest flora, fauna and the understorey fuels that underpin open forest function.
... Hypothetically, the Vine Thickets maybe seen as relicts of Tropical Wet Forests (ZB I; Walter and Box 1976) from times when the Top End of Australia was dominated by those forests (Bowman 2000). Research into the presence of these relicts has shown a link between higher rainfall and more nutrient rich soils with added complexity in a preference for complex topographic positioning (Ondei et al. 2017). It is unclear however if this is a preference of the Tropical Dry Forests or a consequence of their extent retracting to refugia due to shifting climates. ...
Article
Vegetation patterns of are the result of environmental drivers operating across a range of ecological and evolutionary scale.
... Consequently, on the Bougainville Peninsula rainforests cover a greater proportion of the landscape than on the Mitchell Plateau, and are less confined to protected topographic settings (i.e. valleys and slopes; Ondei et al. 2017b). In both areas rainforests have a closed canopy and provide more abundant tree species with fleshy fruits (calculated as average basal area from data collected by Ondei et al. 2017a), which is important for mammalian and avian frugivore species (Table 1). ...
Article
ContextPopulations of native mammals are declining at an alarming rate in many parts of tropical northern Australia. Fire regimes are considered a contributing factor, but this hypothesis is difficult to test because of the ubiquity of fire. AimsThis preliminary study investigated relative abundance and richness of small mammals on a gradient of fire regimes in the Uunguu Indigenous Protected Area (north Kimberley, Australia). Methods Species were sampled using 40 unbaited camera traps, positioned for a year on 20 transects crossing the rainforest–savanna boundary at locations with comparable environment and geology but varying fire history. The relative importance of the factors ‘fire frequency’, ‘late dry season fire frequency’, ‘time since burnt’ and ‘vegetation type’ as predictors of the number of small mammal species and detections was tested using Spatial Generalised Linear Mixed Models to account for spatial autocorrelation. Key resultsNine species of small mammals were observed. Mammals were more abundant and diverse in locations with low overall fire frequency, which was a better predictor than late dry season fire frequency or time since burnt. The model including fire frequency and vegetation explained the highest proportion of total variation in mammal diversity (R2=42.0%), with most of this variation explained by fire frequency alone (R2=40.5%). The best model for number of detections (R2=20.9%) included both factors. Conclusions In the north Kimberley, small mammals are likely to be more abundant and diverse in areas with low fire frequency. ImplicationsThis natural experiment supports the theory that frequent fires are contributing to the decline of small mammals observed across northern Australia.
... Modern ecological studies show that tropical forest and savannah are two alternative stable states which can coexist under similar environmental conditions, despite distinct ecological structures, biodiversity, and carbon storage (Hirota et al., 2011;Staver et al., 2011). According to the alternative stable state theory, stabilizing feedbacks maintain these two ecosystems: High tree cover and rare fires are typical for tropical forest, while open canopy with grassy ground layer and frequent fires characterize the savannah (Murphy & Bowman, 2012;Ondei et al., 2017). Shifts between these two ecosystems occur if the feedback processes are disturbed (Murphy & Bowman, 2012). ...
Article
Full-text available
Fire causes dramatic energy and matter exchanges between biosphere and atmosphere on a regional to global scale. Predicting fires, however, is hindered by the complex interplay of fire, climate, and vegetation. Paleo-fire records provide critical information beyond instrumental records that cover only the past few decades and may be used to assess the role of fire in large-scale and long-term environmental changes. Here we present a 22,000-year multiproxy record of fire regime from a sediment core retrieved offshore South Java, Indonesia. We use microcharcoal in combination with two molecular markers of burning, levoglucosan and polycyclic aromatic hydrocarbons, to reconstruct fire occurrence as well as fire intensity in the past. We show that fire occurrence and intensity were high during the Last Glacial Maximum (LGM; around 21,000 years ago) and low during the Heinrich Stadial 1 and the early Holocene. Both fire regime and vegetation in tropical regions with high annual rainfall were primarily controlled by rainfall seasonality. However, fire additionally stabilized the savannah (rainforest)-dominated ecosystem during the LGM (early Holocene) but caused transitions between the two vegetation types during the deglaciation and the late Holocene.
Article
Full-text available
Fire is a natural process in tropical savannas, but contemporary cycles of recurrent, extensive, severe fires threaten biodiversity and other values. In northern Australia, prescribed burning to reduce wildfire incidence is incentivised through a regulated emissions abatement program. However, only certain vegetation types are eligible; also, managers of small land parcels are disadvantaged by the program’s transaction costs and interannual variability in management outcomes. Both impediments apply to landholders of the Dampier Peninsula, north-west Australia. Nevertheless, Indigenous rangers, pastoralists and other stakeholders have collaborated for 5 years to manage fire across their small holdings (300–2060 km2). We used remote sensing imagery to examine the project’s performance against seven fire regime targets related to biodiversity, cultural and pastoral values. At the scale both of individual landholders and the entire Peninsula (18 500 km2), the project significantly reduced the extent of annual fire, high-severity fire, mid-late dry season fire, fire frequency and severe fire frequency. The project significantly increased the graininess of burnt and unburnt areas and the extent unburnt for 3+ years more than tripled. The project demonstrates that cross-tenure collaboration can overcome the challenges of managing fire on small land parcels. However, this project’s sustainability depends on securing ongoing funding.
Article
Fire is a major type of ecological disturbance shaping plant communities and species distributions. Fires in the spring and summer of 2019/2020 in Australia burnt large areas where this type of disturbance was rare in the past, including in the South-East Queensland region. To assess the potential impacts of these fires, online GIS data layers were used to map where the fires occurred and which protected areas, plant communities and threatened plants were likely burnt. Based on clustering of Visible Infrared Imaging Radiometer Suite sensor fire points, 3% (240,000 ha) of the region may have burnt including 107,606 ha of National Parks, sections of 18 Broad Vegetation Groups and 74 Regional Ecosystems and potential habitat of 74 threatened plant species. This included 16% of wet open forests and 13% of rainforests. The results provide preliminary insights into the potential scale of the fires and impact on biodiversity from mapping based on online data, but we also that more detailed mapping including of fire intensity and perimeter combined with ground truthing and ongoing monitoring would be required to better understand changes in fire regimes in the region.
Article
Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented , fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation , the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.
Article
Full-text available
Although canopy height has long been a focus of interest in ecology, it has remained difficult to study at large spatial scales. Recently, satellite-borne LiDAR equipment produced the first systematic high resolution maps of vegetation height worldwide. Here we show that this new resource reveals three marked modes in tropical canopy height ~40, ~12, and ~2 m corresponding to forest, savanna, and treeless landscapes. The distribution of these modes is consistent with the often hypothesized forest-savanna bistability and suggests that both states can be stable in areas with a mean annual precipitation between ~1,500 and ~2,000 mm. Although the canopy height states correspond largely to the much discussed tree cover states, there are differences, too. For instance, there are places with savanna-like sparse tree cover that have a forest-like high canopy, suggesting that rather than true savanna, those are thinned relicts of forest. This illustrates how complementary sets of remotely sensed indicators may provide increasingly sophisticated ways to study ecological phenomena at a global scale.
Book
Why do Australian rainforests occur as islands within the vast tracts of Eucalyptus? Why is fire a critical ecological factor in every Australian landscape? What were the consequences of the ice-age colonists use of fire? In this original and challenging book, David Bowman critically examines hypotheses that have been advanced to answer these questions. He demonstrates that fire is the most critical factor in controlling the distribution of rainforest throughout Australia. Furthermore, while Aboriginal people used fire to skilfully manage and preserve habitats, he concludes that they did not significantly influence the evolution of Australia's unique flora and fauna. This book is a comprehensive overview of the diverse literature that attempts to solve the puzzle of the archipelago of rainforest habitats in Australia. It is essential reading for all ecologists, foresters, conservation biologists, and others interested in the biogeography and ecology of Australian rainforests.
Article
At fine spatial scales, savanna-rainforest-grassland boundary dynamics are thought to be mediated by the interplay between fire, vegetation and soil feedbacks. These processes were investigated by quantifying tree species composition, the light environment, quantities and flammability of fuels, bark thickness, and soil conditions across stable and dynamic rainforest boundaries that adjoin grassland and eucalypt savanna in the highlands of the Bunya Mountains, southeast Queensland, Australia. The size class distribution of savanna and rainforest stems was indicative of the encroachment of rainforest species into savanna and grassland. Increasing dominance of rainforest trees corresponds to an increase in woody canopy cover, the dominance of litter fuels (woody debris and leaf), and decline in grass occurrence. There is marked difference in litter and grass fuel flammability and this result is largely an influence of strongly dissimilar fuel bulk densities. Relative bark thickness, a measure of stem fire resistance, was found to be generally greater in savanna species when compared to that of rainforest species, with notable exceptions being the conifers Araucaria bidwillii and Araucaria cunninghamii. A transect study of soil nutrients across one dynamic rainforest – grassland boundary indicated the mass of carbon and nitrogen, but not phosphorus, increased across the successional gradient. Soil carbon turnover time is shortest in stable rainforest, intermediate in dynamic rainforest and longest in grassland highlighting nutrient cycling differentiation. We conclude that the general absence of fire in the Bunya Mountains, due to a divergence from traditional Aboriginal burning practices, has allowed for the encroachment of fire-sensitive rainforest species into the flammable biomes of this landscape. Rainforest invasion is likely to have reduced fire risk via changes to fuel composition and microclimatic conditions, and this feedback will be reinforced by altered nutrient cycling. The mechanics of the feedbacks here identified are discussed in terms of landscape change theory.
Code
Tools for performing model selection and model averaging. Automated model selection through subsetting the maximum model, with optional constraints for model inclusion. Model parameter and prediction averaging based on model weights derived from information criteria (AICc and alike) or custom model weighting schemes. [Please do not request the full text - it is an R package. The up-to-date manual is available from CRAN].
Article
The semi-evergreen vine thickets of the Admiralty Gulf generally occur on, or at the foot of the rubble-strewn breakaway slope of a duricrusted plateau surrounded by typically savanna vegetation. The vegetation consists of 2 contrasting ecosystems, a pyrophytic savanna and a mesophytic vine thicket. These 2 ecosystems exist in a fine balance which is dependent on the fire regime, both natural (lightning) and man induced. -from Authors