Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. Depending on the accounting approaches and scope of emissions covered, estimates by various sources (IPCC, FAO, EPA or others) place livestock contribution to global anthropogenic GHG emissions at between 7 and 18 percent. The current analysis was conducted to evaluate the potential of nutritional, manure and animal husbandry practices for mitigating methane (CH4) and nitrous oxide (N2O) – i.e. non-carbon dioxide (non-CO2) – GHG emissions from livestock production. These practices were categorized into enteric CH4, manure management and animal husbandry mitigation practices. Emphasis was placed on enteric CH4 mitigation
practices for ruminant animals (only in vivo studies were considered) and manure mitigation practices for both ruminant and monogastric species. Over 900 references were reviewed; and simulation and life cycle assessment analyses were generally excluded. In evaluating mitigation practices, the use of proper units is critical. Expressing enteric CH4 energy production on gross energy intake basis, for example, does not accurately reflect the potential impact of diet quality and composition. Therefore, it is noted that GHG emissions should be expressed on a digestible energy intake basis or per unit of animal product
(i.e. GHG emission intensity), because this reflects most accurately the effect of a given mitigation practice on feed intake and the efficiency of animal production.
Enteric CH4 mitigation practices
Increasing forage digestibility and digestible forage intake will generally reduce GHG emissions from rumen fermentation (and stored manure), when scaled per unit of animal product, and are highly-recommended mitigation practices. For example, enteric CH4 emissions may be reduced when corn silage replaces grass silage in the diet. Legume silages may also have an advantage over grass silage due to their lower fibre content and the additional benefit of replacing inorganic nitrogen fertilizer. Effective silage preservation will improve forage quality on the farm and reduce GHG emission intensity. Introduction of legumes into grass pastures in warm climate regions may offer a mitigation opportunity, although more research is needed to address the associated agronomic challenges and comparative N2O emissions with equivalent production levels from nitrogen fertilizer. Dietary lipids are effective in reducing enteric CH4 emissions, but the applicability of this practice will depend on its cost and its effects on feed intake, production and milk composition. High-oil by-product feeds, such as distiller’s grains, may offer an economically feasible
alternative to oil supplementation as a mitigation practice, although their higher fibre content may have an opposite effect on enteric CH4, depending on basal diet composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease enteric CH4 emissions per unit of animal product, particularly when above 40 percent of dry matter intake. The effect may depend on type of ‘concentrate’ inclusion rate, production response, impact on fibre digestibility, level of nutrition, composition of the basal diet and feed processing. Supplementation with small amounts of concentrate feed is expected to increase animal
productivity and decrease GHG emission intensity when added to all-forage diets. However, concentrate supplementation should not substitute high-quality forage. Processing of grain to increase its digestibility is likely to reduce enteric CH4 emission intensity. Nevertheless, caution should be exercised so that concentrate supplementation and processing does not compromise digestibility of dietary fibre. In many parts of the world, concentrate inclusion may not be an economically feasible mitigation option. In these situations improving the nutritive value of low-quality feeds in ruminant diets can have a considerable benefit on herd
productivity, while keeping the herd CH4 output constant or even decreasing it. Chemical treatment of low-quality feeds, strategic supplementation of the diet, ration balancing and crop selection for straw quality are effective mitigation strategies, but there has been little adoption of these technologies. Nitrates show promise as enteric CH4 mitigation agents, particularly in low-protein diets that can benefit from nitrogen supplementation, but more studies are needed to fully understand their impact on whole-farm GHG emissions, animal productivity and animal health. Adaptation to these compounds is critical and toxicity may be an issue. Through their effect on feed efficiency, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or grain-forage diets. However, regulations restrict the availability of
this mitigation option in many countries. In ruminants on pasture, the effect of ionophores is not sufficiently consistent for this option to be recommended as a mitigation strategy. Tannins may also reduce enteric CH4 emissions, although intake and milk production may be compromised. Further, the agronomic characteristics of tanniferous forages must be considered when they are discussed as a GHG mitigation option. There is not sufficient evidence that other plant-derived bioactive compounds, such as essential oils, have a CH4-mitigating effect. Some direct-fed microbials, such as yeast-based products, might have a moderate
CH4-mitigating effect through increasing animal productivity and feed efficiency, but the effect is expected to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future, although the extent of CH4 reduction appears small, and adaptation and persistence of the effect is unknown.
Manure management mitigation practices
Diet can have a significant impact on manure (faeces and urine) chemistry and therefore on GHG emissions during storage and following land application. Manure storage may be required when animals are housed indoors or on feedlots, but a high proportion of ruminants are grazed on pastures or rangeland, where CH4 emissions from their excreta is very low and N2O losses from urine can be substantial. Decreased digestibility of dietary nutrients is expected to increase fermentable organic matter concentration in manure, which may
increase manure CH4 emissions. Feeding protein close to animal requirements, including varying dietary protein concentration with stage of lactation or growth, is recommended as an effective manure ammonia and N2O emission mitigation practice. Low-protein diets for ruminants should be balanced for rumen-degradable protein so that microbial protein synthesis and fibre degradability are not impaired. Decreasing total dietary protein and supplementing the diet with synthetic amino acids is an effective ammonia and N2O mitigation strategy for non-ruminants. Diets for all species should be balanced for amino acids to avoid
feed intake depression and decreased animal productivity. Restricting grazing when conditions are most favourable for N2O formation, achieving a more uniform distribution of urine on soil and optimizing fertilizer application are possible N2O mitigation options for ruminants on pasture. Forages with higher sugar content (high-sugar grasses or forage harvested in the afternoon when its sugar content is higher) may reduce urinary nitrogen excretion, ammonia volatilization and perhaps N2O emission from manure applied to soil, but more research is needed to support this hypothesis. Cover cropping can increase plant nitrogen uptake and
decrease accumulation of nitrate, and thus reduce soil N2O emissions, although the results have not been conclusive. Urease and nitrification inhibitors are promising options to reduce N2O emissions from intensive livestock production systems, but can be costly to apply and result in limited benefits to the producer. Overall, housing, type of manure collection and storage system, separation of solids and liquid and their processing can all have a significant impact on ammonia and GHG emissions from animal facilities. Most mitigation options for GHG emissions from stored manure, such as reducing the time of manure storage, aeration, and stacking, are generally aimed at decreasing the time allowed for microbial fermentation processes to occur before land application. These mitigation practices are effective, but their economic feasibility is uncertain.
Semi-permeable covers are valuable for reducing ammonia, CH4 and odour emissions at storage, but are likely to increase N2O emissions when effluents are spread on pasture or crops. Impermeable membranes, such as oil layers and sealed plastic covers, are effective in reducing gaseous emissions but are not very practical. Combusting accumulated CH4 to produce electricity or heat is recommended. Acidification (in areas where soil acidity is not an issue) and cooling are further effective methods for reducing ammonia and CH4 emissions from stored manure. Composting can effectively reduce CH4 but can have a variable effect
on N2O emissions and increases ammonia and total nitrogen losses. Anaerobic digesters are a recommended mitigation strategy for CH4 generate renewable energy, and provide sanitation opportunities for developing countries, but their effect on N2O emissions is unclear. Management of digestion systems is important to prevent them from becoming net emitters of GHG. Some systems require high initial capital investments and, as a result, their adoption may occur only when economic incentives are offered. Anaerobic digestion systems are not recommended for geographic locations with average temperatures below 15 °C without supplemental heat and temperature control. Lowering nitrogen concentration in manure, preventing anaerobic conditions and reducing the input of degradable manure carbon are effective strategies for reducing GHG emissions from manure applied to soil. Separation of manure solids and anaerobic degradation
pre-treatments can mitigate CH4 emission from subsurface-applied manure, which may otherwise be greater than that from surface-applied manure. Timing of manure application (e.g. to match crop nutrient demands, avoiding application before rain) and maintaining soil pH above 6.5 may also effectively decrease N2O emissions.
Animal husbandry mitigation practices
Increasing animal productivity can be a very effective strategy for reducing GHG emissions per unit of livestock product. For example, improving the genetic potential of animals through planned cross-breeding or selection within breeds, and achieving this genetic poten tial through proper nutrition and improvements in reproductive efficiency, animal health and reproductive lifespan are effective and recommended approaches for improving animal productivity and reducing GHG emission intensity. Reduction of herd size would increase
feed availability and productivity of individual animals and the total herd, thus lowering CH4 emission intensity. Residual feed intake may be an appealing tool for screening animals that are low CH4 emitters, but currently there is insufficient evidence that low residual feed intake animals have a lower CH4 yield per unit of feed intake or animal product. However, selection for feed efficiency will yield animals with lower GHG emission intensity. Breed difference in feed efficiency should also be considered as a mitigation option, although insufficient data are currently available on this subject. Reducing age at slaughter of finished cattle and the number of days that animals are on feed in the feedlot by improving nutrition and genetics can also have a significant impact on GHG emissions in beef and other meat animal production systems.
Improved animal health and reduced mortality and morbidity are expected to increase herd productivity and reduce GHG emission intensity in all livestock production systems. Pursuing a suite of intensive and extensive reproductive management technologies provides a significant opportunity to reduce GHG emissions. Recommended approaches will differ by region and species, but will target increasing conception rates in dairy, beef and buffalo, increasing fecundity in swine and small ruminants, and reducing embryo wastage in all
species. The result will be fewer replacement animals, fewer males required where artificial insemination is adopted, longer productive life and greater productivity per breeding animal.
Conclusions
Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing GHG emissions per unit of animal product. Several feed supplements have a potential to reduce enteric CH4 emission from ruminants, although their long-term effect has not been well-established and some are toxic or may not be economically viable in developing countries. Several manure management practices have a significant potential for decreasing GHG emissions from manure storage and after
application or deposition on soil. Interactions among individual components of livestock production systems are very complex, but must be considered when recommending GHG mitigation practices. One practice may successfully mitigate enteric CH4 emission, but increase fermentable substrate for increased GHG emissions from stored or landapplied manure. Some mitigation practices are synergistic and are expected to decrease
both enteric and manure GHG emissions (for example, improved animal health and animal productivity). Optimizing animal productivity can be a very successful strategy for mitigating GHG emissions from the livestock sector in both developed and developing countries.